
Accelerating Legacy String
Kernels via Bounded
Automata Learning
Kevin Angstadt†, Jean-Baptiste Jeannin‡, Westley Weimer†

†Computer Science and Engineering, University of Michigan
‡Aerospace Engineering, University of Michigan

This work is funded in part by: NSF grants CCF-1629450, CCF-1763674, CCF-1908633; AFRL Contract No. FA8750-19- 1-0501; and the
Jefferson Scholars Foundation.

 D E C E M B E R 2 0 1 5 15

The limits of existing semiconduc-
tor microelectronic technology at the
device level and their impact at the
system level demand a successor tech-
nology to the currently ubiquitous
CMOS logic. There is not yet an obvious
successor, but we see three basic paths
to obtaining one, shown in Figure 1:
create new devices, build new archi-
tectures with or without new devices,
and develop new computational par-
adigms. We expect to see substantial
exploration and innovation in each of
these areas. New computation models
will likely depart from digital comput-
ing and expand into new areas, where
former technology paradigms are less
suitable. New architectures and pack-
aging will resourcefully arrange exist-
ing building blocks, improving perfor-
mance irrespective of the underlying
technology. Finally, new materials and
transistors will enhance performance
by creating more e"cient underlying
logic devices.

In the near term, emphasis will
likely be on developing CMOS-based
devices that extend into the third, or
vertical, dimension and on improving
materials technology. These e#orts
will likely coevolve with new archi-
tectural approaches that better tailor
computing capability to speci$c prob-
lems, driven principally by large eco-
nomic forces associated with the $4
trillion-per-year global IT market.

In the longer term, we expect a tran-
sition toward new device classes and
the emergence of practical systems
based on novel computing approaches.
To e#ectively meet societal needs
and expectations in a broad con-
text, these new devices and comput-
ing paradigms must be economically
manufacturable at scale and provide
an exponential improvement path.
Such requirements could necessitate

a substantial technological shift ana-
logous to the transition from vacuum
tubes to semiconductors.

This transition will require not
years, but decades, of e#ort, so
whether the semiconductor roadmap
has 10 or 20 years of remaining vital-
ity, researchers must begin now to lay
a strategic foundation for change.

IS IT REALLY THE END?
Far from a physical law, Moore’s obser-
vation is an economic theory driven
by technology scaling—constantly
improving the photolithography pro-
cesses that shrink on-chip compo-
nent size. For the past 50 years (as of
2015), multiple assaults on conven-
tional technology scaling for digital
electronics have challenged Moore’s
observations about performance
improvement. As the sidebar “Moore’s
Law Resilience” describes, despite
the limitations of numerous under-
lying physical mechanisms, new
approaches have materialized to con-
tinue Moore’s scaling. One researcher
famously quipped, “I predict Moore’s
law will never end—that way, I will
only be wrong once!”

Why then should things be di#er-
ent this time?

Limits of 2D lithography
If technology scaling is indeed the
underlying driver of progress, 2D sili-
con photolithography is central to that
progress, and there is much concern
that 2D scaling of photolithography
will approach fundamental limits by
the end of 2020. Moreover, there is no
obvious successor technology. A sili-
con atom is approximately half a nano-
meter (nm) in diameter in semicon-
ductor material. At the current rate of
improvement, photolithography sys-
tems will be able to use 5-nm technol-
ogy to create transistor features on the
scale of handfuls of atoms by 2022 to
2024.3

This feature size corresponds to a
dozen or fewer silicon atoms across
critical device features, which means
that the technology will be a practical
limit for controlling charge in a classi-
cal sense. To go further would require
engineering these devices in a regime
in which quantum-mechanical e#ects
will dominate, such as tunneling elec-
trons through the gate oxide, which

PETs

New architectures and packaging

General
purpose

CMOS

TFETs

Carbon
nanotubes

and
graphene

Spintronics

New models of
computaion

Neuromorphic

Adabiatic
reversible

Data!ow

Approximate
computing

Systems
on chip NTV

3D stacking,
adv. packaging

Superconducting

Recon"gurable
computing

y

x

z

Quantum
Analog

Ne
w

 d
ev

ic
es

 a
nd

 m
at

er
ia

ls

Dark
silicon

FIGURE 1. Technology scaling options along three dimensions. The graph’s origin rep-
resents current general-purpose CMOS technology, from which scaling must continue. All
the dimensions, which are not mutually exclusive, aim to squeeze out more computing
performance. PETs: piezo-electric transistors; TFETs: tunneling field-effect transistors;
NTV: near-threshold voltage.

