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The limits of existing semiconduc-
tor microelectronic technology at the 
device level and their impact at the 
system level demand a successor tech-
nology to the currently ubiquitous 
CMOS logic. There is not yet an obvious 
successor, but we see three basic paths 
to obtaining one, shown in Figure 1: 
create new devices, build new archi-
tectures with or without new devices, 
and develop new computational par-
adigms. We expect to see substantial 
exploration and innovation in each of 
these areas. New computation models 
will likely depart from digital comput-
ing and expand into new areas, where 
former technology paradigms are less 
suitable. New architectures and pack-
aging will resourcefully arrange exist-
ing building blocks, improving perfor-
mance irrespective of the underlying 
technology. Finally, new materials and 
transistors will enhance performance 
by creating more e"cient underlying 
logic devices.

In the near term, emphasis will 
likely be on developing CMOS-based 
devices that extend into the third, or 
vertical, dimension and on improving 
materials technology. These e#orts 
will likely coevolve with new archi-
tectural approaches that better tailor 
computing capability to speci$c prob-
lems, driven principally by large eco-
nomic forces associated with the $4 
trillion-per-year global IT market. 

In the longer term, we expect a tran-
sition toward new device classes and 
the emergence of practical systems 
based on novel computing approaches. 
To e#ectively meet societal needs 
and expectations in a broad con-
text, these new devices and comput-
ing paradigms must be economically 
manufacturable at scale and provide 
an exponential improvement path. 
Such requirements could necessitate 

a substantial technological shift ana-
logous to the transition from vacuum 
tubes to semiconductors. 

This transition will require not 
years, but decades, of e#ort, so 
whether the semiconductor roadmap 
has 10 or 20 years of remaining vital-
ity, researchers must begin now to lay 
a strategic foundation for change. 

IS IT REALLY THE END?
Far from a physical law, Moore’s obser-
vation is an economic theory driven 
by technology scaling—constantly 
improving the photolithography pro-
cesses that shrink on-chip compo-
nent size. For the past 50 years (as of 
2015), multiple assaults on conven-
tional technology scaling for digital 
electronics have challenged Moore’s 
observations about performance 
improvement. As the sidebar “Moore’s 
Law Resilience” describes, despite 
the limitations of numerous under-
lying physical mechanisms, new 
approaches have materialized to con-
tinue Moore’s scaling. One researcher 
famously quipped, “I predict Moore’s 
law will never end—that way, I will 
only be wrong once!” 

Why then should things be di#er-
ent this time?

Limits of 2D lithography
If technology scaling is indeed the 
underlying driver of progress, 2D sili-
con photolithography is central to that 
progress, and there is much concern 
that 2D scaling of photolithography 
will approach fundamental limits by 
the end of 2020. Moreover, there is no 
obvious successor technology. A sili-
con atom is approximately half a nano-
meter (nm) in diameter in semicon-
ductor material. At the current rate of 
improvement, photolithography sys-
tems will be able to use 5-nm technol-
ogy to create transistor features on the 
scale of handfuls of atoms by 2022 to 
2024.3 

This feature size corresponds to a 
dozen or fewer silicon atoms across 
critical device features, which means 
that the technology will be a practical 
limit for controlling charge in a classi-
cal sense. To go further would require 
engineering these devices in a regime 
in which quantum-mechanical e#ects 
will dominate, such as tunneling elec-
trons through the gate oxide, which 
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FIGURE 1. Technology scaling options along three dimensions. The graph’s origin rep-
resents current general-purpose CMOS technology, from which scaling must continue. All 
the dimensions, which are not mutually exclusive, aim to squeeze out more computing 
performance. PETs: piezo-electric transistors; TFETs: tunneling field-effect transistors; 
NTV: near-threshold voltage.

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.

