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CHAPTER I

INTRODUCTION

The very first electrical communication system, the telegraph, was introduced by

Samuel Morse in 1837 and was digital in nature. However, it was not until 1924,

when Nyquist analyzed the maximum signaling rate for the telegraph channel, that

digital communication was seriously considered from a scientific point of view. This

work was followed by the ideas of Hartley (1928), Wiener (1942) and Kotelnikov

(1947). In 1948 Shannon established the mathematical foundation for Information

Theory, and determined the fundamental limits of digital communication systems.

With the work of Hamming in 1950 on error-correcting codes, Coding Theory was

initiated and since then has developed into a powerful and important field.

Communication engineers are mainly concerned with two issues. The first, and

perhaps the foremost, is the design and analysis of versatile coding schemes that

provide satisfactorily reliable communication given the limited available resources.

The second, a more theoretical aspect, is that of finding the fundamental limits

on the maximum achievable transmission rate for the communication system under

consideration.

In order to analyze a particular communication system, the physical medium

over which information is transmitted is abstractly represented by a channel model.

1
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This model, while not exactly reflecting finer qualitative peculiarities of the physical

medium, is intended to capture the basic properties of the latter and yet remain

tractable for subsequent mathematical analysis.

Choosing a channel model that is both accurate and simple to analyze is a dif-

ficult task. Therefore, some relatively basic channel models have been proposed in

the literature and have been verified in practice to adequately model a wide variety

of physical media. Of these models, perhaps the most common is the additive noise

channel, where the transmitted signal is perturbed by additive noise of known statis-

tics. An extension of this simple model is one where the transmitted signal, apart

from the additive noise, is corrupted by a multiplicative term, often referred to as

fading.

In any practical communication scenario, there are also constraints dictated by

the user and the underlying application. Such constraints include, but are not lim-

ited to, transmitter power, bandwidth, complexity, delay, etc. In his pioneering

work [79, 80], Shannon showed that for a given channel model, there exists a single

parameter, called channel capacity, which describes the fundamental tradeoffs be-

tween transmitter power, bandwidth, and maximum rate at which information can

be reliably conveyed over the channel.

In this thesis we investigate the communication problem over additive noise chan-

nels that also introduce a carrier phase rotation unknown to the transmitter and the

receiver. The motivation for investigating these channels comes from considering the

front-end of a typical wireless communication system as shown in Fig. 1.1. The infor-

mation signal is modulated using a local oscillator onto the carrier and transmitted

over the channel. At the receiver, this operation is reversed by mixing the received

signal with a locally generated carrier. Due to the spatial separation between the
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Figure 1.1: Front-end of a bandpass wireless communication system.

transmitter and the receiver, the corresponding oscillator phases differ by a random

amount θ(t). Furthermore, θ(t) can be time-varying as a direct result of the local os-

cillator instabilities, the transmitter/receiver mobility, and the propagation medium.

Thus, the overall effect on the complex envelope of the transmitted signal can be

described by

r̃(t) = s̃(t)ejθ(t) + ñ(t), (1.1)

where ñ(t) is the additive noise.

There are two solutions to this phase mismatch encountered in traditional com-

munication systems. The first solution is to use signaling schemes that are immune

to such phase rotations (e.g., frequency shift keying (FSK), or in general orthogonal

constellations). The second solution is to eliminate the random phase offset by em-

ploying a subsystem that estimates θ(t) and effectively derotates the observation. In

this work we follow a more direct approach, in that we incorporate the phase offset

into the overall channel model. Finding the fundamentals limits of communication

over this channel and designing practical schemes that come close to these limits is

our ultimate goal.
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1.1 Channel Model

Several representations have been proposed in the literature for the noncoherent

channel, based on how the underlying phase process, θ(t), is modeled. The simplest

such model is one where the phase remains constant, but random, throughout the

length of the transmitted codeword.

In order to take into account the channel dynamics, more sophisticated models

have been proposed that consider small variations of the phase process between

adjacent symbols. A common such model is one where the phase process is a random

walk with independent Gaussian increments, where the variance of the increment

determines the dynamics of the process. A simplified version of this model has

also been used where now the phase process is assumed to be a walk on a grid

with finite precision, which results in a Markov process with finite number of states

(see [95, 67, 58, 48] and references therein). An even simpler, commonly used model

for this channel is one where the unknown phase is considered constant, but random,

over a block of N symbols, and independent from block to block. More precisely, the

channel is described by the following input/output relationship

yk = xke
jθk + nk, (1.2)

where xk, yk and nk are complex sequences of length N , denoting the k-th block of

the transmitted sequence, the observed sequence, and the noise sequence of indepen-

dent identically distributed (i.i.d.), zero-mean, circular, complex Gaussian random

variables with variance σ2 = N0/2 per real dimension, respectively. The unknown

phase rotation in each block is represented by the variables θk, which are modeled

as i.i.d. random variables uniformly distributed in [−π, π). The parameter N , also

referred to as the channel coherence interval, is assumed known at both the transmit-
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ter and the receiver, as are the positions of the block boundaries. This channel will

be referred to as the block-independent noncoherent AWGN channel. It adequately

captures the phase dynamics with a single parameter N and yet is simple enough for

analysis. Furthermore, the assumption of block independence is particularly realistic

for frequency hopping systems, where the phase remains constant for the period of

a hop and changes arbitrarily from hop to hop. The general modeling of a channel

with memory by a block-independent model has been originally introduced in [56].

The block-independent noncoherent AWGN channel resembles two widely used

and well-studied channels. The first one is the coherent AWGN channel, where the

ejθ term is absent from (1.2). The second one is the block-independent Rayleigh

fading channel where the ejθ term is multiplied by a Rayleigh distributed random

variable, representing the amplitude variation. Despite these similarities, the non-

coherent channel is not as well understood as the coherent and the Rayleigh fading

counterparts. For example, the capacity of this channel is not known, nor is the

structure of the capacity achieving input density. Furthermore, from the more prac-

tical point of view, performance of the best-known coding schemes for this channel is

still far from the theoretical limits, unlike the case of the coherent AWGN channel.

In the next section we summarize the research topics discussed in this thesis.

Throughout this work, with the exception of Chapter V, the aforementioned block-

independent noncoherent AWGN channel model is utilized.

1.2 Research Topics and Contributions

Two main problems regarding the noncoherent channel are of interest to us. The

first, is the design and analysis of practical codes whose performance is close to the

theoretical limit. Although, this topic has been of interest for a long time, most of
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the results in the literature lack the systematic approach. Moreover, a great deal of

research applies only to the case where the code blocklength is equal to the channel

coherence interval N , i.e., the unknown phase is constant over the entire codeword.

For small values of N , this assumption implies the use of short codes, and hence

results in poor performance. Similarly, for large values of N , the above assumption

implies a very slowly varying phase process, which is a useless model in mobile

wireless links. We are approaching the problem of coding in a more systematic way,

that also allows the design of codes which span over several blocks of length N .

The second, more theoretical problem, is finding the fundamental limits of com-

munication for this channel. More precisely we are interested in the evaluation of

the Shannon capacity and the investigation of the structure of the capacity achieving

input density of this channel. As mentioned above, the noncoherent channel lies in

between the coherent AWGN and the Rayleigh fading channels. However, the infor-

mation theoretic results for these two channels differ significantly, and it is not clear

which of the two extremes the noncoherent channel is closer to. As it turns out,

the structure of the capacity achieving density borrows properties from both these

extremes.

The sections that follow correspond to subsequent chapters, and are intended as

short introductions to the topics discussed therein. The contents of the chapters

have in part appeared in several papers. The results of Chapter II can be found

in [60, 61, 65], contents of Chapters III and IV are combined in [64, 62, 63], and

finally Chapter V corresponds to [59, 66].
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1.2.1 Pilot-Symbol-Assisted Coding

A simple and practical approach in the direction of designing codes for the nonco-

herent channel is the use of pilot-symbol-assisted (PSA) transmission in conjunction

with powerful codes designed for the coherent AWGN channel. More precisely, we are

interested in coding schemes that transmit a pilot symbol of certain energy in each

block of length N , over which the carrier phase remains constant, and the remain-

ing N − 1 symbols are utilized for transmission of coded bits from a code designed

for the coherent AWGN channel. A higher pilot energy translates to better-quality

phase estimates, but comes at the expense of reduced coded-bit energy. This tradeoff

between the quality of the phase estimate and the effective coded bit signal-to-noise

ratio (SNR), implies an optimal pilot-symbol energy allocation, which minimizes the

information bit SNR required to achieve good performance. In Chapter II, PSA

transmission is investigated in conjunction with low-density parity-check (LDPC)

codes. Several low complexity receivers which also lend themselves to analysis are

proposed. A powerful technique devised for the analysis of LDPC codes over the

AWGN channel, called density evolution, is utilized for performance analysis of these

systems. It turns out that optimizing the energy allocation results in an SNR gain of

0.5-2.5 dB, depending on the channel coherence interval N , as well as the particular

receiver algorithm used. The presented PSA codes and the corresponding receivers

can serve as baseline – yet powerful – transmission schemes, against which more

elaborate code designs can be compared.

Although PSA transmission allows the use of a vast amount of codes designed for

the coherent AWGN channel, and despite the fact that it performs well for moderate-

to-large values of the channel coherence interval N , it is expected that for small values

of N , such a scheme will be highly suboptimal. This behavior can be explained by
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observing that the power loss due to pilots is amplified for small values of N , and is

the motivation for considering more direct approaches to code design. As a first step

towards this goal, we consider the information-theoretic aspect of the communication

problem.

1.2.2 Capacity of the Noncoherent AWGN channel

The problem of finding the capacity and the structure of the capacity-achieving

input density for this channel has been of interest for some time, and some partial

results have appeared in the literature. In [56, 83, 33] the capacity of the general

block-independent channel models has been considered. In [12] the capacity of the

noncoherent AWGN channel under FSK modulation was investigated, while capacity

evaluations were performed in [68] when phase shift keying (PSK) modulation is used.

A numerical lower bound on the capacity was evaluated in [18] by assuming Gaussian

distributed input to the channel. Very recently, some new results have been reported

for the special case of a memoryless phase process, i.e., for N = 1; in [38, 39] it

was shown that the capacity achieving input is discrete with infinite number of mass

points, while in [44] upper and lower bounds on the capacity were derived. To date,

a complete characterization of the capacity-achieving input density is not available

for arbitrary phase dynamics, i.e., for arbitrary N .

Our approach aims more at finding the structure of the capacity-achieving den-

sity rather than numerically evaluating the capacity. We do this by investigating the

necessary and sufficient conditions the optimal input density should satisfy. In gen-

eral, this problem involves an optimization over densities of N -dimensional complex

random vectors. However, we show that by proper parameterization of the space of

input random vectors, we can reduce this problem to optimization over densities of
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one real variable, namely the density of the amplitude of the N -dimensional complex

input vector. Taking this as a starting point we first prove the existence and unique-

ness of the optimum amplitude density. Furthermore, we show that the optimum

amplitude density is discrete in nature, has infinitely many mass points extending to

infinity, and always has a mass point at zero. In other words, the capacity-achieving

input signal isotropically occupies the surfaces of infinitely many concentric spheres

in the N -dimensional complex space, and is zero with a fixed non-zero probability.

In addition, we derive asymptotic results which show that the mass point prob-

abilities decrease square-exponentially with mass point amplitudes, thus suggesting

a reasonable approximation to the optimal density by a discrete density with only

finite number of mass points. This result is verified by numerically evaluating the

capacity for several values of N and SNR.

To better understand the implications of these results for the code design problem,

two practical performance measures are introduced and quantified: “discretization

loss” and “shaping gain”. The former is the capacity loss due to the use of practical

modulation schemes in place of the optimal density. This loss is due to the fact

that not all but only a finite number of points on the surface of a sphere are used

in a specific modulation scheme. The latter is the gain obtained by augmenting a

single-sphere input density with a zero-mass point of certain probability. It is this

gain that we try to realize using more direct approaches to code design as described

in the following section.

1.2.3 Capacity-Inspired Coding

In this section we discuss code and modulation design based on the capacity re-

sults discussed above. Existing coding strategies for the noncoherent channel are
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either indirect, or based on very simplistic models for the channel. Early works on

signal design were based on minimizing the probability of error using symbol-by-

symbol noncoherent detection [78]. Codes with rich algebraic structure were inves-

tigated in [40] and good designs were found through computer search. Trellis coded

modulation (TCM) was extended to noncoherent transmission in [75] and [2] for the

case of equal-energy and unequal-energy signals, respectively. The set partitioning

rules for the design of coherent TCM codes in [86] were adopted in [92, 24] to modify

these codes for the noncoherent channel. Coding schemes incorporating differen-

tial encoding, or more generally rotational invariant encoders [85], were proposed

in [70, 75, 52]. High-performance codes were designed in [36] for the noncoherent

channel by combining optimized binary irregular LDPC codes and differential en-

coding. These codes represent the state of the art in code design for the noncoherent

channel. It should also be noted that code design for the noncoherent AWGN chan-

nel is similar to code design for the block-independent noncoherent fading channel

(i.e., where amplitude variation is present in addition to phase rotation), and thus

the codes investigated in [88, 69, 34] for the fading channel are also relevant designs.

In order to get some insight on the design criteria for good noncoherent codes, we

examine the probability of decoding error. Clues from this investigation combined

with the information theoretic results of the previous section will be used to design

powerful coding schemes.

We initiate the discussion with the simple case when the unknown phase remains

constant over the entire codeword. By virtue of the union bound, the probability of

codeword error is dominated – at moderate to high SNR values – by the pairwise

probability of error between the “worst” pair of codewords. It can be shown that, in

the case of equal-energy codewords, ‖a‖ = ‖b‖, the pairwise probability of error for
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the noncoherent AWGN channel can be bounded as (see [72] for exact expression)

P (a → b|a) = R(ρ,Nγ) ≤ 3

2
exp

(−Nγ(1− ρ)

2

)
, (1.3)

where γ is the per-symbol SNR and ρ is the magnitude of the cross correlation

between the codewords a and b, given by

ρ =
|aHb|
‖a‖‖b‖ , (1.4)

with superscript H denoting conjugate transpose. This bound emphasizes the im-

portance of the cross correlation coefficient: error probability decreases exponentially

in Nγ(1 − ρ)/2. This suggests the first practical design rule, that is, minimize the

maximum cross correlation between codewords. It is noted that this problem has a

longer history [93, 37] than the problem of noncoherent transmission, and yet no

definitive answer has been given to the question of finding the signal constellation

with minimum cross correlation for a given number of signals (codewords).

The case when codewords extend over several, say L, independent blocks of con-

stant but otherwise unknown phase presents an additional difficulty. Although there

is no simple expression for the pairwise error probability, the following bounds hold:

L∏

k=1
k:ρk 6=1

R(ρk, Nγ) ≤ P (a → b|a) ≤
L∑

k=1
k:ρk 6=1

R(ρk, Nγ), (1.5)

where ρk is the cross correlation between the k-th blocks of codewords (sequences of

length N). Combining these bounds with (1.3), we see that the error probability is

dominated by the block with the highest ρk. Furthermore, the Hamming weight of an

error event, i.e., number of terms in the above sum, is also an important parameter.

However, it is not clear how these two parameters are combined to form the pairwise

probability of error. In view of these two observations, code design for this channel

becomes more complicated.
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We now outline a specific strategy that we will use to design powerful coding

schemes. We follow a systematic approach by separating the code into two parts: a

binary outer code and a modulation code. The task of the outer code is to introduce

large memory into the overall code. This can be done by utilizing powerful error-

correcting codes. In this work we concentrate on serially concatenated turbo TCM

(SCTCM), and LDPC codes (the basic properties of these two families of powerful

binary error-correcting codes are described in Appendix C). On the other hand, the

purpose of the modulation code is to guarantee small cross correlations between the

codewords, as well as to imitate the signaling structure suggested by the capacity

results of the previous section. More specifically, the modulation code is responsible

for introducing the zero-mass point, i.e., no transmission in certain blocks. This

layered approach is motivated by the conjecture reached in [55] that general turbo-

like codes can achieve capacity for a wide range of channels if suitable modulation

schemes are designed to interface with the channel. Within this context, two classes

of codes are proposed:

• In the first one, a highly optimized modulation code is used which results in rel-

atively high complexity (exponential with respect to N). Therefore, the overall

design is attractive only for small values of N . However, it is demonstrated

through a specific example that this modulation scheme, together with a simple

outer code (SCTCM code with small complexity), results in performance close

to capacity.

• In the second class, a novel modulation scheme is proposed which incorporates

the transmission of the zero mass point and can be demodulated with a factor-

graph-based algorithm with linear complexity with respect to N . This scheme
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is well-suited for higher values of N and, as demonstrated through a specific

example, when paired with irregular LDPC codes outperforms all existing de-

signs.

1.2.4 Rotationally Invariant and Rotationally Robust Codes

Regardless of the particular structure of the coding scheme, a potential problem

can occur when communicating over the noncoherent channel. This problem can be

explained by observing that if two sequences of length N differ by a mere phase rota-

tion, they will be indistinguishable at the receiver side. Therefore, such pairs should

be avoided during the transmission as they will lead to a catastrophic behavior. On

the other hand, if all such sequences are included in the codebook and are assigned

the same input sequence, then the catastrophic behavior is avoided. This is true since

no input errors will occur as a result of a random phase rotation. Coding schemes

that resolve the inherent phase uncertainty in the transmitted sequence in this par-

ticular way are called rotationally invariant (RI), and are essentially generalizations

of the differential phase encoding to higher signaling alphabets.

In Chapter V this property is investigated in more detail. Specifically, in the first

part of Chapter V, we outline the design guidelines for RI-SCTCM codes. Following

these guidelines, several powerful RI-SCTCM codes are designed and simulated. As

it is illustrated through these examples, in some cases the RI property does not

incur any performance loss, while for others it is obtained at the cost of reduced

performance. In the second part, we introduce the notion of rotationally robust

(RR) codes, namely, codes that are immune to arbitrary phase rotations that affect

part of the codeword. In particular, RR codes are required to suffer only a finite

number of input bit errors as a result of such rotation. Furthermore, we require the
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input error pattern to be localized around the position of the phase jump and to

be independent of the codeword length. We consider this property both in coherent

and noncoherent settings, and prove that under certain conditions RI codes actually

satisfy this stronger property. To extend this result to SCTCM codes we propose a

simple modification of the decoding algorithm, that makes RI-SCTCM codes robust

to phase jumps as well.

1.3 Dissertation Outline

The rest of the thesis is organized as follows. In Chapter II we design PSA

schemes and analyze their performance. Chapter III investigates the information

capacity and the structure of the capacity-achieving input density for the block-

independent noncoherent channel. Inspired by the results of this chapter, in Chap-

ter IV low-complexity coding and modulation schemes are proposed that are matched

to the noncoherent channel characteristics. Chapter V discusses rotationally invari-

ant codes, with emphasis on their design and robustness properties under different

conditions. A summary of the current results as well as several possible avenues

for future research are outlined in Chapter VI. Some technically involved parts of

the thesis are collected in several appendices at the end. Appendix A derives the

expressions for distribution functions required for analysis of the receivers proposed

in Chapter II, while most of the proofs of Chapter III are collected in Appendix B.

Appendix C gives a short introduction to powerful binary error-correcting codes,

that are used throughout the thesis in the code design process. Finally, Appendix D

derives a simple lower bound on the bit-error-rate performance of SCTCM codes,

the results of which are used in Chapter V.



CHAPTER II

PILOT-SYMBOL-ASSISTED CODED

TRANSMISSION

2.1 Introduction

In this chapter, pilot-symbol-assisted (PSA) coded transmission over the nonco-

herent channel is investigated. We are interested in the performance of a system that

uses pilot symbols to aid the phase estimation in conjunction with codes primarily

designed for the coherent AWGN channel. This approach can be motivated by ob-

serving that in the case of slow phase dynamics, a noncoherent code can be thought

of as the combination of a training sequence (or pilot symbols) and a pure AWGN

code. The role of the former is to facilitate phase estimation and effectively translate

the noncoherent channel to a coherent AWGN channel.

In particular, powerful AWGN codes are utilized, resulting in an operating SNR

close to the capacity of the coherent AWGN channel. They can be either parallel or

serially concatenated codes [9, 5], collectively known as turbo codes, or low-density

parity-check (LDPC) codes [29, 76]. These codes are augmented by inserting a single

pilot symbol of specified power in the beginning of each block of length N , in order

to aid the joint phase estimation and decoding process. As expected, the presence

of a pilot symbol implies an inevitable loss in the transmitted power, resulting in a

15
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trade-off between the power allocated between the pilots and the coded bits, and the

quality of the joint phase estimation and decoding process.

Optimal, maximum aposteriori probability (MAP) receivers for the above de-

scribed, high-performance codes are impractical due to their exponential complexity,

even for the coherent AWGN channel. Although the presence of the unknown phase

further complicates the design, several powerful iterative joint decoding and phase

estimation algorithms have been suggested in the literature [31, 16, 1, 57]. Motivated

by the need for simple, yet powerful, receivers, several iterative decoding algorithms

are proposed in this work. These algorithms are broadly classified in two categories:

(i) algorithms that implicitly estimate the phase by pre-processing the observation

related to the pilot symbol only at the beginning of the iterative decoding process,

and (ii) algorithms that perform joint decoding and phase estimation in an iterative

fashion.

In this chapter we discuss several algorithms that fall into these categories, the

main advantage of which is that they are simple enough to lend themselves to anal-

ysis. In particular, using density evolution, a recently developed technique for the

analysis of LDPC codes over the AWGN channel, the performance of the proposed

iterative receivers operating in the block-independent noncoherent channel is char-

acterized. Specifically, assuming infinite iterations, and arbitrarily long codes, the

minimum required information bit SNR, Eb/N0, for achieving error-free communi-

cation is evaluated. In addition, the optimal power allocation to the pilot symbol is

investigated, thus providing design guidelines for the PSA transmission scheme. It

is found that this optimal power allocation depends highly on the channel coherence

interval N , and the particular algorithm used for phase estimation/decoding. Fur-

thermore, optimizing the power allocation results in performance close to that of the
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coherent AWGN channel. This last result is obtained by deriving a simple bound on

the performance of the MAP receiver for the block-independent noncoherent channel.

