
Accelerating Legacy String Kernels via Bounded

Automata Learning

Kevin Angstadt
University of Michigan

Computer Science and Engineering
Ann Arbor, MI, USA
angstadt@umich.edu

Jean-Baptiste Jeannin
University of Michigan
Aerospace Engineering
Ann Arbor, MI, USA
jeannin@umich.edu

Westley Weimer
University of Michigan

Computer Science and Engineering
Ann Arbor, MI, USA
weimerw@umich.edu

Abstract

The adoption of hardware accelerators, such as FPGAs, into
general-purpose computation pipelines continues to rise,
but programming models for these devices lag far behind
their CPU counterparts. Legacy programs must often be
rewritten at very low levels of abstraction, requiring inti-
mate knowledge of the target accelerator architecture. While
techniques such as high-level synthesis can help port some
legacy software, many programs perform poorly without
manual, architecture-specific optimization.

We propose an approach that combines dynamic and static
analyses to learn a model of functional behavior for off-the-
shelf legacy code and synthesize a hardware description from
this model. We develop a framework that transforms Boolean
string kernels into hardware descriptions using techniques
from both learning theory and software verification. These
include Angluin-style state machine learning algorithms,
bounded software model checking with incremental loop
unrolling, and string decision procedures. Our prototype
implementation can correctly learn functionality for ker-
nels that recognize regular languages and provides a near
approximation otherwise. We evaluate our prototype tool
on a benchmark suite of real-world, legacy string functions
mined from GitHub repositories and demonstrate that we
are able to learn fully-equivalent hardware designs in 72% of
cases and close approximations in another 11%. Finally, we
identify and discuss challenges and opportunities for more
general adoption of our proposed framework to a wider class
of function types.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378503

CCS Concepts. • Computer systems organization→ Re-
configurable computing; • Theory of computation→Reg-

ular languages; • Software and its engineering→ Soft-

ware design techniques.
Keywords. automata learning, automata processing, legacy
programs

ACM Reference Format:

Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer. 2020.
Accelerating Legacy String Kernels via Bounded Automata Learn-
ing. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3373376.
3378503

1 Introduction

The confluence of several factors, including the significant
increase in data collection [34], demands for real-time anal-
yses by business leaders [28], and the lessening impact of
both Dennard Scaling and Moore’s Law [73], have led to the
increased use of hardware accelerators. Such devices range
from Field-Programmable Gate Arrays (FPGAs) and Graph-
ics Processing Units (GPUs) to more esoteric accelerators,
such as Google’s Tensor Processing Unit or Micron’s D480
Automata Processor. These accelerators trade off general
computing capability for increased performance on specific
workloads; however, successful adoption requires additional
architectural knowledge for effective programming and con-
figuration. Support for acceleration of legacy programs that
limits the need for architectural knowledge or manual opti-
mization would only aid the adoption of these devices.

While present in industry for prototyping and application-
specific deployments for quite some time, reconfigurable
architectures, such as FPGAs, are now becoming common-
place in everyday computing. In fact, FPGAs are in use in
Microsoft datacenters and are also widely available through
Amazon’s cloud infrastructure [2, 25, 49].

Adopting hardware accelerators into existing application
workflows requires porting code to these new programming
models. Unfortunately, porting legacy code remains difficult.
The primary programming model for FPGAs remains Hard-
ware Description Languages (HDLs) such as Verilog and

https://doi.org/10.1145/3373376.3378503
https://doi.org/10.1145/3373376.3378503
https://doi.org/10.1145/3373376.3378503

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

VHDL. HDLs have a level of abstraction akin to assembly-
level development on traditional CPU architectures. While
these hardware solutions provide high throughputs, pro-
gramming can be challenging—programs written for these
accelerators are tedious to develop and difficult to write cor-
rectly.

Higher levels of abstraction for programming FPGAs have
been achieved with high-level synthesis (HLS) [61], lan-
guages such as OpenCL [79], and frameworks such as Xil-
inx’s SDAccel [95]. While HLS may allow existing code to
compile for FPGAs, it still requires low-level knowledge
of the underlying architecture to allow for efficient imple-
mentation and execution of applications [85, 99]. In fact,
optimization techniques for OpenCL programs have been
demonstrated to have detrimental impacts on performance
when software is ported to a new architecture [10]. There-
fore, there is a need for a new programming model that sup-
ports porting of legacy code, admits performant execution
on hardware accelerators, and does not rely on developer
architectural knowledge. We focus our efforts on automata
computations, a class of kernels with applications ranging
from high-energy physics [93] to network security [71] and
bioinformatics [68, 69, 83], for which hardware acceleration
is both strongly desired and also capable of providing signif-
icant performance gains [8, 33, 35, 36, 39, 80, 88, 91, 96].
In this paper, we present AutomataSynth,1 a new ap-

proach for executing code (including legacy programs and au-
tomata computations) on FPGAs and other hardware acceler-
ators. Unlike HLS, which statically analyzes a program to pro-
duce a hardware design, AutomataSynth both dynamically
observes and statically analyzes program behavior to synthe-
size a functionally-equivalent hardware design. Our approach
is based on several key insights. First, state machines provide
an abstraction that has successfully accelerated applications
across many domains [68–71, 82, 83, 90, 92, 93, 98] and admit
efficient implementations in hardware [33, 88, 96], but typi-
cally require rewriting applications. Second, there is an entire
body of work on query-based learning of state machines (e.g.,
see Angluin for a classic survey of computational learning
theory [7]), but these algorithms commonly rely on unreal-
istic oracle assumptions. Third, we observe that the combi-
nation of software model checking (e.g., [15, 16]) and recent
advances in string decision procedures (e.g., [31, 47, 81, 84])
can be used in place of oracles for certain classes of legacy
code kernels, such as those that recognize regular languages.

WhileAutomataSynth is based on a general approach for
synthesizing hardware designs from high-level source code,
we focus in this paper specifically on synthesizing Boolean
string kernels (functions that return true or false given a
string). We propose to accelerate these string kernels using
automata processing, which requires representing functions

1https://github.com/kevinaangstadt/automata-synth

as finite automata [33, 88, 96]. We demonstrate how soft-
ware model checking, using a novel combination of bounded
model checking with incremental loop unrolling augmented
with string decision procedures, can answer oracle queries
required by Angluin-style learning algorithms, resulting in
a framework to iteratively infer automata corresponding to
legacy kernels.

We evaluate our prototype implementation of Automata-
Synth on a benchmark suite of string kernels mined from
public repositories on GitHub. Our evaluation demonstrates
that our approach is viable for small functions and exposes
new opportunities for improving current-generation tools.
We identify four key challenges associated with using state-
of-the-art methods to compile legacy kernels to FPGAs and
suggest paths forward for addressing current limitations.

In summary, this paper makes the following contributions:

• AutomataSynth, a framework for accelerating legacy
string kernels by learning equivalent state machines.
We extend an Angluin-style learning algorithm to use
a combination of iterative bounded software model
checking and string decision procedures to answer
oracle queries.
• A proof that AutomataSynth terminates and is cor-
rect (i.e., relatively complete with respect to the un-
derlying model checker) for kernels that recognize
regular languages. The proof leverages the minimality
of machines learned by L* and the Pumping Lemma
for regular languages.
• An empirical evaluation of AutomataSynth on 18
indicative kernels mined from public GitHub reposito-
ries. We learn 13 exactly-equivalent models and 2 near
approximations.

2 Background and Related Work

AutomataSynth employs a novel combination of tools and
techniques from multiple computing disciplines. To the best
of our knowledge, this is the first work to combine model
learning algorithms, software verification, and architectures
for high-performance automata processing. We position our
work in the context of related efforts from each area and
provide background helpful for understanding our approach.

2.1 Finite Automata

In this work, we model the behavior of legacy source code
using deterministic finite automata (DFAs) to enable efficient
acceleration with FPGAs. Formally, a DFA is a five-tuple,
(Q, Σ,q0,δ , F), where Q is a finite set of states, Σ is a finite
alphabet of input symbols, q0 ∈ Q is the initial (or starting)
state, δ : Q × Σ → Q is a transition function encoding
transfer of control between states based on an observed
input symbol, and F ⊆ Q is a set of accepting states. A DFA
processes input data through the repeated application of
the transition function with each subsequent symbol in the

https://github.com/kevinaangstadt/automata-synth

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

input string. After the application of the transition function,
a single state within the DFA becomes active. If an accepting
state is active after all input characters have been processed,
the DFA accepts the input (i.e., the input matches the pattern
encoded by the DFA).

2.2 Accelerators for Finite Automata

There is substantial research on the acceleration of finite
automata computation. Automata processing is considered
an extremely challenging task to accelerate and is part of
the “thirteenth dwarf” in the Berkeley parallel computation
taxonomy [11]. Reconfigurable computing has emerged as
a suitable platform for accelerating this form of computa-
tion [64, 91]. Automata have enabled the acceleration of a
wide variety of applications across many domains, includ-
ing: natural language processing [98], network security [71],
graph analytics [70], high-energy physics [93], bioinformat-
ics [68, 69, 83], pseudo-random number generation and sim-
ulation [90], data-mining [92], and ML [82].
Xie et al.’s REAPR framework enables high-throughput

automata processing using modern FPGAs [96]. Addition-
ally, application-specific accelerators for various types au-
tomata processing have been proposed, such as Micron’s
AP [33], the Cache Automaton [80], ASPEN [8], and other
ASICs [35, 36, 39, 88]. While accelerators for state machine
computation are performant, they require that input prob-
lems be phrased in an explicit state machine model, which is
uncommon in extant software. Indeed, writing an automaton
has been demonstrated to be error-prone and difficult [4, 77],
thus leaving an abstraction gap and hindering widespread
adoption of automata processing accelerators.