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.

Physical Limits Spark Creativity

Source: Dazeinfo

Source: MIT Technology Review

Hardware accelerators are seen as
a viable path forward for tackling

increasing compute demands.

2

General Purpose Highly Specialized

CPU GPU AP TPU

Co-Processors FPGA

New Kinds of Processors

3

General Purpose Highly Specialized

CPU GPU AP TPU

Co-Processors FPGA

New Kinds of Processors

4

• Legacy code typically cannot be directly compiled for FPGAs
• Learning a new programming model is costly and slows rate of

adoption of new accelerators
• May want to “try out” new hardware with existing software
• No training on new hardware
• Limited time or resources to allocate

Legacy Code in the Age of Hardware
Accelerators

5

• Background and Motivation
• Technical Approach
• High-Level Summary
• Problem Statement
• Approach Details
• Formal Results

• Empirical Evaluation
• Open Challenges

Talk Overview

Goal: Aid developers
programming FPGAs by

automatically porting certain
classes of existing source code

without requiring low-level
hardware knowledge to

produce performant code

6

• Framework for executing code (legacy software) on FPGAs and
other hardware accelerators
• Dynamically observe and statically analyze program behavior to

synthesize a functionally-equivalent hardware design
• Initial effort infers a set of finite automata rather than attempting

to directly compile code
• Novel combination of model learning (learning theory), software

model checking (software engineering), string decision procedures
(PL/theory), and high-performance automata architectures
(hardware)

AutomataSynth at a Glance

7

• FPGA designs are often described in terms of state machines
• Automata a versatile and broadly-applicable
• Can build on significant research effort for accelerating state

machine execution
• Other high-level approaches (cf. HLS) generally fail to abstract low-

level architectural details
• Our approach decouples high-level program and low-level

implementation

Why Automata(Synth)?

8

Automata Accelerate Big Data Applications

Detecting Intrusion
Attempts in Network

Packets

Learning Association
Rules with an a priori

approach

Detecting incorrect
POS tags in NLP

Looking for Virus
Signatures in Binary

Data

Detecting Higgs
Events in Particle

Collider Data

Aligning DNA
Fragments to the
Human Genome

9

• Input: function kernel : string -> bool

• Assumptions:
• Function decides a regular language

• Source code for function is available

• Output: finite automaton with the same behavior on “all” inputs as
kernel

Problem Statement (First Efforts)

10

Angluin-Style Learning (L*)

Learner

Teacher

Oracle

Membership Query

Yes/No Answer

Termination Query

Yes or Counterexample
Automaton

11

L(M)
?
= L(Kernel)

<latexit sha1_base64="LSATRWgoHsJhywpxhwbofcsvFow=">AAADKHicbVLdahNBFJ6sf7X+pXrpzdAipHQJ2aLoTTHojWCFCqYtdEOYnZzdDJmdWWbOVtdhH0LwKXwBb/UNvJPcCr6Hs0kumsQDM3x858x85y8ppLDY681awbXrN27e2rq9fefuvfsP2jsPT60uDYcB11Kb84RZkELBAAVKOC8MsDyRcJZMXzf+s0swVmj1AasChjnLlEgFZ+ipUfvguPNun8a6iQF0L2t3VNPjTozwCV0MeTFxb8EokHW9P2rv9bq9udFNEC3BXn83Pvg661cno53W33iseZmDQi6ZtRdRr8ChYwYFl1Bvx6WFgvEpy+DCQ8VysEM3r6qmTzwzpqk2/iikc/bqC8dya6s88ZE5w4ld9zXkf30pU7y6NMmK/lJ1kwrnNyZyLV1MXwydUEWJoPgi27SUFDVt+kzHwgBHWXnAuBG+YMonzDCOvtMrKs2UhcrsqjaypJTMVKuqOTOZUEeRUEOXgc4B1yIciunnBdMgKRLjP3GsRO0bwUJmjP5owzFwbeYrYMNUYEivEN1m9qGdsAJsWGgrGtYnGDYfcmF4KdCGidfLjC7V2NZ+MaL1NdgEp4fd6Gn32Xu/Ia/IwrbIY7JLOiQiz0mfvCEnZEA4+UK+kx/kZ/At+BX8DmaL0KC1fPOIrFjw5x9svxAZ</latexit>

