A systematic process for evaluating structured equilibria in dynamic games with asymmetric information

> Achilleas Anastasopoulos anastas@umich.edu

> > EECS Department University of Michigan

February 1, 2016

・ロト ・御ト ・ヨト ・ヨト

臣

 Joint work with Deepanshu Vasal (PhD student graduating May 2016) and Prof. Vijay Subramanian

イロト イヨト イヨト イヨト

Decentralized teams

Games with asymmetric information

イロト イヨト イヨト イヨト

Decentralized decision making in dynamic systems

- Communication networks
- Sensor networks
- Social networks
- Queuing systems
- Energy markets
- Wireless resource sharing
- Repeated online advertisement auctions
- Competing sellers/buyers

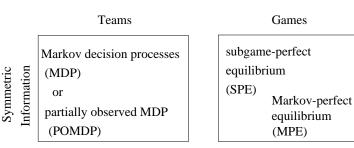
4 D N 4 🗐 N 4 E N

Salient features

- Multiple agents (cooperative or strategic)
- Objective: Maximize expected (social or self) reward
- Underlying system state (not perfectly observed)
- Agents make observations (asymmetric information) and take actions partially affecting future state

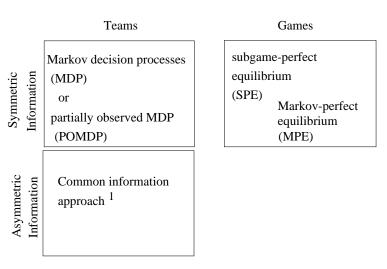
A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Classification of problems



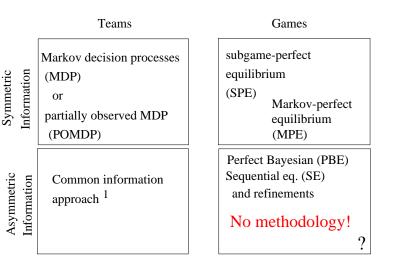
・ロト ・回ト ・ヨト ・

Classification of problems



12015 IEEE Control Theory Axelby paper award [Nayyar, Mahajan, Teneketzis, 2013] 🚊 🔊 🔍

Classification of problems



- 12015 IEEE Control Theory Axelby paper award [Nayyar, Mahajan, [Teneketzis, 2013] 🚊 - 🔊 🔍

Model

- Discrete-time dynamical system with N strategic agents over finite horizon T
- Player *i* privately observes her (static²) type $X^i \in \mathcal{X}^i$ where

$$P(X) = \prod_{i=1}^{N} Q^{i}(X^{i}), \qquad X = (X^{1}, X^{2}, \dots X^{N}) \in \mathcal{X}$$

- Player i takes action $A^i_t \in \mathcal{A}^i$ which is publicly observed
- Player *i*'s observations: <u>Private</u>: X^i , <u>Common</u>: $A_{1:t-1} = (A_1, A_2, \dots, A_{t-1}) = (A_k^j)_{k < t-1}^{j \in \mathcal{N}}$
- Action (randomized) $A_t^i \sim \sigma_t^i(\cdot|X^i, A_{1:t-1})$
- Instantaneous reward $R^i(X, A_t)$
- Player *i*'s objective

$$\max_{\sigma^{i}} \mathbb{E}^{\sigma} \left\{ \sum_{t=1}^{T} R^{i}(X, A_{t}) \right\}$$

²Generalization to dynamic types straightforward.

Achilleas Anastasopoulos anastas@umich.edu (U of N<mark>A systematic process for evaluating structured equilibri</mark>

イロト イポト イヨト イヨト

Concrete example: A public goods game³

- Two players take action to either contribute $(A_t^i = 1)$ or not contribute $(A_t^i = 0)$ to the production of a public good
- Player i's type (private information) is her cost of contributing: Xⁱ ∈ {L, H}, where Xⁱ's are i.i.d. with P(Xⁱ = H) = q
- If either player contributes, the public good is produced and the utility enjoyed is 1 for both users (free riding)
- Per-period rewards $(R^1(X^1, A_t), R^2(X^2, A_t))$ are

 $\begin{array}{c} \text{contribute}(A_t^1=1) & \text{don't contribute}(A_t^2=0) \\ \text{contribute}(A_t^1=1) & \hline (1-X^1,1-X^2) & (1-X^1,1) \\ \text{don't contribute}(A_t^1=0) & \hline (1,1-X^2) & (0,0) \end{array}$

• Each player's action
$$A_t^i \sim \sigma_t^i(\cdot|X^i, A_{1:t-1})$$
.

³Adapted from [Fudenberg and Tirole, 1991, Example 8.3] < \square > < \blacksquare > < \blacksquare > < \blacksquare > < \blacksquare > <

Introduction, Motivation, Examples

2 Decentralized teams

Games with asymmetric information

イロト イヨト イヨト イヨト

Team problem

- Same information structure but common (team) objective
- Design objective for entire team

$$\max_{\sigma} \mathbb{E}^{\sigma} \left\{ \sum_{t=1}^{T} \underbrace{R(X, A_t)}_{e.g., \sum_{i \in \mathcal{N}} R^i(X, A_t)} \right\}$$

イロト イヨト イヨト イヨト

Team problem

- Same information structure but common (team) objective
- Design objective for entire team

$$\max_{\sigma} \mathbb{E}^{\sigma} \left\{ \sum_{t=1}^{T} \underbrace{R(X, A_t)}_{e.g., \sum_{i \in \mathcal{N}} R^i(X, A_t)} \right\}$$

- Problems to be addressed⁴
 - **9** Presence of common $A_{1:t-1}$ and private X^i information for agent *i*
 - Occentralized, non-classical information structure (this is not a MDP/POMDP-like problem!)
 - **③** Domain of policies $A_t^i \sim \sigma_t^i(\cdot | \mathbf{X}^i, \mathbf{A}_{1:t-1})$ increases with time.