Our development of AutomataSynth is complementary
to these efforts: we enable the “compilation” of legacy source
code for execution on—and acceleration with—automata pro-
cessing architectures.

2.3 State Machine Learning Algorithms

We briefly summarize learning of state machines here, de-
tailing the most relevant instance in Section 3.1. These al-
gorithms are a subset of model learning in learning theory
and have been the subject of study for several decades [5, 30,
78, 86]. The most common approach is to use active learning
in which the model is learned by performing experiments
(tests) on the software or system to be learned. State machine
learning has been applied to the domains of internet bank-
ing [1], network protocols [32, 37], legacy systems [54, 72],
and describing machine learning classifiers [94].
Most efforts have focused on developing suitable algo-

rithms for learning finite automata [6, 19]. More recent ad-
vances simplify the internal data structures of the algorithms,
reduce the number of tests necessary to learn a model, or
combinations thereof [43, 44, 48, 67]. Learning an equivalent
state machine from software remains challenging, and most
approaches employ some form of approximation [6, 52].

In this work, we apply this body of model learning re-
search to the problem of adapting legacy source code for
efficient execution on hardware accelerators. Our approach
attempts to learn a model that is fully equivalent to the origi-
nal program using software verification techniques, but may
also produce approximate results in some situations.

2.4 Program Synthesis and Verification

Program synthesis is a holistic term for automatically gener-
ating software from some input description. Recent efforts
have focused on different applications of synthesis, such as
sketching [3, 75, 76], programming by example [40], and au-
tomated program repair [56, 63]. Many of these approaches
employ counterexample-guided inductive synthesis (CEGIS) to
produce a final solution [76]. CEGIS is an iterative technique
that constructs candidate solutions that are tested (typically
via formal methods) for equivalence. A counterexample, or
model of undesirable behavior, is provided if the candidate so-
lution is incorrect, and begins the next iteration of synthesis.
We note that CEGIS is largely equivalent to the techniques
used in the learning theory community for model learning.

Program verifiers and software model checkers prove that a
program adheres to a specification or produce counterexam-
ples that violate the specification [15]. These tools typically
interleave the control flow graph (CFG) and a specification
automaton and explore the resulting graph to determine if
any path leads to an error state in the specification.

There has been significant research and engineering effort
applied to making these techniques scalable and applicable
to real applications [17, 27, 55]. Of particular relevance here
are bounded or iterative techniques that address recursive
control flow [18, 45], which typically unroll loops a fixed
number of times before checking if an error state is reachable
in the straight-line portion of the CFG. Most closely related
to our work has been the use of bounded model checking
to verify string-processing web applications; however, this
work often focused on secure information flow rather than
constraints over strings [42]. There are also theoretical re-
sults on the decidabilty of straight-line programs on strings,
which naturally arise in bounded model checking [53].

A related body of research focuses on extracting program
behavior from legacy code for acceleration using domain-
specific languages (DSLs), an approach referred to as ver-
ified lifting. Examples, include extracting stencil computa-
tions [46, 57], database qeuries [26], and sparse and dense
linear algebra calculations [38]. By targeting DSLs, verified
lifting can leverage known properties of the given problem
domain to aid extraction and acceleration. Our development
of AutomataSynth complements these efforts: we focus on
learning hardware descriptions of string kernels for acceler-
ation with FPGAs. For generality, we intentionally limit the
domain-specific assumptions leveraged by our approach.
We propose a novel combination of insights from coun-

terexample guided synthesis, theorem proving and automata

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

learning to synthesize behaviorally-equivalent automata
from legacy source code in Section 3.3.

2.5 High-Level Synthesis for FPGAs

High-Level Synthesis (HLS) allows development for FPGAs
at a much higher level of abstraction than HDLs [61]. Indeed,
HLS has been demonstrated to reduce the time to develop
FPGA designs [51]. Most tools support programs written in
C-like languages, suggesting that HLSwould be amenable for
adapting and accelerating legacy code bases. However, the
performance of designs constructed using HLS can be unim-
pressive, requiring significant optimization [85, 99]. HLS
tools may also not support all features of the language (e.g.,
dynamic data structures), meaning that legacy code must be
refactored before the approach is applicable.

In this work, we present an alternative to HLS that decou-
ples the existing design and implementation of legacy code
from the final design produced for an FPGA. In doing so, we
avoid many of the limitations of HLS techniques.

3 Learning State Machines from Legacy

Code

We propose AutomataSynth, a framework for learning
functional behavior models for off-the-shelf, legacy code im-
plementing regular languages and synthesizing hardware
descriptions from those models. Our approach extends An-
gluin’s L* algorithm [6] by (1) using bounded software model
checking with incremental unrolling to implement one of its
assumptions, (2) using software testing to implement another
of its assumptions, and (3) transforming learned models into
homogeneous DFAs for hardware synthesis.

3.1 L* Primer

Dana Angluin’s foundational L* algorithm was popularized
in 1987 [6]. Because many of our framework decisions (such
as how to implement its required queries and counterexam-
ples in a legacy source code context) and results (such as
correctness and termination arguments) depend on the steps
and invariants of her algorithm, we sketch it here in some
detail. We claim no novelty in this subsection and readers
familiar with L* can proceed to Section 3.2.
At its core, the L* algorithm relies on a minimally ade-

quate teacher (MAT) to answer two kinds of queries about
a held-out language, L. First, the MAT must answer mem-
bership queries, yielding a Boolean value indicating if the
queried string is a member of L. Second, the MAT must an-
swer conjecture or termination queries.2 Given a candidate
regular language A, typically expressed as a finite state ma-
chine, the MAT responds with true if A = L or responds
with a counterexample string for which A and L differ. (Note
that automata learning is used in applications where L is

2These are also called equivalence queries, but we avoid this term to prevent
confusion with similar uses of the term in software verification.

not a DFA, and thus this query is typically not resolved by
standard DFA equivalence checking.)
These queries are used to construct an observation table

that can be transformed directly into a DFA. This table may
be defined as a 3-tuple, (S,E,T), where S is a nonempty,
finite, prefix-closed3 set of strings over Σ; E is a nonempty,
finite, suffix-closed set of strings over Σ; and T is a function
mapping ((S ∪ S · Σ) · E) to {true, false}. (S,E,T) may
be visualized as a two-dimensional array where rows are
indexed by a value s ∈ S · Σ, columns are indexed by a value
e ∈ E, and entries are equal to T (s · e). For ease of notation,
Angluin defines row (s) to be a finite function, f , mapping
values from E to {true, false} defined as f (e) = T (s · e).
Informally, row (s) denotes the values in a particular row of
the observation table.
An observation table must be both closed and consistent

before a DFA may be correctly constructed. A table is closed
if for every t ∈ S · Σ, there exists an s ∈ S such that
row (t) = row (s). A table is consistent if, for all s1, s2 ∈ S
where row (s1) = row (s2), row (s1 · a) = row (s2 · a) for all
a ∈ Σ. These properties ensure that there is a valid transition
out of each state in the DFA (closed) and that transitions on
any character remain the same regardless of the characters
already processed (consistent). Given a closed and consis-
tent observation table, a DFA over the alphabet Σ may be
constructed as follows:

Q = {row (s) | s ∈ S } ,

q0 = row (ε),

F = {row (s) | s ∈ S ∧T (s) = true} ,

δ (row (s),a) = row (s · a).

Each unique row in the observation table becomes a state in
the candidate automaton, and outgoing transitions from a
state are defined by the row indexed by the current row’s
prefix concatenated with the transition character.

Pseudocode for the L* algorithm is provided inAlgorithm 1.
A closed, consistent observation table is constructed using
membership queries. Then, the table is transformed into a
candidate automaton for a termination query. If the MAT
responds with a counterexample, the counterexample and
its prefixes are added to the observation table. The process
repeats until the MAT responds to a termination query in
the affirmative. The final automaton is the learned language.

3.2 AutomataSynth Problem Description

In this subsection, we formalize the problem of learning a
state machine from a legacy string kernel.
AutomataSynth operates on a function that takes one

string argument and returns a Boolean value:
kernel : string -> bool

3A set is prefix-closed if ∀s ∈ S , every prefix of s is also a member of S .
Suffix-closure is defined similarly.