M

<latexit sha1_base64="lbjOhIg108csKBPu3mHb1OSNERQ=">AAADBnicbVLNbtQwEPaGv1L+WjhyiVghcYhWCWoFl0oVXLggFYltK+1G1cSZZK117MietIRo77wAV3gDbogrr8ED8B442RyaXUay9embsb/P40lKKSyF4Z+Rd+Pmrdt3du7u3rv/4OGjvf3Hp1ZXhuOUa6nNeQIWpVA4JUESz0uDUCQSz5Ll2zZ/donGCq0+Ul1iXECuRCY4kKNm8wJowUE271cXe+NwEnbhb4OoB2PWx8nF/ujvPNW8KlARl2DtLApLihswJLjE1e68slgCX0KOMwcVFGjjpvO88p87JvUzbdxS5Hfs9RMNFNbWReIqW492M9eS/81loHh9aZKBfq+6TQXdToncsEvZ67gRqqwIFV+7zSrpk/bbLvqpMMhJ1g4AN8I92OcLMMDJ9Xqg0v6hULkdahMklQRTD1ULMLlQR5FQcZOjLpA2KhoSy89rpkVSJMZd0kBF2jUCAjBGX9kgRa5N98E2yAQF/jViQviJAruAEm1Qaita1hkM2gu5MLwSZIPE6eVGVyq17WBEm2OwDU5fTqKDyeGHg/Hxm35EdthT9oy9YBF7xY7ZO3bCpowzzb6yb+y798X74f30fq1LvVF/5gkbhPf7H2+0AAk=</latexit>

s
?
2 L(Kernel)

<latexit sha1_base64="ilF9XPii8A1/qGuTOfkx5mG6nhQ=">AAADJ3icbVLNjtMwEHbD37L8deHIxdoV0gJR1SAQXBAVXJDgsEh0d6VNVU3cSWrVsSN7shCivAMHXoIX4ApvwA2xRw68B07bw7ZlJFufvhn7m7+kUNJRv3/WCS5cvHT5ytbV7WvXb9y81d25fehMaQUOhVHGHifgUEmNQ5Kk8LiwCHmi8CiZvWr9R6donTT6PVUFjnLItEylAPLUuPvA8di0AUj1i6aOpW742/2Y8CPVMebFtH6DVqNqmvvj7l6/158b3wTREuwNduOHX84G1cF4p/M3nhhR5qhJKHDuJOoXNKrBkhQKm+24dFiAmEGGJx5qyNGN6nlRDb/nmQlPjfVHE5+z51/UkDtX5YmPzIGmbt3Xkv/1paBFdWqTFf2l6iYVzm9K1Fq6lD4b1VIXJaEWi2zTUnEyvG0zn0iLglTlAQgrfcFcTMGCIN/rFZV2yFJnblWbICkV2GpVNQebSf08knpUZ2hypLWImuTs04JpkZKJ9Z/UUJLxjYAQrDUfXDhBYex8A1yYSgr5OaLXzj50UyjQhYVxsmV9gmH7oZBWlJJcmHi9zJpST1zjFyNaX4NNcPioFz3uPXnnN+QlW9gWu8t22T6L2FM2YK/ZARsywT6zb+w7+xF8DX4Gv4Lfi9Cgs3xzh61Y8OcfoKQQjg==</latexit>

• Check if kernel accepts input by running the code
• Return value of the kernel is the answer from the teacher
• Caution: take care with ASCII encoding and null terminators (not all

functions assume C-style strings)