Since most of the codes proposed in the literature for this channel are based on

differential encoding, the study of PSA codes can be motivated by the following

three observations. First, for the particular model that we are interested in, i.e., the

block-independent noncoherent channel, it can be shown that differential encoding

and PSA codes are exactly equivalent in terms of code rate and performance, both

for maximum likelihood sequence detection and symbol-by-symbol maximum apos-

teriori probability detection. Second, for channels affected by a continuously varying

phase process, it is not clear whether the N/(N − 1) rate advantage of differential

encoding—when translated to energy requirements—is greater than the advantage

of the proposed PSA schemes with optimized pilot symbol energy (assuming similar

receiver complexity). And third, the results presented herein for the PSA schemes,

suggest that a differential encoding scheme that periodically transmits a symbol with

higher energy might result in increased performance over conventional differential en-

coding.

For simplicity of the presentation of the analytical tools used herein, binary phase-

shift keying (BPSK) modulation is assumed in the first part of the chapter. However,

numerical results presented in Section 2.5 consider other modulation schemes, and

illustrate the applicability of the general ideas in this chapter to more elaborate

modulation schemes, as well as to other generic receivers.

The rest of the chapter is structured as follows. Section 2.2 provides a description

of the PSA transmission, and the structure of the optimal receiver. In Section 2.3

several approximate receivers are proposed, while their performance is evaluated

in Section 2.4, using density evolution. In Section 2.5 numerical results for the
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performance of the proposed receivers are presented using a concrete example of an

LDPC code, while the concluding remarks are summarized in Section 2.6. Most of

the derivations are collected in Appendix A for smoothness of presentation.

2.2 Pilot-symbol-assisted Transmission

Recall the channel input/output relationship

zk = yke
jθk + nk, (2.1)

where yk, zk and nk are N -dimensional complex vectors, denoting the k-th block

(k = 1, 2, . . . , L) of the transmitted, the received and the noise sequence of indepen-

dent identically distributed (i.i.d.), zero-mean, circular, complex Gaussian random

variables with variance σ2 = N0/2 per real dimension, respectively. The unknown

phase rotation in each block is represented by the variables θk, which are modeled

as i.i.d. random variables uniformly distributed in [−π, π).

Pilot-symbol-assisted transmission is considered; specifically, the first input sym-

bol in each block is the pilot symbol and the remaining N − 1 symbols are coded

bits. More precisely, we have

yk = [
√

Ep,
√

Esx
T
k ]T , (2.2)

where superscript T denotes transpose, with xk ∈ {+1,−1}N−1 being the k-th block

of the codeword, and Ep and Es denote the pilot and coded bit energy, respectively.

Insertion of a pilot symbol decreases the throughput to Rt = (N − 1)R/N (infor-

mation bits per complex dimension), where R is the code rate, and increases the

required information bit SNR to

Eb

N0

=
1

R

(
Es

N0

+
1

N − 1

Ep

N0

)
. (2.3)
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This simple relation shows the trade off associated with the pilot energy, namely,

quality of phase estimation is gained at the expense of increased information bit

SNR.

The optimal detection rule, in the sense of minimizing the symbol error rate for

this system is the symbol-by-symbol MAP detection rule, which assuming equally

likely codewords can be written as

âj = arg max
aj

p(aj|z1, . . . , zL) (2.4a)

= arg max
aj

∑
x:aj

x∈C

L∏

k=1

∫ 2π

0

exp
(Re(yT

k zke
−jθk)

σ2

)
dθk (2.4b)

= arg max
aj

∑
x:aj

x∈C

L∏

k=1

I0

( |yT
k zk|
σ2

)
, (2.4c)

where C is the overall codebook, I0(·) represents the 0th order modified Bessel func-

tion of the first kind, and the expression x : aj denotes all codewords x whose

corresponding input sequence has j-th element aj. Since, we are interested in using

and analyzing PSA modulation in conjunction with LDPC codes, and since the latter

are conveniently described on factor graphs [28], it is helpful to derive a graphical rep-

resentation of this transmission scheme (refer to Appendix C for a brief introduction

of LDPC codes and factor graphs). This system can be represented by factor graphs

in two different ways. In the first model, considered before in [94, 96], the unknown

phase variables θk are included explicitly in the factor graph, depicted in Fig. 2.1(a),

which corresponds to the expression in (2.4b). Here, variables C and X represent

check and variable nodes, respectively and the function nodes fi correspond to the

factors fi(xi, θ) = exp[Re(
√

Esxizie
−jθ)/σ2]. When such explicit modeling is used,

the message alphabet is infinite, and thus, in practice, some quantization of these

messages is necessary [96] (for additional discussion of factor-graph codes over the
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Figure 2.1: Two factor graphs corresponding to the optimal receiver: (a) unknown
phase variables are explicitly modeled; (b) unknown phase variables have
been averaged out. The “edge permutation” block describes the connec-
tions between variable and check nodes.

Rayleigh fading channel please refer to [13] and to Appendix C). The model assumed

herein corresponds to the expression in (2.4c), where averaging with respect to θk

has been explicitly performed, evidenced by the presence of the I0(·) function, rather

than having it done iteratively as part of the sum-product algorithm. The factor

graph corresponding to this model is shown in Fig. 2.1(b), where the functional node

F represents the channel constraint, i.e., the I0(·) term in (2.4c).

In the absence of cycles in the graph of Fig. 2.1(b), the expression in (2.4c) can

be exactly evaluated by applying the sum-product algorithm on the corresponding
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factor graph [94]. The messages exchanged by the sum-product algorithm at the

variable and check nodes are given, in the logarithmic domain, by (see [77])

µXC =
dv−1∑
i=1

µCiX + µFX (2.5a)

µCX = 2 tanh−1

(
dc−1∏
j=1

tanh
(µXjC

2

)
)

, (2.5b)

where µXC and µCX represent variable-to-check and check-to-variable node messages,

with dv +1 and dc being the number of edges connected to variable and check nodes,

respectively, and {Ci}dv−1
i=1 ({Xj}dc−1

j=1 ) is the set of check (variable) nodes connected

to variable node X (check node C), other than the check node C (variable node

X)1. To simplify notation the index k is dropped in the rest of the chapter with the

understanding that all the involved variables belong to the same block.

The messages to and from the node F have the form

µXiF =
dv∑

j=1

µCjXi
(2.5c)

µFXi
= log

Li(+1)

Li(−1)
(2.5d)

Li(a) =
∑

x:xi=a

I0

( |yTz|
σ2

) N−1∏

j=1,j 6=i
j:xj=1

eµXjF , (2.5e)

where, µFXi
and µXiF are F -to-variable and variable-to-F node messages (refer to [42]

for a detailed discussion of the sum-product algorithm). In the following the code

length is assumed big enough so that the length of the smallest cycle present in the

overall factor graph is at least twice as much as the number of iterations required, thus

the application of the sum-product algorithm results in the exact evaluation of (2.4c).

1For notational simplicity a regular LPDC code is considered in the analysis part of the chapter.
The generalization to irregular LDPC codes and/or other iteratively decoded codes is straightfor-
ward. Irregular LDPC codes are considered in the examples.
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Since both pilot and data (PD) symbols are utilized for the generation of messages,

and since observation model, this optimal receiver, referred to as M-PAD, will be

our benchmark receiver for all subsequent comparisons. However, the benchmark

receiver for all subsequent comparisons. However, the exponential (in N) complexity

associated with the implementation of (2.5e), resulting from the summation over all

sequences x : xi = a, renders this algorithm unattractive even for moderate values

of N . This obstacle is the main motivation for seeking suboptimal receiver schemes.

2.3 Proposed Receivers

Several practical suboptimal receivers are proposed in this section. These re-

ceivers are based on the sum-product algorithm, and are only modifying the phase

estimation part of the receiver, i.e., the messages µFXi
. We start by describing re-

ceivers that implicitly estimate the phase by pre-processing the observation related

to the pilot symbol only at the beginning of the iterative process, and then proceed

with decoding; thus phase estimation is performed in a non-iterative manner. We

then propose an iterative receiver, which performs adaptive phase estimation and

decoding, and yet is simple enough to lend itself to analysis using density evolution.

2.3.1 Receivers with non-iterative phase estimation

Receivers in this section initialize the messages µFXi
based only on the observation

zi and the pilot variable z0. Since the messages µXF are ignored by these receivers,

the iterative processing is performed only in the lower part of the corresponding

factor graph, which is depicted in Fig. 2.2. This is equivalent to applying the sum-

product algorithm to a hypothesized memoryless channel which takes as an input

the coded bit xi and outputs two symbols: the observation due to the pilot symbol,

z0, and the observation due to the data bit, zi. All three receivers discussed in this
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Figure 2.2: Factor graph corresponding to the PO receivers. Observe that this re-
ceiver model is matched to a memoryless channel with input xi and
outputs z0 and zi only.

section differ only in the initial message µFXi
, and will be referred to as pilot only

(PO) receivers.

The initial message implied by the sum-product algorithm when the only variables

observed are z0 and zi is given by

µFXi
= log

p(zi, z0|xi = +1)

p(zi, z0|xi = −1)
= log

I0(|z0

√
Ep + zi

√
Es|/σ2)

I0(|z0

√
Ep − zi

√
Es|/σ2)

, (2.6)

where p(zi, z0|xi = a) is the joint density of z0 and zi conditioned that the i-th

transmitted symbol is a (see expression (A.2) in the Appendix). Because this re-

ceiver scheme is matched to the observation model, it will be referred to as M-PO

receiver. It is worth noting that for large values of Ep, the message in (2.6) ap-

proaches 2Re(
√

Eszie
−jθ)/σ2, which is exactly the initial message in the coherent

AWGN channel.2 As a result, it is expected that the asymptotic behavior of this

suboptimal receiver approaches that of the coherent AWGN channel for large values

of pilot energy.

A slightly modified version of the above receiver is one that pre-processes the

pilot observation z0 and generates an estimate θ̂ on θ. This estimate is then used

2For large of values of Ep, the approximations I0(x) ∼= ex/
√

2πx and ∠z0
∼= θ can be used.

The desired result is a consequence of the above two approximations together with the fact that
|A + z| − |A− z| ∼= 2Re{ze−∠A} for two complex numbers A, z with |A| À |z|.
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for generating the µFXi
messages. This approach, which essentially derives from

generalized likelihood [71, ch. II] results in the message

µFXi
= log

p(zi, θ̂|xi = +1)

p(zi, θ̂|xi = −1)
= log

∫ π

−π
eRe(

√
Eszie

−jθ)/σ2
p(θ̂|θ)dθ∫ π

−π
e−Re(

√
Eszie−jθ)/σ2p(θ̂|θ)dθ

. (2.7)

where p(θ̂|θ) is the conditional density of the estimated phase θ̂ given the random

channel phase θ. For maximum-likelihood phase estimation, θ̂ is simply the angle of

z0. This particular receiver that uses an estimate of the unknown parameter based

solely on the pilot symbol, will be referred to as E-PO. Since in this initialization,

the amplitude of the pilot symbol, and hence the reliability information of the pilot,

is disregarded, it is expected that its performance will be inferior to the performance

of the scheme in (2.6). However, one advantage of this scheme is that it can be easily

extended to the case when the pre-processing step utilizes not only the pilot symbol,

but the entire observation z. Indeed, we observe that (2.7) holds for any estimate θ̂

of θ, as long as it is conditionally independent of zi given θ. Therefore, if θ̂ is any

estimate that depends on all the symbols of the sequence z except zi, then (2.7) can

be used, resulting in the E-PD receiver, as long as the conditional distribution p(θ̂|θ)

for the phase estimator can be derived.

Finally, we also present a receiver similar to E-PO which simply derotates the

observation by the phase estimate, and forms the message corresponding to the

coherent AWGN channel, i.e.,

µFXi
=

2
√

Es

σ2
Re(zie

−jθ̂), (2.8)

where again θ̂ can be any estimate of θ which does not depend on zi. To emphasize

the fact that the observation is only derotated in this case, the corresponding receivers

are referred to as EDR-PO and EDR-PD, when the phase estimate is formed by the

pilot only, or the pilot and data, respectively.
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2.3.2 Receivers with Iterative Estimation

The natural extension of the PO schemes described above is a receiver that per-

forms both phase estimation and decoding in an iterative fashion. However, it is

desirable that such receiver has only linear complexity with the channel coherence

interval N . In this section, a suboptimal receiver is described, that not only is simple

to implement, but also lends itself to analysis using density evolution. The basic idea

is that the µXF messages with large positive or negative values indicate an almost

certain decision on the corresponding coded bit. This hard decision can be utilized

in the phase estimator, by essentially treating this bit as an additional pilot symbol,

resulting in higher quality µFX messages. Furthermore, in the proposed algorithm,

the coded bits corresponding to messages with small values are not processed in the

generation of the µFX messages. Similar decision feedback techniques for improving

noncoherent decoding were proposed in [47, 22, 43].

The above idea is made precise in the following. LetQ(·) be the quantized decision

mapping

Q(x) =





+1 , x > A(l)

−1 , x < −A(l)

0 , otherwise

(2.9)

for some predefined sequence of thresholds A(l), where the superscript (l) denotes

possible iteration-dependent thresholds, and let v = [
√

Ep, v1, . . . vN−1]
T , with vj =

√
EsQ(µXjF ), be the quantized decision vector. The message µFXi

is defined as3

µFXi
= log

I0(|wia
(l) + zi

√
Es|/σ2)

I0(|wia(l) − zi

√
Es|/σ2)

, (2.10)

3A more “reasonable” message would be the one similar to (2.5e) with messages µXiF replaced
with their hard quantized versions. However, this choice would be considerably harder to analyze.
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where

wi =
(vi)Tzi

‖vi‖ , (2.11)

and a(l) is some predefined sequence of “weights”, signifying how much the receiver

relies on the information provided by the variable wi. Superscript i over a vector

variable denotes that the i-th variable in that vector is absent. The message in

(2.10) is a direct extension of the message used in the M-PO receiver, where now

coded symbols with significant bias are treated as pilots as well. In fact, if the initial

value for a(0) is
√

Ep, the exact equation (2.6) for the M-PO receiver is obtained.

Although one might choose to optimize the values of the thresholds A(l), and weights

a(l), numerical results indicated an insignificant performance loss, when these values

were assumed constant over iterations4. For this reason, constant values will be

assumed in the rest of the chapter, with a(l) =
√

Ep , A(l) = A, and the value of

A is chosen so that P (µFxi
< 0) is minimized after the first iteration. Because this

receiver performs quantized decision feedback, it is referred to as M-QDF receiver.

Although not shown here, this same idea could be applied to equations (2.7) and (2.8)

by taking the phase estimate θ̂ to be the angle of wi, to obtain E-QDF and EDR-QDF

receivers, respectively.

It is noted that the M-QDF receiver can be further generalized to the case when

the quantization has more than three levels, thus obtaining a family of receivers with

increasing performance; this direction is not pursued further as it does not give any

conceptually different receiver designs.

A summary of all the proposed receivers is given in Table 2.1, with the perfor-

mance increasing from left to right and from down up.

4Interestingly enough, the “optimal” value for A(l) was found to be constant over iterations.
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PO QDF PD CDF

M eq. (2.6) eq. (2.10) eqs.(2.4c),(2.5) eq. (2.23)

E eq. (2.7) eq. (2.7)a eq. (2.7)b eq. (2.7)c

EDR eq. (2.8) eq. (2.8)a eq. (2.8)b eq. (2.8)c

awith θ̂ taken as angle of wi of eq. (2.11)
bwith θ̂ obtained using zi

cwith Ep replaced by Ep,eff of eq. (2.25)

Table 2.1: Summary of Proposed Receivers

2.4 Performance Analysis using Density Evolution

In this section, performance analysis of the proposed receivers is done using den-

sity evolution techniques. Density evolution is a powerful tool for analysis of various

message passing algorithms, and in particular the sum-product algorithm. It evalu-

ates the performance of the receiver when averaged over the ensemble of codes with

common parameters by keeping track of the densities of the messages transmitted in

the graph during decoding. It was proven that for large blocklength, performance of

almost all the codes in the ensemble approaches this average behavior, and therefore

results obtained using density evolution should predict the true performance of the

particular code from that ensemble.

In addition to the regular assumptions for the density evolution analysis, in the

following we also assume that the code is big enough and sufficiently interleaved,

so that any two variable nodes in the same block are connected only through the

functional F -node, and thus messages arriving at any variable node could be con-

sidered independent. For coherent channel it is proven that the performance of the

sum-product algorithm is independent of the transmitted codeword and therefore

the all-one codeword can be assumed which enables analysis through density evolu-
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tion [77]. It turns out that this property holds for the noncoherent channel for all the

receivers considered herein. First we show that this is true for the case of optimal

sum-product decoding (i.e., when the message update rules of (2.5e) are used at the

F -node of the factor graph in Fig. 2.1(b)).

Let z be the output of the channel when the transmitted codeword is x =

(s1, . . . , sN−1). This channel can be represented by an equivalent multiplicative chan-

nel as z = Uz′, where z′ is the output of the noncoherent channel when the all-one

codeword is sent, and U is a diagonal matrix with entries (1, s1, . . . , sN−1) on the

main diagonal. Let µ, µ′ represent the messages that are interchanged in the graph

when the codeword x, and the all-one codeword is sent, respectively. Also assume

that the incoming messages to node F are related as µXiF = siµ
′
XiF

. If we prove

that at any iteration, the outgoing messages from node F satisfy µFXi
= siµ

′
FXi

then, exactly as in [77], we can deduce that all the messages interchanged in the

graph will satisfy this as well, including the ones on which the hard decisions will

be made, thus proving our claim. By changing the variable of summation in (2.5e)

to x′ = U ′x, where U ′ is a diagonal unitary matrix with (s1, . . . , sN−1) on the main

diagonal, we get

Li(a) =
∑

x:xi=a

I0

( |yTz|
σ2

) N−1∏

j=1,j 6=i
j:xj=1

eµXjF =
∑

x′:x′i=asi

I0

( |y′Tz′|
σ2

) N−1∏

j=1,j 6=i
j:x′j=sj

e
sjµ′XjF (2.12)

=
∑

x′:x′i=asi

I0

( |y′Tz′|
σ2

) N−1∏

j=1,j 6=i
j:x′j=1

e
µ′XjF




N−1∏

j=1,j 6=i
j:sj=−1

e
−µ′XjF


 = L′i(asi)

N−1∏

j=1,j 6=i
j:sj=−1

e
−µ′XjF ,

(2.13)

where y′ = Uy. The first equality is the definition (2.5e) and the second equality

follows by observing that the set over which the summation is performed after the

change of variables becomes {U ′x|xj = a} = {x′|x′j = asj}. Therefore, the message
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from node F to node Xi becomes

µFXi
= log

Li(+1)

Li(−1)
= log

L′i(si)

L′i(−si)
= si log

L′i(+1)

L′i(−1)
= siµ

′
FXi

. (2.14)

Since at the first iteration messages µXiF are taken to be zero, this relationship is true

for the initial messages as well, and therefore all the messages during the decoding

will undergo related sign changes depending on the transmitted codeword and so will

the hard decisions made at the end of the decoding process.

In order to apply density evolution, the densities of the initial messages for the

proposed receivers need to be evaluated. Since the problem is considerably different

for PO and QDF receivers two cases are considered separately.

2.4.1 PO receivers

For the case of PO receivers, the µFX messages are evaluated only in the begin-

ning, and are repeatedly used in subsequent iterations. For all three PO receivers

presented herein, the initial messages satisfy (2.14), and therefore it is adequate to

assume the transmission of the all-one word.

For the M-PO receiver, observe that the variables zi and z0 have a known joint

cumulative distribution function (cdf), from which it is straightforward to get the

cdf of the message in (2.6). The derivation of the M-PO message cdf is presented in

Section A.1 of Appendix A.

For the E-PO receiver, first the conditional density of the phase estimate p(θ̂|θ) =

T (θ̂ − θ) for the case of ML phase estimate θ̂ = ∠z0 is evaluated as

T (x) =
1

2π
e−

Ep

2σ2 +

√
Ep

2πσ2
cos(x)e−

Ep

2σ2 sin2(x) × 1

2

(
1 + erf

(√ Ep

2σ2
cos(x)

))
(2.15)

where erf(·) is the error function (see [47] for a detailed discussion on T (x)). Then,
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the expression in (2.7) is rewritten in terms of r = |zi| and t = ∠zi − θ̂ as

µFX(r, t) = log

∫ π

−π
e
√

Esr cos(t−x)/σ2
T (x)dx∫ π

−π
e−

√
Esr cos(t−x)/σ2T (x)dx

. (2.16)

By observing that T (x) is an even function, one can verify that the expression

in (2.16) is an even function of t, and is odd symmetric around point t = π/2 (i.e.,

µFX(r, t) = −µFX(r, π − t)). Therefore, the Fourier expansion in t will only consist

of cosine terms with odd frequencies. This function is very well approximated by the

first term in this expansion, h(r) cos(t) where h(r) = µFX(r, t)|t=0, with a relative

error less than 10−5, for the Ep values considered herein. With this approximation,

it is straightforward to derive the distribution of the E-PO message, which is given

in Section A.2 of Appendix A.

Finally, the distribution of the EDR-PO receiver can be easily derived noting

that conditioned on θ, the message is Gaussian, resulting in

P (µFX ≤ q) =

∫ π

−π

1

2
erfc

(
σ2q − 2 cos(x)

2
√

2σ

)
T (x)dx, (2.17)

with T (x) defined in (2.15).

2.4.2 QDF receivers

Because the messages µFXi
change with iterations, density evolution for this

receiver scheme is considerably different from that for PO schemes. However, an

important observation regarding the distribution of the message in (2.10) makes

density evolution feasible for this receiver. The idea is that the cdf of the M-QDF

message in (2.10) can be written as the average of some distribution functions which

do not change with iterations. These distribution functions can be evaluated before

hand, thus making density evolution tractable.

To start with, the cdf of the message in (2.10) can be found by first observing
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that the following relationship holds (with qi = µFXi
)

P (qi < q|x) =
∑

vi

P (qi < q|x,vi)p(vi) (2.18)

=
N−2∑
n+=0

N−2−n+∑
n−=0

P (qi < q|x, n+, n−)p(n+, n−) (2.19)

p(n+, n−) =

(
N − 2

n+, n−

)
p

n+

+ p
n−
− pn0

0 (2.20)

p+ = P (µXF > A(l)) (2.21)

p− = P (µXF < −A(l)), (2.22)

where 1+n+ and n− denote number of positive and negative terms in vi, respectively,

n0 = N − 2−n+−n− and p0 = 1−p+−p−. Since the weights are assumed constant

(i.e., a(l) = a =
√

Ep), the only variables in this equation that change with iterations

are p+ and p−. Therefore, the expressions P (qi < q|x, n+, n−) can be evaluated off-

line and stored for use in subsequent iterations5.

