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Introduction, Motivation, Examples

Decentralized decision making in dynamic systems

Communication networks

Sensor networks

Social networks

Queuing systems

Energy markets

Wireless resource sharing

Repeated online advertisement
auctions

Competing sellers/buyers
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Introduction, Motivation, Examples

Salient features

Multiple agents (cooperative or
strategic)

Objective: Maximize expected
(social or self) reward

Underlying system state (not
perfectly observed)

Agents make observations
(asymmetric information) and take
actions partially affecting future
state
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Introduction, Motivation, Examples
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Introduction, Motivation, Examples

Model

Discrete-time dynamical system with N strategic agents over finite horizon T

Player i privately observes her (static2) type X i ∈ X i where

P(X ) =
N∏
i=1

Q i (X i ), X = (X 1,X 2, . . .XN) ∈ X

Player i takes action Ai
t ∈ Ai which is publicly observed

Player i ’s observations: Private: X i ,
Common: A1:t−1 = (A1,A2, . . . ,At−1) = (Aj

k)j∈Nk≤t−1

Action (randomized) Ai
t ∼ σi

t(·|X i ,A1:t−1)

Instantaneous reward R i (X ,At)

Player i ’s objective

max
σi

Eσ
{

T∑
t=1

R i (X ,At)

}
2Generalization to dynamic types straightforward.
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Introduction, Motivation, Examples

Concrete example: A public goods game3

Two players take action to either contribute (Ai
t = 1) or not contribute

(Ai
t = 0) to the production of a public good

Player i ’s type (private information) is her cost of contributing: X i ∈ {L,H},
where X i ’s are i.i.d. with P(X i = H) = q

If either player contributes, the public good is produced and the utility
enjoyed is 1 for both users (free riding)

Per-period rewards (R1(X 1,At),R
2(X 2,At)) are

contribute(A2
t = 1) don’t contribute(A2

t = 0)
contribute(A1

t = 1) (1− X 1, 1− X 2) (1− X 1, 1)
don’t contribute(A1

t = 0) (1, 1− X 2) (0,0)

Each player’s action Ai
t ∼ σi

t(·|X i ,A1:t−1).

3Adapted from [Fudenberg and Tirole, 1991, Example 8.3]
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Decentralized teams

Overview

1 Introduction, Motivation, Examples

2 Decentralized teams

3 Games with asymmetric information
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Decentralized teams

Team problem

Same information structure but common (team) objective

Design objective for entire team

max
σ

Eσ
{

T∑
t=1

R(X ,At)︸ ︷︷ ︸
e.g.,

∑
i∈N R i (X ,At)

}

Problems to be addressed4

1 Presence of common A1:t−1 and private X i information for agent i
2 Decentralized, non-classical information structure (this is not a

MDP/POMDP-like problem!)
3 Domain of policies Ai

t ∼ σi
t(·|X i ,A1:t−1) increases with time.
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2 Decentralized, non-classical information structure (this is not a

MDP/POMDP-like problem!)
3 Domain of policies Ai

t ∼ σi
t(·|X i ,A1:t−1) increases with time.

4All these have been addressed in [Nayyar, Mahajan, Teneketzis, 2013]
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Decentralized teams

A simple but powerful idea

A policy σi
t(·|X i ,A1:t−1) can be interpreted in two equivalent ways:

1) A function of A1:t−1 and X i

to ∆(Ai )

. .
 .

. .
 .

. .
 .

A1:t−1

X i

∆(Ai
t)

0000

0001

1111

σi
t

H L

2) A function of A1:t−1

to mappings from X i to ∆(Ai )

. .
 .