Membership Queries are Direct

12

s
?
2 L(Kernel)

<latexit sha1_base64="ilF9XPii8A1/qGuTOfkx5mG6nhQ=">AAADJ3icbVLNjtMwEHbD37L8deHIxdoV0gJR1SAQXBAVXJDgsEh0d6VNVU3cSWrVsSN7shCivAMHXoIX4ApvwA2xRw68B07bw7ZlJFufvhn7m7+kUNJRv3/WCS5cvHT5ytbV7WvXb9y81d25fehMaQUOhVHGHifgUEmNQ5Kk8LiwCHmi8CiZvWr9R6donTT6PVUFjnLItEylAPLUuPvA8di0AUj1i6aOpW742/2Y8CPVMebFtH6DVqNqmvvj7l6/158b3wTREuwNduOHX84G1cF4p/M3nhhR5qhJKHDuJOoXNKrBkhQKm+24dFiAmEGGJx5qyNGN6nlRDb/nmQlPjfVHE5+z51/UkDtX5YmPzIGmbt3Xkv/1paBFdWqTFf2l6iYVzm9K1Fq6lD4b1VIXJaEWi2zTUnEyvG0zn0iLglTlAQgrfcFcTMGCIN/rFZV2yFJnblWbICkV2GpVNQebSf08knpUZ2hypLWImuTs04JpkZKJ9Z/UUJLxjYAQrDUfXDhBYex8A1yYSgr5OaLXzj50UyjQhYVxsmV9gmH7oZBWlJJcmHi9zJpST1zjFyNaX4NNcPioFz3uPXnnN+QlW9gWu8t22T6L2FM2YK/ZARsywT6zb+w7+xF8DX4Gv4Lfi9Cgs3xzh61Y8OcfoKQQjg==</latexit>

• Don’t have held-out automaton for comparison
• Test inputs generally do not suffice
• Coverage, generation, etc. difficult challenges

• Constraint over string inputs
• No inputs that are accepted by the kernel are rejected

by the candidate machine (and vice versa)
• “The symmetric difference is empty”
• Allows for formulation as a software

verification query

Understanding Termination Queries

13

Kernel Candidate
Automaton

L(M)
?
= L(Kernel)

<latexit sha1_base64="LSATRWgoHsJhywpxhwbofcsvFow=">AAADKHicbVLdahNBFJ6sf7X+pXrpzdAipHQJ2aLoTTHojWCFCqYtdEOYnZzdDJmdWWbOVtdhH0LwKXwBb/UNvJPcCr6Hs0kumsQDM3x858x85y8ppLDY681awbXrN27e2rq9fefuvfsP2jsPT60uDYcB11Kb84RZkELBAAVKOC8MsDyRcJZMXzf+s0swVmj1AasChjnLlEgFZ+ipUfvguPNun8a6iQF0L2t3VNPjTozwCV0MeTFxb8EokHW9P2rv9bq9udFNEC3BXn83Pvg661cno53W33iseZmDQi6ZtRdRr8ChYwYFl1Bvx6WFgvEpy+DCQ8VysEM3r6qmTzwzpqk2/iikc/bqC8dya6s88ZE5w4ld9zXkf30pU7y6NMmK/lJ1kwrnNyZyLV1MXwydUEWJoPgi27SUFDVt+kzHwgBHWXnAuBG+YMonzDCOvtMrKs2UhcrsqjaypJTMVKuqOTOZUEeRUEOXgc4B1yIciunnBdMgKRLjP3GsRO0bwUJmjP5owzFwbeYrYMNUYEivEN1m9qGdsAJsWGgrGtYnGDYfcmF4KdCGidfLjC7V2NZ+MaL1NdgEp4fd6Gn32Xu/Ia/IwrbIY7JLOiQiz0mfvCEnZEA4+UK+kx/kZ/At+BX8DmaL0KC1fPOIrFjw5x9svxAZ</latexit>

Kernel &
Candidate
Automaton

• Explores control flow graph looking for property violations
• Success finding variety of bugs (e.g., double-free, locking violations, etc.)
• Used in industry for driver verification

