Accelerating Legacy String Kernels via Bounded Automata Learning

Kevin Angstadt[†], Jean-Baptiste Jeannin[‡], Westley Weimer[†]

[†]Computer Science and Engineering, University of Michigan [‡]Aerospace Engineering, University of Michigan

This work is funded in part by: NSF grants CCF-1629450, CCF-1763674, CCF-1908633; AFRL Contract No. FA8750-19- 1-0501; and the Jefferson Scholars Foundation.

Physical Limits Spark Creativity

J. M. Shalf and R. Leland, "Computing Beyond Moore's Law". IEEE Computer, 2015.

New Kinds of Processors

New	Kinds	of	Processors
-----	--------------	----	------------

FORTUNE FORTUNE FOINTCLOUD Why Microsoft Has Bet on FPGAs to Infuse Its Cloud

Official At Last: Intel Completes \$1 Billion Buy of Altera With AI

Xilinx provides Alibaba Cloud FaaS with Al Acceleration

ything from

by NICK FARRELL on 10 MARCH 2020

2020 AWS News Blog

EC2 F1 Instances with FPGAs – Now Generally Available

by Jeff Barr | on 19 APR 2017 | in Amazon EC2 | Permalink | 🏞 Share

Legacy Code in the Age of Hardware Accelerators

- Legacy code typically cannot be directly compiled for FPGAs
- Learning a new programming model is costly and slows rate of adoption of new accelerators
- May want to "try out" new hardware with existing software
 - No training on new hardware
 - Limited time or resources to allocate

Talk Overview

- Background and Motivation
- Technical Approach
 - High-Level Summary
 - Problem Statement
 - Approach Details
 - Formal Results
- Empirical Evaluation
- Open Challenges

Goal: Aid developers programming FPGAs by automatically porting certain classes of existing source code without requiring low-level hardware knowledge to produce performant code

AutomataSynth at a Glance

- Framework for executing code (legacy software) on FPGAs and other hardware accelerators
- Dynamically observe and statically analyze program behavior to synthesize a functionally-equivalent hardware design
- Initial effort infers a set of finite automata rather than attempting to directly compile code
- Novel combination of model learning (learning theory), software model checking (software engineering), string decision procedures (PL/theory), and high-performance automata architectures (hardware)

Why Automata(Synth)?

- FPGA designs are often described in terms of state machines
- Automata a versatile and broadly-applicable
- Can build on significant research effort for accelerating state machine execution
- Other high-level approaches (cf. HLS) generally fail to abstract lowlevel architectural details
- Our approach decouples high-level program and low-level implementation

Automata Accelerate Big Data Applications

Problem Statement (First Efforts)

- Input: function kernel : string -> bool
- Assumptions:
 - Function decides a regular language
 - Source code for function is available
- Output: finite automaton with the same behavior on "all" inputs as kernel

Angluin-Style Learning (L*)

Membership Queries are Direct $s \stackrel{?}{\in} L(Kernel)$

- Check if kernel accepts input by running the code
- Return value of the kernel is the answer from the teacher
- Caution: take care with ASCII encoding and null terminators (not all functions assume C-style strings)

Understanding Termination Queries $L(M) \stackrel{?}{=} L(Kernel)$

- Don't have held-out automaton for comparison
- Test inputs generally do not suffice
 - Coverage, generation, etc. difficult challenges
- Constraint over string inputs
 - No inputs that are accepted by the kernel are rejected by the candidate machine (and vice versa)
 - "The symmetric difference is empty"
 - Allows for formulation as a software verification query

Equality Checking as Software Verification

- Explores control flow graph looking for property violations
 - Success finding variety of bugs (e.g., double-free, locking violations, etc.)
 - Used in industry for driver verification
- Bounded Model Checking suitable for this domain
 - Verifies that property holds for all program executions up to length k (i.e., fixed number of loop unrollings)
 - Incremental unrolling to check longer and longer executions
 - Use theorem prover to identify executions that violate property
- Wrapper program to encode the "symmetric difference" property
- Add in string solver to generate counterexamples

AutomataSynth System Architecture

15

I 🗸 I

Caveats/Challenges

Theorem provers are relatively complete.