Furthermore, due to the similarity of the M-QDF message in (2.10) with the

messages for the M-PO receiver, the same approach can be followed for the evaluation

of these conditional cdfs, which are given in Section A.3 of Appendix A. To prove

that the probability of error is independent of the transmitted codeword, observe that

the quantization mapping is an odd function Q(−x) = −Q(x), and consequently wi

in (2.11) is independent of the transmitted codeword. Therefore, the relationship

in (2.14) holds for the M-QDF receiver as well.

2.4.3 Correct Decision Feedback Bound

It is customary in decision-feedback systems to use the so-called “genie-aided”

receiver to obtain upper bounds on the performance of the analyzed receiver (for

5N(N − 1)/2 distribution functions need to be stored.
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instance, see [22, 43] and references therein). In this section we apply this idea to the

benchmark receiver by considering the following hypothetical system. In particular,

it is assumed that a “genie” corrects all the messages µXF (i.e., µXF = +∞, assuming

the all-ones word is transmitted), so that these messages provide a perfectly correct

decision to the F nodes. As a result, those messages do not change with iterations

and neither do the messages µFX from the node F to the variable nodes. This implies

that the hypothetical receiver under consideration is similar to the M-PO receiver,

with the initial messages µFXi
evaluated as (compare with (2.10))

µFXi
= log

p(z|xi, xi = +1)

p(z|xi, xi = −1)
= log

I0(|pi

√
Ep,eff + zi

√
Es|/σ2)

I0(|pi

√
Ep,eff − zi

√
Es|/σ2)

, (2.23)

where

pi =
yiTzi

√
Ep, eff

. (2.24)

Intuitively, in this hypothetical receiver, all coded bits, other than the ith bit can be

considered as pilot symbols, resulting in an effective pilot symbol energy

Ep,eff = ‖yi‖2 = Ep + (N − 2)Es. (2.25)

It can be seen from (2.24) that pi is a Gaussian random variable with mean ejθ
√

Ep,eff

and variance σ2, conditioned on θ. Thus, the message in (2.23) will have exactly

the same distribution as the M-PO message in (2.6) with Ep,eff substituted for Ep.

This receiver, which takes advantage of the correct decision feedback given by the

hypothetical “genie”, will be referred to as the M-CDF receiver.

2.5 Numerical Results

In this section the performance of the proposed receivers is presented for a con-

crete example of a rate 1/2 LDPC code with parameters dv = 3 and dc = 6. Dis-

cretized density evolution is considered, which corresponds to the exact performance
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of a receiver operating with quantized messages in the sum-product algorithm [15].

A uniform quantizer was used with 127 levels6 in the range from -40 to 40, so that

the cell size was 80/127=0.63. In our implementation of density evolution reaching

a BER of less than 10−30 in at most 1000 iterations, was considered as achieving

error-free communication.

For each pair of Ep and σ (the normalization Es = 1 was used), density evolution

was run to check if the BER converged to zero. The highest σ for which BER

convergence occurred was reported as the σ threshold for that value of Ep. For

the case of PO receivers since the messages µFX do not depend on N , the same

density evolution results are used for different values of N , where Eb/N0 is calculated

from (2.3).

In the case of M-QDF receiver, the messages µFX change with iterations and

depend on N . As a result, separate density evolution runs should be performed for

different values of N . Moreover, the number of initial distribution functions that

need to be evaluated is quadratic in N . A considerable reduction in complexity

was achieved by observing that the set of pairs of non-negative numbers BN =

{(n+, n−)|0 ≤ n+ + n− ≤ N − 2} is included in the set BN ′ for any N ′ > N .

This fact implies that the set of distribution functions that need to be evaluated

and stored for N ′ includes all the distribution functions already calculated for N .

Therefore, for fixed σ and Ep, when increasing the channel coherence interval from N

to N + 1, only N additional distribution functions need to be evaluated, as opposed

to N(N − 1)/2. This observation was the basis for the numerical results for M-QDF

receiver presented herein. In particular, the values of σ and Ep were fixed and density

6It is noted however, that discretized density evolution with this resolution is not sufficient to
obtain accurate threshold values for a receiver using unquantized messages.



34

−5 0 5 10 15 20
−2

−1

0

1

2

3

4

AWGN Limit for (3,6) LDPC Code

E
p
/E

s
 (dB)

E
s/N

0 (
dB

)
EDR−PO
E−PO
M−PO
M−QDF(N=3)
M−QDF(N=5)

Figure 2.3: Minimum required Es/N0 versus Ep/Es.

evolution was performed for increasing values of N until BER convergence occurred,

say for N = N∗. The resulting triplet of values (Ep, σ, N∗) is achievable, thus

the corresponding Eb/N0 can only be viewed as an upper bound on the minimum

achievable Eb/N0 (because of the suboptimal power allocation, that was specified

before hand). Repeating this procedure for several pairs Ep and σ, a set of achievable

points is obtained. Moreover, since the performance increases with N , an achievable

triplet of values (Ep, σ, N∗) implies that the triplet (Ep, σ, N ′) is also achievable

for N ′ > N∗. Thus a set of Eb/N0 values can be obtained through the use of

equation (2.3) for all N ′ > N∗.
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Figure 2.4: Minimum Eb/N0 required versus Ep/Es for M-PO receiver for different
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Fig. 2.3 shows the minimum coded bit SNR, Es/N0, that is required versus the

pilot to symbol power ratio, Ep/Es, for M-QDF and all three PO receivers. For com-

parison, the horizontal line indicates the threshold for the coherent AWGN receiver

(sum-product algorithm) [77]. The convergence of these curves to the performance

of AWGN receiver with increasing Ep/Es can be observed from the figure. Further-

more, the performance of the M-QDF receiver is increased with increasing N , and is

consistently better than that of the PO receivers.

In Fig. 2.4, the tradeoff associated with the power allocation to the pilot symbol

is exemplified for the M-PO receiver. This graph depicts the overall Eb/N0 required
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for error-free transmission versus Ep/Es for several values of N . The points denoted

by stars on the curves correspond to Eb/N0 that would be required if non-optimal

Ep = Es power allocation were used. The gain over these points achieved by using

the optimal power allocation is considerable, thus proving the importance of power

allocation (e.g., a gain of 1.5 dB at N = 20 is observed). Also observe that optimal

power allocation happens somewhere between 3-6 dB, which means that pilot energy

Ep should be roughly from 2 to 4 times the coded symbol energy Es.
7 We note that

the curves for different N were produced using the single curves in Fig. 2.3, combined

with (2.3).

The behaviour of the SNR gains as a result of pilot power optimization for dif-

ferent N and receivers is depicted in Fig. 2.5. Minimum required Eb/N0 for these

receivers is drawn versus the channel coherence interval, together with minimum re-

quired Eb/N0 when Ep = Es is used. As can be seen from the figure, optimizing the

pilot energy results in 0.8 dB gain at N = 10 (1.2 dB at N = 20) for the M-QDF

receiver, while for the M-PO receiver the corresponding gains are 1 dB and 1.8 dB.

Fig. 2.6 compares the performance of M-PO and M-QDF receivers to the uncon-

strained and modulation-constrained capacities of this channel. Minimum required

Eb/N0 for these receivers is drawn versus the channel coherence interval. Also de-

picted in this figure is the Eb/N0 curve for the hypothetical M-CDF receiver (Sec-

tion 2.4.3) and the noncoherent BPSK capacity from [68], which together constitute

a lower bound on the performance of all the above receivers including the benchmark

receiver. It is noted that the performance of the sum-product receiver described in

7One can also distribute the pilot energy Ep = mEs into m symbols, each of energy Es. This
might be more advantageous if additional constraints are imposed by the amplifier dynamic range.
However, such a scheme will result in a rate loss of (N −m)/N .
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receivers.

(2.4c) falls between the curves of M-QDF and this combined lower bound (BPSK

capacity curve for N ≤ 11, and M-CDF curve for N > 11). The lowest curve on

this figure is the capacity of the noncoherent channel without any modulation con-

straints taken from Chapter III. The difference between this curve and the BPSK

capacity shows how much information bit SNR could be gained by utilizing more

suitable modulation schemes (see Chapter III for a detailed discussion of capacity

results). Density evolution results for irregular LDPC codes revealed the perfor-

mance gain for irregular codes in the noncoherent channel (solid and dashed M-PO

curves) is accurately predicted by the gain in the AWGN channel (solid and dashed
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AWGN horizontal lines). No attempt was made to optimize the irregular codes for

this channel; rather, the irregular code of [76] with maximum variable- and check-

node degree of 4 and 6, respectively, was used. Finally, density evolution results, not

shown here, confirmed that the performance of orthogonal modulation using symbol-

by-symbol noncoherent detection is far worse than the performance of the proposed

PSA schemes even when simple PO receivers are utilized (e.g., the minimum required

Eb/N0 was found to be 7.41 dB).

Fig. 2.7 shows the optimal power allocation Ep/Es required to achieve the min-

imum Eb/N0 values, reported in Fig. 2.5, for the proposed receivers versus N . The
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dependence of the optimal power allocation on N as well as on the particular algo-

rithm used is illustrated. In particular, the increase of Ep/Es with N is observed,

as expected. Also, it could be seen from this figure that the better the estimation

performed by the particular receiver, the less pilot power it requires for optimal

operation. These facts should be taken into account when designing transmission

systems; required pilot power is the property of not only the code but also the par-

ticular receiver utilized.

The figures shown previously are the results of density evolution which is an ana-

lytical tool and assumes infinite iterations and codelength. It is therefore important
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to quantify the effects of using small codes and finite iterations. Fig. 2.8 shows BER

versus Eb/N0 curves for M-PO and M-QDF receivers, obtained by simulating an

(n, k) = (4000, 2000) LDPC code. Vertical lines are the performance limits obtained

by using density evolution. It is observed that the relative performance obtained

using density evolution predicts the true performance of LDPC codes even for such

small codes. Also plotted on this figure is the performance of another suboptimal

receiver (denoted QPH) that works, by quantizing the phase variables θ, on the fac-

tor graph which explicitly models these phase variables (see Fig. 2.1(a)). Recalling
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that fi(x, θ) = exp[Re(
√

Esxzie
−jθ)/σ2], the message passed by this algorithm to the

LDPC decoder can be written as

µfXi
= log

L′i(+1)

L′i(−1)
(2.26)

L′i(a) =
∑

θ∈Θ

[
fi(a, θ) exp(Re(

√
Epz0e

−jθ)/σ2)×

×
N−1∏
j=1
j 6=i

(fj(+1, θ)eµXjf + fj(−1, θ))
]
, (2.27)

where Θ denotes a finite set of quantized phase values. It was shown in [70, 36] that

the performance of this suboptimal receiver is close to the optimal sum-product re-

ceiver even for a small number of quantization intervals (e.g., 8 samples are adequate

for almost identical performance in the case of BPSK). The pilot power allocation

was optimized using simulations in this case, and the optimal Ep/Es values were

found to be 0.4 dB for N = 5 and 1.7 dB for N = 11. As expected, both values

are below the optimal values predicted by density evolution for the M-QDF receiver,

since the QPH receiver closely approximates the sum-product algorithm, and thus,

utilizes the pilot energy more efficiently. Also observe that the performances of the

M-QDF and QPH receivers are close (i.e., within 0.5 dB), suggesting that the per-

formance of the benchmark receiver is closer to the M-QDF curve than to the lower

bound in Fig. 2.6.

To further justify the results of this chapter we applied these ideas to a more band-

width efficient constellation than BPSK, namely quadrature PSK (QPSK), which re-

sults in twice the transmission rate. However, since density evolution of non-binary

codes and the QPH receiver is complicated (if at all possible), the pilot power allo-

cation was optimized using simulations. The use of binary modulation and a simple

receiver for analysis/design and QPSK modulation for actual implementation of a
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modulation. Curves show N = 5 (dashed) and N = 11 (solid) lines for
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more complicated (i.e., QPH) receiver is justified as can be seen in recent works [36].

The optimal Ep/Es values were found to be 1.3 dB for N = 5 and 2.3 dB for N = 11,

which is larger compared to the BPSK example, since phase estimation is more crit-

ical in QPSK. Simulation results are depicted in Fig. 2.9 (the same LDPC code as

in Fig. 2.8 was used) with and without pilot power optimization. It can be observed

that pilot power optimization still yields a gain of 0.6 dB (0.3 dB) at N = 11 (N = 5).
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2.6 Conclusion

In this chapter, the design and analysis of PSA codes for the block-independent

noncoherent AWGN channel was investigated. Several approximate receivers were

proposed, which perform carrier-phase estimation either separately from decoding, or

jointly as part of an iterative phase estimation/decoding process. The performance

of these receivers was analyzed using density evolution. Based on these approximate

receivers, a simple upper bound to the performance of any iterative joint phase es-

timation/decoding algorithm was derived. Utilizing density evolution as an analysis

and optimization tool, the power allocation to the pilot symbol was quantified, and

it was shown that a considerable performance gain can be obtained by designing

codes with the optimal power allocation. Furthermore, this optimal allocation, de-

pends highly on the channel coherence interval, and the particular algorithm used,

and plays an increasingly critical role for fast channel dynamics. The development of

these coding/decoding schemes is not specific to the particular regular LDPC codes

used for demonstrating the concepts. For instance, irregular LDPC codes [76] can

be used, providing a considerable additional performance gain.

The subject of the next two chapters is the design of more direct coding schemes

that operate on the noncoherent channel when high dynamics are present. In this re-

spect, the presented PSA codes and the corresponding receivers can serve as baseline

– yet powerful – systems, against which other code designs can be compared.



CHAPTER III

CAPACITY OF THE NONCOHERENT

CHANNEL

3.1 Introduction

In the previous chapter we analyzed a simple coding scheme for the block-

independent noncoherent channel of (1.2), which used pilot symbols to aid phase

estimation. It was shown that for high values of the channel coherence time N , such

a system performs fairly well and permits the use of a vast amount of error correcting

codes designed for the coherent AWGN channel. On the other hand, for faster phase

dynamics, or equivalently, smaller values of N , such a segregated design is highly

inefficient.

To combat this shortcoming we need to consider a more direct approach to coding

by trying to utilize a close-to-optimal signaling scheme designed specifically for the

noncoherent channel. Towards this goal we investigate the information capacity and

the capacity achieving signaling scheme for this channel. The next chapter uses

the results found herein to design specific coding schemes that come close to the

theoretical limit and yet have practical complexity.

The capacity of the block-independent noncoherent channel has been investigated

in the literature. In the early work of [12], the capacity of a frequency shift keying

44
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(FSK) system was investigated numerically. In [68] the capacity of this channel was

analyzed for M-ary phase shift keying (M-PSK) transmission. In particular, it was

shown that the capacity-achieving inputs are independent and identically distributed

M-PSK symbols. A partial characterization of the capacity-achieving distribution for

non-constraint inputs was done in [18]. It was shown that the capacity-achieving in-

put signal consists of N complex variables whose phases are independent identically

distributed (i.i.d.) random variables, uniformly distributed over [−π, π), and also

independent of the amplitudes. Very recently [38, 39], the capacity-achieving distri-

bution was found to have a discrete amplitude nature with infinite number of mass

points for the special case of a memoryless phase process, i.e., for N = 1. Finally,

upper and lower bounds on the capacity for the case of N = 1 were derived in [44].

To date, a complete characterization of the capacity-achieving input distribution is

not available for arbitrary phase dynamics, i.e., for arbitrary N .

In Section 3.2, four facts about the structure of the capacity achieving input

distribution for this channel are proved:

• The maximizing input density has circular symmetry, that is, all directions in

the complex N -dimensional space should be used equally probable.

• There exists a unique amplitude distribution that maximizes the mutual infor-

mation.

• The maximizing amplitude density is discrete.

• The maximizing amplitude density has infinite number of mass points.

• The maximizing density always has a mass point at zero.

We note that in a recent independent work [39], the validity of the third and
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fourth facts mentioned above was established for a special case of a memoryless (i.e.,

N = 1) noncoherent channel.

Based on the above characterization of the maximizing input distribution, asymp-

totic expressions are derived in Section 3.3 that relate the mass-point probabilities

with the mass-point locations. These expressions suggest a double exponential de-

crease of the probabilities with respect to the mass-point locations. Motivated by

these expressions, several numerical optimization results on capacity are reported

in Section 3.4. In particular, the gain from utilizing more than one mass points in

the amplitude density of the transmitted vector is investigated. These results indi-

cate that for the range of signal-to-noise ratios (SNRs) and code rates considered

herein, the amplitude density of the capacity-achieving input is well approximated

by a two-point discrete density, with one point at zero. Furthermore, the capacity

loss incurred by the use of practical modulation schemes is quantified.

3.2 Capacity Characterization

Recall the input/output relationship for the considered channel

yk = xke
jθk + nk, (3.1)

where xk, yk and nk are complex sequences of length N , denoting the k-th block of

the transmitted sequence, the observed sequence, and the noise sequence of indepen-

dent identically distributed (i.i.d.), zero-mean, circular, complex Gaussian random

variables with variance σ2 = N0/2 per real dimension, respectively. The unknown

phase rotation in each block is represented by the variables θk, which are modeled

as i.i.d. random variables uniformly distributed in [−π, π). If blocks of length N

are treated as symbols, this channel is memoryless, time invariant and is completely
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specified by its transition probability

p(y|x) =
1

(2πσ2)N
e−

‖x‖2+‖y‖2
2σ2 I0

( |xHy|
σ2

)
. (3.2)

Here and in the following, In(·) denotes the nth-order modified Bessel function of

the first kind, and xH and ‖x‖ denote the complex conjugate transpose, and the

norm of x, respectively. It is noted that the presence of the Bessel function in (3.2)

significantly complicates analysis for this channel (as will be evident in the next

sections) and is one of the reasons why this channel has not been as well studied as

the corresponding block-independent fading channel.

We are interested in characterizing the capacity achieving distribution of x under

an average power constraint E(‖x‖2) ≤ P. This problem can be precisely formulated

as

C = sup
p(x)

E(‖x‖2)≤P

I(p) with I(p) , I(x;y), (3.3)

where I(x;y) denotes the mutual information between x and y

I(x;y) =

∫∫

C2N

p(y|x)p(x) log
p(y|x)∫

p(y|x′)p(x′)dx′
dxdy. (3.4)

A note regarding the convention used herein is in order. Although density functions

instead of distribution functions are used throughout this chapter, this is only a no-

tational convention. All derivations and results can be restated in a more rigorous

manner by substituting densities with distributions and interpreting the integrals in

the Lebesgue-Stieljes sense. Another approach is followed in proving certain facts

in Section B.3 of Appendix B, where the density functions are interpreted as linear

functionals on a space of bounded continuous functions. For smoothness of presen-

tation we will refrain from introducing such complications early in the text and do

so as they become necessary. Likewise, most of the details of the proofs are collected

in Appendix B at the end of the thesis.
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Generally, this problem involves an optimization over the densities of N dimen-

sional random complex vectors, since there is no smaller-dimensional sufficient statis-

tic for the output of the channel. However, the following lemma shows that we can

restrict ourselves to a much smaller space of densities, namely the space of circularly

symmetric densities. An N -dimensional complex random vector is called circularly

symmetric if its density function depends only on the magnitude of the vector, i.e.,

px(x) = f(‖x‖) ∀x ∈ CN , (3.5)

for some nonnegative function f : [0,∞) → [0,∞). Simply put, circularly symmetric

random vector is one which uses all directions in the N -dimensional complex space

equally likely, and is completely specified by the density of its amplitude. Therefore,

the space of such functions can be parameterized in terms of one real function (that

is, the density of ‖x‖). If S denotes the space of circularly symmetric densities then

we have

Lemma 3.1. The optimization problem of (3.3) simplifies to

C = sup
p(x)

E(‖x‖2)≤P

I(p) = sup
p(x)∈S

E(‖x‖2)≤P

I(p). (3.6)

Proof. We prove this lemma by showing that for any given density p0(x) there exists

a density p(x) ∈ S that achieves mutual information not less than the one achieved

by original density, that is I(p) ≥ I(p0). This fact is a special case of a more general

result obtained in [53] for a multiple-input/multiple-output (MIMO) communication

system over a complex Gaussian block-independent fading channel. Although the

channels under consideration are different, the only requirement for the proof is that

the channel transition probability satisfies p(y|x) = p(Uy|Ux) for any deterministic

unitary matrix U , which is true in this case as can be seen from (3.2). The proof
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proceeds by first showing that I(p(x)) = I(p(Ux)), for any unitary U , and then form-

ing a new random variable x′ = Φx, where Φ is an isotropically distributed random

matrix independent of x, i.e., it is an N ×N random unitary matrix whose distribu-

tion is unchanged when it is multiplied by a deterministic unitary matrix (see [53]

for a more detailed discussion on the isotropically distributed random matrices and

vectors). The desired result follows by observing that ‖x′‖ = ‖x‖ and using the

fact that for a fixed transition probability, the mutual information is a convex cap

functional of the input density. ¥

The lemma indicates that all directions in the N -dimensional complex space

should be used equally likely. In other words, the maximizing input vector — condi-

tioned on its amplitude — is uniformly distributed on a sphere in the N -dimensional

complex space. More precisely, the maximizing input vector is of the form x′ = rh,

where r is a real, nonnegative random variable, and h is an isotropically distributed

random vector 1, independent of r, with density

p(h) =
(N − 1)!

πN
δ(‖h‖2 − 1). (3.7)

The independence of r and h follows because x′ = Φt‖x‖, where t = x/‖x‖. Since

Φ is isotropically distributed, h = Φt conditioned on t and r has the density given

by (3.7), and hence is statistically independent of t and r = ‖x′‖.