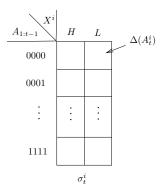
⁴All these have been addressed in [Nayyar, Mahajan, Teneketzis, 2013] () \leftarrow)

A policy $\sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be interpreted in two equivalent ways:

イロン イロン イヨン イヨン

A policy $\sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be interpreted in two equivalent ways:

```
1) A function of A_{1:t-1} and X^i to \Delta(\mathcal{A}^i)
```



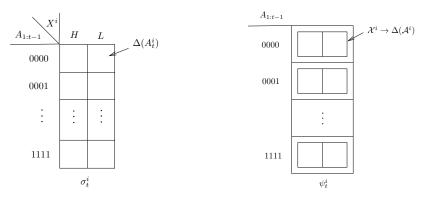
・ロン ・回 と ・ ヨン・

A policy $\sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be interpreted in two equivalent ways:

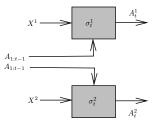
1) A function of $A_{1:t-1}$ and X^i to $\Delta(\mathcal{A}^i)$

2) A function of $A_{1:t-1}$ to **mappings** from \mathcal{X}^i to $\Delta(\mathcal{A}^i)$

・ロト ・回ト ・ヨト ・



In the first interpretation, the policies to be designed $(\sigma^i)_{i \in N}$ have inherent **asymmetric** information structure



・ロト ・回ト ・ヨト ・

In the second interpretation, each agent's action $A_t^i \sim \sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be thought of as a **two-stage** process

イロト イヨト イヨト イヨ

In the second interpretation, each agent's action $A_t^i \sim \sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be thought of as a **two-stage** process

 Based on common info A_{1:t-1} select "prescription" functions Γⁱ_t: Xⁱ → Δ(Aⁱ) through the pre-encoder mapping ψⁱ

$$\mathsf{\Gamma}_t^i = \psi_t^i [\mathbf{A}_{1:t-1}]$$

< ロ > < 同 > < 三 > < 三 >

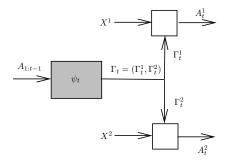
In the second interpretation, each agent's action $A_t^i \sim \sigma_t^i(\cdot|X^i, A_{1:t-1})$ can be thought of as a **two-stage** process

 Based on common info A_{1:t-1} select "prescription" functions Γⁱ_t: Xⁱ → Δ(Aⁱ) through the pre-encoder mapping ψⁱ

$$\mathsf{F}_t^i = \psi_t^i [\mathbf{A}_{1:t-1}]$$

The actions Aⁱ_t are determined by "evaluating" Γⁱ_t at the private information Xⁱ, i.e.,

$$A_t^i \sim \Gamma_t^i(\cdot | \mathbf{X}^i)$$



▲ @ ▶ ▲ ∃ ▶

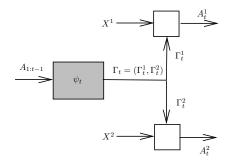
In the second interpretation, each agent's action $A_t^i \sim \sigma_t^i(\cdot | X^i, A_{1:t-1})$ can be thought of as a **two-stage** process

• Based on common info $A_{1:t-1}$ select "prescription" functions $\Gamma_t^i : \mathcal{X}^i \to \Delta(\mathcal{A}^i)$ through the pre-encoder mapping ψ^i

$$\Gamma_t^i = \psi_t^i [\mathbf{A}_{1:t-1}]$$

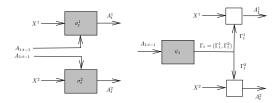
The actions Aⁱ_t are determined by "evaluating" Γⁱ_t at the private information Xⁱ, i.e.,

 $A_t^i \sim \Gamma_t^i(\cdot | \boldsymbol{X}^i)$



Overall
$$A_t^i \sim \Gamma_t^i(\cdot|\mathbf{X}^i) = \psi_t^i[A_{1:t-1}](\cdot|\mathbf{X}^i) = \sigma_t^i(\cdot|\mathbf{X}^i, A_{1:t-1})$$

Transformation to a centralized problem



- Generation of Aⁱ_t is a "dumb" evaluation Aⁱ_t ~ Γⁱ_t(·|Xⁱ) (nothing to be designed here)
- The control problem boils down to selecting prescription functions $\Gamma^i_t = \psi^i_t[A_{1:t-1}]$ through policy $\psi = (\psi^i_t)^{i \in \mathcal{N}}_{t \in \mathcal{T}}$
- All agents can evaluate each-other's prescription functions (think of a *fictitious* common agent with actions Γ_t)
- The decentralized control problem has been transformed to a **centralized control** problem
- Last issue to address: increasing domain \mathcal{A}^{t-1} of the pre-encoder mappings ψ_t .