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Algorithm 1: Angluin’s L* Learner [6]

Data: MAT for held-out language, L
Result: A DFA, M , representing the held-out language, L
Initialize S and E to {ε };
Ask membership queries for ε and each a ∈ Σ;
Construct initial observation table (S, E, T);
repeat

while (S, E, T) is not closed or not consistent do
if (S, E, T) is not consistent then

Find s1, s2 ∈ S , a ∈ Σ, e ∈ E such that
row (s1) = row (s2) ∧T (s1 · a · e) , T (s2 · a · e);

Add a · e to E ;
Extend T to include the new suffix with membership
queries;

end

if (S, E, T) is not closed then

Find s1 ∈ S , a ∈ Σ such that row (s1 · a) , row (s) for
all s ∈ Σ;

Add s1 · a to S ;
Extend T to include the new prefix with membership
queries;

end

end

Construct DFA, M from (S, E, T);
Make termination query with M ;
if MAT responds with counterexample t then

Add t and all prefixes to S ;
Extend T to include the new prefixes using membership
queries;

end

until the MAT responds with true to the termination check on M ;
return DFA M

We assume that the source code for this function is provided
and that the function halts and returns a value on all inputs
(i.e., kernel is an algorithm). If kernel recognizes a regu-
lar language, AutomataSynth returns a state machine,M ,
with equivalent behavior to kernel. That is, for all s ∈ Σ∗,
M (s) = kernel(s). For runs which exceed a resource budget
or expose incompleteness in the underlying theorem prover
(including functions that are non-regular), our prototype im-
plementation alerts and provides approximate equivalence,
where M (s) = kernel(s) when the length of s is less than
an arbitrary fixed length (see Section 4).
In Section 4.4, we present a formal proof that our frame-

work produces an equivalent DFA for input kernels that
recognize regular languages. Our empirical evaluation in
Section 6 demonstrates that real-world legacy string kernels
either recognize regular languages, or our tool can produce
an approximation of the original function. We discuss the
challenges associated with supporting a broader class of
functions in Section 7.1.

3.3 Using Source Code as a MAT

We propose extending Angluin’s L* algorithm to learn a DFA
representation of a legacy string kernel. To succeed, we must

construct a MAT that can answer membership and termi-
nation queries about an input string kernel. While the L*
algorithm provides a framework for query-based DFA learn-
ing, the original work does not define any one mechanism
for implementing the teacher. Our proposed MAT implemen-
tation leverages the source code of the target function.

Membership Queries. We observe that a membership
query for a string, s , may be implemented by executing the
legacy kernel on s . The result returned by the function is the
answer to the query. For languages akin to C employing in-
tegers, we interpret Boolean values in the standard way (i.e.,
0 is false and all other values are true). While direct and
intuitive in theory, we note that there are several challenges
in practice. Following the C standard, many runtime systems
assume that strings are null-terminated (i.e., a null character
must only occur as the final character in a string). In practice,
however, we find that legacy string kernels will sometimes
allow null characters in other positions. This often occurs
when the length of the input string is known a priori. While
seemingly innocuous, this deviation from the standard limits
the runtime mechanisms by which the legacy kernel may
be invoked. We found that compiling the kernel to a shared
object and then invoking the function dynamically provided
the best stability in our experiments.

Termination Queries. At the heart of our problem for-
mulation is the challenge that a legacy string kernel does
not admit a direct means for answering termination queries.
A recent survey of model learning indicates that testing for
equivalence queries [86]; however, our initial efforts found
testing alone to be unsuitable for termination queries in this
domain. Our insight is that verification strategies from soft-
ware model checking may be used to test for equivalence
between the kernel and a candidate automaton. Traditionally
in verification, equivalence would be proven using bisimula-
tion or interleaving of the automaton and the source kernel.
However, this formulation presupposes that the “state tran-
sitions” are directly encoded in the source code and can be
aligned with the state transitions in the candidate automaton.
We do not make this assumption in our problem definition
in Section 3.2, and we prefer an approach that does not re-
quire manual annotation. Indeed, we do not even assume
that the states of the equivalent automaton are visited “in
order” during the execution of the legacy kernel.
We propose to verify an alternate reachability property

that places additional constraints on the input string. In
particular, we observe that a counterexample t ∈ Σ+ is in
either L(kernel) or L(M) but not in both, and thus will
always satisfy the constraint t ∈ L(kernel) ⊕ L(M), where
⊕ is the symmetric difference operator. Therefore, we ask
the software verifier to prove that there is no execution of
kernel on t where kernel returns true and t < L(M) or
kernel returns false and t ∈ L(M). To test this reachability
property, we use a novel combination of bounded model

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

checking with incremental loop unrolling augmented with a
string constraint solver. We discuss the implementation of
this verification task in depth in Section 4.

Software verifiers are relatively complete (e.g., [12]), mean-
ing that there are certain programs that cannot be fully veri-
fied due to limitations in the underlying SMT solvers. Veri-
fiers often return an answer in three-valued logic: true in
our application means that the kernel and candidate automa-
ton were proved equivalent, allowing for termination; false
in our application means that the property was not satisfied,
and there is a counterexample to provide to the L* algorithm;
and unknown in our application means that the verifier was
unable to prove equivalence, but also does not provide a
counterexample. In the case of an unknown answer from the
verifier, we halt our algorithm and warn the user that the
resulting automaton is approximate; there may be inputs for
which the automaton returns an incorrect answer.

3.4 Synthesizing Hardware Descriptions from

Automata

Once a state machine has been learned using the L* algo-
rithm with our custom MAT, the kernel is now amenable to
acceleration. There has been a significant effort to accelerate
automata using FPGAs [96] and other custom ASICs (e.g.,
GPUs [91, 97] and Micron’s AP [33]). We convert the learned
automaton to a hardware description and synthesize the de-
sign for loading onto an FPGA. Other execution platforms
are possible [9], but we focus on FPGAs in this work due to
their widespread deployment.

3.5 System Architecture

Figure 1 depicts the high-level system architecture of our
framework. The L* learner (shown to the left) queries a MAT
(shown to the right) consisting of the legacy source code,
software model checker, SMT solver, and string decision
procedure. The legacy string kernel is used by the MAT to
answer membership queries. Termination queries are trans-
formed by a mapper into a software verification problem
that searches for string that distinguish the language of a
candidate automaton from the target language implemented
in the kernel. The output of the Learner is a DFA that en-
codes the same computation as the Kernel. We use this DFA
to synthesize a hardware design for execution on an FPGA.

4 Implementation and Correctness

In this section we lay out formal properties of our implemen-
tation, first demonstrating that iterative, bounded software
model checking conforms to the required properties for MAT
termination queries. We then prove correctness and termina-
tion for AutomataSynth. Because AutomataSynth oper-
ates on arbitrary source code and employs theorem proving
techniques, correctness and termination are relative.

L*
Learner

Minimally Adequate Teacher

Membership Query

Termination Query

s
?
∈ L(Kernel)

True or False

L(M)
?
= L(Kernel)

True or
Counterexample

Kernel

Mapper
Software Verifier

SMT
Solver

String
Solver

Learned
Automaton M Synthesis

FPGA

Figure 1. AutomataSynth System Architecture. The Min-
imally Adequate Teacher uses the legacy kernel to answer
membership queries. The kernel is combined with a candi-
date automaton in the mapper to produce a software veri-
fication problem. Using bounded software model checking
combined with string decision procedures, we search for a
counterexample that distinguishes the target language from
the language of the candidate automaton. Finally, we syn-
thesize the learned automaton for execution on an FPGA.

4.1 Bounded Model Checking

There are several SMT-based model checking algorithms that
have been employed to verify properties of software. We
use bounded model checking, an algorithm best-suited for
the queries currently supported by string constraint solvers.
In particular, string solvers do not currently support most
interpolation queries (e.g., [29]), which are used heavily by
counterexample-guided [27] algorithms such as SLAM and
BLAST [13, 15]. Developing interpolation algorithms that
support string constraints is beyond the scope of this work.

Bounded model checking enumerates all program paths up
to a certain bound that reach a target error state (e.g., an error
label in the source code) [18]. For each path, the algorithm
generates a set of constraints over the program’s variables,
and the disjunction of these constraints is passed to an SMT
solver to determine if the constraints for at least one path are
satisfiable. If so, the set of variable assignments represents a
configuration of the program that would result in an error
condition at runtime. In this approach, loops are unrolled a
fixed number of times (the “bound”). We follow the standard
practice of incremental unrolling (cf. [20]), which iteratively
applies bounded model checking for increasing unrolling
depths. For programs with unbounded loops this strategy
results in a semi-algorithm; however, we demonstrate in Sec-
tion 4.4 that there exists a finite unrolling that fully verifies
a kernel deciding a regular language for our property.

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

4.2 Reasoning about Strings

As described in Section 3.3, AutomataSynth must verify
that there are no strings in the symmetric difference of the
legacy kernel and a candidate automaton. We propose en-
coding the language of the candidate automaton as a regular
expression constraint on the input string parameter of the
kernel. We then solve the encoded problem using a bounded
model checker that reasons about strings. A suitable string
decision procedure must support (at minimum):
• Unbounded string length,
• Regular expression-based constraints over strings,
• Access to individual characters of strings,
• Comparison of individual characters and strings,
• Reasoning about the length of strings, and
• The ability to generate strings that satisfy a set of
constraints.

Additional features supported by string decision procedures
can be helpful for representing standard library string func-
tions. Recent decision procedures, such as Z3str3 [14] or
S3 [84], support these required properties.

To combine bounded model checking with string decision
procedures, we extend the CPAChecker extensible program
analysis framework [16] to generate and solve string con-
straints. We modify CPAChecker’s predicate analysis algo-
rithm to generate “String” sort constraints for string-like
types in C programs (e.g., char and char* types [62]). We
produce a character extraction constraint for each occur-
rence of indexing of (and dereferencing) string variables.
Additionally, we add support for functions such as strlen.