Furthermore, this lemma implies the conclusion, previously reached in [18], that

the phases of the optimally distributed input vector x are i.i.d. uniformly distributed

and independent of their amplitude, namely if x = [r1e
jθ1 , . . . rNejθN ]T then

p(r1, . . . rN , θ1 . . . θN) = p(r1, . . . , rN)

(
1

2π

)N

. (3.8)

1If z is a vector of N i.i.d. zero-mean complex Gaussian random variables, then h = z/‖z‖.
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The main advantage of this lemma is that it effectively reduces the dimension-

ality of the optimization problem; instead of searching over densities of N complex

variables, we only need to search over densities of one real variable. Using this fact,

the mutual information in (3.3) that corresponds to a circularly symmetric input

with normalized amplitude a = ‖x‖/σ with density pa(a), can be written as (see

Section B.1 of Appendix B for derivation details)

I(pa) =

∫ ∞

0

Fpa(a)pa(a)da. (3.9)

where

Fpa(a) =

∫ ∞

0

p1(r|a) log
p1(r|a)

r
dr −

∫ ∞

0

pN(r|a) log
pN(r)cN−1

r2N−1
dr (3.10)

In the above equation, cn = (2e)nn!, and the density of the normalized output

variable ‖y‖/σ is pN(r) =
∫

pN(r|a)pa(a)da, with conditional density given as

pn(r|a) = e−(r2+a2)/2r
(r

a

)n−1

In−1(ar) (3.11)

With this notation, the optimization problem in (3.3) becomes

C = sup
pa(a)

E(a2)≤γ

∫ ∞

0

Fpa(a)pa(a)da, (3.12)

where γ = P/σ2.

The necessary and sufficient conditions (referred to as “Kuhn-Tucker condition”)

for an input amplitude density to be the maximizing one are derived in Section B.2

of Appendix B as

Fpa(a) ≤ λ + µa2, (3.13)

for some positive λ and µ, with equality if a is a mass point, that is
∫ a+δ

a−δ
pa(a

′)da′ > 0

for any δ > 0. The set of all such points is called the support set. Observe that

parameters λ and µ are related to the capacity as C = λ + µγ.
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Furthermore, in Section B.3 of Appendix B it is shown that the supremum in

(3.12) is achieved by a unique density pa(a). This, in turn, implies that there exists

exactly one capacity-achieving circularly symmetric input density for the input vec-

tor x. This is true since, as mentioned earlier, a circularly symmetric input density

is precisely identified by the corresponding amplitude density. However, it does not

imply the uniqueness of the capacity-achieving input density, as there can be capacity

achieving input densities that are not circularly symmetric. On the contrary, there

indeed exist several such input densities. For instance, restricting any one symbol in

the N dimensional input complex vector x to be real, does not reduce the achievable

capacity, and yet such an input density is not circularly symmetric. It is, however,

noted that all the capacity achieving input densities have exactly the same amplitude

variation, as it easily follows from the application of the methods used in the proof

of Lemma 3.1.

The next two theorems prove that the optimizing density of a is discrete with

infinite number of mass points, but only finitely many in any bounded interval.

Theorem 3.2. The capacity achieving density of a = ‖x‖/σ is discrete, that is a

can have at most finite number of mass points in any bounded interval.

Proof. The proof is by contradiction. First observe that by using the fact

∫
r2pN(r|a)dr = 2N + a2, (3.14)

we can rewrite the Kuhn-Tucker condition in the more suitable form as

∫ ∞

0

e−r2/2r
(r

a

)N−1

IN−1(ar) log φ(r)dr =

∫ ∞

0

e−r2/2rI0(ar) log I0(ar)dr (3.15)

for all a such that p(a) > 0, where

φ(r) =
pN(r)cN−1

r2N−1
eλ+1+(µ+1)(r2−2N) (3.16)
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Both sides of (3.15) can be analytically extended to the entire finite complex plane

as

ΨL(z) =

∫ ∞

0

e−r2/2r
(r

z

)N−1

IN−1(zr) log φ(r)dr (3.17a)

ΨR(z) =

∫ ∞

0

e−r2/2rI0(zr) log I0(zr)dr (3.17b)

where for ΨR(z) the integral should be understood in the Cauchy sense (see below

for details).

Assume, on the contrary, that the statement of the theorem is not true, i.e.,

in some (closed) finite interval there are infinitely many mass points. This in turn

implies that the support set has an accumulation point. Equation (3.15) and the

above assumption imply that the two analytic functions in (3.17) coincide on a set

which has an accumulation point inside the region of analyticity. Therefore, it follows

from the identity theorem [45, Sect. I-20] that these functions are identical in the

entire region of analyticity, that is in the entire finite complex plane. We will arrive

at a contradiction by showing that this statement is violated on the imaginary axis.

On the imaginary axis z = jb we have

ΨL(jb) =

∫ ∞

0

e−r2/2r
(r

b

)N−1

JN−1(br) log φ(r)dr (3.18)

where Jn(·) is the n-th order Bessel function of the first kind. The expression

in (3.17b) can be used directly (the integral understood in the Riemann sense) for

any complex z with positive real part. However, the extension of this function to the

imaginary axis and beyond is not straightforward. This is due to the presence of the

log I0(zr) component, which is pathological since I0(·) has zeros on the imaginary

axis. This obstacle is overcome by finding an alternative representation of ΨR(z) that

is valid in a region containing the imaginary axis. One such representation valid in
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a region defined by arg(z) ∈ (π/4, 3π/4) is presented in Section B.4 of Appendix B,

which for the case of z = jb yields

ΨR(jb) =

∫ ∞

0

e−r2/(2b2) r

b2
J0(r) log |J0(r)|dr + jπ

∫ ∞

0

e−r2/(2b2) r

b2
J0(r)ξ(r)dr. (3.19)

where ξ(r) = 0 if r ∈ (0, α1) and ξ(r) = k if r ∈ (αk, αk+1), with αk, k ≥ 1 being the

positive zeros of J0(r) in increasing order. We will now show that the second integral

in the above expression (i.e., the imaginary part of ΨR(jb)) is not identically zero,

thus arriving at a contradiction since ΨL(jb) in (3.18) is real for all values of b. We

accomplish this by bounding the imaginary part away from zero as (see Section B.5

of Appendix B for the details)

|Im(ΨR(jb))|
π

≥ (|J0(β)| − b2

β
)e−β2/(2b2) − (1 +

2b2

πα2

)e−α2
2/(2b2) (3.20)

where β is the positive zero of J1(r) less than α2. This expression is positive for

small enough values of b (e.g., at b = 1 it is 2.9× 10−5).

Hence, our original assumptions are not valid which means that the capacity

achieving density is indeed discrete. ¥

At this point it is worth noting that the general methodology followed in proving

the above theorem parallels the approach of [82], [25], and [38] for the amplitude-

constrained AWGN channel, the fast (i.e., N = 1) Rayleigh fading channel, and the

fast (i.e., N = 1) noncoherent AWGN channel, respectively. The technical difficulties

in the channel under consideration originate from the fact that (i) we are considering

the general case of N ≥ 1 and (ii) the presence of Bessel functions in (3.15) (instead

of the exponential functions that appear in [25]) prevents the use of the Laplace

transform for solving explicitly (3.15) for φ(r).

As a side note, it is observed that the expression in (3.18) can be recognized as

the Hankel transform of index N − 1 of the function e−r2/2rN−1 log φ(r) divided by
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bN−1, and hence, one can invert2 the resulting expression to get

log φ(r) =
er2/2

rN−1
H−1

N−1(b
N−1ΨR(jb)) =

er2/2

rN−1

∫ ∞

0

ΨR(jb)bN−1bJN−1(br)db, (3.21)

where H−1
N−1 denotes the inverse Hankel transform of index N − 1. This expression

would be useful for obtaining an explicit solution if ΨR(jb) was a real function.

However, as it is shown in the above proof, ΨR(jb) has an imaginary component,

and thus no positive solution for φ(r) exists.

The theorem implies that the only way to have infinitely many mass points is

if they form a sequence extending to infinity in which case the support set has an

accumulation point at infinity. As it turns out, unlike the case of Rayleigh fading [25]

or amplitude-constrained [82] channels, the maximizing density for the noncoherent

AWGN channel does have infinitely many mass points, as the following theorem

shows. An intuitive explanation of this result is that the noncoherent AWGN channel

does not suffer from the detrimental effects of a random amplitude, and thus, the

risk involved in receiving a very small signal even though a very large signal is sent,

is smaller compared to the case of Rayleigh channels.

Theorem 3.3. The capacity achieving density of a = ‖x‖/σ has an infinite number

of mass points.

Before proving this theorem we need the following lemma, the proof of which is

in Section B.6 of Appendix B.

Lemma 3.4. The Lagrange multiplier µ in (3.15) is less than 1/2.

We are now ready to prove the theorem.

2Assuming bN−1ΨR(jb) satisfies some sufficiency conditions (e.g., see [19, p. 71]).
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Proof of Theorem 3.3. The proof is by contradiction. First, let ak and pk be the

positions and probabilities of the mass points and rewrite the Kuhn-Tucker Condi-

tion (3.13) as

λ + µa2 − Fpa(a) ≥ 0 (3.22)

with equality at mass points a = ak for k ≥ 1. Let

Sn(x) = cn
In(x)

xn

and observe that Sn(x) is an increasing function with Sn(0) = en for any integer

n ≥ 0.

Assume on the contrary that the capacity achieving density has finitely many

mass points. Then there exists M such that aM > ak for any k 6= M . Therefore

using (3.11) we have

cN−1pN(r)

r2N−1
=

∑

k

pk
cN−1pN(r|ak)

r2N−1
=

∑

k

pke
−r2/2e−a2

k/2SN−1(akr)

≤ e−r2/2SN−1(aMr) (3.23)

Combining this bound with the fact that Sn(x) ≤ exp(x + n), we can estimate the

second term in (3.10) as

∫ ∞

0

pN(r|a) log
cN−1pN(r)

r2N−1
dr ≤

∫ ∞

0

pN(r|a) log(e−r2/2SN−1(aMr))dr

= −a2

2
−N +

∫ ∞

0

pN(r|a) log SN−1(aMr) = −a2

2
+ O(a) (3.24)

where the O(a) term applies for a going to infinity. Similarly the first term in (3.10)

is also of order3 at most O(a). Finally, combining these evaluations with (3.22) we

get that

λ + µa2 − [
1

2
a2 + O(a)] ≥ λ + µa2 − Fpa(a) ≥ 0 (3.25)

3In fact, it behaves as O(log a).
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which implies that µ ≥ 1/2. This is a contradiction to the result of Lemma 3.4;

therefore, the original assumption is incorrect, and thus there are infinitely many

mass points which form a sequence extending to infinity. ¥

The results so far show that the input vectors x that achieve capacity are isotropi-

cally distributed on infinitely many concentric spheres in the N -dimensional complex

space. The next theorem takes the characterization of the maximizing density one

step further and proves that there always exist a mass point at the origin. Observe

that for the case of N = 1 this result is quite intuitive and straightforward to show: if

there is no mass point at zero, then reducing the smallest amplitude to zero increases

the “mass-point separation” at no extra cost (to say nothing of the reduced average

power, which can be used to increase the amplitude of the other mass points). The

proof in that case is easily carried out by evaluating the derivative of the mutual

information with respect to the smallest amplitude and observing that the latter is

negative as long as the smallest amplitude is nonzero (this is essentially the technique

used in [25]). In the case of general N , there is some information stored in the phase

(direction vector), and hence reducing a mass point to the origin has two contradict-

ing effects: (i) the separation between spheres increases (for the same power) thus

increasing the mutual information, and (ii) the information transmitted through the

phase of the smallest sphere is lost which reduces the mutual information. In general,

reducing the smallest mass point to zero does not necessarily increase the mutual

information. The next theorem, follows a different approach to prove the existence

of a mass point at zero.

Theorem 3.5. The optimizing probability mass function of a = ‖x‖/σ has a mass

point at the origin for all values of SNR and channel coherence time N .
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We note that the proof of this theorem was by far the most complicated compared

to the rest of the results in this thesis. As the details are lengthy and tedious, we give

the general idea of the proof here, with the complete proof presented in Section B.7

of Appendix B.

Sketch of the Proof. We are actually proving a somewhat stronger fact from which

this theorem follows as a consequence. In particular, we are proving that for any

given input density that does not have a mass point at zero, we can construct a

corresponding input density with a mass point at zero that results in higher mutual

information. This way we are establishing the “introduction of a mass point at zero”

as a simple and useful tool for modulation design for this channel.

Let a = {0, a1, a2 . . .} and p = {p0, p1, p2 . . .} be the locations and probabilities

of the mass points, respectively, so that the pair (a,p) denotes a valid input ampli-

tude density. For notational simplicity also assume that the sequence a is (strictly)

increasing and let I(a,p) be the mutual information corresponding to this input

density.

Assume an input density with no mass point at the origin, i.e., p0 = 0 and

consider the input density pair

p∗(x) = {x, p1 − x, p2, p3 . . .} (3.26)

a∗(x) = {0, a1

√
p1

p1 − x
, a2, a3, . . .}, (3.27)

which corresponds to introducing a mass point at zero of probability x at the expense

of the minimum amplitude mass point, and accordingly increasing the latter to keep

the average power the same. Observe that the case of x = 0 corresponds to the

original input density pair. We show that

d

dx
I(a∗(x),p∗(x))

∣∣∣
x=0

> 0, (3.28)
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which implies that there is a x0 > 0 so that I(a∗(x0),p
∗(x0)) > I(a,p), that is,

the original provided input density can not be the optimal one. Since the initial

density was chosen arbitrarily (with no mass point at zero), this result implies that

the optimal density must have a mass point at the origin, proving our claim.

Observe that

d

dx
I(a∗(x),p∗(x))

∣∣
x=0

=
∂I

∂p0

− ∂I

∂p1

+
1

2

a1

p1

∂I

∂a1

, (3.29)

where the partial derivative with respect to ak is the left-hand side of (B.28) in

Section B.6 of Appendix B multiplied by pkak, and the partial derivative with respect

to pk is given by ∂I
∂pk

= Fpa(ak) − 1. Therefore, the derivative in (3.28) after some

manipulation becomes

a2
1

2
+

∫ ∞

0

(
a2

1

2
p2(r|a1)− (1 +

a2
1

2
)p1(r|a1)

)
log I0(a1r)dr

−
∫ ∞

0

(
pN(r|0) +

a2
1

2
pN+1(r|a1)− (1 +

a2
1

2
)pN(r|a1)

)
log

pN(r)

r2N−1
dr. (3.30)

The sum of the first two terms in the above expression is always positive, while the

last term can be positive or negative. The proof is established by showing that the

sum of the first two terms is greater than the last term. ¥

3.3 Asymptotic Results

Aided by the results of the previous section on the properties of the capacity-

achieving input distribution, one can proceed with a numerical evaluation of the

capacity. This task involves numerical optimization over the positions and the prob-

abilities of the mass points of the amplitude density. Before we do that, we present

an asymptotic result on the relationship between the positions of the mass points

and their corresponding probabilities. The value of such an expression is twofold: (i)
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it can potentially aid the aforementioned numerical optimization by utilizing an ad-

ditional constraint, thus limiting the search over a smaller set of unknowns, and (ii)

it provides additional insight on the maximizing input distribution in some limiting

cases, as will be discussed in the following.

Let ak and pk be the locations and probabilities of the mass points, respectively,

with a0 = 0. From the Kuhn-Tucker condition we know that for all k

Fpa(ak) = λ + µa2
k. (3.31)

Using the bound pN(r) =
∑

i pipN(r|ai) ≥ pkpN(r|ak) we get that

λ + µa2
k = Fpa(ak) ≤ − log pk + gN(ak), (3.32)

with

gN(ak) =

∫ ∞

0

p1(r|ak) log
p1(r|ak)

r
dr −

∫ ∞

0

pN(r|ak) log
pN(r|ak)cN−1

r2N−1
dr (3.33)

which implies the bound

pk ≤ exp(gN(ak)− λ− µa2
k). (3.34)

Although one can numerically evaluate the function gN(·), an asymptotic ex-

pression, derived from well-known asymptotic expressions for the involved Bessel

functions, is shown below

pk ' p0e
−µa2

k
(a2

k + 2N − 1)N−1

cN−1

. (3.35)

The right hand side of (3.34) and the approximation in (3.35) are plotted in Fig. 3.1

for a special case of N = 7, µ = 0.2 and p0 = 0.25. It is evident from this figure that

the asymptotic approximation of (3.35) is indeed accurate for high values of a.

Several observations regarding these expressions are in place here.
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Figure 3.1: Bound on the mass point probabilities versus mass point locations for
N = 7, µ = 0.2 and p0 = 0.25. The dashed curve is the asymptotic
approximation of (3.35).

• It can be shown that the smaller the Lagrange multiplier µ (i.e., the higher the

SNR), the more accurate the expression in (3.35) is.

• For large values of the amplitude ak, the corresponding probabilities decrease

as exp(−µa2
k). The square exponential decrease of the mass point probabilities

is the main reason why there is only marginal error when high amplitude terms

are truncated (e.g., when numerical evaluation is performed).

• This approximate expression hints at densities that can be used to derive lower

bounds on the capacity. For instance, a lower bound was derived in [38] (for

the case of N = 1) using a half-Gaussian continuous amplitude density. This

choice is justified as a good lower bound from the asymptotic result presented

above. This asymptotic result is also consistent with the results of [44], where
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it was shown that the half-Gaussian density achieves capacity at high SNR

values.

• By defining a normalized amplitude β = a/
√

2N , one can observe a sphere

hardening effect for large values of N (details provided below); this is consistent

with the fact that for large N , the block-independent noncoherent channel

resembles a coherent AWGN channel.

Sphere Hardening Effect: Now we show that the optimum input density exhibits the

sphere hardening effect, that is with increasing N , the amplitude variation collapses

to a single point. For that, fix µ, and assuming N > 1 rewrite (3.35) as

p(a) ' Ke−µa2

(a2 + 2N − 1)N−1, (3.36)

where K is some constant chosen to make the maximum of the right hand side of

(3.36) equal to 1, that is

K =

(
µ

N − 1
e1−2µ

)N−1

e−µ. (3.37)

Using this choice4 of K and substituting a = β
√

2N , the right hand side of (3.36)

becomes

fN(β) =

[
e1−X(X +

X − µ

N − 1
)

]N−1

eµ−X , (3.38)

where X = 2µ(β2 + 1). Taking advantage of the following well-known limit

lim
n→∞

(
x +

t

n

)n

=





et x = 1

0 0 ≤ x < 1

∞ x > 1

(3.39)

4Because we are interested in the relative behaviour of the different amplitudes, a, the choice of
K does not affect the sphere hardening effect.
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and noting that Xe1−X ≤ 1 with equality if and only if X = 1, we obtain the desired

result

lim
N→∞

fN(β) =





1, X = 1

0, otherwise,

(3.40)

that is, the limit of fN(β) is nonzero if and only if β =
√

1
2µ
− 1, which establishes

the desired result. ¤

In view of the above discussion, discrete optimization methods can be utilized

to evaluate (or approximate) the maximizing input distribution. We have seen little

performance loss (for the range of values of SNR and N that we are interested in)

when the number of mass points was restricted to 2, one at zero and the other at a

non-zero location. Therefore, in the following by “capacity” of this channel we refer

to this two-mass-point capacity. It should be noted that, although we have proven

the existence of a mass point at zero, this is not necessarily true for the case of a fixed

number of mass points. However, for the range of values of interest, the two-point

optimizing density was found to have a mass point at zero.

3.4 Numerical Results

Throughout this section we quantify two important measures of performance.

The first one, referred to as “discretization loss”, is the result of using modu-

lation schemes that approximate the circularly symmetric signaling suggested by

Lemma 3.1. In other words, this loss is due to the fact that not all but only a fi-

nite number of points on the surface of a sphere are used in a specific modulation

scheme. The second performance measure, referred to as “shaping gain5”, is the gain

5The term “shaping” is used in general to describe the process of adapting the transmitted signal
to match the optimal input distribution. This process has been studied extensively for the AWGN
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Figure 3.2: Capacity and optimal probability of zero versus Es/N0 for N =
1, 2, 3, 5, 7, 10, 20, 30. The dashed curve represents the capacity of the
coherent AWGN channel.

obtained by using the above described two-mass-point density (i.e., the mass point

at zero in addition to a nonzero mass point), versus an input density consisting of

a single sphere. The logarithm of base two and the following normalization for the

capacity is used throughout

C =
I(x,y)

N
(bits/complex dimension). (3.41)

Fig. 3.2 presents capacity versus coded bit SNR Es/N0 = P/(NN0) curves for

channel [27, 23]. In this work, however, we use it in the more limited sense described above.
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Figure 3.3: Percentage loss in capacity as a result of not using shaping.

several values of N , together with the maximizing probability of zero. Also shown in

this figure is the capacity of the coherent AWGN channel for comparison. As can be

seen, for low SNR values higher probability of zero is required and with increasing

SNR and N this probability decreases. In Fig. 3.3, the relative loss in capacity

resulting from not utilizing the zero mass point is quantified. It is observed that

a significant loss of as much as 50% occurs when information is transmitted using

points on the surface of a single sphere (e.g., for Es/N0 in the range of 0-6 dB). This

observation will be our starting point for developing capacity-achieving codes in the

next chapter.
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In practical situations one can utilize fixed modulations, that approximate the

circularly symmetric structure of the capacity achieving distribution suggested by

Lemma 3.1. Fig. 3.4 depicts the minimum required information bit SNR Eb/N0 =

(Es/N0)/C versus capacity for several modulation-constrained transmission schemes

for a fixed channel coherence time N = 4.

In particular, the achievable capacity for BPSK signaling was evaluated with and

without shaping. We also evaluated the performance of the more advanced “unitary

modulation” schemes of [34]. The capacity curves, with and without shaping, with

isotropic signaling (no discretization) are also plotted for comparison. It can be ob-
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served that shaping is important at low rates, e.g., at C = 1/2, shaping results in a

performance gain of 1.4 dB and 1 dB for the isotropic and BPSK modulations, respec-

tively. Unitary constellations seem promising (i.e., they result in low discretization

loss) as they perform close to the capacity curve (without shaping) for low to medium

rates. In the next chapter, we try to capture these gains through specific code designs

that imitate the maximizing input distributions described above.

3.5 Conclusion

Capacity and the structure of the capacity-achieving density for the noncoherent

AWGN channel was investigated. It was proven that the capacity achieving in-

put density is circularly symmetric, discrete in amplitude with infinitely many mass

points, one of which is at the origin for any channel coherence time N . Asymptotic

results were derived that further justify the well-known sphere hardening effect, and

several numerical results were presented. In addition, two performance measures

were identified: discretization loss that originates from using discrete modulation

alphabets and shaping gain that occurs when using multiple amplitude levels. Nu-

merical optimization was performed to quantify these performance measures for dif-

ferent transmission schemes. Apart from their theoretical value, these results can

significantly aid the code/modulation design as will be demonstrated in the next

chapter.