Introduction of information state

• We would like to summarize $A_{1:t-1}$ in a quantity (state) with time invariant domain

イロト イヨト イヨト イヨ

Introduction of information state

- We would like to summarize $A_{1:t-1}$ in a quantity (state) with time invariant domain
- Consider the dynamical system with state: (X, A_{t-1}) observation: A_{t-1} action: Γ_t reward: $\mathbb{E}\{R(X, A_t)|X, A_{1:t-1}, \Gamma_{1:t}\} = \sum_{a_t} \Gamma_t(a_t|X)R(X, a_t) := \tilde{R}(X, \Gamma_t)$

・ロト ・厚ト ・ヨト ・ヨ

Introduction of information state

- We would like to summarize $A_{1:t-1}$ in a quantity (state) with time invariant domain
- Consider the dynamical system with state: (X, A_{t-1}) observation: A_{t-1} action: Γ_t reward: E{R(X, A_t)|X, A_{1:t-1}, Γ_{1:t}} = Σ_{at} Γ_t(a_t|X)R(X, a_t) := R̃(X, Γ_t)
 This is a POMDP! Define the posterior belief Π_t ∈ Δ(X)

$${\sf \Pi}_t(x):={\sf P}(X=x|{\sf A}_{1:t-1},{\sf \Gamma}_{1:t-1})\qquad ext{for all }x\in {\mathcal X}$$

• Can show that Π_t can be updated using common information

$$\Pi_{t+1} = F(\Pi_t, \Gamma_t, A_t)$$

(*) for this problem it also factors into its marginals

$$\Pi_t(x) = \prod_{i \in \mathcal{N}} \Pi_t^i(x^i) \quad \text{with} \quad \Pi_{t+1}^i = F(\Pi_t^i, \Gamma_t^i, A_t^i)$$

イロト イポト イヨト イヨト

Characterization of optimal team policy

• From standard POMDP results, optimal policy is Markovian, i.e.,

$$\Gamma_t = (\Gamma_t^i)_{i \in \mathcal{N}} = \psi_t[\mathbf{A}_{1:t-1}] = \theta_t[\mathbf{\Pi}_t]$$

$$A_t^i \sim \Gamma_t^i(\cdot | \mathbf{X}^i) = \theta_t^i[\boldsymbol{\Pi}_t](\cdot | \mathbf{X}^i) = m_t^i(\cdot | \mathbf{X}^i, \boldsymbol{\Pi}_t)$$

and can be obtained using backward dynamic programming (DP)

$$\theta_t[\pi_t] = \gamma_t^* = \arg \max_{\gamma_t} \mathbb{E} \left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t, A_t)) | \pi_t, \gamma_t \right\}$$

$$V_t(\pi_t) = \max_{\gamma_t} \mathbb{E} \left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t, A_t)) | \pi_t, \gamma_t \right\}$$

on the space of beliefs $\pi_t \in \Delta(\mathcal{X})$ over prescriptions $\gamma_t \in \underset{i \in \mathcal{N}}{\times} (\mathcal{X}^i \to \mathcal{A}^i)$

<ロト <四ト < 回ト < 回 > < 回

Characterization of optimal team policy

• From standard POMDP results, optimal policy is Markovian, i.e.,

$$\Gamma_t = (\Gamma_t^i)_{i \in \mathcal{N}} = \psi_t[\mathbf{A}_{1:t-1}] = \theta_t[\mathbf{\Pi}_t]$$

$$A_t^i \sim \Gamma_t^i(\cdot | \mathbf{X}^i) = \theta_t^i[\Pi_t](\cdot | \mathbf{X}^i) = m_t^i(\cdot | \mathbf{X}^i, \Pi_t)$$

and can be obtained using backward dynamic programming (DP)

$$\theta_t[\pi_t] = \gamma_t^* = \arg \max_{\gamma_t} \mathbb{E} \left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t, A_t)) | \pi_t, \gamma_t \right\}$$

$$V_t(\pi_t) = \max_{\gamma_t} \mathbb{E} \left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t, A_t)) | \pi_t, \gamma_t \right\}$$

on the space of beliefs $\pi_t \in \Delta(\mathcal{X})$ over prescriptions $\gamma_t \in \underset{i \in \mathcal{N}}{\times} (\mathcal{X}^i \to \mathcal{A}^i)$

• In the public goods example: $\begin{aligned} \pi_t &\equiv (\pi_t^1(\mathcal{H}), \pi^2(\mathcal{H})) \in [0, 1]^2 \text{ and} \\ \gamma_t &\equiv (\gamma_t^1(0|\mathcal{H}), \gamma_t^1(0|\mathcal{L}), \gamma_t^2(0|\mathcal{H}), \gamma_t^2(0|\mathcal{L})) \in [0, 1]_{+\infty}^4 \end{aligned}$

Summary of team problem

- Introduction of prescription functions was crucial
- We gained:
 - Decentralized non-classical information structure \Rightarrow POMDP $\Rightarrow A_t^i \sim \theta_t^i [\Pi_t](\cdot | \mathbf{X}^i)$ and θ can be obtained using DP