The C language specification does not directly support reg-
ular expressions. To embed these constraints in a program’s
source code, we also add an additional function for checking
if a string variable conforms to a regular expression.

4.3 Verification for Termination Queries

Listing 1 demonstrates our formulation of termination queries
using bounded model checking with incremental loop un-
rolling and string decision procedures. We construct a wrap-
per around the source code for the kernel that adds additional
assertions to the path constraints used by the software ver-
ifier. When the kernel returns true, we add the constraint
that the input string cannot be represented by the regular
expression representing the candidate automaton. We add a
similar constraint for the false case as well. Finally, we ask
the verifier to prove that the error label (line 23) is unreach-
able (note that assume constraints influence reachability).

4.4 Correctness

In this subsection, we conclude our formal development of
termination queries based on the combination of bounded
model checking with incremental loop unrolling and string
decision procedures. We demonstrate that this approach sat-
isfies the Angluin constraints for MAT termination queries

1 // KERNEL is the legacy kernel function
2 // REGEX is the language of the candidate automaton
3 int termination_query(char* input) {
4
5 // call the kernel and record result
6 int ret = KERNEL(input);
7
8 if (ret) {
9 // if kernel accepts , candidate DFA must reject
10 __VERIFIER_assume(
11 !__VERIFIER_inregex(input , REGEX)
12);
13 goto ERROR;
14 } else {
15 // if kernel rejects , candidate DFA must accept
16 __VERIFIER_assume(
17 __VERIFIER_inregex(input , REGEX)
18);
19 goto ERROR;
20 }
21
22 // Error state to prove unreachable
23 ERROR:
24 return ret;
25 }

Listing 1. Formulating termination queries as a software
verification problem. We embed regular expression
constraints to force the legacy kernel and candidate
automaton to disagree on the input string. If the return
statement is unreachable, the two representations are
equivalent. Otherwise, there is a string counterexample
that can be used to continue the L* algorithm.

(see Section 3.1). In particular, we prove that this algorithm
always halts with a counterexample or proof of equivalence
between the legacy string kernel and a candidate automa-
ton (assuming the underlying decision procedure is correct).
While incremental unrolling is a semi-algorithm in general,
we demonstrate that a finite unrolling is sufficient to prove
equivalence for pure programs that decide a regular language
(i.e., programs that both recognize a regular language and
halt on all inputs as described in Section 3.2). We assume
that the program is pure to avoid nondeterministic behavior
and side-effects (e.g., nondeterministic behavior resulting
from I/O) and that the program decides a regular language to
leverage formal results from automata theory. While these
assumptions restrict the class of programs to which our for-
mal result applies, we note thatAutomataSynth can handle
more complex functions, but may produce approximate re-
sults. Ultimately, our goal is to prove the following theorem:

Theorem 4.1. LetK be a pure program that decides a regular
language L(K). There exists a finite unrolling K ′ of K such
that if M is the candidate DFA learned by L* from K ′, then
K ≡ M .

We write (≡) to denote equality of accepted languages,
i.e., K ≡ M if and only if L(K) = L(M). We will prove this
theorem using a sequence of lemmas as well as theoretical re-
sults from the L* algorithm. First, we demonstrate that there

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

exists a finite unrolling of a program K that recognizes all
strings in L(K) shorter than a given length. The intuition is
that the finite unrollingK ′ corresponds to the use of bounded
model checking.

Lemma 4.2. Let p ∈ N and K be a program that recognizes
a subset of Σ∗. There exists an n ∈ N such that the n-finitely-
unrolled program K ′ obtained from K (with all loops replaced
with the finite unrolling of the first n iterations and all sub-
sequent iterations removed) satisfies ∀s ∈ Σ∗, |s | < p =⇒

K ′(s) = K (s).

Proof. Given p ∈ N, we construct the set of strings S = {s |
s ∈ Σ∗ ∧ |s | < p}, on which K ′ must agree with K . We
let n be the maximum number of iterations performed by
K (s) for all s ∈ S . Because S is a finite set, its maximum
value is guaranteed to exist and be finite. We construct K ′
by unrolling n times the program K . By construction, the
property ∀s ∈ Σ∗, |s | < p =⇒ K ′(s) = K (s) holds. □

We also reason using the standard Pumping Lemma for
regular languages. For reference, we recall the Lemma here
without proof as defined by Sipser [74, Theorem 1.70].

Lemma 4.3 (Pumping Lemma for Regular Languages). If
A is a regular language, then there is a number p such that
for all s ∈ A, if |s | > p then s may be divided into three
pieces, s = xyz, satisfying the following conditions: for each
i ⩾ 0,xyiz ∈ A, |y | > 0, and |xy | ⩽ p.

The smallest such p is called the pumping length. We call
out as a Lemma the association between pumping lengths
and minimality [74, Proof of 1.70]:

Lemma 4.4. The (smallest) pumping length of a regular lan-
guage L is equal to the number of states in the minimal DFA
that recognizes L.

Additionally, our proof makes use of two theorems about
the output of the L* algorithm. We paraphrase these results
here [6]. See Section 3.1 for L* definitions, such as (S,E,T).

Theorem 4.5 (L* [6], Theorem 1). If (S,E,T) is a closed,
consistent L* observation table, then the DFA M constructed
from (S,E,T) is consistent with the finite functionT . Any other
DFA consistent withT but not equivalent toM must havemore
states.

We will use the following corollary of this result.

Corollary 4.5.1. Let p be the pumping length of the target
language, L, andM be a DFA constructed from a closed, con-
sistent L* observation table. The pumping length of L(M) does
not exceed p.

Finally, wemake use of the L* algorithm termination result.
The property we use in our proof has been emphasized.

Theorem4.6 (L* [6], Theorem 6). Given anyMAT presenting
a regular language L, L* eventually terminates and out-
puts a DFA isomorphic to the minimum DFA accepting

L. Additionally, if n is the number of states in the minimum
DFA recognizing L and m is an upper bound on the length
of any counterexample provided by the MAT, then the total
running time of L* is bounded by a polynomial inm and n.

With these properties in hand, we are now ready to prove
our original theorem.

Proof (Theorem 4.1). Given a pure program K , which decides
a regular language, and a candidate DFAM constructed from
a closed, consistent L* observation table (S,E,T), let p be the
pumping length of L(K). By Lemma 4.4, the minimal DFA
that recognizes L(K) has p states. By Lemma 4.2, there exists
a finite unrolling K ′ of program K such that ∀s ∈ Σ∗.|s | <
p =⇒ K ′(s) = K (s). We will show that verifying K ′ ≡ M is
sufficient to verify K ≡ M using bounded model checking.

Verifying the property ∄t ∈ Σ∗ such that t ∈ L(K ′) ⊕L(M)
(the symmetric difference, i.e., t ∈ L(K ′) ∪ L(M) and t <
L(K ′) ∩ L(M)) with incremental bounded model checking
(recall K ′ is a finite unrolling) can result in two outcomes:

Case 1: ∃t ∈ Σ∗ such that |t | < p ∧ K ′(t) , M (t).
Case 2: ∀t ∈ Σ∗ such that |t | < p, K ′(t) = M (t) holds.

In the first case, we return t as a counterexample, conclud-
ing K . M . In the second case, we conclude that K ′ ≡ M
and any counterexample must be at least as long as p; how-
ever, no such counterexample exists. The proof proceeds by
contradiction.

Suppose, for the sake of contradiction, that ∃t ′ ∈ Σ∗ such
that |t ′ | ⩾ p andK (t ′) , M (t ′). Let n be the number of states
in the candidate DFAM . We now relate n to the number of
states in the minimal DFA recognizing L(K). By Lemma 4.4
and Corollary 4.5.1, n ⩽ p because the pumping length of
L(M) is at most p and the number of states inM is equal to
the pumping length of L(M). Additionally, because the finite
unrolling K ′ ≡ M , n ⩾ p by Theorem 4.5. Therefore, the
number of states in M is bounded above and below by the
pumping length of our target language, implying that n = p.
Using our assumption about t ′, we note that K is consistent
withT but not equivalent toM , and thus by another applica-
tion of Theorem 4.5 we conclude that the DFA recognizing
L(K) must have more than n = p states. This contradicts
the fact, from Lemma 4.4, that the minimal DFA recognizing
L(K) has exactly p states. Therefore, no such t ′ exists.
Because L* produces a minimal DFA (Theorem 4.6), and

M was produced from a closed, consistent observation table,
we can conclude thatM must be a DFA isomorphic with the
minimal DFA accepting the language L(K). Thus, K ≡ M .
This means that, using bounded model checking on the

program K ′ (recall that K ′ is a finite unrolling and thus
admits bounded model checking), we either find a counterex-
ample or can conclude equivalence of K andM . Therefore,
K ′ ≡ M =⇒ K ≡ M . □

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

From this result, we can establish the following corollary,
which allows us to conclude that our approach may be used
in a MAT to answer termination queries.

Corollary 4.6.1. For a given program K , there exists a fi-
nite number of iterations of incremental unrolling needed for
our approach to respond to a termination query with either a
counterexample or a proof of equivalence.