CHAPTER IV

CAPACITY-INSPIRED CODING FOR

THE NONCOHERENT CHANNEL

4.1 Introduction

In this chapter we present coding and modulation design techniques that are in-

spired by the capacity studies presented in Chapter III. It is shown in Chapter II that

for high values of channel coherence time N , pilot-symbol-assisted modulation paired

with AWGN codes performs fairly well on this channel, while for small or moderate

values of N this approach results in considerable performance loss. Therefore, our

focus here is on coding for fast noncoherent channels, i.e., for small and moderate val-

ues of N . Unfortunately, unlike the case of coherent AWGN channel, no satisfactory

metric for code design has been found for the noncoherent channel. In particular,

for a code spanning over L blocks of length N , it can be shown that the pairwise

error probability between two codewords c = [c1, c2, . . . , cL] and c′ = [c′1, c
′
2, . . . , c

′
L]

depends on the block-wise Hamming distance (i.e., the number of different blocks),

and the absolute value of the cross correlation between these blocks

ρk =
|cH

k c′k|
‖ck‖‖c′k‖

. (4.1)

67
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However, it is unknown exactly how these two parameters are combined to form the

pairwise error probability1. For example, the pairwise error probability between two

codewords that differ in only one block (i.e., having block-wise Hamming distance

equal to one) with cross correlation of ρ = 0 in that block (i.e., orthogonal) is

essentially the same (over a large range of SNR values) as that of two codewords

that differ in two blocks with correlation of ρ = 0.65 in each of the blocks, or with

ρ = 0.75 in three blocks. Furthermore, even if such an expression for the pairwise

error probability were known, it is not clear if this would be a good code-design

metric for close-to-capacity performance.

The proposed codes are concatenated designs consisting of outer binary codes of

rate k/l, and simple inner modulation codes which map l bits onto Q = 2l complex

sequences of length N . The purpose of the outer code is to introduce memory between

the blocks of length N , while the purpose of the inner code is to guarantee small

cross correlation between the complex sequences used in each block. This approach

is motivated by the conjecture reached in [55] that LDPC – or in general turbo-like

– codes can achieve capacity for a wide range of channels if suitable modulation

schemes are designed to interface with the channel. The overall throughput of these

codes is R = k/N (bits/complex dimension). Observe that for a given throughput

R, the parameter l is a design choice. A large l results in a more powerful outer

code, while a small l results in smaller modulation alphabets, and thus, smaller cross

correlation between blocks. The choice of l in the proposed codes is suggested by the

numerical results of Section 3.3 (e.g., see Fig. 3.4).

Regarding the modulation code, our approach is to design alphabets that imitate

1Such asymptotic expressions for the pairwise error probability were the starting point for the
design of good codes for the MIMO block-independent fading channel in [34].
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the input distribution that maximizes the mutual information, as characterized in

Section 3.2. Towards this goal we concentrate on modulation schemes that utilize the

zero mass point, as well as points on the surface of a single N -dimensional sphere.

More complex modulation schemes (e.g., ones that use points on multiple spheres)

are not considered herein; this approach is justified by the asymptotic and numerical

results of Section 3.3. Furthermore, we consider the case of small N separately from

the case of moderate N . This is done because complexity considerations at the

demodulator suggest different designs in these two cases. In particular, for small

N , we concentrate on highly optimized modulation codes (e.g., unitary modulation-

based schemes of [34]), while for larger values of N we concentrate on modulation

schemes that are “separable”, that is, modulation schemes that are in the form of a

Cartesian product of simpler modulations (e.g., M-PSK modulations).

4.2 Small channel coherence time

In this operating scenario the goal is to utilize highly optimized modulation alpha-

bets in conjunction with powerful serially concatenated convolutional codes (SCCC).

The problem of designing good modulation alphabets, can be stated as finding

Q sequences in N complex dimensions with small maximum cross correlation, as

defined in (4.1). This is a long-standing problem, and so far no satisfying answer has

been provided regarding the best achievable solution (see [93, 37] for a theoretical

discussion of this problem). However, several techniques have been suggested in the

literature that result in good designs. One such method, named unitary modulation,

was proposed in [34], where certain columns of the discrete Fourier transform matrix



70

are used as the codewords, namely

xm =




1

ej 2π
Q

u1m

ej 2π
Q

u2m

...

ej 2π
Q

uN−1m




m = 0, 1 . . . Q− 1, (4.2)

where 0 < u1 < u2 . . . uN−1 ≤ Q− 1 is a sequence of integers selected such that the

maximum cross correlation is minimized. The unitary modulations approximate the

isotropic distribution suggested by the capacity results. In this work, shaping gain

is achieved by augmenting the unitary modulations with the zero sequence.

Regarding the design of the binary code, standard rules for SCCC design [5, 20]

can be adapted to the noncoherent AWGN scenario. In this case, the modulation code

can be incorporated into the inner code structure without any increase in complexity.

In addition, the introduction of the zero sequence is handled by the inner code.

A standard soft-input/soft-output (SISO) decoder [6] can be utilized for iterative

decoding. The memory requirements for the inner SISO are proportional to the

size Q of the output alphabet used, while the complexity depends on the number of

transitions in the inner trellis.

The same set partitioning and code design techniques of Ungerboeck [86] can be

employed for the design of the inner code. Namely, the Q modulation codewords

can be partitioned into sets with decreasing maximum cross correlation within the

partitions. It is noted that the introduction of the zero sequence in the modulation

alphabet imposes a complexity constraint on the inner code. In particular, in order

to achieve a high probability of zero (as suggested by the numerical results in the

previous section) the zero sequence should appear frequently in the trellis. However,
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this requires a corresponding increase in the trellis complexity of the inner code,

because otherwise the code will exhibit a catastrophic behavior.

Example 4.1. As an example of such a scheme we consider a noncoherent code

with throughput 1/2 (bits/complex dimension). It is a serially concatenated turbo

code with a rate-2/3 16-state outer code (this code was designed in [20] and has a

generator matrix G(D) shown in Fig. 4.1) and a rate-3/4 2-state inner code followed

by a 14-point unitary modulation in addition to the mass point at zero in N = 4

complex dimensions. The optimized 14-point unitary modulation is designed accord-

ing to (4.2) (with [u1, u2, u3] = [8, 10, 13] found using numerical optimization) and

has the property that the cross correlation between the signals of the same parity is

ρeven = 0.35, and for opposite parity ρodd = 0.5. This way a two-way partition of this

signal set into even and odd signals can be formed where each subpartition has a bet-

ter cross correlation than the original modulation. In addition, these partitions can

be further divided into sets of 4 signals with the addition of the zero mass point, that

is, if ∅ denotes the zero mass point, then the four-way partition is A = {0, 2, 4, 6},

B = {8, 10, 12, ∅}, C = {1, 3, 5, 7}, D = {9, 11, 13, ∅}. These sets are assigned to the

four transitions in the 2 state inner code, with input bit mapping designed to make

the inner code recursive (the state diagram of the inner code is shown in Fig. 4.1).

In order to avoid catastrophic behavior special care needs to be taken to assign the

zero mass point to the same input binary word. This way the probability of zero

achieved is p0 = 1/8, assuming that all the input binary words at the input of the

inner code are equally likely. It is worth noting that for this channel the optimal p0

(for a two mass point density) was found to be as high as 0.63. Thus the designed

modulation code can be improved by increasing the frequency of the zero mass point

transmission. However, to achieve such high probability of zero without making the
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Figure 4.1: BER versus Eb/N0 for the SCCC design (a length 6,000 bit interleaver
was used). Vertical lines correspond to Eb/N0 required suggested by the
capacity result for different modulation and shaping. Also shown are
the generator matrix and state diagram of the outer and inner codes,
respectively.
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code catastrophic requires the increase in the number of states in the inner code.

Since we are interested in low-complexity implementations, we have not explored

this option further.

The bit error rate (BER) versus information bit SNR (Eb/N0) curve is plotted in

Fig. 4.1. In the same figure, the minimum Eb/N0 required for error-free transmission

for the isotropic modulation as well as for the specific modulation utilized by this code

is plotted. For comparison, a similar code was designed that utilizes only a single

amplitude, by means of a 16-point unitary modulation (the modulation is specified

by (4.2) with [u1, u2, u3] = [2, 11, 15]). It can be observed from the simulation results

that the Eb/N0 gain by using a code with zero mass point transmission is essentially

the same (0.5 dB) as suggested by the capacity results. In addition, the performance

of this code (at a BER of 10−6) is 0.7 dB away from the constraint capacity for the

same p0, and 1.5 dB away from the constraint capacity for optimized p0. ¤

4.3 Moderate channel coherence time

As discussed in the previous section, the complexity of the demodulator is linear

with the alphabet size, and thus exponential with the channel coherence time N

(for a fixed transmission rate). As a result, the schemes described in the previous

section might not be desirable for moderate values of N . One solution is to use

modulation schemes with additional structure and take advantage of this structure

at the demodulator. Examples of these codes include the codes introduced in [32]

which are based on transforming linear codes using the Cayley transform. Here

we take a different approach. The modulation scheme used incorporates the mass

point at zero into the modulation code and yet allows demodulation with complexity

linear in the channel coherence time N . This scheme is described in more detail in
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the following.

Modulation is performed using m blocks of length N at a time as shown in

Fig. 4.2(a). Of these m blocks, m − bmp0c blocks consist of M-PSK symbols, each

having energy Es, and in the remaining bmp0c blocks no transmission is taking

place (zero mass point). These blocks will be referred to as the “zero blocks”. The

first symbol in each block—other than the zero blocks—is a pilot symbol of en-

ergy Ep (which can be different from the coded M-PSK symbol energy Es). The

position of the zero blocks is not fixed but can be any of the
(

m
bmp0c

)
available posi-

tions. This is accomplished by utilizing b = blog2(
(

m
bmp0c

)
)c bits, referred to as the

“mode bits” that determine which bmp0c out of the m blocks will be the zero blocks.

The remaining (m − bmp0c)(N − 1) complex dimensions available for information

transmission are used for the transmission of M-PSK symbols, thus carrying a total

of (m − bmp0c)(N-1) log2(M) coded bits. This transmission scheme is depicted in

Fig. 4.2, and the overall throughput of this modulation code is

b + (m− bmp0c)(N − 1) log2(M)

mN
(coded bits/complex dimension). (4.3)

The overall code is completed by using outer powerful irregular LDPC codes, opti-

mized for the particular choice of the channel and modulation parameters.

The main advantages of this simple scheme are: (i) an arbitrary probability of

zero, p0, is obtained without the problem of catastrophic behavior mentioned in the

previous section, and (ii) it permits the use of an iterative (message-passing) decoder

that provides soft decisions to the outer code, and has linear complexity in N . In the

following, the details of the demodulator that operates with linear complexity are

described for the special case of mp0 = 1, i.e., for one zero block in m blocks. This

special case is chosen for notational simplicity; however it conveys the basic idea of
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modulation scheme for b = 2 implied by (4.7).

this approach.

The generic factor graph representation of the demodulator for this modulation

code for the case of b = 2 (m = 4) is presented in Fig. 4.2(b). Circles represent the

M-PSK variables xk = [xk,1 . . . xk,N−1] for k = 0, . . . , m− 2, double circles represent

the phase variables, and squares denote the variable w representing the b mode bits

(taking values in 0, . . . , m − 1). The likelihood function to be marginalized can be

factored as

G(x0, . . .xm−2, w, θ0, . . . θm−1) =
m−2∏

k=0

Gk(xk, w, θk, θk+1), (4.4)

where

Gk(xk, w, θk, θk+1) = exp(
√

Epzq,0e
−jθq)

N−1∏
i=1

exp(
√

Eszq,ix
∗
k,ie

−jθq), (4.5)

zq,i is the i-th received symbol in the q-th block, with zq,0 being the pilot symbol

in that block (the transmitted pilot symbol is assumed to be 1), and θq (for q =



76

0, . . . , m−1) are the unknown phase variables in each of the m blocks. The function

q(k, w) quantifies the random position of the zero block and is defined as

q = q(k, w) =





k, if k < w;

k + 1 if k ≥ w.

(4.6)

The existence of the function q(k, w) in G(·) results in a factor graph with cycles,

as shown in Fig. 4.2(b). However, cycles in the factor graph are undesirable when

message-passing algorithms are performed. Fortunately, cycles can be eliminated

without increasing the complexity of a message-passing algorithm by taking advan-

tage of the fact that only m − 1 of the blocks are active at any time. This is true

since for fixed w, variables in the w-th block do not appear in (4.4); hence, one of

the phase variables can be eliminated. This way the above factor graph reduces to

the factor graph shown in Fig. 4.2(c), where the equivalent likelihood function to be

marginalized can be written as a product of m− 1 simpler functions

H(x0, . . . ,xm−2, w, φ0, . . . , φm−2) =
m−2∏

k=0

Hk(xk, w, φk) (4.7)

with

Hk(xk, w, φk) = exp(
√

Epzq,0e
−jφk)

N−1∏
i=1

exp(
√

Eszq,ix
∗
k,ie

−jφk), (4.8)

where the new m − 1 phase variables φk are used to emphasize that these are the

only phases active at each particular sequence of m blocks. Furthermore, since each

Hk(·) is a separable function in xk,i’s, the marginalization over these variables can

be done with linear complexity, which can be observed through the following chain
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of equations

∑

φk,xk

Hk(xk, w, φk) =
∑

φk

exp(
√

Epz
q
0e
−jφk)

∑
xk

N−1∏
i=1

exp(
√

Eszq,ix
∗
k,ie

−jφk)

=
∑

φk

exp(
√

Epzq,0e
−jφk)

N−1∏
i=1

( ∑
xk,i

exp(
√

Eszq,ix
∗
k,ie

−jφk)
)
. (4.9)

Here, the summation of MN−1 terms (over all xq,i variables) is substituted by the

product of N−1 summations with M terms each, thus reducing the complexity from

exponential to linear in N . In particular, it can be shown that the precise complexity

per channel symbol of a message-passing algorithm operating on the factor graph of

Fig. 4.2(c) is increased by 2(m − 1)/m, when compared to a modulation scheme

using the same M-PSK alphabet but no zero block. Also note that summation over

the phase variables, can be efficiently implemented by appropriate discretization of

[0, 2π) as noted in Section 2.5 of Chapter II.

Example 4.2. As a specific example, we consider the above described modulation

scheme with QPSK (i.e., M = 4) and b = 2, thus achieving the probability of zero

p0 = 1/4. For the case of N = 7, this probability is the optimal probability of zero

as suggested by the numerical results of Section 3.3. The outer code considered is an

irregular LDPC code with rate 24/38, while the modulation code has throughput of

38/28 (bits/complex dimension), as obtained from (4.3). The resulting throughput

of the overall code is 6/7 (bits/complex dimension)2.

The irregular LDPC code was optimized by an algorithm very similar to the

differential evolution idea of [84, 81, 35], resulting in the variable and check degree

distribution indicated in Fig. 4.3. The only difference is that instead of density

2This throughput is selected so that the results can be compared in a fair way to the best known
codes in the literature [36]. These codes have a nominal throughput of 1 (bit/complex dimension),
but assume that there is an overlap of 1 complex dimension between adjacent blocks.
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evolution for the testing part we use the simulated performance of the particular

code for fixed codelength and number of packets. The pilot energy is optimized as

well in order to minimize the BER (see Chapter II for details). Performance curves

and LDPC code details are depicted in Fig. 4.3.

The performance of the proposed code is compared to a code that does not use

zero block transmission and pilot power optimization, but uses an (optimized) irregu-

lar LDPC code of rate 1/2 (with the same complexity) and direct QPSK modulation

yielding a throughput of 6/7 (bits/complex dimension). Regarding the performance

of these codes, we observe that zero block transmission and pilot power allocation

yield an Eb/N0 gain of around 0.4 dB. A code similar to the simulated no-shaping

code using differentially encoded QPSK was proposed in [36]. The code proposed

herein outperforms such a system by at least3 0.3 dB.

In order to isolate the effect of pilot symbol optimization from that of shaping,

the performance of the proposed code with Ep = Es is also shown. It is observed

that pilot optimization is responsible for only a fraction of the gain, i.e., 0.1 dB.

It is also noted that on the noncoherent AWGN channel, irregular LDPC code

optimization has a larger impact on the performance compared to the case of coherent

AWGN channels. To illustrate this point, we have simulated a regular LDPC code

(with variable and check node degrees 3 and 9, respectively) with shaping and pilot

optimization and compare it with the best proposed code. As can be seen form

the figure, there is a loss of more than 1 dB when compared to the irregular case.

3It is noted that the codes in [36, 70] assume a more favorable channel model than the block-
independent channel considered here. For a given code, the performance gain due to this more
favorable channel can be as much as 0.7 dB, as observed via simulations of the code in [36] on this
more favorable model and the block-independent model. The gains reported here are in addition
to this gain. Therefore, for a fair comparison, 0.7 dB should be added to the gains reported herein.
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In coherent AWGN channel however, the difference between regular and optimized

irregular codes of roughly the same complexity is smaller (see for instance the codes

in [76]). ¤

4.4 Conclusion

Coding for the block-independent noncoherent channel was investigated in this

chapter. More precisely, theoretical and numerical results of Chapter III were applied

to code and modulation design for this channel. Due to the complexity constraints,

the case of small channel coherence time N , was treated separately from the case of

moderate values of N . In particular, two coding/modulation schemes with distinct

advantages were designed that imitate the signaling structure suggested by the capac-

ity results of Chapter III. Two examples of these coding schemes were presented and

their performance was evaluated through simulations. Binary code optimization was

also performed to match the channel characteristics, and it was shown that the latter

plays a significant role in the overall performance. These combined code/modulation

designs yield practical transmission schemes that outperform the best known codes

so far.



CHAPTER V

ROTATIONAL INVARIANCE AND

ROBUSTNESS

5.1 Introduction

In the previous chapters we dealt with information-theoretic and practical aspects

of communication over the block-independent noncoherent channel model. Two dif-

ferent approaches to coding were investigated: in Chapter II a simple modulation

scheme was analyzed that allowed the utilization of a large collection of off-the-shelf

AWGN binary codes, while in Chapter IV codes were designed directly for the specific

channel model under consideration.

In this chapter noncoherent communication is considered from a slightly different

perspective. In that, unlike the previous chapters, we do not assume the rigid block-

independent channel model, but rather consider more relaxed modeling of the phase

process. We investigate certain properties of the coding scheme that, under some

circumstances, make the coding scheme less susceptible to the harmful effects of

random phase. We start with identifying the potential problem when communicating

over the noncoherent channel, which forms one of the main reasons to consider the

aforementioned properties.

Regardless of the particular structure of the coding scheme, a potential problem

81
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can occur when communicating over the noncoherent channel. This problem can be

explained by observing that if two sequences of length N differ by a mere phase rota-

tion, they will be indistinguishable at the receiver side. Therefore, such pairs should

be avoided during the transmission as they will lead to a catastrophic behavior. On

the other hand, if all such sequences are included in the codebook and are assigned

the same input sequence, then the catastrophic behavior is avoided. This is true since

no input errors will occur as a result of a random phase rotation. Coding schemes

that resolve the inherent phase uncertainty in the transmitted sequence in this par-

ticular way are called rotationally invariant (RI), and are essentially generalizations

of the differential phase encoding to higher signaling alphabets.

Because rotational invariance is a property of interest in both the coherent and the

noncoherent setting, in this chapter we consider the behavior of RI codes for several

channel models. We start by considering rotational invariance in the traditional

setting of a channel with slow phase dynamics. In this setting we investigate RI

code design for serially concatenated turbo codes. These codes are then investigated

in the presence of faster phase dynamics. It is observed that a stronger property

than rotational invariance, namely rotational robustness (RR), is required to avoid

noncatastrophic behavior in these channels.

In the remainder of this section we briefly describe rotational invariance, rota-

tional robustness and the channel models that are relevant in the investigation of

each of these properties.

5.1.1 Rotational Invariance

Rotational invariance was originally introduced in the context of coherent de-

tection and/or decoding, as a method for resolving the phase ambiguities, resulting
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from non-pilot-aided carrier-phase estimation, and rotationally symmetric constel-

lations. More specifically, if the particular modulation used in a coded scheme is

unchanged by phase rotations through some base angle φ (e.g., M-PSK signal set

is unchanged by phase rotations by an integer multiple of 2π/M), then any phase

estimation scheme, which does not utilize pilot symbols, can only estimate the phase

modulo φ. The overall model for this channel is one in which, apart from corrup-

tion by additive white Gaussian noise, the signal undergoes a discrete (i.e., integer

multiple of 2π/M) phase rotation which remains constant over the entire codeword.

In the following, this channel model will be referred to as the discrete constant ro-

tation (DCR) channel.1 It is noted that the maximum likelihood sequence detection

(MLSD) receiver corresponding to the DCR channel is a complicated algorithm, due

to the need for averaging the sequence likelihoods over all possible discrete rotations.

This last observation was the main motivation for introducing rotationally invariant

(RI) codes, which, due to their symmetrical structure, enable near-optimal decoding

in the DCR channel even when conventional coherent decoders are used (e.g., the

Viterbi algorithm (VA) for the case of trellis-based RI codes).

An extensive literature on RI trellis-coded modulation (RI-TCM) schemes exists.

The pioneering work in this area was done by Wei [89, 90, 91], whose ideas were later

applied by many authors to TCM code construction. In [11, Ch. 8], differential en-

coding schemes that achieve rotational invariance were investigated. The theoretical

framework underlying RI codes was presented in [85], together with necessary and

sufficient conditions for a code and an encoder to posses such a property, while [7]

investigated rotational invariance of group codes. In [49], sufficient conditions for

1A summary of all channel models considered herein is given in Table 5.1.
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designing RI serially concatenated TCM (SCTCM) codes were derived; however, the

suggested codes can only be viewed as examples, rather than powerful RI-SCTCM

designs.

In the first part of this chapter several powerful RI-SCTCM codes are designed

that utilize 8-PSK and 16-QAM constellations, thus resulting in high bandwidth

efficiency. The performance of the proposed designs is evaluated through simulations.