• Bounded Model Checking suitable for this domain
• Verifies that property holds for all program executions up to length k (i.e.,

fixed number of loop unrollings)
• Incremental unrolling to check longer and longer executions
• Use theorem prover to identify executions that violate property

• Wrapper program to encode the “symmetric difference” property
• Add in string solver to generate counterexamples

Equality Checking as Software Verification

14

AutomataSynth System Architecture

FPGA

L* Learner

Synthesis

Mapper

SMT
Solver

String
Solver

Software Verifier

Kernel

15

s
?
2 L(Kernel)

<latexit sha1_base64="ilF9XPii8A1/qGuTOfkx5mG6nhQ=">AAADJ3icbVLNjtMwEHbD37L8deHIxdoV0gJR1SAQXBAVXJDgsEh0d6VNVU3cSWrVsSN7shCivAMHXoIX4ApvwA2xRw68B07bw7ZlJFufvhn7m7+kUNJRv3/WCS5cvHT5ytbV7WvXb9y81d25fehMaQUOhVHGHifgUEmNQ5Kk8LiwCHmi8CiZvWr9R6donTT6PVUFjnLItEylAPLUuPvA8di0AUj1i6aOpW742/2Y8CPVMebFtH6DVqNqmvvj7l6/158b3wTREuwNduOHX84G1cF4p/M3nhhR5qhJKHDuJOoXNKrBkhQKm+24dFiAmEGGJx5qyNGN6nlRDb/nmQlPjfVHE5+z51/UkDtX5YmPzIGmbt3Xkv/1paBFdWqTFf2l6iYVzm9K1Fq6lD4b1VIXJaEWi2zTUnEyvG0zn0iLglTlAQgrfcFcTMGCIN/rFZV2yFJnblWbICkV2GpVNQebSf08knpUZ2hypLWImuTs04JpkZKJ9Z/UUJLxjYAQrDUfXDhBYex8A1yYSgr5OaLXzj50UyjQhYVxsmV9gmH7oZBWlJJcmHi9zJpST1zjFyNaX4NNcPioFz3uPXnnN+QlW9gWu8t22T6L2FM2YK/ZARsywT6zb+w7+xF8DX4Gv4Lfi9Cgs3xzh61Y8OcfoKQQjg==</latexit>

L(M)
?
= L(Kernel)

<latexit sha1_base64="LSATRWgoHsJhywpxhwbofcsvFow=">AAADKHicbVLdahNBFJ6sf7X+pXrpzdAipHQJ2aLoTTHojWCFCqYtdEOYnZzdDJmdWWbOVtdhH0LwKXwBb/UNvJPcCr6Hs0kumsQDM3x858x85y8ppLDY681awbXrN27e2rq9fefuvfsP2jsPT60uDYcB11Kb84RZkELBAAVKOC8MsDyRcJZMXzf+s0swVmj1AasChjnLlEgFZ+ipUfvguPNun8a6iQF0L2t3VNPjTozwCV0MeTFxb8EokHW9P2rv9bq9udFNEC3BXn83Pvg661cno53W33iseZmDQi6ZtRdRr8ChYwYFl1Bvx6WFgvEpy+DCQ8VysEM3r6qmTzwzpqk2/iikc/bqC8dya6s88ZE5w4ld9zXkf30pU7y6NMmK/lJ1kwrnNyZyLV1MXwydUEWJoPgi27SUFDVt+kzHwgBHWXnAuBG+YMonzDCOvtMrKs2UhcrsqjaypJTMVKuqOTOZUEeRUEOXgc4B1yIciunnBdMgKRLjP3GsRO0bwUJmjP5owzFwbeYrYMNUYEivEN1m9qGdsAJsWGgrGtYnGDYfcmF4KdCGidfLjC7V2NZ+MaL1NdgEp4fd6Gn32Xu/Ia/IwrbIY7JLOiQiz0mfvCEnZEA4+UK+kx/kZ/At+BX8DmaL0KC1fPOIrFjw5x9svxAZ</latexit>