- Software verification will occasionally return an unknown result
- No counterexample is produced, so L* cannot continue
- Implication: resulting automaton is approximate, but correct for all inputs shorter than some fixed bound

BMC with incremental unrolling is a semi-algorithm.

- Unrolling of program with infinite loops could continue indefinitely
- Termination query might never terminate
- For regular languages finite unrolling suffices (See §4.3)
- Implication: BMC+string solver will terminate and satisfies requirements for Termination Queries

Theoretical Implications

- When AutomataSynth terminates, we report if the automaton is correct or approximate
 - Formal approach means that automata are provably correct
 - Approximate automata are correct for inputs up to a known bound
- For functions deciding a regular language, correctness is guaranteed (modulo the theorem prover)
- In practice, we make use of timeouts to terminate AutomataSynth
 - Tunable to help define bounds of correctness

Evaluation: Guiding Research Questions

- How many real-world string kernels can AutomataSynth correctly learn? With approximation?
- Does AutomataSynth learn automata that fit within the design constraints of modern, automata-derived, reconfigurable architectures?

Experimental Methodology

- Mine GitHub for string functions in top C repositories
- Use Cil framework to iteratively parse each source file an extract all string functions
- Filter for duplicates and manual analysis to filter on Boolean return type
- Considered 26 repositories, 973 separate string functions, 18 meaningfully-distinct real-world benchmarks
 - AutomataSynth did not support 3 due to functionality of underlying string solver (e.g., no math on characters)

Benchmark	Project	LOC	Member Queries	Term. Queries	States	Runtime (min)	Correct
<pre>git_offset_1st_component</pre>	Git: Revision control	6	4,090	2	2	0.12	\checkmark
checkerrormsg		4	32,664	2	15	1436.58	√ *
checkfail	jq: Command-line	14	189,013	3	35	1438.47	✓*
skipline		17	7,663	3	3	4.90	\checkmark
end_line	Linux: OS kernel	11	510,623	4	44	491.88	\checkmark
start_line		11	206,613	2	46	80.22	Approx.
is_mcounted_section_name		54	672,041	7	57	1439.98	Approx.
is_numeric_index	MASSCAN: IP port scanner	17	10,727	3	4	4.95	\checkmark
is_comment		11	4,090	2	2	0.23	\checkmark
AMF_DecodeBoolean		2	2,557	2	2	0.07	\checkmark
cf_is_comment	OBS Studio: Live streaming and recording software	28	4,599	2	4	5.00	\checkmark
cf_is_splice		22	1,913	2	4	0.05	\checkmark
is_reserved_name		39	240,705	8	42	1424.48	\checkmark
has_start_code		18	10,213	2	7	0.08	\checkmark
stbttisfont	Openpilot: Open- source driving agent	24	79,598	5	19	0.22	\checkmark

M

Benchmark	Project	1	Member	Term.	Ru	intime זיה)	Correct
<pre>git_offset_1st_component</pre>	Git: Revision control					0.12	\checkmark
checkerrormsg		A	<i>utomata</i> :	1436.58	√*		
checkfail	jq: Command-line	13/	18 kerne	1438.47	√*		
skipline				4.90	\checkmark		
end_line		at	urther 2	approxin	nately	491.88	\checkmark
start_line	Linux: OS kernel					80.22	Approx.
is_mcounted_section_name	·	34	012,041	1	51	1439.98	Approx.
is_numeric_index	MASSCAN: IP port	17	10,727	3	4	4.95	\checkmark
is_comment	scanner	11	4,090	2	2	0.23	\checkmark
AMF_DecodeBoolean		2	2,557	2	2	0.07	\checkmark
cf_is_comment	OBS Studio: Live streaming and recording software	28	4,599	2	4	5.00	\checkmark
cf_is_splice		22	1,913	2	4	0.05	\checkmark
is_reserved_name		39	240,705	8	42	1424.48	\checkmark
has_start_code		18	10,213	2	7	0.08	\checkmark
stbttisfont	Openpilot: Open- source driving agent	24	79,598	5	19	0.22	\checkmark