5.1.2 Rotational Robustness

Although the previous work on RI codes implies an underlying DCR channel,

all practical channels are more complicated than the simplified DCR model. Of

particular interest is the case when, due to a noise burst, the external phase esti-

mator looses and reestablishes phase lock after some brief acquisition time. This

phenomenon, known as a cycle slip, can be modeled by a channel that, corrupts the

initial part2 of the codeword only with AWGN, and, in addition, introduces a dis-

crete phase rotation to the rest of the transmitted codeword. To distinguish from the

DCR model, this more elaborate channel model is referred to as the discrete partial

rotations (DPR) channel. Since MLSD decoding matched to the DPR channel is

extremely complicated (the sequence likelihoods need to be averaged over all possi-

ble cycle-slip positions and all possible discrete rotations), it is desirable to design

codes that are robust to these cycle slips when conventional, coherent decoders are

utilized. Codes that are robust to cycle slips, i.e., result in a small number of errors

when transmitted through a DPR channel, and decoded by coherent detectors, will

be referred to as rotationally robust (RR) codes. The significance of RR code design

2In this model, the position of the cycle slip is assumed uniformly distributed within the code-
word.
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can be demonstrated for a system that is designed such that the bit error rate (BER)

is dominated by the probability of loosing lock, Pll (i.e., the BER in the tracking

mode is small compared to Pll). In such a system, when a cycle slip occurs during

the transmission of a length L codeword of a non-RR code, approximately half of the

bits will be in error with high probability, resulting in an approximate BER of Pll/2.

For an RR code on the other hand, only a small number of bits will be affected by

the cycle slip, resulting in an approximate BER on the order of Pll/L.

In this work, it is shown that although rotational invariance is, in general, a

weaker property than rotational robustness, RI codes with small state space possess

this stronger property and thus they are also RR. In particular it is shown that for

an RI code, the number of input bit errors, due to a cycle slip, is upper bounded

by a relatively small number that increases monotonically with the trellis size of

the code, but does not depend on the codeword length. Although this statement

directly implies that RI-TCM codes are also RR, it does not hint as to whether

RI codes with large overall state space, e.g., RI-SCTCM codes, possess rotational

robustness or not. An incomplete answer to this question is given by simulating the

specific RI-SCTCM codes designed herein on the DPR channel, and showing that the

addition of a simple stopping criterion to the coherent iterative decoding algorithm

is sufficient for rotational robustness in the DPR channel.

An even more interesting channel is the noncoherent AWGN channel which in-

troduces an arbitrary (as opposed to discrete) phase rotation on the transmitted

sequence. This model is well suited for receivers that perform phase estimation and

decoding jointly. Clearly the DCR and DPR models cannot adequately describe

this channel, thus the arbitrary constant rotations (ACR) and the arbitrary partial

rotations (APR) models are introduced for the case of constant and partial arbi-
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trary phase rotations throughout the transmitted codeword, respectively. It is a well

known fact [75] that for transmission over the ACR channel the code should either be

anti-RI, i.e., no two codewords are rotated versions of each other, or it should be RI,

namely any rotation of a codeword is a valid codeword and corresponds to the same

input sequence. Any other possibility that does not fit into one of these categories

will lead to catastrophic behavior, since rotated codewords cannot be distinguished

on the receiver side in the ACR channel. However, the question of which of these

two classes performs better is still unanswered.

In the last part of this chapter the performance of these two classes is investigated.

In particular, it is proven that MLSD decoding matched to the ACR model is identical

for RI and anti-RI codes, thus resulting in the same performance. At this point one

might ask whether any of these classes of codes is preferable. A partial answer to this

question is provided here by showing that non-concatenated RI codes are provably

robust to partial arbitrary rotations, i.e., are provably robust in the APR channel.

The rest of the chapter is structured as follows. In Section 5.2, we briefly present

the theoretical background for studying RI codes, along the lines of [85]. The design

of powerful RI-SCTCM is presented in Section 5.3. Rotational robustness in con-

nection with the DPR channel is discussed in Section 5.4, while extensions to the

noncoherent ACR/APR channels are investigated in Section 5.5. The conclusions

are summarized in Section 5.6.

5.2 Theoretical Background

A rotation of a symbol x ∈ C, where C denotes the set of complex numbers, by

an angle θ is defined as ρθ(x) = xejθ. Rotation of a sequence of symbols in CN is
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defined as component-wise rotation, i.e.,

ρθ((x1, . . . , xN)) = (ρθ(x1), . . . , ρθ(xN)), (5.1)

and rotation of a set is defined as

ρθ(S) = {ρθ(x) | x ∈ S}. (5.2)

A signal constellation S has an n-fold symmetry if it has 2π/n rotational invariance,

i.e., ρ2π/n(S) = S (for the highest such n, 2π/n is called the base angle). For example,

the M -PSK signal set has an M -fold symmetry. In the following, ρ will denote the

rotation by the base angle, with the latter understood from the content. Let S be a

signal set with an n-fold rotational invariance, and Λ = {λ1, . . . , λm} be a partition

of S, i.e., λi ⊂ S, λi ∩ λj = ∅ if i 6= j and
⋃

i λi = S. We say that Λ is rotationally

invariant if for every λi ∈ Λ, we have ρ(λi) ∈ Λ.

RI codes are codes that are invariant to rotations by the base angle. Specifically,

rotation by any multiple of the base angle applied to all codewords leaves the code

unchanged. In addition, an RI encoder is defined as the one-to-many mapping from

an input sequence to all rotated versions of a codeword in an RI code, as depicted in

Fig. 5.1. At this point, we emphasize the distinction between a code and an encoder.

The code is the set of all possible codewords (i.e., the codebook), whereas the encoder

is the mapping of input sequences to codewords. Different encoders might produce

the same code, and one of the issues dealt with in [85] is a systematic way of finding

an RI encoder for a given RI code. The reason behind the one-to-many property of

the RI encoder is that for non-catastrophic behavior of RI codes in the DCR channel,

the mapping corresponding to the inverse of the encoder should associate all rotated

versions of a codeword with the same input sequence. In the case of trellis codes,

since the output sequence depends on the input sequence and the initial state, this
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Figure 5.1: Structure of Rotationally Invariant Encoder.

one-to-many behavior is achieved by using the same input sequence with different

initial states.

The design of RI coding schemes first starts with finding an RI code and then

finding a suitable encoder. For a TCM code defined using a partition3 Λ, a necessary

condition for rotational invariance is that Λ is RI [85].

Necessary and sufficient conditions for a code and an encoder to be RI were

given4 in [85] in terms of the Fischer cover of the code and encoder, respectively.

The Fischer cover of a code is defined as the unique state transition graph of the

code that satisfies two additional properties: 1) all edges leaving a node have different

labels and 2) the set of codewords initiated at any two states differ.5

In this chapter we will only use the sufficiency part of the results of [85]. These

sufficient conditions apply to any state transition graph, and not only the Fischer

cover. Denoting by t a transition from state s1 to state s2 associated with input

a and output c, the sufficient conditions for a code and its encoder to be RI are

summarized as follows

3Original design rules for constructing TCM codes in [86] use signal set partitioning and these
rules are followed in almost all works dealing with TCM code design, including [4, 20].

4The sufficient condition was first introduced in [89, 90, 91].

5Since the encoder can be thought of as a code whose graph has output labels the input-output
pairs (a, c), the above definition of the Fischer cover can be applied to the encoder as well.
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1. The graph obtained by applying a rotation by the base angle to the output la-

bels of the transitions of the state transition graph of the encoder, is isomorphic

to the original graph, i.e., there exists a bijective mapping (also denoted6 by

ρ) between states and transitions of the two graphs, which maps the transition

t from state s1 to state s2 with output label c to a transition ρ(t) from state

ρ(s1) to state ρ(s2) with output label ρ(c).

2. Every pair of transitions (t, ρ(t)) is associated with the same input label a.

If the phrase “state transition graph” is replaced by “Fischer cover” in the above

statements, then these become necessary conditions for a code and an encoder to be

RI, as well.

If the state transition graph of a code possesses only the first property above,

then the corresponding code is still RI, but the encoder is not.7 All the states of the

state transition graph of an RI encoder are partitioned into orbits of size n, where

the orbit of a state s is defined as the set {ρi(s)|i = 0, 1 . . . n − 1}. Therefore, the

number of states of an RI encoder should be a multiple of n. Starting from the two

conditions stated above, one can derive a systematic procedure to find an RI encoder

for a given RI code, as explained in [85].

Finally, we point out that an important property of RI encoders is that they

cannot be feedforward [85]. This is a favorable property for RI-SCTCM code design,

since for good SCTCM codes the inner code must be recursive.

6Following the notation used in [85], we use the same symbol ρ to denote this bijective mapping
of states and edges. The same symbol is also used to denote rotations of signals, and sets, as
in (5.1), (5.2), respectively.

7In [75], a code is called rotationally transparent if both the code and the encoder are RI, and
rotationally invariant if the code is RI only.
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5.3 Design of RI-SCTCM codes

5.3.1 Design Guidelines

Serially concatenated trellis-coded modulation schemes were introduced in [4]

as alternatives to the well known “turbo” coding schemes [9], which are paral-

lel concatenated codes. A typical SCTCM, shown in Fig. 5.2, consists of a rate

k/p outer convolutional code (CC), the output of which is fed into an inner TCM

code of rate p/n, after symbol-wise or bit-wise interleaving (denoted by π). These

n bits are then mapped onto a transmitted symbol (complex number), resulting

in an overall throughput of k bits/symbol. For a length L interleaver the overall

code can be thought of as an equivalent block code which takes Lk bits and out-

puts L symbols. The number of states in the equivalent code is large and thus the

complexity of the maximum likelihood sequence detection (MLSD) decoder is very

high. However, a practical sub-optimal decoder for such a code is the iterative de-

coder [4], which consists of two Soft-Input Soft-Output (SISO) modules [6] and an

interleaver/deinterleaver pair, as shown in Fig. 5.2. Each SISO module has complex-

ity proportional to the number of states of the corresponding constituent code (for

a detailed discussion of SCTCM codes see Section C.1 of Appendix C.)
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One might aim to find necessary and sufficient conditions for the SCTCM coding

scheme to be RI. However, we will not follow this approach. Instead, we are inter-

ested in sufficient conditions that depend only on the constituent codes and not the

interleaver. In [49] it was shown that a simple sufficient condition for the SCTCM

scheme to be RI is that its inner TCM encoder is RI. Indeed, if an input sequence a

encodes into x via the outer-code codeword b, then a also encodes to ρ(x) via the

same outer codeword, the difference being the starting state of the inner encoder.

However, observe that, if the inner code is RI, and the utilized encoder is not, then

the overall code is not necessarily RI. In this case, although the rotated version of any

codeword (of the inner code) is still a codeword, their corresponding input sequences

differ, and since these can only be (interleaved) codewords of the outer code, the

rotated codeword need not be a codeword of the concatenated code.

It should be emphasized that RI-SCTCM code design does not reduce to the

design of good inner RI-TCM codes, i.e., inner RI-TCM codes with good distance

properties. The reason is that, the assignment of input sequences to output code-

words (which is irrelevant for standard RI-TCM as long as this assignment satisfies

property 2 of Section 5.2) is crucial for the case of RI-SCTCM, since the overall code

depends on the particular inner encoder. As a result, RI-SCTCM code design should

incorporate the rotational invariance property to the design rules of [4].

The design procedure for RI-SCTCM codes is similar to non-RI SCTCM codes.

The outer code is selected to maximize the outer code free distance. Regarding the

inner code, because of the constraints placed on the encoder by the RI property, it

is only required to specify the labels for transitions leaving only one state in each

orbit. Furthermore, in performing the assignment of input bits, the SCTCM design

parameter d2
f,eff [4] is maximized. This parameter is defined as the minimum squared
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Euclidean distance between inner-code input sequences that are Hamming distance

2 apart, i.e.,

d2
f,eff = min

dH(c,c′)=2
d2(x(c),x(c′)). (5.3)

This procedure is followed in the next section, where specific examples of high-rate

RI-SCTCM codes are given. We point out that these designs are the first powerful

RI-SCTCM codes that appear in the literature.

Finally, it is mentioned that the iterative decoder for an RI-SCTCM code can be

the standard coherent iterative decoder, except that for the inner SISO all the states

in the orbit of the actual initial state are initialized to be equally likely. If the initial

state is unknown to the receiver, then the starting state is initialized to be equally

probable between all the available states [49].

5.3.2 Design Examples

The first code (named Code 1) is an 8-PSK code of throughput 2 bits/symbol,

constructed by a rate 2/3 4-state outer code and a rate 3/3 inner code. The outer

code is obtained by using twice a rate 1/2 systematic code with coded bit polynomial

1+D
1+D+D2 , and puncturing the fourth bit [20]. Since the codebook of the inner code is

the set of all 8-PSK sequences, it is straightforward from the previous discussion that

exactly 8 states are required for the RI inner encoder. Also, since n = 8, we have one

orbit with 8-states which are numbered 0 to 7 such that ρ(i) = (i+1) mod 8. All the

states are connected to each other, and all the transitions going to state i have the

output label i, which corresponds to the 8-PSK symbol exp(j2πi/8). What remains

to do is to assign input labels. It suffices to assign these to all the transitions leaving

state 0, which will then induce the labels on the rest of transitions via the rotational

invariance property. The table that describes the input output relationship of the
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inner code at state 0 is given in Fig. 5.3 together with the state transition graph

induced by the RI property. In this table, integers in the “Input” column are the

decimal representation of the three-bit output of the inner code (this convention is

followed throughout this section).

The performance of this code is depicted in Fig. 5.3. In the same figure, the

capacity limit of the 8-PSK-constrained channel is plotted as a vertical line for com-

parison. Note that for this code symbol-wise interleaving results in approximately

1 dB loss from the modulation constrained capacity for BER of 10−4, and symbol-

wise interleaving outperforms bit-wise interleaving. As it will be demonstrated later,

this result is not always true.

The last two codes are over the 16-QAM constellation. The first code, named

Code 2, uses a rate 2/3 outer and a rate 3/4 inner code, resulting in a throughput of 2

bits/symbol. This code is the RI version of SCTCM code published in [20], obtained

by making the inner code RI. Consequently, the outer code, whose generator matrix

is provided in Fig. 5.4, is unchanged. The rotational symmetry group of 16-QAM

consists of 4 rotations, and the inner code obtained has 4 states. The transitions

leaving zero-state are given in Fig. 5.4 for the inner code. Output labels in this

transition table correspond to the following 16-QAM labeling: the number i = 4q+r

(with q and r being integers between 0 and 3 inclusive) is mapped onto the 16-

QAM point ((−3 + 2r) + j(3− 2q))/
√

10. The performance of Code 2 is depicted in

Fig. 5.4, where it can be observed that symbol-wise interleaving outperforms bit-wise

interleaving for this code, as well. The dashed curves correspond to the performance

of the non-RI SCTCM code of [20] (named Code 2.1) with the same outer code and

a 2-state inner code. It can be seen that despite the lower complexity, the non-RI

code outperforms the RI code (at least for bit interleaving).
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97

The next 16-QAM code has an overall throughput of 3 bits/symbol. This code

(named Code 3) consists of a rate 3/4 outer and a rate 1 inner code. The outer code

is the best rate 3/4 convolutional code [20] with dfree = 3, the generator matrix of

which is provided in Fig. 5.5. The inner code transition table at state 0 is also given

in the same figure. The performance of this code is shown in Fig. 5.5 together with

a non-RI code of [20] (named Code 3.1) of exactly the same complexity. It can be

observed that, contrary to the previous case of Code 2 and 2.1, the penalty paid for

achieving rotational invariance is not significant for Code 3.

As a general observation we can say that while for some codes rotational invari-

ance is achieved at significant performance loss (Code 2 vs. Code 2.1), others show

no considerable performance degradation (Code 3 vs. Code 3.1). This behavior is

observed for non-concatenated RI-TCM codes as well [7], and a sufficient explanation

is still not available.

5.4 Rotationally robust codes for the DPR channel

We now investigate codes for the DPR channel, that allows for different discrete

rotations to affect different parts of the codeword, as opposed to the DCR channel,

for which the same rotation affects the whole codeword. As mentioned in the Sec-

tion 5.1, the DPR channel is sufficient for modeling cycle-slips occurring within the

transmitted codeword. In particular, it is assumed that the discrete random rotation

could change value in a random position k within a codeword, to some other random

multiple of the base angle (see Table 5.1).

Although a partially rotated codeword is not necessarily a codeword of an RI code,

it is desirable that the coherent MLSD receiver decodes a partially rotated codeword

into an input sequence which differs from the original one in finitely many symbols,
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Constant Partial

DCR DPR

Discrete
zi = xie

jφm + ni zi =

{
xie

jφm + ni i < k

xie
jφm′

+ ni i ≥ k

ACR APR

Arbitrary
zi = xie

jθ + ni zi =

{
xie

jθ + ni i < k

xie
jθ′ + ni i ≥ k

xi, zi represent the ith transmitted and observed symbol, respectively
ni’s are zero-mean complex Gaussian with variance σ2

m and m′ are independent random variables uniform in {0, 1, . . . n− 1}
θ and θ′ are independent random variables uniform in [−π, π)
k is a random variable uniform in {0, 1, . . . N − 1}
φ = 2π/n is the base angle of the signal constellation used.

Table 5.1: Summary of Considered Channels

i.e., the errors are concentrated around the time index k and do not increase with the

blocklength. This property, which is obviously stronger than rotational invariance, is

called rotational robustness, and the corresponding codes are referred to as RR codes.

We point out that, in general, rotational robustness is a property of both the code

and the particular receiver used. It is true that standard (i.e., non-concatenated) RI-

TCM schemes with coherent MLSD decoding are also RR. This statement is made

precise with the following theorem, which considers only a single partial rotation.

The extension to arbitrary number of rotation changes is straightforward.

Before stating the theorem we introduce two parameters associated with a given

encoder. First, the parameter K is the smallest number of steps required to reach

any state from any other state on a trellis. It can be shown that for irreducible graphs

(i.e., graphs for which any two states are connected through a series of transitions),

K is at most S − 1, where S is the number of states in the graph. In the theorem

below we also assume that we can reach any state in exactly K steps, which is true
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for all RI encoders that we considered. For codes whose graphs are not irreducible

we take K to be infinite.

The second parameter, L, is the maximum number of consecutive output symbols

that agree for two paths in a trellis that do not share a common state. Also, let

c = f(s, a) represent the codeword for a given input sequence a and starting state

s. If f(·, a) is one-to-one8 (viewed as a function of s, for a given input sequence a),

then the parameter L is infinite if and only if the code is catastrophic. Furthermore,

for non-catastrophic codes, the parameter L can be bounded as L ≤ S(S− 1)/2− 1.

For binary linear codes, a tighter upper bound can be found as L ≤ log2 S.

Theorem 5.1. Let an input sequence a be encoded by an RI encoder into the code-

word x, and let x′ be a partially rotated version of x so that all output symbols are

rotated starting from some index k, i.e.,

x′i =





xi , i < k

ρ(xi) , i ≥ k

(5.4)

If the minimal encoder for the RI code has finite parameters K and L, then the

input sequence â corresponding to the closest (in Euclidean distance) codeword x̂ to

x′ satisfies

dH(a, â) ≤ (L + 1)× (K × d2
M

d2
m

+ 2) + 1, (5.5)

where dH denotes the symbol-wise Hamming distance, and d2
M and d2

m are the maxi-

mum and minimum Euclidean intra square distances within the output alphabet (sig-

nal constellation).

Proof. Consider a trellis of the RI code and the path corresponding to the partially

rotated sequence x′, depicted in Fig. 5.6. Since the code is not catastrophic, we

8This, rather natural, condition is assumed throughout the chapter.
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Figure 5.6: Trellis of RI code; x̂ denotes the codeword chosen by MLSD.

know that the path corresponding to x̂ should agree with the path of x′ in all but

l0 transitions around time k.9 We will first bound l0. Since there exists a valid

codeword x̂′ that agrees with x′ in all but at most K symbols (trellis steps), the

Euclidean squared distance is bounded by

d2(x′, x̂′) ≤ K × d2
M . (5.6)

On the other hand, since x̂ is the closest codeword to x′ we have

d2(x′, x̂′) ≥ d2(x′, x̂) ≥ l1 × d2
m, (5.7)

where l1 is the number of output symbol disagreements between x′ and x̂. Since the

encoder has finite L parameter, given l1 output symbol disagreements, l0 is bounded

by

l0 ≤ (L + 1)× (l1 + 2) (5.8)

(corresponding to the worst possible case of having each differing output symbol be

9The path followed by x′ is not a valid path through the trellis since it involves a jump at time k
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followed by L agreeing symbols10). Combining the above three inequalities we get

l0 ≤ (L + 1)× (K × d2
M

d2
m

+ 2). (5.9)

We note that in the above equations we use the parameters K and L of the minimal

encoder rather than those of the RI encoder. This is valid since for an RI encoder

the number of differing trellis steps for two given codewords is at most 1 more than

the number l0 corresponding to the minimal encoder used to generate the RI code

following the procedure of [85]. This is true since, if a state is split into several states,

all new states have the same outgoing transitions as the original states (see [85] for

details on how the RI encoder is obtained given the RI code). The proof is concluded

by using the fact that the number of input symbol disagreements dH(a, â) can be at

most l0 + 1. ¥

Although the above theorem does not take into account the channel noise, there

is a straightforward way to extend this result for the case of AWGN channel. We

need to find a new upper bound for l1 that takes into account the effects of the noise.

The rest of the proof is identical to the above. For that purpose, assume operating

signal-to-noise ratio of γ = Es/N0. The key idea in the AWGN case is that the

decision metrics are Gaussian random variables. In this scenario, the condition that

the metric corresponding to x̂ is smaller than the one corresponding to the codeword

x̂′ can be written as

m(x̂)−m(x̂′) =
√

γ(l1d
2
m −Kd2

M)− n
√

l1d2
m + Kd2

M < 0, (5.10)

where n is a zero-mean real Gaussian random variable with variance 1/2. Two things

are assumed in this equation: (i) the positions of l1 disagreeing symbols between x̂

10Since x′ is a concatenation of two valid partial paths, around time k there can be 2L consecutive
agreeing symbols
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and x′ do not overlap with the K disagreeing positions between x̂ and x′; (ii) distances

within the mentioned l1 and K disagreements are Esd
2
m and Esd

2
M , respectively.11 It

is easy to see that these conditions indeed comprise the worst-case scenario (for the

purposes of maximizing l1). For any positive A, if n <
√

A, then by solving for l1

from (5.10) we get that

l1 ≤ K × d2
M

d2
m

+
A +

√
8Kd2

MAγ + A2

2d2
mγ

. (5.11)

Since this event has probability

P (n <
√

A) = 1− 1

2
erfc(A) ≈ 1− 1

2
exp(−A), (5.12)

we finally get that

dH(a, â) ≤ (L + 1)× (K × d2
M

d2
m

+
A +

√
8Kd2

MAγ + A2

2d2
mγ

+ 2) + 1. (5.13)

with probability 1 − 0.5 exp(−A), for any positive A. Observe that the difference

between the bounds for the noiseless and the noisy case is an additional term which

is small for the parameter values of interest.