Membership Query
True or False

Termination Query
True or Counterexample

Learned
Automaton

Caveats/Challenges
Theorem provers are relatively
complete.
• Software verification will

occasionally return an unknown
result
• No counterexample is produced, so

L* cannot continue
• Implication: resulting automaton is

approximate, but correct for all
inputs shorter than some fixed
bound

BMC with incremental unrolling is a
semi-algorithm.
• Unrolling of program with infinite

loops could continue indefinitely
• Termination query might never

terminate
• For regular languages finite unrolling

suffices (See §4.3)
• Implication: BMC+string solver will

terminate and satisfies requirements
for Termination Queries

16

• When AutomataSynth terminates, we report if the automaton is
correct or approximate
• Formal approach means that automata are provably correct
• Approximate automata are correct for inputs up to a known bound

• For functions deciding a regular language, correctness is
guaranteed (modulo the theorem prover)
• In practice, we make use of timeouts to terminate AutomataSynth
• Tunable to help define bounds of correctness

Theoretical Implications

17

• How many real-world string kernels can AutomataSynth correctly
learn? With approximation?

• Does AutomataSynth learn automata that fit within the design
constraints of modern, automata-derived, reconfigurable
architectures?

Evaluation: Guiding Research Questions

18

• Mine GitHub for string functions in top C repositories
• Use Cil framework to iteratively parse each source file an extract all

string functions
• Filter for duplicates and manual analysis to filter on Boolean return

type
• Considered 26 repositories, 973 separate string functions, 18

meaningfully-distinct real-world benchmarks
• AutomataSynth did not support 3 due to functionality of underlying string

solver (e.g., no math on characters)

Experimental Methodology

19

Empirical Results

20

Benchmark Project LOC Member
Queries

Term.
Queries States Runtime

(min) Correct

git_offset_1st_component Git: Revision control 6 4,090 2 2 0.12 ✔

checkerrormsg
jq: Command-line
JSON processor

4 32,664 2 15 1436.58 ✔*

checkfail 14 189,013 3 35 1438.47 ✔*

skipline 17 7,663 3 3 4.90 ✔

end_line

Linux: OS kernel

11 510,623 4 44 491.88 ✔

start_line 11 206,613 2 46 80.22 Approx.

is_mcounted_section_name 54 672,041 7 57 1439.98 Approx.

is_numeric_index MASSCAN: IP port
scanner

17 10,727 3 4 4.95 ✔

is_comment 11 4,090 2 2 0.23 ✔

AMF_DecodeBoolean

OBS Studio: Live
streaming and

recording software

2 2,557 2 2 0.07 ✔

cf_is_comment 28 4,599 2 4 5.00 ✔

cf_is_splice 22 1,913 2 4 0.05 ✔

is_reserved_name 39 240,705 8 42 1424.48 ✔

has_start_code 18 10,213 2 7 0.08 ✔

stbtt__isfont Openpilot: Open-
source driving agent 24 79,598 5 19 0.22 ✔

Empirical Results

21

Benchmark Project LOC Member
Queries

Term.
Queries States Runtime

(min) Correct

git_offset_1st_component Git: Revision control 6 4,090 2 2 0.12 ✔

checkerrormsg
jq: Command-line
JSON processor

4 32,664 2 15 1436.58 ✔*

checkfail 14 189,013 3 35 1438.47 ✔*

skipline 17 7,663 3 3 4.90 ✔

end_line

Linux: OS kernel

11 510,623 4 44 491.88 ✔

start_line 11 206,613 2 46 80.22 Approx.

is_mcounted_section_name 54 672,041 7 57 1439.98 Approx.