A1:t−1,Γ

0000

0001

1111

X i → ∆(Ai)

ψi
t
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Decentralized teams

A simple but powerful idea

In the first interpretation, the policies to be designed (σi )i∈N have inherent
asymmetric information structure

σ1
t

σ2
t

A1:t−1

A1:t−1

X1

X2

A1
t

A2
t
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Decentralized teams

A simple but powerful idea

In the second interpretation, each agent’s action Ai
t ∼ σi

t(·|X i ,A1:t−1) can be
thought of as a two-stage process

1 Based on common info A1:t−1 select
“prescription” functions
Γi
t : X i → ∆(Ai ) through the

pre-encoder mapping ψi

Γi
t = ψi

t [A1:t−1]

2 The actions Ai
t are determined by

“evaluating” Γi
t at the private

information X i , i.e.,

Ai
t ∼ Γi

t(·|X i )
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t
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Overall Ai
t ∼ Γi

t(·|X i ) = ψi
t [A1:t−1](·|X i ) = σi

t(·|X i ,A1:t−1)
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Decentralized teams

Transformation to a centralized problem

σ1
t

σ2
t

A1:t−1

A1:t−1
A1:t−1 ψt

Γt = (Γ1
t ,Γ

2
t )

Γ1
t

Γ2
t

X1

X1

X2

X2

A1
t

A1
t

A2
t

A2
t

Generation of Ai
t is a “dumb” evaluation Ai

t ∼ Γi
t(·|X i ) (nothing to be

designed here)

The control problem boils down to selecting prescription functions
Γi
t = ψi

t [A1:t−1] through policy ψ = (ψi
t)

i∈N
t∈T

All agents can evaluate each-other’s prescription functions (think of a
fictitious common agent with actions Γt)

The decentralized control problem has been transformed to a centralized
control problem

Last issue to address: increasing domain At−1 of the pre-encoder mappings
ψt .
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Decentralized teams

Introduction of information state

We would like to summarize A1:t−1 in a quantity (state) with time invariant
domain

Consider the dynamical system with
state: (X ,At−1)
observation: At−1

action: Γt

reward: E{R(X ,At)|X ,A1:t−1, Γ1:t} =
∑

at
Γt(at |X )R(X , at) := R̃(X , Γt)

This is a POMDP! Define the posterior belief Πt ∈ ∆(X )

Πt(x) := P(X = x |A1:t−1, Γ1:t−1) for all x ∈ X

Can show that Πt can be updated using common information

Πt+1 = F (Πt , Γt ,At)

(*) for this problem it also factors into its marginals

Πt(x) =
∏
i∈N

Πi
t(x

i ) with Πi
t+1 = F (Πi

t , Γ
i
t ,A

i
t)
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Decentralized teams

Characterization of optimal team policy

From standard POMDP results, optimal policy is Markovian, i.e.,

Γt = (Γi
t)i∈N = ψt [A1:t−1] = θt [Πt ]

Ai
t ∼ Γi

t(·|X i ) = θit [Πt ](·|X i ) = mi
t(·|X i ,Πt)

and can be obtained using backward dynamic programming (DP)

θt [πt ] = γ∗t = arg max
γt

E {R(X ,At) + Vt+1(F (πt , γt ,At))|πt , γt}

Vt(πt) = max
γt

E {R(X ,At) + Vt+1(F (πt , γt ,At))|πt , γt}

on the space of beliefs πt ∈ ∆(X ) over prescriptions γt ∈ ×
i∈N

(X i → Ai )

In the public goods example:
πt ≡ (π1

t (H), π2(H)) ∈ [0, 1]2 and
γt ≡ (γ1

t (0|H), γ1
t (0|L), γ2

t (0|H), γ2
t (0|L)) ∈ [0, 1]4
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Decentralized teams

Summary of team problem

Introduction of prescription functions was crucial

We gained:
- Decentralized non-classical information structure ⇒ POMDP

⇒ Ai
t ∼ θit [Πt ](·|X i ) and θ can be obtained using DP

We gave up:
- Fictitious common agent does not observe X i .
- Can only maximize average reward-to-go E{∑T

t′=t R(X ,At′)|A1:t−1} before
seeing private information,
- This is not a problem in teams since we are interested in maximizing the
average reward
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Games with asymmetric information

Overview

1 Introduction, Motivation, Examples

2 Decentralized teams

3 Games with asymmetric information
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Games with asymmetric information

Perfect Bayesian equilibria (PBE)

