Accelerating Legacy String
Kernels via Bounded
Automata Learning

Kevin Angstadtt, Jean-Baptiste Jeannin#, Westley Weimert

TComputer Science and Engineering, University of Michigan
tAerospace Engineering, University of Michigan

COMPUTER SCIENCE
& ENGINEERING

UNIVERSITY OF MICHIGAN This work is funded in part by: NSF grants CCF-1629450, CCF-1763674, CCF-1908633; AFRL Contract No. FA8750-19- 1-0501; and the
Jefferson Scholars Foundation.

Physical Limits Spark Creativity

y N)
A DUK
Carbon
nanotubes Araware o 21elatc Al € 2C C
%) DI8 C ADIC Do U Al U 0 C : O D O
< h
= Jataflo ©C P compute aemand
e
=]
[
<
3) e
= (o) [——
> DErcono 0 Q F————2
U v
= | e
D —
= = ,
]
0 onfiqurab :
omop 0 ises® Ses
e)& vy l.'.
DUIPO '
» X

New architectures and packaging

J. M. Shalf and R. Leland, “Computing Beyond Moore’s Law”. IEEE Computer, 2015.

New Kinds of Processors

amazon
webservices™

- ® AMDA1
amazon (lnte|> ﬂ Google
AP TPU

NVIDIA.
CPU GPU

General Purpose | Highly Specialized
Co-Processors FPGA
.) nte DI
(|nt9|) amazon M
webservices™ .
Microsoft

New Kinds of Processors
Why Microsoft Has Bet on

ont FPGAs to Infuse Its Cloud
Official At Last: Intel Completes $1

Billion Buy of Altera Wlth AI

Xilinx provides Alibaba Cloud FaaS with
Al Acceleration

110 MARCH 2020 | AWS News Blog

EC2 F1 Instances with FPGAs — Now Generally Available

by Jeff Barr | on 19 APR 2017 | in Amazon EC2 | Permalink | ™ Share

FORTUNE

ything from

Legacy Code in the Age of Hardware
Accelerators

* Legacy code typically cannot be directly compiled for FPGAs

* Learning a new programming model is costly and slows rate of
adoption of new accelerators

 May want to “try out” new hardware with existing software
* No training on new hardware
* Limited time or resources to allocate

Talk Overview

* Background and Motivation

* Technical Approach
e High-Level Summary
* Problem Statement
* Approach Details
* Formal Results

 Empirical Evaluation
* Open Challenges

Goal: Aid developers
programming FPGAs by
automatically porting certain

classes of existing source code
without requiring low-level
hardware knowledge to
produce performant code

AutomataSynth at a Glance

* Framework for executing code (legacy software) on FPGAs and
other hardware accelerators

* Dynamically observe and statically analyze program behavior to
synthesize a functionally-equivalent hardware design

* Initial effort infers a set of finite automata rather than attempting
to directly compile code

* Novel combination of model learning (learning theory), software
model checking (software engineering), string decision procedures

(PL/theory), and high-performance automata architectures
(hardware)

Why Automata(Synth)?

* FPGA designs are often described in terms of state machines
* Automata a versatile and broadly-applicable

* Can build on significant research effort for accelerating state
machine execution

e Other high-level approaches (cf. HLS) generally fail to abstract low-
level architectural details

* Qur approach decouples high-level program and low-level
Implementation

Automata Accelerate Big Data Applications

-

Detecting Intrusion
Attempts in Network
Packets

~

\

Looking for Virus
Signatures in Binary
Data

~

-

=

\
Learning Association

Rules with an a priori

approach

-

o N
Detecting Higgs

Events in Particle

-

_

Detecting incorrect
POS tags in NLP

~

)

-

Collider Data

Aligning DNA
Fragments to the
Human Genome

~

Problem Statement (First Efforts)

* [nput: function kernel : string -> bool

 Assumptions:

* Function decides a regular language

e Source code for function is available

* Qutput: finite automaton with the same behavior on “all” inputs as
kernel

Angluin-Style Learning (L*)

Mrmmwm@ﬁ” {: Teacher }
A Kernel)
NEIA ASNE

Learner frm
l al"/On
? QL/e,-y
L(M) = L(Kernel)
Aum./r\n/alton Yes or COUnterexam OraC|e }
Ple