イロト イヨト イヨト イヨト

Summary of team problem

• Introduction of prescription functions was crucial

- We gained:
 - Decentralized non-classical information structure \Rightarrow POMDP $\Rightarrow A_t^i \sim \theta_t^i [\Pi_t](\cdot | \mathbf{X}^i)$ and θ can be obtained using DP

- We gave up:
 - Fictitious common agent does not observe Xⁱ.
 - Can only maximize average reward-to-go $\mathbb{E}\{\sum_{t'=t}^{T} R(X, A_{t'}) | A_{1:t-1}\}$ before seeing private information,
 - This is not a problem in teams since we are interested in maximizing the average reward

<ロ> (日) (日) (日) (日) (日)

2) Decentralized teams

イロト イヨト イヨト イヨ

Perfect Bayesian equilibria (PBE)

- A PBE is an assessment (σ^*, μ^*) of strategy profiles σ^* and beliefs μ^* satisfying (a) sequential rationality and (b) consistency
- (a) For every $t \in \mathcal{T}$, agent $i \in \mathcal{N}$, information set $(A_{1:t-1}, X^i)$, and unilateral deviation σ^i

$$\mathbb{E}^{\mu^*,\sigma^{*i}\sigma^{*-i}}\{\sum_{t'=t}^T R^i(X,A_{t'})|A_{1:t-1},X^i\} \ge \mathbb{E}^{\mu^*,\sigma^i\sigma^{*-i}}\{\sum_{t'=t}^T R^i(X,A_{t'})|A_{1:t-1},X^i\}$$

(b) Beliefs μ^* should be updated by Bayes law (whenever possible) given σ^* and satisfy further consistency conditions [Fudenberg and Tirole, 1991, ch. 8]

• Due to the circular dependence of μ^* and σ^* finding PBE is a large fixed-point problem (no time decomposition)

イロト イポト イヨト イヨト

Ideas from teams: structured equilibrium strategies σ^*

• Useful idea from teams: Instead of considering equilibria with general strategies $\sigma^* = (\sigma_t^{*i})_{t\in\mathcal{T}}^{i\in\mathcal{N}}$ of the form

$$A_t^i \sim \sigma_t^{*i}(\cdot | \mathbf{X}^i, \mathbf{A}_{1:t-1})$$

consider equilibria with **structured** strategies $\theta = (\theta_t^i)_{t \in \mathcal{T}}^{i \in \mathcal{N}}$ of the form

$$A_t^i \sim \Gamma_t^i(\cdot | \mathbf{X}^i) = \theta_t^i[\mathbf{\Pi}_t](\cdot | \mathbf{X}^i) = m_t^i(\cdot | \mathbf{X}^i, \mathbf{\Pi}_t)$$

where

$$\Pi_{t+1} = F(\Pi_t, \Gamma_t, A_t) = F(\Pi_t, \theta_t[\Pi_t], A_t) = F_t^{\theta}(A_{1:t})$$

• $\sigma^* \Leftrightarrow \theta$ (clarification: unilateral deviations need not be structured!)

イロト イヨト イヨト イヨト

Ideas from teams: structured equilibrium strategies σ^*

• Useful idea from teams: Instead of considering equilibria with general strategies $\sigma^* = (\sigma_t^{*i})_{t\in\mathcal{T}}^{i\in\mathcal{N}}$ of the form

$$A_t^i \sim \sigma_t^{*i}(\cdot | \mathbf{X}^i, \mathbf{A}_{1:t-1})$$

consider equilibria with **structured** strategies $\theta = (\theta_t^i)_{t \in \mathcal{T}}^{i \in \mathcal{N}}$ of the form

$$A_t^i \sim \Gamma_t^i(\cdot | \mathbf{X}^i) = \theta_t^i[\Pi_t](\cdot | \mathbf{X}^i) = m_t^i(\cdot | \mathbf{X}^i, \Pi_t)$$

where

$$\Pi_{t+1} = F(\Pi_t, \Gamma_t, A_t) = F(\Pi_t, \theta_t[\Pi_t], A_t) = F_t^{\theta}(A_{1:t})$$

• $\sigma^* \Leftrightarrow \theta$ (clarification: unilateral deviations need not be structured!)

• This is the parallel to MPE, although no equilibrium claim is made yet.

イロト イヨト イヨト イヨト

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile $\sigma = (\sigma^i)_{i \in \mathcal{N}}$, there exists a structured strategy profile $\theta \leftrightarrow m = (m^i)_{i \in \mathcal{N}}$ with the players receiving the same average rewards for both σ and m.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile $\sigma = (\sigma^i)_{i \in \mathcal{N}}$, there exists a structured strategy profile $\theta \leftrightarrow m = (m^i)_{i \in \mathcal{N}}$ with the players receiving the same average rewards for both σ and m.

Proof: Every σ strategy is equivalent to a ψ strategy (common agent viewpoint). Every ψ strategy induces a distribution $P^{\psi}(X^i = x^i | A_{1:t-1}) =: \Pi_t(x^i)$. Π_t can be factored and updated as $\Pi_{t+1} = F(\Pi_t, \Gamma_t, A_t)$. Every ψ strategy induces a distribution $P^{\psi}(d\gamma_t^i | \Pi_t)$. Set $m_t^i(\cdot | X^i, \Pi_t) := \int \gamma_t^i(\cdot | X^i) P^{\psi}(d\gamma_t^i | \Pi_t)$ and proceed with forward induction.