Implications. In our formulation, termination queries
return an answer if the bounded software model checking
with incremental loop unrolling and the string decision pro-
cedures terminates. Our result is therefore relative to the com-
pleteness of the model checker and underlying SMT theories
(see Ball et al. for a discussion of relative completeness in
software model checking [12]). For pure kernels that decide
a regular language, we proved that there is a finite bound on
the incremental unrolling that will determine equivalence
of the kernel and a candidate automaton. In practice, we
make use of a timeout on the verification process to ensure
timely termination at the expense of correctness in some
cases. This design decision results in an approximate solution
in cases where either the finite unrolling bound has not yet
been reached or the legacy kernel recognizes a non-regular
program. The approximate solution is correct for strings of
length up to a particular bound but may disagree on larger
strings. Our empirical evaluation in Section 6 demonstrates
thatAutomataSynth successfully learns an equivalent state
machine for thirteen of eighteen real-world string kernels
mined from legacy source code.

5 Experimental Methodology

In this section, we describe our process for selecting real-
world, legacy string kernels benchmarks as well as our ex-
perimental setup for the evaluation described in Section 6.

5.1 Benchmark Selection

In our evaluation, we focus onmeasuring the extent to which
AutomataSynth learns models for real-world string func-
tions using varied library methods. We construct our bench-
mark suite by mining legacy string kernels from open-source
software projects on GitHub using the following protocol.
First, we filter all projects for those with C source code and
ordered the resulting repositories by number of stars (i.e.,
popular repositories first). Next, we use the Cil [62] frame-
work to iteratively parse each source file and extract all func-
tions with an appropriate type signature (see Section 3.2).
We filter these functions to exclude those that referenced
functions or data outside the compilation unit. We allow
the use of common library function (e.g., strlen, strcmp,
etc.). In total, we considered 26 repositories and mined 973
separate string kernel functions using this protocol.

After filtering for duplicates and a manual analysis to iden-
tify functions that return Boolean values (we note that while
C has the _Bool data type, many functions still use integers

Table 1. Benchmark Suite of Real-World, Legacy String Ker-
nels

Function Project LOC Support

git_offset_1st_component Git: Revision
control system

6 ✓

is_encoding_utf8 38 ✘∗

checkerrormsg jq: Command-line
JSON processor

4 ✓

checkfail 14 ✓

skipline 17 ✓

end_line
Linux: OS kernel

11 ✓

start_line 11 ✓

is_mcounted_section_name 54 ✓

is_numeric_index MASSCAN : IP
port scanner

17 ✓

is_comment 11 ✓

AMF_DecodeBoolean
OBS Studio: Live
streaming and
recording software

2 ✓

cf_is_comment 28 ✓

cf_is_splice 22 ✓

is_reserved_name 39 ✓

has_start_code 18 ✓

number_is_valid openpilot:
Open-source
driving agent

72 ✘†

utf8_validate 72 ✘‡

stbtt__isfont 24 ✓

∗Requires strcasecmp support †Requires strtod support
‡Performs math on characters

of varying widths), we collected 18 meaningfully-distinct
real-world benchmarks. Table 1 provides an overview of
these string kernels. We use the function name to refer to
each benchmark and also indicate the source project for
each. Lines of code (LOC) provides a count of the total num-
ber of non-comment lines in the post-processed version of
the benchmark. Finally, we also indicate whether the ker-
nel is supported by our prototype system. Our prototype
implementation supports all but three of these legacy string
kernels. The unsupported kernels use computation that is
difficult to capture with present string decision procedures.

The kernels in our benchmark suite interact with strings in
various manners. Some kernels, such as is_numeric_index,
skipline, and cf_is_comment, loop over all characters in
the string checking various constraints. Several also make
heavy use of strcmp to check for the presence of specific
strings (e.g., checkerrormsg, is_mcounted_section_name,
and start_line). We also found examples of kernels (e.g.,
git_offset_1st_component and AMF_DecodeBoolean) that
perform single character comparisons. While a developer
will likely not be interested in accelerating a single character
comparison, these kernels remain indicative of real-world
code and allow us to demonstrate a proof-of-concept for
synthesizing designs for accelerators such as FPGAs. An
evaluation of benchmarks more typical of kernels acceler-
ated by FPGAs (e.g., long-running kernels with hundreds or
thousands of states) is left for future work.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

5.2 Experimental Setup

Our AutomataSynth implementation produces MNRL, an
open-source state machine representation language intended
for large-scale automata processing applications [9]. We
transform the learned DFA to be homogeneous, a property
that admits a simplified transition rule while maintaining
expressive power and that is amenable to hardware accelera-
tion [10, 23, 33, 91]. We use Brzozowski’s algorithm [21] for
converting candidate DFAs to regular expressions as part of
the software verification step (see Section 4).
For termination queries, we add string constraint han-

dling to CPAChecker 1.8 [16]. We also extend the JavaSMT
framework [47] to support the draft SMT-LIB strings the-
ory interface [81]. We use Microsoft’s Z3 version 4.8.6 SMT
solver [31] with the Seq string solver [84] for all queries. All
evaluations use an Ubuntu 16.04 Linux server with a 3.0 GHz
Intel Xeon E5-2623-v3 with four physical cores and 16 GB of
RAM and a maximum time budget of 24 hours.

6 Evaluation

In this section, we evaluate AutomataSynth on fifteen
real-world, legacy string kernels mined from open-source
projects. We first evaluate the correctness of the state ma-
chines generated by AutomataSynth and report runtime
and query counts. Second, we evaluated the suitability of the
generated automata for hardware acceleration.

6.1 State Machine Learning

Table 2 presents results from our empirical evaluation of Au-
tomataSynth on a benchmark suite of fifteen legacy string
kernels. We do not report results for the three benchmarks
that are not supported. We report the number of member-
ship and termination queries executed for each kernel as well
as the number of states in the learned automaton and the
total runtime in seconds. The final column indicates if Au-
tomataSynth correctly learned the kernel’s functionality.
A check mark means that our tool learned a fully-equivalent
automaton. We also indicate approximate results in which
the maximum time limit was exceeded.
On average, it took seven hours to learn an automaton

from the legacy string kernel, with more than half of the
benchmarks terminating in fewer than five minutes. Au-
tomataSynth correctly learned thirteen of the fifteen bench-
marks. The remaining two benchmarks yield approximate so-
lutions, with many of these approximations being extremely
similar to the target kernel functionality. In our evaluation
this approximation was always the result of timeouts rather
than the relative completeness of the SMT solver used for
termination queries. There were no instances in our bench-
mark set for which the SMT solver returned an unknown
result due to a limitation in the string decision procedures.
We determined that there were two primary causes for

AutomataSynth reaching the timeout without learning a

fully-equivalent state machine. First, Brzozowski’s algorithm
for constructing a regular expressions can produce large
expressions that require simplification to remove redundant
and superfluous clauses. This was most relevant to kernels
that compared string suffixes with a string constant. We
believe this performance limitation is an artifact of design
choices in our prototype, which could be solved with more
careful construction of regular expressions. Second, some
SMT queries were significantly less performant than others.
We discuss this challenge in more detail in Section 7.

The relative utility of the membership and termination
queries varies between the benchmarks. For example, the
function git_offset_1st_component checks a string to see
if the first character is a forward slash (/). Using membership
queries, AutomataSynth learned that the first character of
the string must be a slash and that any number of characters
may follow. The termination query provided a single coun-
terexample of a longer string that was initially misclassified.
For this kernel, the membership queries provided much of
the “learning”. This is in contrast to the stbtt__isfont ker-
nel, which ultimately compares an input string against four
hard-coded strings. In this case, the membership queries
only provided minimal information. Instead, the termina-
tion queries discovered the string constants in the kernel’s
source code and provided much of the learned information.
In general, membership queries tended to provide more infor-
mation when each character in the input string was consid-
ered separately while termination queries helped to discover
string constants used for comparison by the kernels.

AutomataSynth successfully learned automata for fifteen
of the eighteen legacy kernels mined from open-source
projects. Of these, thirteen were exactly equivalent and
two were near approximations.

6.2 Hardware Acceleration

In this work, we claim no novelty for accelerating automata
using hardware accelerators, such as FPGAs. Instead, we
leverage existing work in the area of high-performance au-
tomata processing. On FPGAs, Xie et al.’s REAPR framework
supports high-throughput processing of data with finite au-
tomata on FPGAs [96]. For spatially-reconfigurable architec-
tures akin to FPGAs, the dominant factor affecting perfor-
mance is the number of hardware resources used by a design.
For ANMLZoo benchmarks, which contain tens of thousands
of states [91], REAPR successfully synthesized designs run-
ning in the range of 200–700 MHz. Because the automata
learned by AutomataSynth are significantly smaller, we
expect that similar throughputs could be achieved.

The finite automata learned by AutomataSynth fall with-
ing the design constraints of FPGA-based automata accel-
erators, allowing for high-throughput execution.