Membership Queries are Direct
S ; L(Kernel)

* Check if kernel accepts input by running the code
 Return value of the kernel is the answer from the teacher

e Caution: take care with ASCII encoding and null terminators (not all
functions assume C-style strings)

Understanding Term?ination Queries

L(M) = L(Kernel)
 Don’t have held-out automaton for comparison

* Test inputs generally do not suffice
e Coverage, generation, etc. difficult challenges

Candidate
Automaton

e Constraint over string inputs

* No inputs that are accepted by the kernel are rejected
by the candidate machine (and vice versa)

* “The symmetric difference is empty”

e Allows for formulation as a software
verification query

Kernel &

Candidate
Automaton

Equality Checking as Software Verification

* Explores control flow graph looking for property violations
e Success finding variety of bugs (e.g., double-free, locking violations, etc.)
* Used in industry for driver verification

* Bounded Model Checking suitable for this domain

 Verifies that property holds for all program executions up to length k (i.e.,
fixed number of loop unrollings)

* Incremental unrolling to check longer and longer executions
* Use theorem prover to identify executions that violate property

* Wrapper program to encode the “symmetric difference” property
* Add in string solver to generate counterexamples

AutomataSynth System Architecture

?
s € L(Kernel)

Membershi

True or False

L(M) = L(Kern

el)

Termination Quer

Learned
Automaton

True or Counterexample

M

String
Solver

Kernel

Solver

Synthesis

Caveats/Challenges

Theorem provers are relatively
complete.

e Software verification will
occasionally return an unknown
result

 No counterexample is produced, so
L* cannot continue

* Implication: resulting automaton is
approximate, but correct for all
inputs shorter than some fixed
bound

BMC with incremental unrolling is a
semi-algorithm.

* Unrolling of program with infinite
loops could continue indefinitely

* Termination query might never
terminate

* For regular languages finite unrolling
suffices (See §4.3)

* Implication: BMC+string solver will
terminate and satisfies requirements
for Termination Queries

Theoretical Implications

* When AutomataSynth terminates, we report if the automaton is
correct or approximate

* Formal approach means that automata are provably correct
* Approximate automata are correct for inputs up to a known bound

* For functions deciding a regular language, correctness is
guaranteed (modulo the theorem prover)

* In practice, we make use of timeouts to terminate AutomataSynth
* Tunable to help define bounds of correctness

Evaluation: Guiding Research Questions

* How many real-world string kernels can AutomataSynth correctly
learn? With approximation?

* Does AutomataSynth learn automata that fit within the design
constraints of modern, automata-derived, reconfigurable
architectures?

Experimental Methodology

* Mine GitHub for string functions in top C repositories

* Use Cil framework to iteratively parse each source file an extract all
string functions

* Filter for duplicates and manual analysis to filter on Boolean return
type
* Considered 26 repositories, 973 separate string functions, 18

meaningfully-distinct real-world benchmarks

* AutomataSynth did not support 3 due to functionality of underlying string
solver (e.g., no math on characters)

Benchmark

Project

Member
Queries

Queries

States

Runtime
(min)

Correct

git offset_1st_component Git: Revision control 6 4,090 2 2 0.12 v
checkerrormsg 4 32,664 2 15 1436.58 Vx
checkfail j(j:S((:)(l)\lmpToacnei_sl?re 14 189,013 3 35 143847 V*
skipline 17 7,663 3 3 4.90 v
end line 11 510,623 4 44 491.88 v
start _line Linux: OS kernel 11 206,613 2 46 80.22 Approx.
is_mcounted section_name 54 672,041 7 57 1439.98 Approx.
is_numeric_index MASSCAN: IP port 17 10,727 3 4 4.95 v
is_comment scanner 11 4,090 2 2 0.23 v
AMF_DecodeBoolean 2 2,657 2 2 0.07 v
cf _is_comment OBS Studio: Live 28 4,599 2 4 5.00 v
cf _is splice streaming and 22 1,913 2 4 0.05 v
is_reserved name recording software 39 240,705 8 42 142448
has start code 18 10,213 2 7 0.08 v
stbtt isfont Openpilot: Open- 24 79,598 5 19 0.22 v

source driving agent

Benchmark

git offset _1st component

Project

Git: Revision control

checkerrormsg

checkfail

skipline

jg: Command-line
JSON processor

end_line

start _line

is_mcounted section_name

Linux: OS kernel

A%

AutomataSynth learns
13/18 kernels correctly and s
a further 2 approximately

Runtime

: Correct
1in)