A PBE is an assessment (σ∗, µ∗) of strategy profiles σ∗ and beliefs µ∗

satisfying (a) sequential rationality and (b) consistency

(a) For every t ∈ T , agent i ∈ N , information set (A1:t−1,X
i ), and unilateral

deviation σi

Eµ
∗,σ∗iσ∗−i{

T∑
t′=t

R i (X ,At′)|A1:t−1,X
i} ≥ Eµ

∗,σiσ∗−i{
T∑

t′=t

R i (X ,At′)|A1:t−1,X
i}

(b) Beliefs µ∗ should be updated by Bayes law (whenever possible) given σ∗ and
satisfy further consistency conditions [Fudenberg and Tirole, 1991, ch. 8]

Due to the circular dependence of µ∗ and σ∗ finding PBE is a large
fixed-point problem (no time decomposition)

Achilleas Anastasopoulos anastas@umich.edu (U of Michigan)A systematic process for evaluating structured equilibria in dynamic games with asymmetric informationFebruary 1, 2016 19 / 36



Games with asymmetric information

Ideas from teams: structured equilibrium strategies σ∗

Useful idea from teams:
Instead of considering equilibria with general strategies σ∗ = (σ∗it )i∈Nt∈T of the
form

Ai
t ∼ σ∗it (·|X i ,A1:t−1)

consider equilibria with structured strategies θ = (θit)
i∈N
t∈T of the form

Ai
t ∼ Γi

t(·|X i ) = θit [Πt ](·|X i ) = mi
t(·|X i ,Πt)

where
Πt+1 = F (Πt , Γt ,At) = F (Πt , θt [Πt ],At) = F θt (A1:t)

σ∗ ⇔ θ (clarification: unilateral deviations need not be structured!)

This is the parallel to MPE, although no equilibrium claim is made yet.
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Games with asymmetric information

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile σ = (σi )i∈N , there exists a structured strategy
profile θ ↔ m = (mi )i∈N with the players receiving the same average rewards for
both σ and m.

Proof: Every σ strategy is equivalent to a ψ strategy (common agent viewpoint).
Every ψ strategy induces a distribution Pψ(X i = x i |A1:t−1) =: Πt(x

i ).
Πt can be factored and updated as Πt+1 = F (Πt , Γt ,At).
Every ψ strategy induces a distribution Pψ(dγ it |Πt).
Set mi

t(·|X i ,Πt) :=
∫
γ it(·|X i )Pψ(dγ it |Πt) and proceed with forward induction.

Bottom line: Structured strategy profiles m are a sufficiently rich class so
that we can concentrate on equilibria within this class.

Caveat: Each mi depends on the entire σ = (σi )i∈N , so unilateral deviations
in σi result in multilateral deviations in m

Achilleas Anastasopoulos anastas@umich.edu (U of Michigan)A systematic process for evaluating structured equilibria in dynamic games with asymmetric informationFebruary 1, 2016 21 / 36



Games with asymmetric information

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile σ = (σi )i∈N , there exists a structured strategy
profile θ ↔ m = (mi )i∈N with the players receiving the same average rewards for
both σ and m.

Proof: Every σ strategy is equivalent to a ψ strategy (common agent viewpoint).
Every ψ strategy induces a distribution Pψ(X i = x i |A1:t−1) =: Πt(x

i ).
Πt can be factored and updated as Πt+1 = F (Πt , Γt ,At).
Every ψ strategy induces a distribution Pψ(dγ it |Πt).
Set mi

t(·|X i ,Πt) :=
∫
γ it(·|X i )Pψ(dγ it |Πt) and proceed with forward induction.

Bottom line: Structured strategy profiles m are a sufficiently rich class so
that we can concentrate on equilibria within this class.

Caveat: Each mi depends on the entire σ = (σi )i∈N , so unilateral deviations
in σi result in multilateral deviations in m

Achilleas Anastasopoulos anastas@umich.edu (U of Michigan)A systematic process for evaluating structured equilibria in dynamic games with asymmetric informationFebruary 1, 2016 21 / 36



Games with asymmetric information

Parenthesis: are structured strategies restrictive?