Physical Limits Spark Creativity

Source: Dazeinfo

Source: MIT Technology Review

Hardware accelerators are seen as
a viable path forward for tackling 

increasing compute demands.
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• Legacy code typically cannot be directly compiled for FPGAs 
• Learning a new programming model is costly and slows rate of 

adoption of new accelerators
• May want to “try out” new hardware with existing software
• No training on new hardware
• Limited time or resources to allocate 

Legacy Code in the Age of Hardware 
Accelerators
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• Background and Motivation
• Technical Approach
• High-Level Summary
• Problem Statement
• Approach Details
• Formal Results

• Empirical Evaluation
• Open Challenges

Talk Overview

Goal: Aid developers 
programming FPGAs by 

automatically porting certain 
classes of existing source code 

without requiring low-level 
hardware knowledge to 

produce performant code
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• Framework for executing code (legacy software) on FPGAs and 
other hardware accelerators
• Dynamically observe and statically analyze program behavior to 

synthesize a functionally-equivalent hardware design
• Initial effort infers a set of finite automata rather than attempting 

to directly compile code
• Novel combination of model learning (learning theory), software 

model checking (software engineering), string decision procedures
(PL/theory), and high-performance automata architectures 
(hardware)

AutomataSynth at a Glance
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• FPGA designs are often described in terms of state machines
• Automata a versatile and broadly-applicable 
• Can build on significant research effort for accelerating state 

machine execution
• Other high-level approaches (cf. HLS) generally fail to abstract low-

level architectural details
• Our approach decouples high-level program and low-level 

implementation

Why Automata(Synth)?
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Automata Accelerate Big Data Applications

Detecting Intrusion 
Attempts in Network 

Packets

Learning Association 
Rules with an a priori

approach

Detecting incorrect 
POS tags in NLP

Looking for Virus 
Signatures in Binary 

Data

Detecting Higgs 
Events in Particle 

Collider Data

Aligning DNA 
Fragments to the 
Human Genome
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• Input: function kernel : string -> bool

• Assumptions:
• Function decides a regular language

• Source code for function is available

• Output: finite automaton with the same behavior on “all” inputs as 
kernel

Problem Statement (First Efforts)
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Angluin-Style Learning (L*)
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• Check if kernel accepts input by running the code
• Return value of the kernel is the answer from the teacher
• Caution: take care with ASCII encoding and null terminators (not all 

functions assume C-style strings)

Membership Queries are Direct
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• Don’t have held-out automaton for comparison
• Test inputs generally do not suffice
• Coverage, generation, etc. difficult challenges

• Constraint over string inputs
• No inputs that are accepted by the kernel are rejected 

by the candidate machine (and vice versa)
• “The symmetric difference is empty”
• Allows for formulation as a software 

verification query

Understanding Termination Queries
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• Explores control flow graph looking for property violations
• Success finding variety of bugs (e.g., double-free, locking violations, etc.)
• Used in industry for driver verification

• Bounded Model Checking suitable for this domain
• Verifies that property holds for all program executions up to length k (i.e., 

fixed number of loop unrollings)
• Incremental unrolling to check longer and longer executions
• Use theorem prover to identify executions that violate property

• Wrapper program to encode the “symmetric difference” property
• Add in string solver to generate counterexamples

Equality Checking as Software Verification
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AutomataSynth System Architecture

FPGA
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Synthesis

Mapper

SMT 
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String 
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Software Verifier

Kernel
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Caveats/Challenges
Theorem provers are relatively 
complete.
• Software verification will 

occasionally return an unknown 
result
• No counterexample is produced, so 

L* cannot continue
• Implication: resulting automaton is 

approximate, but correct for all 
inputs shorter than some fixed 
bound

BMC with incremental unrolling is a 
semi-algorithm.
• Unrolling of program with infinite 

loops could continue indefinitely
• Termination query might never 

terminate
• For regular languages finite unrolling 

suffices (See §4.3)
• Implication: BMC+string solver will 

terminate and satisfies requirements 
for Termination Queries
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• When AutomataSynth terminates, we report if the automaton is 
correct or approximate
• Formal approach means that automata are provably correct
• Approximate automata are correct for inputs up to a known bound

• For functions deciding a regular language, correctness is 
guaranteed (modulo the theorem prover)
• In practice, we make use of timeouts to terminate AutomataSynth
• Tunable to help define bounds of correctness

Theoretical Implications

17



• How many real-world string kernels can AutomataSynth correctly 
learn? With approximation?