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Table 2. Experimental Results

Benchmark Membership Queries Termination Queries Number of States Total Runtime (s) Correct

git_offset_1st_component 4,090 2 2 7 ✓

checkerrormsg 32,664 2 15 86,195 ✓∗

checkfail 189,013 3 35 86,308 ✓∗

skipline 7,663 3 3 294 ✓

end_line 510,623 4 44 29,531 ✓

start_line 206,613 2 46 4,813 Approx.
is_mcounted_section_name 672,041 7 57 86,399 Approx.
is_numeric_index 10,727 3 4 297 ✓

is_comment 4,090 2 2 14 ✓

AMF_DecodeBoolean 2,557 2 2 4 ✓

cf_is_comment 4,599 2 4 300 ✓

cf_is_splice 1,913 2 4 3 ✓

is_reserved_name 350,705 8 42 85,469 ✓

has_start_code 10,213 2 7 5 ✓

stbtt__isfont 79,598 5 19 13 ✓

∗AutomataSynth warned of a potential approximate solution due to timeout, but manual analysis confirmed correctness

7 Discussion

At a high level, AutomataSynth learns the behavior of a
Boolean string kernel through a combination of dynamic
and static analyses and emits a functionally-equivalent state
machine that is amenable to acceleration with FPGAs. We
believe that approaches such as AutomataSynth are very
promising and could offer solutions to limitations inherent
to current HLS techniques. HLS relies heavily on the struc-
ture of C-like source code to produce a hardware description,
which were designed for performance on—and as an ab-
straction of—von Neumann architectures. As such, HLS is
unlikely to produce performant FPGA designs from legacy
code that was heavily optimized for CPUs [85, 99]. This
places a heavy burden on developers tasked with porting
code and represents a significant barrier to adoption. Our ap-
proach decouples the implementation choices of the legacy
program from the emitted hardware design. This allows us
to produce a design using a model of computation—state
machines—that is performant on FPGAs [91, 96].
This paper represents an initial effort to understand the

benefits and limitations of using state machine learning al-
gorithms to compile code for FPGAs. A significant research
effort remains for approaches akin to AutomataSynth to
be mature enough for industry adoption. In the remainder of
this section we identify four key research challenges whose
solutions would lead to significant advances in learning-
based synthesis for FPGAs. Additionally, we describe candi-
date future directions to tackle each of these.

7.1 Learning More Expressive Models

We present an approach for accelerating regular language
Boolean string kernels with FPGAs. Our prototype soundly
transforms such kernels to functionally-equivalent hardware

descriptions; Boolean functions with inputs that may be
transformed into a serial data stream are also applicable.
However, legacy code contains many other types of func-
tions, and these remain an open challenge. Supporting a new
function type presents a two-fold challenge: (1) identifying
suitable computational models for acceleration and (2) de-
signing or adapting an algorithm suitable for learning these
models. Finite automata, as formally defined, produce a sin-
gle bit of output for each string processed and are limited to
recognizing Regular Languages. Additional models, such as
Mealy and Moore machines, support transforming an input
value into an output value, while others, such as pushdown
automata, support more expressive classes of languages.

Several efforts are underway to extend learning algorithms
to more expressive computational models [19, 24, 59]. It may
also be possible to leverage insights from the architecture
community and recent efforts to accelerate automata pro-
cessing, in which designs often support tagging output report
signals with additional metadata [33, 89]. Further, existing
DFA learning algorithms may admit learning functions that
output an enumerated—or even a multi-bit—value.

An additional challenge is that determining program equiv-
alence is, in the limit, undecidable. For example, Angluin
notes that termination queries are not generally decidable
for context-free languages [6]. However, existing software
verifiers suffer from this same challenge and provide relative
completeness [12]. Further, this challenge may be addressed
in some cases through careful use of approximation.

7.2 Expressive Power and Performance of String

Solvers

Our empirical evaluation of AutomataSynth demonstrated
some limitations of present string decision procedures. Cer-
tain string operations (e.g., case-insensitive lexicographic

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

comparisons and casting between characters and numbers to
perform arithmetic operations) occur in real-world software
but are difficult to represent as constraints in String theo-
ries. Additionally, SMT queries generated by bounded model
checking algorithms can result in long-running computation.

These challenges are not new: the formal methods commu-
nity has been laboring to improve string decision procedures
for over a decade. Early efforts often focused on the problem
domain of identifying cross-site scripting and SQL code injec-
tion vulnerabilities (e.g., [41]) and introduced new constraint
types. These efforts often reasoned about fixed-sized string
variables (e.g., [50]). Subsequent efforts, such as Z3str3, also
focus on improving the performance of these decision proce-
dures and have extended support to unbounded strings [14].
AutomataSynth is one of the first efforts to combine

bounded software model checking with string decision pro-
cedures. This combination presents a novel and compelling
use case for string solvers that requires new constraint types
and optimizations. We make our tool and all of the SMT
queries automatically generated by our process available4
to the community to encourage renewed interest in—and
efforts to—improve the performance of string solvers.

7.3 Scaling Termination Queries

We found, in practice, that termination queries consumed an
average of 66% of the total runtime of AutomataSynth. As
candidate state machines increase in size, we expect the scal-
ability of termination queries to dominate. This challenge
presents an opportunity for innovation. We proposed an ap-
proach based on the novel combination of bounded software
model checking and string decision procedures; however,
alternate formulations of termination queries may provide
better performance while maintaining correctness.
Many applications of model learning focus on the use

of testing to provide answers to termination queries [86].
We have observed that the application of automated testing
presents several challenges, such as producing a suitable
quantity and diversity of inputs to identify counterexamples.
Test input generators, such as Klee [22], may only support
bounded length strings (rather than unbounded).

The application of other software verification techniques
may also provide performance gains. Counterexample-guided
abstraction refinement verifiers can abstract much of a pro-
gram’s state to gain performance, but require support for
interpolation queries. These are not currently support by
string solvers, but present an additional area for research.

7.4 Characterizing and Taming Approximation

Because scalability and decidability of termination queries
are challenges, approximation may play an important role in
improving the performance of learning-based approaches to

4See theAutomataSynth repository at https://github.com/kevinaangstadt/
automata-synth

synthesizing FPGA designs. Indeed, there is already signifi-
cant interest in the architecture and software communities
for producing approximate programs [58, 60, 65, 66].

Approximation has been a key parameter in model learn-
ing algorithms from the start [6, 86]. Results from learning
theory often analyze approximation using Valiant’s proba-
bly approximately correct (PAC) framework, which bounds
the probability of the error being less than a fixed thresh-
old for an approximately-learned model [87]. Such results
can predict the number of queries necessary to bound the
error but do not characterize the locations or significance of
the remaining error. Anomalous results for frequently-used
inputs have a very different impact than anomalous results
for seldom-used inputs. Given the design of Angluin-style
algorithms, it may be possible to determine which inputs
result in approximate solutions. For example, pre-populating
the observation table with rows pertaining to known inputs
(i.e., those taken from the test suite) ensures that the learned
state machine produces the correct output for those relevant
values.

8 Conclusions

We present AutomataSynth, a framework for accelerat-
ing legacy regular language Boolean string kernel functions
using FPGAs. Our approach uses a novel combination of
state machine learning algorithms, software verification al-
gorithms, string decision procedures, and high-performance
automata processing architectures to learn the behavior of a
program and construct a behaviorally-equivalent FPGA hard-
ware description. We demonstrate a proof-of-concept of this
approach using a benchmark suite of eighteen string kernels
mined from open-source projects on GitHub. Automata-
Synth successfully constructs equivalent (or near equiva-
lent) FPGA designs for more than 80% of these benchmarks.
We believe this approach shows promise for overcoming
some of the limitations of current HLS techniques.

Acknowledgments

This work is funded in part by: NSF grants CCF-1629450,
CCF-1763674, CCF-1908633; AFRL Contract No. FA8750-19-
1-0501; and the Jefferson Scholars Foundation. We also wish
to thank Kevin Skadron and Lu Feng for their suggestions,
encouragement, and expertise in the early stages of this
project as well as the anonymous reviewers for their helpful
comments and feedback.

References

[1] F. Aarts, J. De Ruiter, and E. Poll. 2013. FormalModels of Bank Cards for
Free. In Sixth International Conference on Software Testing, Verification
and Validation Workshops. 461–468.

[2] Gustavo Alonso. 2018. FPGAs in Data Centers. Queue 16, 2, Article 60
(April 2018), 6 pages.

[3] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. 2013.

https://github.com/kevinaangstadt/automata-synth
https://github.com/kevinaangstadt/automata-synth

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

Syntax-guided synthesis. In Formal Methods in Computer-Aided Design.
1–8.

[4] Glenn Ammons, David Mandelin, Rastislav Bodík, and James R. Larus.
2003. Debugging Temporal Specifications with Concept Analysis. In
Proceedings of the 2003 ACM SIGPLAN Conference on Programming
Language Design and Implementation (San Diego, California, USA).
182–195.

[5] Dana Angluin. 1981. A note on the number of queries needed to
identify regular languages. Information and Control 51, 1 (1981), 76 –
87.

[6] Dana Angluin. 1987. Learning Regular Sets from Queries and Coun-
terexamples. Information and Computation 75, 2 (Nov. 1987), 87–106.

[7] Dana Angluin. 1992. Computational Learning Theory: Survey and
Selected Bibliography. In Symposium on Theory of Computing. 351–
369.

[8] Kevin Angstadt, Arun Subramaniyan, Elaheh Sadredini, Reza Rahimi,
Kevin Skadron, Westley Weimer, and Reetuparna Das. 2018. ASPEN:
A Scalable in-SRAM Architecture for Pushdown Automata. In Pro-
ceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture (Fukuoka, Japan) (MICRO-51). IEEE Press, Piscat-
away, NJ, USA, 921–932.

[9] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer, M. Stan,
and K. Skadron. 2018. MNCaRT: An Open-Source, Multi-Architecture
Automata-Processing Research and Execution Ecosystem. IEEE Com-
puter Architecture Letters 17, 1 (Jan 2018), 84–87.