Lemma ([Vasal, Subramanian, A, 2015a])

For any given strategy profile σ = (σi )i∈N , there exists a structured strategy
profile θ ↔ m = (mi )i∈N with the players receiving the same average rewards for
both σ and m.

Proof: Every σ strategy is equivalent to a ψ strategy (common agent viewpoint).
Every ψ strategy induces a distribution Pψ(X i = x i |A1:t−1) =: Πt(x

i ).
Πt can be factored and updated as Πt+1 = F (Πt , Γt ,At).
Every ψ strategy induces a distribution Pψ(dγ it |Πt).
Set mi

t(·|X i ,Πt) :=
∫
γ it(·|X i )Pψ(dγ it |Πt) and proceed with forward induction.

Bottom line: Structured strategy profiles m are a sufficiently rich class so
that we can concentrate on equilibria within this class.

Caveat: Each mi depends on the entire σ = (σi )i∈N , so unilateral deviations
in σi result in multilateral deviations in m

Achilleas Anastasopoulos anastas@umich.edu (U of Michigan)A systematic process for evaluating structured equilibria in dynamic games with asymmetric informationFebruary 1, 2016 21 / 36



Games with asymmetric information

Ideas from teams: beliefs µ∗

Recall that in PBE, µ∗ is a set of beliefs on unobserved types X−i for each
agent i and for each private history (information set) (A1:t−1,X

i )
Consider beliefs that are:
(a) only functions of the common history A1:t−1 and
(b) are generated from a common belief in product form

µ∗t [A1:t−1](X ) =
∏
j∈N

µ∗jt [A1:t−1](X j)

So, for each agent i and for each history (A1:t−1,X
i ) belief on X−i is∏

j∈N\{i}
µ∗jt [A1:t−1](X j)

In addition, with structured (equilibrium) strategies σ∗ ⇔ θ, these beliefs are
updated as

µ∗it+1[A1:t ]︸ ︷︷ ︸
Πi

t+1

= F (µ∗it [A1:t−1]︸ ︷︷ ︸
Πi

t

, θit [µ
∗
t [A1:t−1]]︸ ︷︷ ︸

Γi
t

,Ai
t)

Bottom line: all “consistency” conditions are satisfied automatically.
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Games with asymmetric information

Summary so far

We have motivated the use of structured (equilibrium) strategies σ∗ ⇔ θ

Ai
t ∼ σ∗it (·|A1:t−1,X

i ) = θit [

Πt︷ ︸︸ ︷
µ∗t [A1:t−1]]︸ ︷︷ ︸

Γi
t

(·|X i )

We have restricted attention to a class of beliefs µ∗ that are updated as

µ∗it+1[A1:t ]︸ ︷︷ ︸
Πi

t+1

= F (µ∗it [A1:t−1]︸ ︷︷ ︸
Πi

t

, θit [µ
∗
t [A1:t−1]]︸ ︷︷ ︸

Γi
t

,Ai
t)

PBE equilibrium (σ∗, µ∗) ≡ (θ, µ∗) even in this restricted class is still the
solution of a large fixed point equation. Circularity between θ and µ∗ still
present

How can we find θ with a simple algorithm?

Same idea as in POMDPs: beliefs and policies are decomposed by
considering the policies for all possible beliefs π; not just for µ∗
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Games with asymmetric information

First erroneous attempt

Recall DP equation from team problem

θt [πt ] = γ∗t = arg max
γ i
tγ
−i
t

E
{
R(X ,At) + Vt+1(F (πt , γ

i
tγ
−i
t ,At))|πt , γ itγ−it

}
What is the logical extension in games?

for all i ∈ N
γ∗it ∈ arg max

γ i
t

E
{
R i (X ,At) + V i

t+1(F (πt , γ
i
tγ
∗−i
t ,At))|πt , γ itγ∗−it

}
where expectation is explicitly given by

E{·|·} =
∑
at ,x

γ it(a
i
t |x i )γ∗−it (a−it |x−i )πt(x)×

(
R i (x , at) + V i

t+1(F (πt , γ
i
tγ
∗−i
t , at))