< ロ > < 同 > < 三 > < 三 >

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile $\sigma = (\sigma^i)_{i \in \mathcal{N}}$, there exists a structured strategy profile $\theta \leftrightarrow m = (m^i)_{i \in \mathcal{N}}$ with the players receiving the same average rewards for both σ and m.

Proof: Every σ strategy is equivalent to a ψ strategy (common agent viewpoint). Every ψ strategy induces a distribution $P^{\psi}(X^i = x^i | A_{1:t-1}) =: \Pi_t(x^i)$. Π_t can be factored and updated as $\Pi_{t+1} = F(\Pi_t, \Gamma_t, A_t)$. Every ψ strategy induces a distribution $P^{\psi}(d\gamma_t^i | \Pi_t)$. Set $m_t^i(\cdot | X^i, \Pi_t) := \int \gamma_t^i(\cdot | X^i) P^{\psi}(d\gamma_t^i | \Pi_t)$ and proceed with forward induction.

- Bottom line: Structured strategy profiles *m* are a sufficiently rich class so that we can concentrate on equilibria within this class.
- Caveat: Each mⁱ depends on the entire σ = (σⁱ)_{i∈N}, so unilateral deviations in σⁱ result in multilateral deviations in m

Ideas from teams: beliefs μ^*

- Recall that in PBE, μ* is a set of beliefs on unobserved types X⁻ⁱ for each agent i and for each private history (information set) (A_{1:t-1}, Xⁱ)
- Consider beliefs that are:
 - (a) only functions of the common history $A_{1:t-1}$ and
 - (b) are generated from a common belief in product form

$$\mu_t^*[A_{1:t-1}](X) = \prod_{j \in \mathcal{N}} \mu_t^{*j}[A_{1:t-1}](X^j)$$

• So, for each agent i and for each history $(A_{1:t-1}, X^i)$ belief on X^{-i} is

$$\prod_{j\in\mathcal{N}\setminus\{i\}}\mu_t^{*j}[A_{1:t-1}](X^j)$$

• In addition, with structured (equilibrium) strategies $\sigma^* \Leftrightarrow \theta$, these beliefs are updated as

$$\underbrace{\mu_{t+1}^{*i}[A_{1:t}]}_{\Pi_{t+1}^{i}} = F(\underbrace{\mu_{t}^{*i}[A_{1:t-1}]}_{\Pi_{t}^{i}}, \underbrace{\theta_{t}^{i}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}^{i}}, A_{t}^{i})$$

Ideas from teams: beliefs μ^*

- Recall that in PBE, μ* is a set of beliefs on unobserved types X⁻ⁱ for each agent i and for each private history (information set) (A_{1:t-1}, Xⁱ)
- Consider beliefs that are:
 - (a) only functions of the common history $A_{1:t-1}$ and
 - (b) are generated from a common belief in product form

$$\mu_t^*[A_{1:t-1}](X) = \prod_{j \in \mathcal{N}} \mu_t^{*j}[A_{1:t-1}](X^j)$$

• So, for each agent i and for each history $(A_{1:t-1}, X^i)$ belief on X^{-i} is

$$\prod_{j\in\mathcal{N}\setminus\{i\}}\mu_t^{*j}[A_{1:t-1}](X^j)$$

• In addition, with structured (equilibrium) strategies $\sigma^* \Leftrightarrow \theta$, these beliefs are updated as

$$\underbrace{\mu_{t+1}^{*i}[A_{1:t}]}_{\Pi_{t+1}^{i}} = F(\underbrace{\mu_{t}^{*i}[A_{1:t-1}]}_{\Pi_{t}^{i}}, \underbrace{\theta_{t}^{i}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}^{i}}, A_{t}^{i})$$

• Bottom line: all "consistency" conditions are satisfied automatically.

Summary so far

• We have motivated the use of structured (equilibrium) strategies $\sigma^* \Leftrightarrow \theta$

$$A_t^i \sim \sigma_t^{*i}(\cdot | A_{1:t-1}, X^i) = \underbrace{\theta_t^i[\mu_t^*[A_{1:t-1}]]}_{\Gamma_t^i}(\cdot | X^i)$$

 ${\, \bullet \,}$ We have restricted attention to a class of beliefs μ^* that are updated as

$$\underbrace{\mu_{t+1}^{*i}[A_{1:t}]}_{\Pi_{t+1}^{i}} = F(\underbrace{\mu_{t}^{*i}[A_{1:t-1}]}_{\Pi_{t}^{i}}, \underbrace{\theta_{t}^{i}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}^{i}}, A_{t}^{i})$$

• PBE equilibrium $(\sigma^*, \mu^*) \equiv (\theta, \mu^*)$ even in this restricted class is still the solution of a large fixed point equation. Circularity between θ and μ^* still present

イロト イポト イヨト イヨト

Summary so far

• We have motivated the use of structured (equilibrium) strategies $\sigma^* \Leftrightarrow \theta$

$$A_t^i \sim \sigma_t^{*i}(\cdot | A_{1:t-1}, X^i) = \underbrace{\theta_t^i[\mu_t^*[A_{1:t-1}]]}_{\Gamma_t^i}(\cdot | X^i)$$