[10] K. Angstadt, J. Wadden,W.Weimer, and K. Skadron. 2019. Portable Pro-
gramming with RAPID. IEEE Transactions on Parallel and Distributed
Systems 30, 4 (April 2019), 939–952.

[11] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A.
Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,
and Katherine A. Yelick. 2006. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report UCB/EECS-2006-183.
EECS Department, University of California, Berkeley.

[12] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. 2002. Relative
Completeness of Abstraction Refinement for SoftwareModel Checking.
In Tools and Algorithms for the Construction and Analysis of Systems,
TACAS. 158–172.

[13] Thomas Ball and Sriram K. Rajamani. 2001. Automatically Validating
Temporal Safety Properties of Interfaces. In Proceedings of the 8th
International SPIN Workshop on Model Checking of Software (Toronto,
Ontario, Canada) (SPIN ’01). Springer-Verlag, Berlin, Heidelberg, 103–
122.

[14] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3:
A string solver with theory-aware heuristics. In Formal Methods in
Computer Aided Design (FMCAD 2017). 55–59.

[15] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
2007. The software model checker Blast. International Journal on
Software Tools for Technology Transfer 9, 5 (01 Oct 2007), 505–525.

[16] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for
Configurable Software Verification. In Computer Aided Verification,
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 184–190.

[17] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. 2010. Predicate
Abstraction with Adjustable-block Encoding. In Proceedings of the
2010 Conference on Formal Methods in Computer-Aided Design (Lugano,
Switzerland) (FMCAD ’10). FMCAD Inc, Austin, TX, 189–198.

[18] Armin Biere. 2009. Bounded Model Checking. In Handbook of Satisfi-
ability. 457–481.

[19] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
2009. Angluin-Style Learning of NFA. In International Joint Conference
on Artificial Intelligence.

[20] Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling.
In Verification, Model Checking, and Abstract Interpretation, Ranjit Jhala
and David Schmidt (Eds.). 70–87.

[21] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J.
ACM 11, 4 (Oct. 1964), 481–494.

[22] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (San Diego, California)
(OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.

[23] Pascal Caron and Djelloul Ziadi. 2000. Characterization of Glushkov
automata. Theoretical Computer Science 233, 1 (2000), 75–90.

[24] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. 2016.
Active Learning for Extended Finite State Machines. Form. Asp. Com-
put. 28, 2 (April 2016), 233–263.

[25] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. 2016. A Cloud-scale Acceleration Archi-
tecture. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE Press, Piscataway,
NJ, USA, Article 7, 13 pages.

[26] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2013.
Optimizing Database-Backed Applications with Query Synthesis. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, Washington, USA) (PLDI
’13). Association for Computing Machinery, New York, NY, USA, 3–14.

[27] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. 2003. Counterexample-guided Abstraction Refinement for Sym-
bolic Model Checking. J. ACM 50, 5 (Sept. 2003), 752–794.

[28] Computer Sciences Corporation. 2012. Big Data Universe Begin-
ning to Explode. http://www.csc.com/insights/flxwd/78931-big_data_
universe_beginning_to_explode.

[29] William Craig. 1957. Three Uses of the Herbrand-Gentzen Theorem
in Relating Model Theory and Proof Theory. The Journal of Symbolic
Logic 22, 3 (1957), 269–285.

[30] Colin de la Higuera. 2010. Grammatical Inference: Learning Automata
and Grammars. Cambridge University Press, New York, NY, USA.

[31] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Construction
and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337–340.

[32] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS
Implementations. In Proceedings of the 24th USENIX Conference on
Security Symposium (Washington, D.C.) (SEC’15). USENIX Association,
Berkeley, CA, USA, 193–206.

[33] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal,
and Harold Noyes. 2014. An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing. IEEE Transactions on
Parallel and Distributed Systems 25, 12 (2014), 3088–3098.

[34] DNV GL. 2016. Are you able to leverage big data to boost your
productivity and value creation? https://www.dnvgl.com/assurance/
viewpoint/viewpoint-surveys/big-data.html.

[35] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien.
2015. Fast support for unstructured data processing: the unified au-
tomata processor. In Proceedings of the ACM International Symposium
on Microarchitecture (Micro ’15). 533–545.

[36] Yuanwei Fang, Chen Zou, Aaron J Elmore, and Andrew A Chien.
2017. UDP: a programmable accelerator for extract-transform-load
workloads and more. In International Symposium on Microarchitecture.
ACM, 55–68.

[37] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016.
Combining Model Learning and Model Checking to Analyze TCP
Implementations. In Computer Aided Verification, Swarat Chaudhuri
and Azadeh Farzan (Eds.). Springer International Publishing, Cham,

http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html
https://www.dnvgl.com/assurance/viewpoint/viewpoint-surveys/big-data.html

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland Kevin Angstadt, Jean-Baptiste Jeannin, and Westley Weimer

454–471.
[38] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin,

Christophe Dubach, and Michael F. P. O’Boyle. 2018. Automatic Match-
ing of Legacy Code to Heterogeneous APIs: An Idiomatic Approach.
In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). Association for Computing
Machinery, New York, NY, USA, 139–153.

[39] Vaibhav Gogte, Aasheesh Kolli, Michael J Cafarella, Loris D’Antoni,
and Thomas F Wenisch. 2016. HARE: Hardware accelerator for regular
expressions. In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Press, 44.

[40] Sumit Gulwani. 2016. Programming by Examples: Applications, Al-
gorithms, and Ambiguity Resolution. In Proceedings of the 8th Inter-
national Joint Conference on Automated Reasoning. Springer-Verlag,
Berlin, Heidelberg, 9–14.

[41] Pieter Hooimeijer andWestley Weimer. 2009. A decision procedure for
subset constraints over regular languages. In Programming Language
Design and Implementation (PLDI). 188–198.

[42] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. 2004. Verifying web applications using bounded
model checking. In International Conference on Dependable Systems
and Networks. IEEE, 199–208.

[43] M Isberner. 2015. Foundations of active automata learning: an alorithmic
perspective. Ph.D. Dissertation. Technical University of Dortmund.

[44] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT Al-
gorithm: A Redundancy-Free Approach to Active Automata Learning.
In Runtime Verification, Borzoo Bonakdarpour and Scott A. Smolka
(Eds.). Springer International Publishing, Cham, 307–322.

[45] Ranjit Jhala and Rupak Majumdar. 2009. Software Model Checking.
Comput. Surveys 41, 4, Article 21 (Oct. 2009), 54 pages.

[46] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-
Lezama. 2016. Verified Lifting of Stencil Computations. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association
for Computing Machinery, New York, NY, USA, 711–726.

[47] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. 2016.
JavaSMT: A Unified Interface for SMT Solvers in Java. In Verified
Software. Theories, Tools, and Experiments, Sandrine Blazy and Marsha
Chechik (Eds.). Springer International Publishing, Cham, 139–148.

[48] Michael J. Kearns and Umesh V. Vazirani. 1994. An Introduction to
Computational Learning Theory. MIT Press, Cambridge, MA, USA.

[49] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric
Schkufza, and Christopher J. Rossbach. 2018. Sharing, Protection, and
Compatibility for Reconfigurable Fabric with Amorphos. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,
Berkeley, CA, USA, 107–127.

[50] Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and
Michael D Ernst. 2009. HAMPI: a solver for string constraints. In Pro-
ceedings of the eighteenth international symposium on Software testing
and analysis. ACM, 105–116.

[51] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen. 2019. Are We There
Yet? A Study on the State of High-Level Synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (May
2019), 898–911.

[52] D. Lee and M. Yannakakis. 1996. Principles and methods of testing
finite state machines-a survey. Proc. IEEE 84, 8 (Aug 1996), 1090–1123.

[53] Anthony W Lin and Pablo Barceló. 2016. String solving with word
equations and transducers: towards a logic for analysing mutation
XSS. In ACM SIGPLAN Notices, Vol. 51. ACM, 123–136.

[54] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. 2004. Efficient Test-
based Model Generation for Legacy Reactive Systems. In Proceedings
of the High-Level Design Validation and Test Workshop, 2004. Ninth IEEE
International (HLDVT ’04). IEEE Computer Society, Washington, DC,

USA, 95–100.
[55] Kenneth L. McMillan. 2006. Lazy Abstraction with Interpolants. In

Proceedings of the 18th International Conference on Computer Aided
Verification (Seattle,WA) (CAV ’06). Springer-Verlag, Berlin, Heidelberg,
123–136.

[56] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix:
Scalable Multiline Program Patch Synthesis via Symbolic Analysis. In
Proceedings of the 38th International Conference on Software Engineering
(Austin, Texas) (ICSE ’16). ACM, New York, NY, USA, 691–701.

[57] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan
Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015.
Helium: Lifting High-Performance Stencil Kernels from Stripped X86
Binaries to Halide DSL Code. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Port-
land, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 391–402.

[58] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Com-
puting. ACM Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages.

[59] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin,
andMichal Szynwelski. 2017. Learning nominal automata. In Principles
of Programming Languages (POPL). 613–625.

[60] Thierry Moreau, Joshua San Miguel, Mark Wyse, James Bornholt,
Armin Alaghi, Luis Ceze, Natalie D. Enright Jerger, and Adrian Samp-
son. 2018. A Taxonomy of General Purpose Approximate Computing
Techniques. Embedded Systems Letters 10, 1 (2018), 2–5.