We emphasize that the above theorem is valid for all RI-TCM codes, i.e., for

standard non-concatenated RI-TCM schemes, as well as RI-SCTCM schemes. In

particular, for good non-concatenated RI-TCM codes the parameter L is small.12

Also, for codes with large input alphabet (compared to the number of states), and

no parallel transitions, the parameter K is small. For instance all inner RI-TCM

codes that we used have parameters K = 1 and L ≤ 1. The ratio of squared

11Observe that d2
m and d2

M denote the normalized (i.e., taking Es = 1) minimum and maximum
square distances within the constellation

12The parameter L was calculated for all good codes presented in [72, pp. 493-496] and found to
be on the order of (log2 S)/(n− k), for an (n, k) convolutional code.
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distances that appears in the theorem is the only factor that relates to the output

distance, since the rotational invariance is a property of the state transition graph.

This ratio is 4/0.58=6.82 for 8-PSK, and 12.8/0.4=32 for 16-QAM constellation.

Although the theorem is valid for all RI codes, it does not provide any information

about the robustness of RI-SCTCM codes. This is because, due to the presence of

the interleaver, an SCTCM code is an equivalent TCM code with a huge number of

states (and possibly with very large parameters K and/or L). On the other hand,

observe that a better bound on the parameters K and L, that is connected to the
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code performance rather than the number of states utilized, would make the above

theorem useful for the SCTCM case as well.

In fact, simulation results have revealed interesting facts. In Fig. 5.7 the per-

formance of the standard iterative receiver for Code 1 (with block length of 16384

bits) is shown as a function of the iteration number. In this simulation experiment,

a single partial rotation of discrete but random magnitude is introduced in a random

position inside each transmitted block. It can be observed that the iterative receiver

does not converge to a final decision at least for the first 20 iterations. Furthermore,

the lowest BER is achieved at a different iteration number for different Eb/N0 values.

This lowest achievable BER for Eb/N0 = 7dB is on the order of 10−4 which suggests

that a BER floor is reached.

The above simulated performance does not necessarily imply that the MLSD

receiver is not robust to partial rotations for an RI-SCTCM scheme. In fact, the BER

floor corresponds to an average of 2 bit errors per block, which strongly suggests that

a useful upper bound exists for RI-SCTCM codes as well. On the other hand, the

oscillatory behavior of the iterative receiver demonstrates its weakness in handling

partial rotations. A possible solution is to modify the iterative receiver by adding

some stopping criterion in the iterative loop, in order to detect the minimum BER

point.

One such stopping criterion is investigated herein. Namely, at each iteration, the

average entropy of the information bits is calculated, and its minimum is tracked.

The iteration number at which this average entropy started to increase is chosen

as the stopping criterion for iterations. Simulation results show that this simple

filtering operation is sufficient to track the minimum BER point of the receiver quite

successfully. These results are shown on the graph of Fig. 5.7 as “stars”, denoting
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the minimum BER reached by using this stopping criterion. A similar behavior was

observed for several other codes, including the ones presented in Section 5.3.2. An

intuitive explanation for its effectiveness is that such a stopping criterion is good

for any iterative scheme that approximates aposteriori probabilities, since a small

entropy implies a large probability. In this case, the additional feature is that the

approximate aposteriori probability was observed to oscillate, so it is reasonable to

stop at its first minimum.

Finally, it is worth mentioning that while Theorem 5.1 provides a generic bound

for codes with given parameters, a better bound can be found for specific codes.

For example, for the inner code of Code 1, the number of input symbol errors as a

result of partial rotation is 1, whereas the upper bound suggested by the theorem is

9 (using K = 1 and L = 0).

5.5 Rotationally robust codes for the ACR/APR channels

In this section, we investigate noncoherent channels that introduce arbitrary ro-

tations to the transmitted codewords. These phase changes either remain constant

over the entire codeword, or affect only part of the codeword. The discussion is initi-

ated with the ACR channel, i.e., the channel which assumes rotations are arbitrary

in (−π, π], but otherwise constant over the whole codeword (see Table 5.1). As was

noted in the Introduction, the only possible choices for noncatastrophic behavior

over this channel are RI codes and anti-RI codes [75]. The obvious question is which

of these two choices is preferable in the ACR channel.

It is now shown that as far as their performance on the ACR channel is concerned

RI and anti-RI codes are equivalent. First, observe that there is a one-to-one mapping

between RI and anti-RI codes. In particular, let C denote an anti-RI code over the
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signal alphabet that has n-fold rotational symmetry, then by adding all the rotated

versions of the codewords in C we get an RI code CRI = {ρm(x) | x ∈ C, m =

0, 1, . . . n−1}. Similarly, starting from any RI code, by excluding all but one rotated

versions of a codeword, an anti-RI code is generated. Moreover, if x(a) denotes the

encoder mapping of the anti-RI code, the corresponding RI encoder transmits one

of the rotated versions of x(a), ρm(x(a)) with equal probability,13 when the input

sequence is a. The MLSD decoding rule for transmission over the ACR channel is

exactly the same for both cases, since

âRI = arg max
a

pz|a(z|a) = arg max
a

1

n

n−1∑
m=0

pz|x(z|ρm(x(a)))

= arg max
a

pz|x(z|x(a)) = âanti-RI, (5.14)

where we used the fact that for the noncoherent ACR channel pz|x(z|x) = pz|x(z|xejθ)

for any angle θ. Therefore, RI and anti-RI codes are equivalent for this channel

model, which raises the question whether any of these classes of codes is preferable.

A partial answer to this question is provided here by showing that non-concatenated

RI codes are provably robust to partial arbitrary rotations, i.e., are provably robust

in the APR channel. The APR model is similar to the DPR, except now the rotations

can be arbitrary (see Table 5.1). The reason for the interest in the APR channel,

is that it sufficiently models noncoherent channels with fast dynamics where phase

changes are often. It is emphasized that rotational robustness in this case is discussed

in connection with the optimal MLSD decoder for the noncoherent ACR channel,

since the MLSD decoder matched to the AWGN channel is completely useless in this

scenario.

Let C be an RI code, φ = 2π/n the base angle of the RI signal set, θ an arbitrary

13This is achieved through the choice of the initial state of the RI encoder.



107

angle in (−π, π], x the transmitted codeword corresponding to the input sequence a,

and z the partially rotated codeword at a certain time index k, i.e.,

zi =





xi , i < k

xie
jθ , i ≥ k.

(5.15)

In addition, let the utilized decoder be the standard MLSD receiver for the nonco-

herent channel (assuming all codewords x have equal energy), given by

x̂ = arg max
x∈C

Λ(x, z) = arg max
x∈C

|xHz| = arg max
x∈C

∣∣∣
∑

i

zix
∗
i

∣∣∣, (5.16)

with z being the observed sequence. Associated with the decoded sequence x̂,

through the inverse mapping of the encoder, is the corresponding input sequence

â. In the following, for simplicity we assume M-PSK signals (n = M in this case).

The extension to the case of signal sets that utilize amplitude variations is straight-

forward. The following lemma proves that for RI codes, no decoding error occurs in

the APR channel in the special case when the partial phase rotation is smaller than

half the base angle. This result is then generalized by dropping this assumption.

Lemma 5.2. If |θ| < φ/2 then the codeword chosen by the noncoherent MLSD

decoder in (5.16) is x̂ = x.

Proof. Let y be any sequence whose elements are from the constellation used for

transmission, and let Al = k and Ar = N − k be the number of symbols on the left

and the right of the rotation boundary k. We have

Λ(y, z) = |yHz| =
∣∣∣
k−1∑
i=0

y∗i xi + ejθ

N−1∑

i=k

y∗i xi

∣∣∣ =
∣∣∣
k−1∑
i=0

ejmiφ + ejθ

N−1∑

i=k

ejmiφ
∣∣∣, (5.17)

where we have used the fact that for M-PSK signals xi, yi, there is an mi ∈ {0, . . . , n−

1} such that y∗i xi = ejmiφ. Collecting all terms with the same mi = m we get

Λ(y, z) =
∣∣∣
n−1∑
m=0

(am + bmejθ)ejmφ
∣∣∣ =

∣∣∣
n−1∑
m=0

dmejmφ
∣∣∣, (5.18)
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where am is the number of terms in the left sum of (5.17) with mi = m, and similarly

for bm (clearly,
∑n−1

m=0 am = Al and
∑n−1

m=0 bm = Ar). Observe that | arg(dm)| ≤ |θ| <

φ/2, and also | arg(dmd∗m′)| ≤ |θ| < φ/2. Hence we have

Λ(y, z)2 =
∣∣∣
n−1∑
m=0

dmejφm
∣∣∣
2

=
n−1∑
m=0

|dm|2 + 2
n−1∑

m,m′=0
m>m′

|dmdm′| cos((m−m′)φ + αm,m′)

<

n−1∑
m=0

|dm|2 + 2
n−1∑

m,m′=0
m>m′

|dmdm′| cos(αm,m′)

=
∣∣∣
n−1∑
m=0

dm

∣∣∣
2

= |Al + Are
jθ|2, (5.19)

where αm,m′ = arg(dmd∗m′), and inequality follows from the fact cos(tφ + αm,m′) <

cos(αm,m′) for any non-zero integer t since |αm,m′| < φ/2. On the other hand, for the

transmitted sequence x we have Λ(x, z) = |Al + Are
jθ|. The proof is completed by

combining this result with (5.19) to get

Λ(x, z) > Λ(y, z) ⇒ x̂ = x. ¥

The more general case when the condition of Lemma 5.2 does not hold, is ad-

dressed by the following theorem.

Theorem 5.3. Under the assumptions of finite K and L parameters, the input se-

quence â, corresponding to the codeword x̂ chosen by the noncoherent MLSD decoder

in (5.16) satisfies:

dH(a, â) ≤ (L + 1)
(
K

2

1− cos φ
· 1

1− | tan(θ′/2)| sin φ
+ 2

)
+ 1, (5.20)

where θ′ is such that θ = sφ + θ′, |θ′| ≤ φ/2 and s ∈ {0, 1 . . . n− 1}, for any

θ ∈ (−π, π],

Proof. To start with, we know that there exists a valid path through the trellis of

length at most K steps which departs from the path of x at time index k − kl and
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joins the path of ρs(x) at some index k + kr (kl + kr = K). Call the codeword that

starts as x and joins the path of ρs(x), passing through this transition path, x̂′. Also,

let x′ denote the sequence which coincides with the path of x to the left, and with

the path of ρs(x) to the right of k (this sequence is not a valid codeword since it

involves a state jump at time index k). Then, using a similar argument as the one

used in the proof of Lemma 5.2, we have

Λ(x̂′, z) = |(Al − kl) + Am + (Ar − kr)e
jθ′| ≥ |(Al − 2kl) + (Ar − 2kr)e

jθ′|. (5.21)

Similarly to Theorem 5.1, we only need to bound l1 = dH(x̂,x′), the number of

symbol disagreements between x̂ and x′. Let ml and mr be the number of symbol

disagreements between these two sequences on the left and on the right of k, respec-

tively (ml + mr = l1). Then the problem reduces to maximizing ml + mr subject to

the condition that

Λ(x̂, z) ≥ Λ(x̂′, z), (5.22)

with both ml and mr nonnegative. This problem can easily be solved by either direct

manipulation or by using the method of Lagrange multipliers. We have

Λ(x̂, z) = |(Al −ml) + (Bl + Bre
jθ′) + (Ar −mr)e

jθ′ |, (5.23)

where Bl =
∑ml

i=1 exp(jgiφ) and Br =
∑mr

i=1 exp(jhiφ) with gi and hi being integers

between 0 and n − 1. With θ′ > 0 the maximum occurs14 when gi = 1 and hi =

n− 1 ∀i. So the constraint in (5.22) becomes

|Al −ml + mle
jφ + (Ar −mr + mre

−jφ)ejθ′ | ≥ |Al − 2kl + (Ar − 2kr)e
jθ′|, (5.24)

14The implicit assumption made at this point is that, the resulting ml satisfies ml(cos θ′(1 −
cos 2φ)+sin θ′(1+sin φ)) < 2Al sin φ sin θ′. When this assumption is not true (e.g., θ′ ≈ 0) we have
to take hi = 1 ∀i which yields an even tighter bound.
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which after some algebra yields

l1 = ml + mr ≤ K
2

1− cos φ
· 1

1− | tan(θ′/2)| sin φ
(5.25)

where K = kl + kr (we also assumed that Al and Ar are much bigger than kl and

kr). Finally, using the same line of reasoning as in Theorem 5.1, the desired result

is established from the bound in (5.25). ¥

Observe that for the case of discrete rotations we have θ′ = 0 and hence

dH(a, â) ≤ (L + 1)
(
K

2

1− cos φ

)
+ 1. (5.26)

Also note that, in this case, the term 2/(1 − cos φ) is the only term relating to the

output signal set used, which is the counterpart of the term d2
M/d2

m in Theorem 5.1

for coherent decoding. Furthermore, for M-PSK constellation these two terms are

exactly the same, which implies the identical bound in this case.

We would like to point out that the MLSD receiver for the ACR noncoherent

channel shown in (5.16) is too complex for practical implementation. If suboptimal

receivers operating on a small observation window are used (e.g., the receivers pro-

posed in [75, 21, 17]), the results of Theorem 5.3 are not necessarily valid. In fact, one

can claim that any receiver that operates on a size-Nr observation window is robust

in the sense that when a partial rotation occurs, a maximum of approximately 2Nr

bits will be lost (in the neighborhood of the partial rotation). This means that the

fact that RI codes are RR in the APR channel, proven in Theorem 5.3, is true only

when the observation window is much larger than the upper bound obtained in the

Theorem. This assumption, however, is not unrealistic, since there exist suboptimal

receivers (e.g., per-survivor processing (PSP) receivers with phase-locked loop (PLL)

phase estimation [74]) that operate on an—effectively—large window size (due to the
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autoregressive nature of the PLL), but only search a part of the decision tree. These

receivers can be interpreted as approximations of the algorithm in (5.16).

5.6 Conclusion

In this chapter several issues regarding RI codes were investigated. High-rate,

powerful RI-SCTCM codes were designed and their performance was gauged through

simulations. The use of RI codes in more complicated channel models than the one

generally assumed in the literature was also investigated. Several channel models

were considered, and certain RI codes were shown to posses the stronger property of

rotational robustness, desired for reliable communication over these channels. Two

theorems were proven that guarantee that RI codes with small state space posses

this property, when used both in coherent and noncoherent channels. It was further

demonstrated through an example that RI codes with larger state space, e.g., RI-

SCTCM codes, can also be made robust by adding a simple stopping criterion in the

iterative decoding algorithm.



CHAPTER VI

SUMMARY AND FUTURE WORK

In this chapter we summarize the main contributions of this thesis, and present

avenues for future research.

6.1 Summary

Several issues regarding communication over the phase-noisy AWGN channel have

been investigated. A block-independent model for the phase process is assumed,

which leads to a block-wise time-invariant memoryless complex vector channel. The

dynamics of the phase process are modeled by the number of symbols, N , over

which the phase is assumed constant. This parameter, which can be thought of

as the channel coherence time, is assumed known both to the transmitter and the

receiver.

Two main problems are investigated: (i) design and analysis of practical coding

schemes that come close to the information theoretic limit and (ii) evaluation of

information capacity and characterization of the structure of the capacity-achieving

density.

Due to the similarity of this channel to the coherent AWGN channel, the problem

of code design and analysis was initiated in Chapter II with a natural suboptimal

112
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scheme that pairs a phase estimation with subsequent coherent decoding. In par-

ticular, the behaviour of the block independent noncoherent AWGN channel was

investigated when pilot-symbol-assisted codes are utilized. The role of the pilot-

symbol is to facilitate phase estimation and effectively translate the noncoherent

channel to a coherent AWGN channel. The BPSK modulation was used in con-

junction with the pilot symbols, and this modulation scheme was paired with the

LDPC binary codes. Several approximate receivers were proposed, which perform

phase estimation either separately from decoding, or jointly as part of an iterative

detection/estimation process.

The performance of these coding schemes was analyzed using density evolution,

a recently discovered technique for analysis of codes on graphs. Based on these

approximate receivers, a simple upper bound to the performance of any iterative joint

detection/estimation algorithm was derived. The trade-off, arising as a result of using

pilot symbols, between the quality of the phase estimate and the effective SNR was

demonstrated for the proposed receivers. Utilizing density evolution as an analysis

and optimization tool, the power allocation to the pilot symbol was quantified, and it

was shown that a considerable performance gain can be obtained by designing codes

with the optimal power allocation. Furthermore, it was found that this optimal

allocation depends highly on the channel coherence interval, as well as the particular

algorithm used, and plays an increasingly critical role for fast channel dynamics.

To further demonstrate the importance of optimizing pilot power allocation, similar

simulations were run for more elaborate receivers as well as more bandwidth efficient

modulation alphabets, for which the density evolution is not feasible. From these it is

deduced that, the better the utilized receiver, in terms of joint estimation/decoding,

the less pilot power is required. The presented pilot-symbol-assisted codes and the
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corresponding receivers, apart from answering an important question of achievable

performance with pilot symbols utilized to aid the phase estimation, can serve as a

baseline, yet powerful, system, against which new code designs can be compared.

The pilot-symbol-assisted coding performs well for high values of N , as the loss

in effective SNR as a result of pilot symbol insertion becomes negligible. On the

other hand, for small or even moderate values of N , this SNR loss is considerable,

and hence more elaborate signaling schemes should be considered.

As a first step in this direction, in Chapter III we approached the problem of

optimal signaling from the information-theoretic point of view. Namely, we investi-

gated the information capacity and, more importantly, the structure of the capacity

achieving density.

Several interesting results were found regarding the structure of the capacity

achieving density. It was shown that the capacity is achieved by the circularly sym-

metric input density, that is the density function that only depends on the amplitude

of the variable. This implies that optimal signaling scheme uses all directions in the

N dimensional complex space equally probable. Therefore, the problem of determin-

ing the structure of the optimal input density reduces to finding that of the amplitude

variation of the input signal. Taking this as a starting point, it is proven that there

exists a unique optimal amplitude density that is discrete and has infinitely many

mass points with tails going to infinity. Furthermore, it is shown that there is always

a mass point at zero, which implies that to achieve capacity the transmission should

be kept silent with some positive probability.

The noncoherent channel resembles the two similar channel models: on one hand

it has the amplitude variation of the coherent AWGN channel (constant envelope)

while on the other it has phase variation of the Rayleigh fading AWGN channel



115

(uniform phase). The results about the structure of the capacity achieving density,

outlined above, reveal where the noncoherent channel stands in comparison to these

two close channel models. The fact that the optimum input signal is discrete in

nature is reminiscent of the similar behaviour of the Rayleigh fading channel, while

the fact that the tails of the optimal density go to infinity is similar to the behaviour

of the coherent AWGN channel.

Complementary to these basic theoretical results, an asymptotic expression is

derived that relates the mass point probabilities to mass point locations. It is shown

that although the tails of the optimal density go to infinity, the probabilities de-

crease fast with increasing amplitude (square exponentially). As a result, numerical

capacity evaluations that assume only a finite number of mass points result in small

capacity loss. Several such evaluations were performed, and in particular it was

shown that the mere introduction of a mass point at zero yields a considerable ca-

pacity gain over the more conventional single amplitude signaling (this gain is termed

“shaping gain”). In addition to this, the loss associated with utilizing discrete mod-

ulation alphabets as opposed to the optimal circularly symmetric signaling (termed

“disctretization loss”) is identified and quantified. These two simple performance

measures prove to be very useful from the code design point of view, which is the

focus of Chapter IV, where these results are explicitly used to design the practical

low-complexity coding schemes that come close to the capacity of this channel and

outperform the existing designs.

In particular, Chapter IV considers the concatenated scheme where a high-performance

binary outer code is used to introduce large memory, while a simple modulation code

is used to match the channel characteristics. Due to the complexity constraints, the

case of slow dynamics (small values of N) is considered separately from the case of
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faster dynamics (moderate values of N). Within this context two different coding

scheme designs that are inspired by the capacity results are proposed in Chapter IV.

For small values of N , the complexity at the demodulator (exponential in N) per-

mits the use of efficient modulation codes with small discretization loss. In particular,

a recently discovered unitary modulation, is used, which can be easily optimized to

yield modulation code with good immunity to the harmful effects of random phase.

As a binary code a serially concatenated turbo code is utilized. In this scenario,

to benefit from the shaping gain, the inner code of the turbo code is used to intro-

duce the transmission of zero mass point. It is demonstrated through an example

that such a scheme powered with a relatively simple turbo code yields a very good

bit-error rate performance, further emphasizing the capacity results.

In the second case, when moderate values of N are considered, a somewhat dif-

ferent approach is pursued. In this case, the complexity constraints prevent the use

of powerful modulation codes, and as a result simple M-PSK modulation is used.

A novel modulation scheme is proposed that, while using simpler modulation al-

phabets, handles the introduction of the zero mass-point. This modulation scheme

is paired with the powerful low-density parity-check codes, that can be represented

by factor-graphs and decoded quite reliably by using a message passing algorithm.

Moreover, the factor-graph representation of the proposed modulation scheme al-

lows a decoding with a message passing algorithm, that has linear complexity in

N . Furthermore, utilized LDPC codes can be optimized taking into the account the

overall structure of the factor graph including the modulation scheme. These ideas

are demonstrated through a practical example. The obtained code outperforms all

the existing designs by more than 0.5 dB at essentially the same complexity, and is

within 0.3 dB of the capacity. It is shown that the channel-matched optimization of



117

the binary code plays a crucial role in the overall performance gain.