 ${\ensuremath{\,\circ}}$ We have restricted attention to a class of beliefs μ^* that are updated as

$$\underbrace{\mu_{t+1}^{*i}[A_{1:t}]}_{\Pi_{t+1}^{i}} = F(\underbrace{\mu_{t}^{*i}[A_{1:t-1}]}_{\Pi_{t}^{i}}, \underbrace{\theta_{t}^{i}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}^{i}}, A_{t}^{i})$$

- PBE equilibrium $(\sigma^*, \mu^*) \equiv (\theta, \mu^*)$ even in this restricted class is still the solution of a large fixed point equation. Circularity between θ and μ^* still present
- How can we find θ with a simple algorithm?
- Same idea as in POMDPs: beliefs and policies are decomposed by considering the policies for all possible beliefs π ; not just for μ^*

First erroneous attempt

• Recall DP equation from team problem

$$\theta_t[\pi_t] = \gamma_t^* = \arg\max_{\gamma_t^i \gamma_t^{-i}} \mathbb{E}\left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t^i \gamma_t^{-i}, A_t)) | \pi_t, \gamma_t^i \gamma_t^{-i} \right\}$$

• What is the logical extension in games?

イロト イヨト イヨト イヨ

First erroneous attempt

• Recall DP equation from team problem

$$\theta_t[\pi_t] = \gamma_t^* = \arg\max_{\gamma_t^i \gamma_t^{-i}} \mathbb{E}\left\{ R(X, A_t) + V_{t+1}(F(\pi_t, \gamma_t^i \gamma_t^{-i}, A_t)) | \pi_t, \gamma_t^i \gamma_t^{-i} \right\}$$

• What is the logical extension in games?

for all
$$i \in \mathcal{N}$$

 $\gamma_t^{*i} \in \arg \max_{\substack{\gamma_t^i \\ \gamma_t^i}} \mathbb{E}\left\{ R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \gamma_t^i \gamma_t^{*-i}, A_t)) | \pi_t, \gamma_t^i \gamma_t^{*-i} \right\}$

where expectation is explicitly given by

$$\mathbb{E}\{\cdot|\cdot\} = \sum_{a_t,x} \gamma_t^i(a_t^i|x^i)\gamma_t^{*-i}(a_t^{-i}|x^{-i})\pi_t(x) \times (R^i(x,a_t) + V_{t+1}^i(F(\pi_t,\gamma_t^i\gamma_t^{*-i},a_t)))$$

Once this per-stage FP equation is solved $\gamma_t^* = \theta_t[\pi_t]$, update

$$V_t^i(\pi_t) = \mathbb{E}\left\{R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \gamma_t^*, A_t)) | \pi_t, \gamma_t^*\right\}$$

First erroneous attempt: what is the catch?

for all
$$i \in \mathcal{N}$$

 $\gamma_t^{*i} \in \arg \max_{\gamma_t^i} \mathbb{E} \left\{ R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \gamma_t^i \gamma_t^{*-i}, A_t)) | \pi_t, \gamma_t^i \gamma_t^{*-i} \right\}$

• Why erroneous?

イロト イヨト イヨト イヨト

First erroneous attempt: what is the catch?

for all
$$i \in \mathcal{N}$$

 $\gamma_t^{*i} \in \arg \max_{\gamma_t^i} \mathbb{E} \left\{ R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \gamma_t^i \gamma_t^{*-i}, A_t)) | \pi_t, \gamma_t^i \gamma_t^{*-i} \right\}$

- Why erroneous?
- Explanation: reward-to-go is not conditioned on the entire history
 (A_{1:t-1}, Xⁱ) for user *i* but only on part of it A_{1:t-1} ↔ Π_t.
 This was OK in teams but is not sufficient to prove sequential rationality in
 games!

$$\mathbb{E}^{\mu^*,\sigma^{*i}\sigma^{*-i}}\{\sum_{t'=t}^{T} R^i(X,A_{t'})|A_{1:t-1},X^i\} \geq \mathbb{E}^{\mu^*,\tilde{\sigma}^i\sigma^{*-i}}\{\sum_{t'=t}^{T} R^i(X,A_{t'})|A_{1:t-1},X^i\}$$

Special case⁵

- Consider dynamical systems for which belief update is prescription-independent, i.e., $\Pi_{t+1} = F(\Pi_t, A_t)$
- In that case the backward process decomposes and conditioning on Xⁱ is irrelevant
- A strong statement can be made for this special case:
 "For every PBE there exists a structured PBE that corresponds to a SPE of an equivalent symmetric-information game"

⁵[Nayyar, Gupta, Langbort, Başar, 2014], [Gupta, Nayyar, Langbort, Başar, 2014] 🛌 🚊 🗠

Second erroneous attempt

Condition on X^i in the backward induction step to be consistent with sequential rationality condition

For each t = T, T − 1,..., 1 and for every π_t ∈ Δ(X) solve the following one-step fixed-point equation

for all
$$i \in \mathcal{N}$$
 and for all $x^i \in \mathcal{X}^i$
 $\gamma_t^{*i} \in \arg \max_{\gamma_t^i} \mathbb{E} \left\{ R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \gamma_t^i \gamma_t^{*-i}, A_t), x^i) | x^i, \pi_t, \gamma_t^i \gamma_t^{*-i} \right\}$

where expectation is explicitly given by

$$\mathbb{E}\{\cdot|\cdot\} = \sum_{a_t, x^{-i}} \gamma_t^i (a_t^i | x^i) \gamma_t^{*-i} (a_t^{-i} | x^{-i}) \pi_t^{-i} (x^{-i}) \times (R^i (x^i x^{-i}, a_t) + V_{t+1}^i (F(\pi_t, \gamma_t^i \gamma_t^{*-i}, a_t), x^i))$$