[61] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H.
Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. 2016. A Survey
and Evaluation of FPGAHigh-Level Synthesis Tools. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35, 10
(Oct 2016), 1591–1604.

[62] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer.
2002. CIL: Intermediate Language and Tools for Analysis and Trans-
formation of C Programs. In Compiler Construction, R. Nigel Horspool
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 213–228.

[63] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and
Satish Chandra. 2013. SemFix: Program Repair via Semantic Anal-
ysis. In Proceedings of the 2013 International Conference on Software
Engineering (San Francisco, CA, USA) (ICSE ’13). IEEE, Piscataway, NJ,
USA, 772–781.

[64] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and
Michela Becchi. 2017. Demystifying Automata Processing: GPUs,
FPGAs, or Micron’s AP?. In Proceedings of the International Conference
on Supercomputing (Chicago, Illinois) (ICS ’17). ACM, New York, NY,
USA, Article 1, 11 pages.

[65] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William
Harris. 2015. FlexJava: language support for safe and modular approxi-
mate programming. In Foundations of Software Engineering (ESEC/FSE).
745–757.

[66] Martin C. Rinard. 2003. Acceptability-oriented computing. In Object-
Oriented Programming, Systems, Languages, and Applications, (OOP-
SLA). 221–239.

[67] R.L. Rivest and R.E. Schapire. 1993. Inference of Finite Automata Using
Homing Sequences. Information and Computation 103, 2 (1993), 299 –
347.

[68] Indranil Roy. 2015. Algorithmic Techniques for the Micron Automata
Processor. Ph.D. Dissertation. Georgia Institute of Technology.

[69] Indranil Roy and Srinivas Aluru. 2014. Finding Motifs in Biological
Sequences Using the Micron Automata Processor. In Proceedings of the
28th IEEE International Parallel and Distributed Processing Symposium.
415–424.

[70] I. Roy, N. Jammula, and S. Aluru. 2016. Algorithmic Techniques for
Solving Graph Problems on the Automata Processor. In Proceedings of
the IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’16). 283–292.

Accelerating Legacy String Kernels via Bounded Automata Learning ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

[71] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru. 2016. High
Performance Pattern Matching Using the Automata Processor. In Pro-
ceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’16). 1123–1132.

[72] Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. 2016. Refactoring
of Legacy Software Using Model Learning and Equivalence Checking:
An Industrial Experience Report. In Proceedings of the 12th International
Conference on Integrated Formal Methods - Volume 9681 (Reykjavik,
Iceland) (IFM 2016). Springer-Verlag, Berlin, Heidelberg, 311–325.

[73] J. M. Shalf and R. Leland. 2015. Computing beyond Moore’s Law. IEEE
Computer 48, 12 (Dec 2015), 14–23.

[74] Michael Sipser. 2006. Introduction to the Theory of Computation (2nd
ed.). Thomson Course Technology.

[75] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.
2008. Sketching Concurrent Data Structures. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY,
USA, 136–148.

[76] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Programs.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). ACM, New York, NY, USA, 404–415.

[77] Eric Spishak, Werner Dietl, and Michael D. Ernst. 2012. A Type System
for Regular Expressions. In Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs (Beijing, China) (FTfJP ’12). 20–26.

[78] Bernhard Steffen, Falk Howar, and Maik Merten. 2011. Introduction
to Active Automata Learning from a Practical Perspective. In Formal
Methods for Eternal Networked Software Systems: 11th International
School on Formal Methods for the Design of Computer, Communication
and Software Systems (SFM 2011), Marco Bernardo and Valérie Issarny
(Eds.). Springer Berlin Heidelberg, Bertinoro, Italy, 256–296.

[79] J. E. Stone, D. Gohara, and G. Shi. 2010. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. Computing in
Science Engineering 12, 3 (May 2010), 66–73.

[80] Arun Subramaniyan, Jingcheng Wang, Ezhil R. M. Balasubramanian,
David Blaauw, Dennis Sylvester, and Reetuparna Das. 2017. Cache
Automaton. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (Cambridge, Massachusetts) (MICRO-
50). ACM, New York, NY, USA, 259–272.

[81] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. 2019. SMT-LIB 2.6
Strings Theory: Draft 2.1. Technical Report. Department of Computer
Science, The University of Iowa.

[82] Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glenden-
ning. 2016. Towards Machine Learning on the Automata Processor. In
Proceedings of ISC High Performance Computing. 200–218.

[83] Tommy Tracy II, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke
Wang, Kevin Skadron, and Gabe Robins. 2015. Nondeterministic Finite
Automata in Hardware—the Case of the Levenshtein Automaton. Ar-
chitectures and Systems for Big Data (ASBD), in conjunction with ISCA
(2015).

[84] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Sym-
bolic String Solver for Vulnerability Detection in Web Applications.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (Scottsdale, Arizona, USA) (CCS ’14). ACM,
New York, NY, USA, 1232–1243.

[85] L. Di Tucci, M. Rabozzi, L. Stornaiuolo, and M. D. Santambrogio. 2017.
The Role of CAD Frameworks in Heterogeneous FPGA-Based Cloud
Systems. In 2017 IEEE International Conference on Computer Design

(ICCD). 423–426.
[86] Frits Vaandrager. 2017. Model Learning. Commun. ACM 60, 2 (Jan.

2017), 86–95.
[87] L. G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27, 11

(Nov. 1984), 1134–1142.
[88] Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,

Uzi Shvadron, and Kubilay Atasu. 2012. Designing a Programmable
Wire-Speed Regular-Expression Matching Accelerator. In International
Symposium on Microarchitecture. 461–472.

[89] Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characteriz-
ing and Mitigating Output Reporting Bottlenecks in Spatial Automata
Processing Architectures. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 749–761.

[90] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan,
and K. Skadron. 2016. Generating efficient and high-quality pseudo-
random behavior on Automata Processors. In 2016 IEEE 34th Interna-
tional Conference on Computer Design (ICCD). 622–629.

[91] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini, K.
Wang, C. Bo, G. Robins, M. Stan, and K. Skadron. 2016. ANMLzoo:
a benchmark suite for exploring bottlenecks in automata processing
engines and architectures. In International Symposium on Workload
Characterization (IISWC ’16). 1–12.

[92] Ke Wang, Elaheh Sadredini, and Kevin Skadron. 2016. Sequential
Pattern Mining with the Micron Automata Processor. In Proceedings
of the ACM International Conference on Computing Frontiers (Como,
Italy) (CF ’16). ACM, New York, NY, USA, 135–144.

[93] Michael H.L.S. Wang, Gustavo Cancelo, Christopher Green, Deyuan
Guo, Ke Wang, and Ted Zmuda. 2016. Using the Automata Processor
for fast pattern recognition in high energy physics experiments — A
proof of concept. Nuclear Instruments and Methods in Physics Research
(2016).

[94] Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018. Extracting Automata
from Recurrent Neural Networks Using Queries and Counterexamples.
In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Jennifer Dy and Andreas
Krause (Eds.), Vol. 80. PMLR, StockholmsmÃďssan, Stockholm Sweden,
5247–5256.

[95] Loring Wirbel. 2014. Xilinx SDAccel: A Unified Development Envi-
ronment for Tomorrow’s Data Center. Technical Report. The Linley
Group.

[96] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan. 2017. REAPR:
Reconfigurable engine for automata processing. In 27th International
Conference on Field Programmable Logic and Applications (FPL ’17).
1–8.

[97] Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration of Regular
Expression Matching for Large Datasets: Exploring the Implemen-
tation Space. In Proceedings of the ACM International Conference on
Computing Frontiers (Ischia, Italy) (CF ’13). ACM, New York, NY, USA,
Article 18, 10 pages.

[98] Keira Zhou, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and Kevin
Skadron. 2015. Brill tagging on the Micron Automata Processor. In
Proceedings of the 9th IEEE International Conference on Semantic Com-
puting. 236–239.

[99] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Mat-
suda, and Satoshi Matsuoka. 2016. Evaluating and Optimizing OpenCL
Kernels for High Performance Computing with FPGAs. In High Per-
formance Computing, Networking, Storage and Analysis (Salt Lake City,
Utah). Article 35, 12 pages.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Finite Automata
	2.2 Accelerators for Finite Automata
	2.3 State Machine Learning Algorithms
	2.4 Program Synthesis and Verification
	2.5 High-Level Synthesis for FPGAs

	3 Learning State Machines from Legacy Code
	3.1 L* Primer
	3.2 AutomataSynth Problem Description
	3.3 Using Source Code as a MAT
	3.4 Synthesizing Hardware Descriptions from Automata
	3.5 System Architecture

	4 Implementation and Correctness
	4.1 Bounded Model Checking
	4.2 Reasoning about Strings
	4.3 Verification for Termination Queries
	4.4 Correctness

	5 Experimental Methodology
	5.1 Benchmark Selection
	5.2 Experimental Setup

	6 Evaluation
	6.1 State Machine Learning
	6.2 Hardware Acceleration

	7 Discussion
	7.1 Learning More Expressive Models
	7.2 Expressive Power and Performance of String Solvers
	7.3 Scaling Termination Queries
	7.4 Characterizing and Taming Approximation

	8 Conclusions
	Acknowledgments
	References