)
Once this per-stage FP equation is solved γ∗t = θt [πt ], update

V i
t (πt) = E

{
R i (X ,At) + V i

t+1(F (πt , γ
∗
t ,At))|πt , γ∗t

}
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Games with asymmetric information

First erroneous attempt: what is the catch?

for all i ∈ N
γ∗it ∈ arg max

γ i
t

E
{
R i (X ,At) + V i

t+1(F (πt , γ
i
tγ
∗−i
t ,At))|πt , γ itγ∗−it

}
Why erroneous?

Explanation: reward-to-go is not conditioned on the entire history
(A1:t−1,X

i ) for user i but only on part of it A1:t−1 ↔ Πt .
This was OK in teams but is not sufficient to prove sequential rationality in
games!

Eµ
∗,σ∗iσ∗−i

{
T∑

t′=t

R i (X ,At′ )|A1:t−1,X
i} ≥ Eµ

∗,σ̃iσ∗−i
{

T∑
t′=t

R i (X ,At′ )|A1:t−1,X
i}
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Games with asymmetric information

Special case5

Consider dynamical systems for which belief update is
prescription-independent, i.e., Πt+1 = F (Πt ,At)

In that case the backward process decomposes and conditioning on X i is
irrelevant

A strong statement can be made for this special case:
“For every PBE there exists a structured PBE that corresponds to a SPE of
an equivalent symmetric-information game”

5[Nayyar, Gupta, Langbort, Başar, 2014], [Gupta, Nayyar, Langbort, Başar, 2014]
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Second erroneous attempt

Condition on X i in the backward induction step to be consistent with sequential
rationality condition

For each t = T ,T − 1, . . . , 1 and for every πt ∈ ∆(X ) solve the following
one-step fixed-point equation

for all i ∈ N and for all x i ∈ X i

γ∗it ∈ arg max
γ i
t

E
{
R i (X ,At) + V i

t+1(F (πt , γ
i
tγ
∗−i
t ,At), x

i )|x i , πt , γ itγ∗−it

}
where expectation is explicitly given by

E{·|·} =
∑
at ,x−i

γ it(a
i
t |x i )γ∗−it (a−it |x−i )π−it (x−i )×

(
R i (x ix−i , at) + V i

t+1(F (πt , γ
i
tγ
∗−i
t , at), x

i )
)

Note in this case reward-to-go is V i
t (πt , x

i )
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Games with asymmetric information

Second erroneous attempt: explanation

E{·|·} =
∑
at ,x−i

γ it(a
i
t |x i )γ∗−it (a−it |x−i )π−i (x−i )×(

R i (x ix−i , at) + V i
t+1(F (πt , γ

i
tγ
∗−i
t , at), x

i )
)

This is an unusual fixed point equation: dependence on γ it(·|x i ) but also on
the entire γ it(·|·) (inside the belief update)

Unfortunately this results in an “equilibrium generating” mapping θ with
γ∗t = θt [πt , x ] so resulting policy is of the form

Ai
t ∼ Γ∗it (·|X i ) = θit [Πt ,X ](·|X i )

which is not implementable (requires unknown private information X−i for
the strategy of i).
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Games with asymmetric information

An algorithm for PBE evaluation: backward recursion

For each t = T ,T − 1, . . . , 1 and for every πt ∈ ∆(X ) solve the following
one-step fixed-point equation

for all i ∈ N and for all x i ∈ X i

γ∗it (·|x i ) ∈ arg max
γ i
t(·|x i )

E
{
R i (X ,At) + V i

t+1(F (πt , γ
∗i
t γ
∗−i
t ,At), x

i )|x i , πt , γ itγ∗−it

}
where expectation is explicitly given by

E{·|·} =
∑
at ,x−i

γ it(a
i
t |x i )γ∗−it (a−it |x−i )π−i (x−i )×(

R i (x ix−i , at) + V i
t+1(F (πt , γ

∗i
t γ
∗−i
t , at), x

i )
)