is_numeric_index MASSCAN: IP port
scanner

17 10,727 3 4 4.95 ✔

is_comment 11 4,090 2 2 0.23 ✔

AMF_DecodeBoolean

OBS Studio: Live
streaming and

recording software

2 2,557 2 2 0.07 ✔

cf_is_comment 28 4,599 2 4 5.00 ✔

cf_is_splice 22 1,913 2 4 0.05 ✔

is_reserved_name 39 240,705 8 42 1424.48 ✔

has_start_code 18 10,213 2 7 0.08 ✔

stbtt__isfont Openpilot: Open-
source driving agent 24 79,598 5 19 0.22 ✔

AutomataSynth learns
13/18 kernels correctly and

a further 2 approximately

Empirical Results

22

Benchmark Project LOC Member
Queries

Term.
Queries States Runtime

(min) Correct

git_offset_1st_component Git: Revision control 6 4,090 2 2 0.12 ✔

checkerrormsg
jq: Command-line
JSON processor

4 32,664 2 15 1436.58 ✔*

checkfail 14 189,013 3 35 1438.47 ✔*

skipline 17 7,663 3 3 4.90 ✔

end_line

Linux: OS kernel

11 510,623 4 44 491.88 ✔

start_line 11 206,613 2 46 80.22 Approx.

is_mcounted_section_name 54 672,041 7 57 1439.98 Approx.

is_numeric_index MASSCAN: IP port
scanner

17 10,727 3 4 4.95 ✔

is_comment 11 4,090 2 2 0.23 ✔

AMF_DecodeBoolean

OBS Studio: Live
streaming and

recording software

2 2,557 2 2 0.07 ✔

cf_is_comment 28 4,599 2 4 5.00 ✔

cf_is_splice 22 1,913 2 4 0.05 ✔

is_reserved_name 39 240,705 8 42 1424.48 ✔

has_start_code 18 10,213 2 7 0.08 ✔

stbtt__isfont Openpilot: Open-
source driving agent 24 79,598 5 19 0.22 ✔

Learning took an average of
7 hours. More than half

take fewer than 5 minutes

Empirical Results

23

Benchmark Project LOC Member
Queries

Term.
Queries States Runtime

(min) Correct

git_offset_1st_component Git: Revision control 6 4,090 2 2 0.12 ✔

checkerrormsg
jq: Command-line
JSON processor

4 32,664 2 15 1436.58 ✔*

checkfail 14 189,013 3 35 1438.47 ✔*

skipline 17 7,663 3 3 4.90 ✔

end_line

Linux: OS kernel

11 510,623 4 44 491.88 ✔

start_line 11 206,613 2 46 80.22 Approx.

is_mcounted_section_name 54 672,041 7 57 1439.98 Approx.

is_numeric_index MASSCAN: IP port
scanner

17 10,727 3 4 4.95 ✔

is_comment 11 4,090 2 2 0.23 ✔

AMF_DecodeBoolean

OBS Studio: Live
streaming and

recording software

2 2,557 2 2 0.07 ✔

cf_is_comment 28 4,599 2 4 5.00 ✔

cf_is_splice 22 1,913 2 4 0.05 ✔

is_reserved_name 39 240,705 8 42 1424.48 ✔

has_start_code 18 10,213 2 7 0.08 ✔

stbtt__isfont Openpilot: Open-
source driving agent 24 79,598 5 19 0.22 ✔

Learned automata fall within
resource constraints of

FPGA-based architectures

Open Challenges: Guiding Desires

• Support broader classes of functions
• Not all legacy code consists solely of Boolean string kernels

• More indicative benchmark applications
• Mined real-world functions are a start, but…
• Functions that dominate runtime
• Larger or more complex functions

• Comparison of learning-based solutions (AutomataSynth) with HLS

24

Open Challenges (Learning-Specific)

25

Learn More Expressive Models (Transducers, Pushdown, etc.)1

Improve String Solvers (Expressiveness, Performance, etc.)2

Scale Termination Queries and Explore Alternatives3

Understand Approximation (PAC Learning, Measure Error)4

• Framework for accelerating legacy Boolean string kernel functions using
FPGAs
• Static and dynamic analyses of program behavior to construct

functionally-equivalent automata
• Novel combination of Angluin-style learning with software model

checking and string solvers
• Successfully constructs equivalent (or near equivalent) FPGA designs for

more than 80% of real-world benchmarks mined from GitHub
• Many open challenges mean many opportunities for studying learning-

based approaches for porting code

AutomataSynth Summary

26

Source code: https://github.com/kevinaangstadt/automata-synth

https://github.com/kevinaangstadt/automata-synth
https://github.com/kevinaangstadt/automata-synth