• Note in this case reward-to-go is $V_t^i(\pi_t, x^i)$

イロト イポト イヨト イヨ

Second erroneous attempt: explanation

$$\mathbb{E}\{\cdot|\cdot\} = \sum_{a_t, x^{-i}} \frac{\gamma_t^i(a_t^i|x^i)\gamma_t^{*-i}(a_t^{-i}|x^{-i})\pi^{-i}(x^{-i})\times}{(R^i(x^ix^{-i}, a_t) + V_{t+1}^i(F(\pi_t, \gamma_t^i\gamma_t^{*-i}, a_t), x^i))}$$

• This is an unusual fixed point equation: dependence on $\gamma_t^i(\cdot|x^i)$ but also on the entire $\gamma_t^i(\cdot|\cdot)$ (inside the belief update)

イロト イヨト イヨト イヨト

Second erroneous attempt: explanation

$$\mathbb{E}\{\cdot|\cdot\} = \sum_{a_t, x^{-i}} \gamma_t^i (a_t^i | x^i) \gamma_t^{*-i} (a_t^{-i} | x^{-i}) \pi^{-i} (x^{-i}) \times (R^i (x^i x^{-i}, a_t) + V_{t+1}^i (F(\pi_t, \gamma_t^i \gamma_t^{*-i}, a_t), x^i))$$

• This is an unusual fixed point equation: dependence on $\gamma_t^i(\cdot|x^i)$ but also on the entire $\gamma_t^i(\cdot|\cdot)$ (inside the belief update)

• Unfortunately this results in an "equilibrium generating" mapping θ with $\gamma_t^* = \theta_t[\pi_t, \mathbf{x}]$ so resulting policy is of the form

$$A_t^i \sim \Gamma_t^{*i}(\cdot | X^i) = \theta_t^i[\Pi_t, \boldsymbol{X}](\cdot | X^i)$$

which is **not implementable** (requires unknown private information X^{-i} for the strategy of *i*).

An algorithm for PBE evaluation: backward recursion

For each t = T, T − 1,..., 1 and for every π_t ∈ Δ(X) solve the following one-step fixed-point equation

for all
$$i \in \mathcal{N}$$
 and for all $x^i \in \mathcal{X}^i$
 $\gamma_t^{*i}(\cdot|x^i) \in \arg \max_{\gamma_t^i(\cdot|x^i)} \mathbb{E}\left\{ R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \boxed{\gamma_t^{*i}\gamma_t^{*-i}}, A_t), x^i)|x^i, \pi_t, \gamma_t^i\gamma_t^{*-i} \right\}$

where expectation is explicitly given by

$$\mathbb{E}\{\cdot|\cdot\} = \sum_{a_t, x^{-i}} \gamma_t^i (a_t^i | x^i) \gamma_t^{*-i} (a_t^{-i} | x^{-i}) \pi^{-i} (x^{-i}) \times \left(R^i (x^i x^{-i}, a_t) + V_{t+1}^i (F(\pi_t, \boxed{\gamma_t^{*i} \gamma_t^{*-i}}, a_t), x^i) \right)$$

• This results in an "equilibrium generating" mapping θ with $\gamma_t^* = \theta_t[\pi_t]$ for all $\pi_t \in \Delta(\mathcal{X})$

Special backward induction step

for all
$$i \in \mathcal{N}$$
 and for all $x^i \in \mathcal{X}^i$
 $\gamma_t^{*i}(\cdot|x^i) \in \arg\max_{\gamma_t^i(\cdot|x^i)} \mathbb{E}\left\{R^i(X, A_t) + V_{t+1}^i(F(\pi_t, \boxed{\gamma_t^{*i}\gamma_t^{*-i}}, A_t), x^i)|x^i, \pi_t, \gamma_t^i\gamma_t^{*-i}\right\}$

- This is not a best-response type function: $\gamma_t^{\ast i}$ present on left/right hand side
- Find $\gamma_t^i(\cdot|x^i)$ that is optimal under unperturbed belief update!

<ロ> (日) (日) (日) (日) (日)

An algorithm for PBE evaluation: forward recursion

- From backard recursion we have obtained $\theta = (\theta_t^i)_{t \in \mathcal{T}}^{i \in \mathcal{N}}$.
- For each $t = 1, 2, \dots, T$ and for every $i \in \mathcal{N}$, $A_{1:t}$, and X^i

$$\sigma_{t}^{*i}(A_{t}^{i}|A_{1:t-1}, X^{i}) := \underbrace{\theta_{t}^{i}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}^{i}} (A_{t}^{i}|X^{i})$$
$$\underbrace{\mu_{t+1}^{*}[A_{1:t}]}_{\Pi_{t+1}} := F(\underbrace{\mu_{t}^{*}[A_{1:t-1}]}_{\Pi_{t}}, \underbrace{\theta_{t}[\mu_{t}^{*}[A_{1:t-1}]]}_{\Gamma_{t}}, A_{t})$$