• Does AutomataSynth learn automata that fit within the design 
constraints of modern, automata-derived, reconfigurable 
architectures?

Evaluation: Guiding Research Questions
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• Mine GitHub for string functions in top C repositories
• Use Cil framework to iteratively parse each source file an extract all 

string functions
• Filter for duplicates and manual analysis to filter on Boolean return 

type
• Considered 26 repositories, 973 separate string functions, 18 

meaningfully-distinct real-world benchmarks
• AutomataSynth did not support 3 due to functionality of underlying string 

solver (e.g., no math on characters)

Experimental Methodology
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Empirical Results
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Benchmark Project LOC Member 
Queries

Term.
Queries States Runtime 

(min) Correct

git_offset_1st_component Git: Revision control 6 4,090 2 2 0.12 ✔

checkerrormsg
jq: Command-line 
JSON processor

4 32,664 2 15 1436.58 ✔*

checkfail 14 189,013 3 35 1438.47 ✔*

skipline 17 7,663 3 3 4.90 ✔

end_line

Linux: OS kernel

11 510,623 4 44 491.88 ✔

start_line 11 206,613 2 46 80.22 Approx.

is_mcounted_section_name 54 672,041 7 57 1439.98 Approx.

is_numeric_index MASSCAN: IP port 
scanner

17 10,727 3 4 4.95 ✔

is_comment 11 4,090 2 2 0.23 ✔

AMF_DecodeBoolean

OBS Studio: Live 
streaming and 

recording software

2 2,557 2 2 0.07 ✔

cf_is_comment 28 4,599 2 4 5.00 ✔

cf_is_splice 22 1,913 2 4 0.05 ✔

is_reserved_name 39 240,705 8 42 1424.48 ✔

has_start_code 18 10,213 2 7 0.08 ✔

stbtt__isfont Openpilot: Open-
source driving agent 24 79,598 5 19 0.22 ✔
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AutomataSynth learns 
13/18 kernels correctly and 

a further 2 approximately
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Learning took an average of 
7 hours.  More than half 

take fewer than 5 minutes
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Learned automata fall within 
resource constraints of 

FPGA-based architectures



Open Challenges: Guiding Desires

• Support broader classes of functions
• Not all legacy code consists solely of Boolean string kernels

• More indicative benchmark applications
• Mined real-world functions are a start, but…
• Functions that dominate runtime
• Larger or more complex functions

• Comparison of learning-based solutions (AutomataSynth) with HLS
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Open Challenges (Learning-Specific)
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Learn More Expressive Models (Transducers, Pushdown, etc.)1

Improve String Solvers (Expressiveness, Performance, etc.)2

Scale Termination Queries and Explore Alternatives3

Understand Approximation (PAC Learning, Measure Error)4



• Framework for accelerating legacy Boolean string kernel functions using 
FPGAs
• Static and dynamic analyses of program behavior to construct 

functionally-equivalent automata
• Novel combination of Angluin-style learning with software model 

checking and string solvers 
• Successfully constructs equivalent (or near equivalent) FPGA designs for 

more than 80% of real-world benchmarks mined from GitHub
• Many open challenges mean many opportunities for studying learning-

based approaches for porting code

AutomataSynth Summary
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Source code: https://github.com/kevinaangstadt/automata-synth

https://github.com/kevinaangstadt/automata-synth
https://github.com/kevinaangstadt/automata-synth