Benchmark	Project	LOC	Member Queries	Term. Queries	States	Runtime (min)	Correct
<pre>git_offset_1st_component</pre>	Git: Revision control	6	4,090	2	2	0.12	\checkmark
checkerrormsg		4	32,664	2	15	1436.58	√*
checkfail	jq: Command-line	14	189,013	3	35	1438.47	√*
skipline		17	7,663	3	3	4.90	\checkmark
end_line		11	510.623	4	44	491.88	\checkmark
start_line	Linux: OS ke					80.22	Approx.
<pre>is_mcounted_section_name</pre>		···· • ···	- + 			1439.98	Approx.
is_numeric_index	MASSCAN: IF	earnin	g took ar	n averag	ge or	4.95	\checkmark
is_comment	scanner	7 hou	rs. More	than h	alf	0.23	\checkmark
AMF_DecodeBoolean	+	aka fa	worthop	5 minu		0.07	\checkmark
cf_is_comment	OBS Studio:	Lake lewer than 5 minutes					\checkmark
cf_is_splice	streaming a recording software					0.05	\checkmark
is_reserved_name		39	240,705	8	42	1424.48	\checkmark
has_start_code		18	10,213	2	7	0.08	\checkmark
stbttisfont	Openpilot: Open- source driving agent	24	79,598	5	19	0.22	\checkmark

M

Benchmark	Project	LOC	Member Queries	Term. Queries	States	untime (min)	Correct
<pre>git_offset_1st_component</pre>	Git: Revision control	6	4,090	2	2	0.12	\checkmark
checkerrormsg		4	32,664	2	15	1436.58	√ *
checkfail	jq: Command-line	14	189,013	3	35	1438.47	√ *
skipline		17	7,663	3	3	4.90	\checkmark
end_line	Linux: OS kernel	11	510,623	4	44	491.88	\checkmark
start_line		11	206,613	2	46	80.22	Approx.
<pre>is_mcounted_section_name</pre>		54	672,041	7	57	1439.98	Approx.
is_numeric_index	MASSCAN: IP port	17	10,727	3	4	4.95	\checkmark
is_comment					2	0.23	\checkmark
AMF_DecodeBoolean					2	0.07	\checkmark
cf_is_comment	Learned	4	5.00	\checkmark			
cf_is_splice	rocou	4	0.05	\checkmark			
is_reserved_name		42	1424.48	\checkmark			
has_start_code	FPGA-based architectures				7	0.08	\checkmark
stbttisfont	SOL				19	0.22	\checkmark

23

M

Open Challenges: Guiding Desires

- Support broader classes of functions
 - Not all legacy code consists solely of Boolean string kernels
- More indicative benchmark applications
 - Mined real-world functions are a start, but...
 - Functions that dominate runtime
 - Larger or more complex functions
- Comparison of learning-based solutions (AutomataSynth) with HLS

Open Challenges (Learning-Specific)

Learn More Expressive Models (Transducers, Pushdown, etc.)

Improve String Solvers (Expressiveness, Performance, etc.)

Scale Termination Queries and Explore Alternatives

Understand Approximation (PAC Learning, Measure Error)

AutomataSynth Summary

- Framework for accelerating legacy Boolean string kernel functions using FPGAs
- Static and dynamic analyses of program behavior to construct functionally-equivalent automata
- Novel combination of Angluin-style learning with software model checking and string solvers
- Successfully constructs equivalent (or near equivalent) FPGA designs for more than 80% of real-world benchmarks mined from GitHub
- Many open challenges mean many opportunities for studying learningbased approaches for porting code

Source code: https://github.com/kevinaangstadt/automata-synth