0.12
1436.58

4.90
491.88
80.22
1439.98

is_numeric_index MASSCAN: IP port 17 10,727 3 4 4.95
is_comment scanner 11 4,090 2 2 0.23
AMF _DecodeBoolean 2 2,557 2 2 0.0
cf _is_comment 0BS Studio: Live 28 4,599 2 4 5.00
cf _is splice streaming and 22 1,913 2 4 0.05
is_reserved name recording software 39 240,705 8 42 1424.48
has start code 18 10,213 2 7 0.08
stbtt isfont Openpilot: Open- 24 79,598 5 19 0.22

source driving agent

: Member Term. Runtime
Benchmark Project LOC . . States . Correct
Queries Queries (min)
git offset 1st component Git: Revision control 4,090 2 0.12
checkerrormsg 32,664 2 15 1436.58 Vx
checkfail Ja: Command-ine 14 189,013 3 35 1438.47 @ V*
JSON processor

skipline 17 7,663 3 3 4.90 v
end_line 0 6 491.88 v
start _line Linux: OS ke 80.22 W Approx.
is_mcounted section_name . 1439.98 M Approx.
is_comment wald 7 hours. More than half 023 § Vv
AMF_DecodeBoolean . 0.07 v

P —— take fewer than 5 minutes v
Cl_ = _COnlE OBS Studio: ;
cf _is splice streaming & 0.05 v
is_reserved_name recording software 1424.48 v
has start code 18 10,213 2 7 0.08 v
stbtt_ isfont Openpilot: Open- 24 79,598 5 19 o2 @ vV

— source driving agent

Benchmark Project LOC Mem!oer Terrp. States unt.lme Correct
Queries Queries (min)

git offset_1st_component Git: Revision control 6 4,090 2 0.12 v
checkerrormsg 4 32,664 2 1436.58 Vx
checkfail Ja: Command-line 14 189,013 3 143847 V*
JSON processor
skipline 17 7,663 3 4.90 v
end_line 11 510,623 4 491.88 v
start _line Linux: OS kernel 11 206,613 2 80.22 Approx.
is_mcounted section_name 54 672,041 7 1439.98 Approx.
is_numeric_index MASSCAN: IP port 17 10,727 3 4.95 v
is_comment 0.23 v
AMF_DecodeBoolean 0.07 v
cf_is_comment Learned automata fall within 500 V
cf _is splice . f 0.05 v
is_reserved name resource ConStralntS O 1424.48 v
has start code FPGA‘based arChiteCtu res 0.08 v
stbtt__isfont 0.22 v

Open Challenges: Guiding Desires

e Support broader classes of functions
* Not all legacy code consists solely of Boolean string kernels

 More indicative benchmark applications
 Mined real-world functions are a start, but...
* Functions that dominate runtime
e Larger or more complex functions

 Comparison of learning-based solutions (AutomataSynth) with HLS

Open Challenges (Learning-Specific)

1
2
3
4

Learn More Expressive Models (Transducers, Pushdown, etc.)

Improve String Solvers (Expressiveness, Performance, etc.)

Scale Termination Queries and Explore Alternatives

Understand Approximation (PAC Learning, Measure Error)

AutomataSynth Summary

* Framework for accelerating legacy Boolean string kernel functions using
FPGAs

e Static and dynamic analyses of program behavior to construct
functionally-equivalent automata

* Novel combination of Angluin-style learning with software model
checking and string solvers

e Successfully constructs equivalent (or near equivalent) FPGA designs for
more than 80% of real-world benchmarks mined from GitHub

 Many open challenges mean many opportunities for studying learning-
based approaches for porting code

Source code: https://github.com/kevinaangstadt/automata-synth

% M

https://github.com/kevinaangstadt/automata-synth
https://github.com/kevinaangstadt/automata-synth