• In fact we can obtain a family of PBEs for any type distribution $\prod_{i \in \mathcal{N}} Q^i(X^i)$ with appropriate initialization of μ_1^*

Main Result

Theorem ([Vasal, Subramanian, A, 2015a])

 (σ^*, μ^*) generated by the backward/forward algorithm (whenever it exists) is a PBE, i.e. for all $i, t, A_{1:t-1}, X^i, \sigma^i$,

$$\mathbb{E}^{\sigma_{t:T}^{*i}\sigma_{t:T}^{*-i}\mu_t^*} \left\{ \sum_{n=t}^T R^i(X,A_n) |A_{1:t-1}X^i \right\}$$
$$\geq \mathbb{E}^{\sigma_{t:T}^i\sigma_{t:T}^{*-i}\mu_t^*} \left\{ \sum_{n=t}^T R^i(X,A_n) |A_{1:t-1}X^i \right\}$$

and μ^* satisfies the consistency conditions.

Image: A math a math

Sketch of the proof

- Independence of types and specific DP equation are crucial in proving the result
- Modified comparison principle (backward induction)

- Specific DP guarantees that unperturbed reward-to-go (LHS) at time t is the obtained value function $V_t^i = R^i + V_{t+1}^i$
- Specific DP $_{t}$ guarantees that unilateral deviations with fixed belief update
- Induction step reduces V_{t+1}^i to (perturbed) reward-to-go at time t+1
- Independence of types guarantees that resulting expression is exactly the (perturbed) reward-to-go at time t (RHS)

イロト イポト イヨト イヨト

Comments on per-stage fixed point equation

- This is not a best-response type of FP equation (due to presence of $\gamma^{\ast i}$ on both the LHS and RHS of equation)
- Standard tools for existence of solution (e.g., Brouwer, Kakutani) do not apply (problem with continuity of V(·) functions)

< ロ > < 同 > < 三 > < 三 >

Comments on per-stage fixed point equation

- This is not a best-response type of FP equation (due to presence of $\gamma^{\ast i}$ on both the LHS and RHS of equation)
- Standard tools for existence of solution (e.g., Brouwer, Kakutani) do not apply (problem with continuity of $V(\cdot)$ functions)

• Existence can be shown for a special case⁶ where $R^i(X, A_t)$ does not depend on its own type X^i

In that case prescriptions Γⁱ_t(·|Xⁱ) = Γⁱ_t(·) do not depend on private type Xⁱ and FP equation reduces to best response.
 No signaling!
 Essentially reduces to the model Π_{t+1} = F(Π_t, A_t)

Achilleas Anastasopoulos anastas@umich.edu (U of N<mark>A systematic process for evaluating structured equilibri</mark>

⁶[Ouyang, Tavafoghi, Teneketzis, 2015]

Current/Future work

- Model generalizations:
 - Types are independent controlled Markov processes (controlled by **all** actions) $P(X_t|X_{1:t-1}, A_{1:t-1}) = \prod_{i \in \mathcal{N}} Q^i (X_t^i|X_{t-1}^i, A_{t-1})^7$
 - Dependence types with "strategic independence"⁸
 - Types are observed through a noisy channel (even by same user) $Q(Y_t^i|X_t^i)$. Example: "informational cascades" literature
 - · Infinite horizon and continuous action spaces
- Existence results: prove existence for the simplest non-trivial class of problems. Core issue: the per-stage FP equation is not a best response
- Dynamic mechanism design (indirect mechanisms with message space smaller than type space)

イロト イポト イヨト イヨト

⁷[Vasal, Subramanian, A, 2015b] ⁸[Battigalli, 1996]

Thank you!

▲□→ ▲圖→ ▲温→ ▲温→

Battigalli, P. (1996).

Strategic independence and perfect Bayesian equilibria. *Journal of Economic Theory*, 70(1):201–234.

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press, Cambridge, MA.

Gupta, A., Nayyar, A., Langbort, C., and Başar, T. (2014). Common information based markov perfect equilibria for linear-gaussian games with asymmetric information.

SIAM Journal on Control and Optimization, 52(5):3228-3260.

Nayyar, A., Gupta, A., Langbort, C., and Başar, T. (2014).
 Common information based markov perfect equilibria for stochastic games with asymmetric information: Finite games.
 IEEE Trans. Automatic Control, 59(3):555–570.

Nayyar, A., Mahajan, A., and Teneketzis, D. (2013). Decentralized stochastic control with partial history sharing: A common information approach.

Automatic Control, IEEE Transactions on, 58(7):1644–1658.

ロトス回トスヨトスヨト

Ouyang, Y., Tavafoghi, H., and Teneketzis, D. (2015).

Dynamic oligopoly games with private markovian dynamics.

Available at www-personal.umich.edu/~tavaf/Oligopolygames.pdf.

Vasal, D., Subramanian, V., and Anastasopoulos, A. (2015a). A systematic process for evaluating structured perfect Bayesian equilibria in dynamic games with asymmetric information. Technical report.

Vasal, D., Subramanian, V., and Anastasopoulos, A. (2015b).
A systematic process for evaluating structured perfect Bayesian equilibria in dynamic games with asymmetric information.
In American Control Conference.
(Accepted for publication/presentation).