This results in an “equilibrium generating” mapping θ with γ∗t = θt [πt ] for all
πt ∈ ∆(X )
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Special backward induction step

for all i ∈ N and for all x i ∈ X i

γ∗it (·|x i ) ∈ arg max
γ i
t(·|x i )

E
{
R i (X ,At) + V i

t+1(F (πt , γ
∗i
t γ
∗−i
t ,At), x

i )|x i , πt , γ itγ∗−it

}
This is not a best-response type function: γ∗it present on left/right hand
side

Find γ it(·|x i ) that is optimal under unperturbed belief update!
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Games with asymmetric information

An algorithm for PBE evaluation: forward recursion

From backard recursion we have obtained θ = (θit)
i∈N
t∈T .

For each t = 1, 2, . . . ,T and for every i ∈ N , A1:t , and X i

σ∗it (Ai
t |A1:t−1,X

i ) := θit [µ
∗
t [A1:t−1]]︸ ︷︷ ︸

Γi
t

(Ai
t |X i )

µ∗t+1[A1:t ]︸ ︷︷ ︸
Πt+1

:= F (µ∗t [A1:t−1]︸ ︷︷ ︸
Πt

, θt [µ
∗
t [A1:t−1]]︸ ︷︷ ︸

Γt

,At)

In fact we can obtain a family of PBEs for any type distribution∏
i∈N Q i (X i ) with appropriate initialization of µ∗1
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Main Result

Theorem ([Vasal, Subramanian, A, 2015a])

(σ∗, µ∗) generated by the backward/forward algorithm (whenever it exists) is a
PBE, i.e. for all i , t,A1:t−1,X

i , σi ,

Eσ
∗i
t:Tσ
∗−i
t:T µ∗t

{
T∑
n=t

R i (X ,An)
∣∣A1:t−1X

i

}

≥ Eσ
i
t:Tσ
∗−i
t:T µ∗t

{
T∑
n=t

R i (X ,An)
∣∣A1:t−1X

i

}

and µ∗ satisfies the consistency conditions.
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Sketch of the proof

Independence of types and specific DP equation are crucial in proving the
result

Modified comparison principle (backward induction)

Specific DP guarantees that unperturbed reward-to-go (LHS) at time t is the

obtained value function V i
t = R i + V i

t+1

Specific DP guarantees that unilateral deviations with fixed belief update

reduce V i
t

Induction step reduces V i
t+1 to (perturbed) reward-to-go at time t + 1

Independence of types guarantees that resulting expression is exactly the
(perturbed) reward-to-go at time t (RHS)
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Comments on per-stage fixed point equation

This is not a best-response type of FP equation (due to presence of γ∗i on
both the LHS and RHS of equation)

Standard tools for existence of solution (e.g., Brouwer, Kakutani) do not
apply (problem with continuity of V (·) functions)

Existence can be shown for a special case6 where R i (X ,At) does not depend
on its own type X i

In that case prescriptions Γi
t(·|X i ) = Γi

t(·) do not depend on private type X i

and FP equation reduces to best response.
No signaling!
Essentially reduces to the model Πt+1 = F (Πt ,At)
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6[Ouyang, Tavafoghi, Teneketzis, 2015]
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Current/Future work

Model generalizations:

Types are independent controlled Markov processes (controlled by all actions)
P(Xt |X1:t−1,A1:t−1) =

∏
i∈N Q i (X i

t |X i
t−1,At−1)7

Dependence types with “strategic independence”8

Types are observed through a noisy channel (even by same user) Q(Y i
t |X i

t ).
Example: “informational cascades” literature
Infinite horizon and continuous action spaces

Existence results: prove existence for the simplest non-trivial class of
problems. Core issue: the per-stage FP equation is not a best response

Dynamic mechanism design (indirect mechanisms with message space smaller
than type space)

7[Vasal, Subramanian, A, 2015b]
8[Battigalli, 1996]
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Thank you!
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