Regardless of the structure of the codes designed for the noncoherent channel,

a certain condition has to be satisfied by all the codewords. This condition is the

result of the fact that within the block of constant phase the two sequences that

are rotated versions of each other are indistinguishable at the receiver side. All

the codes designed in Chapters II and IV avoided this catastrophic behaviour by

making sure that no such pair of codewords appears in the codebook. However, an

alternative approach to this issue is possible: instead of avoiding codewords that

are rotated version of each other, all such combinations are included in a codebook

in a controlled manner, so that the ambiguity at the receiver side is vanished by

assigning all such codewords to the same input sequence. The codes that possess

such a property are called rotationally invariant (RI).

In Chapter V, we discuss RI codes and their properties under somewhat more

flexible channel models. For analysis and code design purposes, several similar chan-

nel models are considered starting with a simple slow-dynamics model (constant

phase over the entire codeword) and through a series of more realistic channel mod-

els finally arriving at a model that is very similar to the block-noncoherent channel

model discussed earlier.

In the first part of Chapter V, RI codes are extended to the serially concatenated

turbo codes, and the design guidelines for RI-SCTCM codes are outlined. Following

these, several powerful high-rate RI-SCTCM codes are designed and simulated. As

it is illustrated through these examples, in some cases RI property does not imply

any penalty in the performance, while for others it comes at the cost of diminished

performance.

In the second part, we introduce a notion of rotationally robust (RR) codes by
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easing the condition of constant phase over the entire codeword. Namely, now the

unknown phase can jump at random position within a codeword to another random

realization. The RR codes are required to suffer only a finite – and independent from

blocklength – number of input bit errors as a result of such a jump. We consider

this property both in coherent and noncoherent setting, and prove that under certain

conditions RI codes actually satisfy this property. To extend this result to SCTCM

codes we propose a simple modification of the decoding algorithm, that makes the

RI-SCTCM codes robust to phase jumps as well.

Aside from proving similar theorems of robustness to partial rotations for RI-

SCTCM codes, designing practical RI-SCTCM schemes that are robust to partial

rotations when decoded with standard iterative decoder (possibly with slight modi-

fications), is a challenging problem for future studies.

These results constitute major contributions of this thesis. Though considerable

progress has been made in both of the identified problems, coding and capacity, there

are still possible improvements and extensions of these results. In the next section

we investigate these future possible research topics.

6.2 Future Work

We initiate this section with a simple extension of the pilot-symbol-assisted mod-

ulation. A simple generalization of this coding scheme is to transmit the pilot symbol

not in every block of constant phase, as was assumed in the above analysis, but once

per every J number of blocks. The power loss due to pilot will now be on the order

of Ep/(JN) as opposed to Ep/N . However, it is not straightforward to predict which

of the following two cases will have superior performance: 1) transmitting pilot of

power Ep in every block; or 2) transmitting pilot of power JEp once in every J blocks.
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This is because, while power loss due to the pilot symbol insertion in both cases is

essentially the same, it is not clear whether having very high quality phase estimate

in one block (out of J) and none in others (case 2), is better/worse than having less

reliable phase estimates in all the blocks (case 1). No matter what the conclusions

will be, this approach gives another variable, J , for trade-off between the quality of

estimation and effective SNR, and comprises an interesting future research direction.

The coding schemes presented in Chapter IV imitate the capacity results obtained

in Chapter III and achieve very good performance. However, the two proposed

schemes do not completely cover topic of the capacity-inspired coding. For instance,

the coding scheme proposed in Section 4.3 for the moderate values of N , requires

more involved mode-bit mappings. In particular, when the desired probability of

zero is p0, and m of the blocks are used at a time by the modulation scheme then

log2

(
m

bmp0c
)

mode bits are required. The increase in m implies the increase of the

rate gain in terms of number of mode bits per block of constant phase. Using the

bound

1

m + 1
2mH(p0) ≤

(
m

bmp0c
)
≤ 2mH(p0) (6.1)

where H(p0) represents the binary entropy function, we can see that, in the limit,

the rate gain as a result of mode bits is

lim
m→∞

1

m
log2

(
m

bmp0c
)

= H(p0). (6.2)

For example, the code presented as an example for the case of N = 7 has p0 = 1/4

and uses m = 4. As a result, the rate gain is 0.5 (bits per block), while the achievable

limit is H(1/4) = 0.81 (bits per block). This suggests that there is a potential 32%

increase in the rate gain, which can prove very crucial. However, for higher values

of m, there is a considerable complexity increase in comparison to the modulation
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scheme that does not introduce the zero point. Therefore, the decoding algorithm

has to be simplified – perhaps at the cost of abandoning optimal demodulation – to

accommodate the increase in m without sacrificing low complexity that these coding

schemes were designed for. These ideas form a research topic for future studies.

On the other extreme, the problem of capacity of the noncoherent channel has

not been fully solved. The asymptotic results of Section 3.3 can be further extended

to yield even better results. For example, the sphere hardening effect can be more

rigorously proven using the derived asymptotic results. On the other hand, better

bound and/or expressions for the capacity itself can be derived. An interesting

approximation that can be derived by combining the results of Chapter III with the

intuitive reasoning is

CN(γ) =
I(x,y)

N
' N − 1

N
log2

(
γ + 1− 1

2N

)
+

1

N
C1(γ), (6.3)

where γ denotes the signal-to-noise ratio. This simple approximation is very interest-

ing, in that it reveals how the capacity of the coherent AWGN channel is approached

with increasing N and γ. In particular, it shows that for a fixed N , and with increas-

ing γ, the capacity of the noncoherent channel is approximately N/(N−1) times that

of the coherent channel plus the extra term that is capacity for the case of N = 1.

This is expected, because although the high SNR case can be argued to translate

this channel into the coherent case (e.g., via phase estimation), exactly one out of

the 2N real dimensions will be lost (out of N pairs of phases and amplitudes, one of

the phases can not be recovered), and thus only N − 1 complex dimensions exhibit

coherent behaviour and the remaining amplitude variation results in the extra term.

This result is in agreement with [56], where it was partially shown that for block

memoryless channels the limit of the infinite blocklength, N , the capacity of the co-
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herent case is approached. In addition, this approximation precisely quantifies this

convergence. A more rigorous proof of this approximation is another future research

topic.

Connected to this is the derivation of the efficient algorithm for the numerical

optimization of the mutual information. More precisely, we know that for any input

density the following two sets of conditions need to be satisfied

Fpa(ak) = λ + µa2
k (6.4)

F ′
pa

(ak) = 2µak (6.5)

by the two sets of variables, mass point probabilities pk and positions ak. Using

these conditions, one can devise simple procedures to satisfy each of the conditions

by varying one set of variables provided the others are fixed. In particular, the

methods used in proving the existence of the mass point at zero in the Section B.7

of Appendix B can be adapted for this purpose. By utilizing such methods it can

be shown that carefully chosen procedures will necessarily increase the mutual in-

formation at each step. This way an iterative algorithm is obtained that – because

the mutual information is bounded for finite power – is guaranteed to converge. The

proof of the fact that such a procedure yields a global optimum (or a sequence of

local extreme points that approach the global optimum with increasing number of

mass points), as well as a more rigorous derivation of the aforementioned procedures

is of practical interest.
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APPENDIX A

DERIVATION OF THE DISTRIBUTION

FUNCTIONS FOR PSA

In this appendix we derive the expressions for initial message distributions for

the proposed receiver models of Chapter II assuming the transmission of the all-

one codeword. These distribution functions are used to run density evolution in

order to analyze these receivers. The expressions for messages are repeated here for

convenience, and throughout the appendix, the normalization Es = 1 is assumed.

A.1 M-PO Receiver

For M-PO receiver, the initial message is given by

µFXi
= log

p(zi, z0|xi = +1)

p(zi, z0|xi = −1)
= log

I0(|z0

√
Ep + zi

√
Es|/σ2)

I0(|z0

√
Ep − zi

√
Es|/σ2)

. (A.1)

Observe that zi and z0 have joint probability density function

p(zi, z0|xi = 1) =

∫ 2π

0

p(zi, z0|θ, xi = 1)dθ

=
1

(2πσ2)2
exp(

−|zi|2 − |z0|2 − Ep − Es

2σ2
)I0

(
|z0

√
Ep + zi

√
Es|

σ2

)
. (A.2)

After some algebra the cumulative distribution function of the message in (A.1) can

be found as

P (µFX ≤ q) =

∫ ∞

αl

∫ 1

−1

exp(
−(Ep + 1)(α + 4Ep)

8Epσ2
)I0(

√
α

σ2
)
g(α, q, t)√

1− t2
dtdα, (A.3)
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where g(α, q, t) is given by

g(α, q, t) =
1

a

[
e−ax cosh(b

√
x)+

√
π

2

b

2
√

a
e

b2

4a

(
erfc(

−b

2
√

a
+
√

ax)− erfc(
b

2
√

a
+
√

ax)
)]

,

with

a =
Ep + 1

8Epσ2
(A.4)

b =
Ep − 1

4Epσ2

√
α(1− t)/2 (A.5)

x = σ4f 2(I0(

√
α

σ2
)e−q), (A.6)

where f(·) is the inverse of I0(·) (with the convention f(y) = 0 if y ≤ 1). The lower

limit of integration is αl = σ4f 2(eq).

A.2 E-PO Receiver

For the case of PO receiver with explicit phase estimation, the message has the

form

µFX(r, t) = log

∫ π

−π
e
√

Esr cos(t−x)/σ2
T (x)dx∫ π

−π
e−

√
Esr cos(t−x)/σ2T (x)dx

. (A.7)

where r = |zi|, t = ∠zi − θ̂ and T (x) = pθ̂|θ(x|θ = 0) is given in (2.15).

Utilizing the approximation µFX(r, t) = h(r) cos(t), mentioned in Section 2.4.1

of Chapter II, results in the following expression for the cdf of µFX

P (µFX ≤ q) =

∫ π

−π

∫ π

π/2

T (x)s(x, t)dt dx, (A.8)

with s(x, t) defined as

s(x, t) = e
− sin2(x−t)

2σ2

( 1

π
e−H2

+
1√

2πσ2
cos(x− t) erfc(H)

)
(A.9)

where erfc denotes the complimentary error function and

H =
h−1(|q/ cos(t)|)√

2σ2
. (A.10)
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A.3 M-QDF Receiver

For the M-QDF receiver, the initial message resembles the M-PO message as can

be evidenced from its definition

µFXi
= log

I0(|wia
(l) + zi

√
Es|/σ2)

I0(|wia(l) − zi

√
Es|/σ2)

, (A.11)

with all the involved variables defined in Section 2.3.2. As it was mentioned earlier,

we need to find the conditional cdfs P (µFXi
≤ q|x,vi). To do that, observe that

wi in (2.11) is a complex Gaussian random variable with mean b(vi)ejθ, variance σ2

per real dimension and is independent of zi conditioned on vi, x and the channel

parameter θ, with

b(vi) =
yTvi

‖vi‖ . (A.12)

Furthermore, due to the similarity of the M-QDF message in (A.11) with the mes-

sage for the M-PO receiver, the same approach can be followed for the evaluation

of the corresponding cumulative distribution functions, resulting in the following

expressions

P (µFXi ≤ q|n+, n−) =

K

∫ ∞

αl

∫ ∞

βl

∫ 1

−1

[
G(α, β, t, +1) + G(α, β, t,−1)

] dt√
1− t2

dβdα (A.13)

where G(α, β, t, c) is given by

G(α, β, t, c) = exp(−g(1/a, c)

2σ2
)I0(

√
g(b/a, c) + (α− β)b/(2a)

σ2
) (A.14)

with g(r, c) =
1

2
((1 + r2)(

α + β

2
+ c(1− r2)

√
αβ(1− t)

2
) (A.15)

K =
1

32πσ4a2
exp(−b2 + 1

2σ2
) (A.16)

b = b(n+, n−) =
n+ − n− + Ep√
n+ + n− + Ep

(A.17)

βl = σ4f 2(I0(

√
α

σ2
)e−q) (A.18)
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and f(·) and αl are defined in Section A.1. Observe that the expression for the cdf

of the M-PO message in (A.3) is a special case of equation (A.13) for n+ = n− = 0,

after explicitly integrating with respect to β.



APPENDIX B

PROOF OF CAPACITY RESULTS

In this appendix we give the proofs of the results in Chapter III. Sections are

generally self containing and have few references to the Chapter III.

B.1 Simplification of the Mutual Information Expression

In view of Lemma 3.1, for the optimization problem described in (3.3) it suffices

to consider circularly symmetric input densities. It was mentioned earlier that such

densities can be parameterized by a function of one real variable, that is the density of

the input amplitude variable a = ‖x‖/σ. In this appendix, we derive the expression

for the mutual information induced by the circularly symmetric input random vector,

in terms of its amplitude density.

Let p(x) = f(‖x‖/σ)/σ2N be such an input density and observe that in this case

the induced output density also possesses such a property, i.e., p(y) = g(‖y‖/σ)/σ2N

for some function g : [0,∞) → [0,∞). For a fixed nonzero x, we first consider the

integral with respect to y in (3.4). Let U be a unitary matrix1 whose first row

is xH/‖x‖, and the rest N − 1 rows are any set of orthonormal vectors, that are

1An implicit assumption at this point is that N > 1. However, the end result (3.9) is valid for
N = 1 as well.
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also orthogonal to x. By changing variables from y to w = [r1e
jθ1 , . . . rNejθN ]T =

Uy/σ the integrand becomes a function of only r1 and r2
1 + . . . + r2

N , and thus

the phase variables θi can be integrated out. Finally, by introducing new variable

r =
√

r2
1 + . . . + r2

N and integrating out with respect to all the variables except r1

and r, the integral over y in (3.3) is reduced to

∫ ∞

0

∫ r

0

(
r2 − r2

1

2

)N−2
rr1

(N − 2)!
exp(−r2 + a2

2
)×

× I0(ar1) log
I0(ar1)

g(r)
dr1dr −N log(2π)− (N + a2). (B.1)

The expression in front of the logarithm under the integral sign is the conditional

density p(r, r1|a). By a further manipulation (B.1) becomes

∫ ∞

0

p1(r1|a) log I0(ar1)dr1 −
∫ ∞

0

pN(r|a) log g(r)dr −N log(2π)− (N + a2) (B.2)

where the function pn(r|a) is defined by

pn(r|a) = e−(r2+a2)/2r
(r

a

)n−1

In−1(ar). (B.3)

In a similar fashion, the integral over x in (3.4) can be reduced to an integral over

a, which results in the final expression in (3.9).

B.2 The Kuhn-Tucker Condition

In this section we derive the necessary and sufficient conditions for an input

amplitude density to be the maximum one. First, we eliminate the power constraint

via the introduction of the Lagrange multiplier, and convert the constrained problem

in (3.12) into unconstrained one

C = sup
pa(a)

∫ ∞

0

(Fpa(a)− µ(a2 − γ))pa(a)da (B.4)
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for some nonnegative µ. It is known [50] that if the supremum is achieved in the

unconstrained problem by some input density, it is also achieved in the constrained

problem by the same input density, and that this input density satisfies the power

constraint with equality if µ is not zero.

Following along the lines of [82, 25] we can obtain the necessary and sufficient

conditions for an input density to be the maximizing one. The result relies on the

well-known fact of convex optimization (see [41, 50]) which says that a concave

functional J(p) on a convex set achieves its maximum at p∗ if and only if

d

dt
J(p∗ + t(p− p∗))

∣∣∣
t=0+

≤ 0 for any p. (B.5)

Applying this result to the optimization problem in (B.4) we get the following: p∗a(a)

achieves the maximum in (B.4) if and only if

∫ ∞

0

[Fp∗a(a)− µ(a2 − γ)](pa(a)− p∗a(a))da ≤ 0 (B.6)

for any density pa(a). Furthermore, applying Corollary 2 of [82] we get the necessary

and sufficient condition (called Kuhn-Tucker condition):

Fp∗a(a) ≤ λ + µa2 (B.7)

with equality if a is the mass point of density p∗a(a), and where λ is

λ =

∫ ∞

0

Fp∗a(a)p∗a(a)da− µγ = C − µγ. (B.8)

B.3 Existence and Uniqueness of the Maximizing Density

In this section we proceed to prove that the optimization problem of (B.4) and

hence the constrained problem of (3.12) has a unique solution, that is, there exists

the input amplitude density for a that achieves the maximum. The methodology

followed in doing so parallels the approach of [82, 25].
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In the following we consider densities as being elements of the dual of the space

of the bounded continuous functions, that is, as linear functionals, where a density

p(a) acts on a bounded continuous function φ(a) as p(φ) =
∫

φ(a)p(a)da. Therefore,

we can think of a “mass point at a0” as being a linear functional δ that acts on φ(a)

as δ(φ) = φ(a0). This approach allows us to include the discrete random variables

into the consideration as well.

The results of this appendix rely on the fact that the strictly concave continuous

functional on a convex compact set achieves its unique maximum. Here continuity

of functionals as well as the compactness of the set is understood in the weak*

topology (e.g., see [41, Sect. IV-3.3]). The convergence in this topology is “pointwise

convergence”, that is the sequence pk is said to converge to p if the real sequence

pk(φ) converges to p(φ) for any bounded continuous function φ(a).

In [25] it was shown that the set of second-moment-constrained input densities

is convex and compact. In the following we establish that the mutual information is

continuous and strictly concave, which by the statement above proves the existence

and uniqueness of the maximizing density.

B.3.1 Weak-* continuity of mutual information

We can rewrite I(pa) in (3.9) as

I(pa) =

∫ ∞

0

[∫ ∞

0

p1(r|a) log
p1(r|a)

r
dr −

∫ ∞

0

pN(r|a) log
cN−1

r2N−1
dr

]
pa(a)da

−
∫ ∞

0

pN(r) log pN(r)dr (B.9)

where pN(r) is induced by the input density pa(a). We first show that the second

term is continuous. Let pk
a be a sequence of input densities that converges (in weak*

sense) to pa (and satisfy the power constraint) . Observe that pN(r) is a continuous
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function2 of pa(a) for all r ≥ 0, and so is pN(r) log pN(r). Therefore, we only need to

find an integrable function ζ(r), so that

|pk
N(r) log pk

N(r)| ≤ ζ(r) (B.10)

where pk
N is the output density induced by pk

a, and then use the Lebesgue dominated

convergence theorem. To that end observe that

pN(r|a) ≤ exp(−(r −√a2 + 2N − 1)2

2
) ≤





3a2+2N−1
r2 r ≥ 1

1 r < 1

(B.11)

and hence

pk
N(r) ≤ min{1, 3γ + 2N − 1

r2
}, (B.12)

which together with the simple inequality |x log x| ≤ 2x3/4 for x ∈ [0, 1] implies

|pk
N(r) log pk

N(r)| ≤ ζ(r) = 2 min{1, 33/4(γ + 2N − 1)3/4

r3/2
}. (B.13)

Since ζ(r) is obviously an integrable function, the required result follows from the

Lebesgue dominated convergence theorem.

To show that the first expression in (B.9) is continuous we need to show that

lim
k→∞

∫ ∞

0

G(a)pk
a(a)da =

∫ ∞

0

G(a)pa(a)da (B.14)

where G(a) is the expression inside the square brackets in (B.9). The function G(a),

though continuous, is not bounded, and therefore (B.14) does not merely follow from

the definition of the weak* convergence. However, using the inequality

0 ≤ G(a) ≤ (2N − 1)E(log(rN)|a) ≤ (2N − 1) log(E(rN |a))

≤ (2N − 1) log(
√

a2 + 2N − 1 + 1) ≤ (2N − 1)
√

a2 + 2N − 1, (B.15)

2This follows because pN (r|a) is a bounded continuous function of a.
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the tails of the integrals in (B.14) can be bounded uniformly in k as3

∫ ∞

t

G(a)pk
a(a)da ≤ (2N − 1)

∫ ∞

t

√
a2 + 2N − 1pk

a(a)da

≤ 2N − 1√
t2 + 2N − 1

∫ ∞

t

(a2 + 2N − 1)pk
a(a)da ≤ (2N − 1)(γ + 2N − 1)√

t2 + 2N − 1
. (B.16)

Therefore, for any given ε > 0, we can choose a big enough t so that for all k the

LHS of (B.16) is less than ε/4. The function (in a) which is equal to G(a) − G(0)

for a < t and G(t)−G(0) for a ≥ t, is bounded and continuous, and therefore using

the definition of the weak* convergence, for some k′, the sequence in (B.14) will be

within ε/2 of the limiting value for all k > k′ (with upper limits of integrals being

t). Combining these two results with the fact that any constant function is bounded

and continuous the result in (B.14) is established. This proves that the first term

in (B.9) is continuous as well, and, therefore, so is the mutual information.

B.3.2 Strict concavity of mutual information

The first term in (B.9) is linear in pa(a). The second term is a strictly concave

function of pN(r), and since the latter is linear in pa(a), the second term is concave in

pa(a). To show that it is actually strictly concave in pa(a), we need the mapping from

pa(a) to pN(r) to be injective. Since both a and r are nonnegative random variables,

it suffices to prove the injectivity of the mapping from the density of α = a2 to the

density of ρ = r2. Observe that the conditional density p(ρ|α) = pN(
√

ρ|√α)/(2
√

ρ)

has the characteristic function

Φρ|α(s|α) =

∫ ∞

0

p(ρ|α)esρdρ =

(
1

1− 2s

)N

exp(
2sα

1− 2s
) (B.17)

3Obviously this holds for p(a) as well
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which implies that

Φρ(s) =

∫ ∞

0

[∫ ∞

0

p(ρ|α)p(α)dα

]
esρdρ =

∫ ∞

0

(
1

1− 2s

)N

exp(
2s

1− 2s
α)p(α)dα

=

(
1

1− 2s

)N

Φα(
2s

1− 2s
) (B.18)

where Φα is the characteristic function of α. Letting z = 2s
1−2s

we can rewrite this

formula as

Φρ(
z

2(1 + z)
) = (1 + z)NΦα(z) (B.19)

Now let pα and p′α be two densities with corresponding output densities pρ and

p′ρ. Assume pρ and p′ρ are equal. Then, their corresponding characteristic functions

Φρ and Φ′
ρ are also equal. Equation (B.19) in turn implies that the characteristic

functions of α and α′ are equal for all values of z in the complex plane except

at z = −1, and since the characteristic functions are continuous, they are equal

everywhere. This implies that α and α′ are equal in distribution, which proves our

claim.

Since the mutual information in (B.9) is a difference of a linear and a strictly

concave functional in pa, it is also strictly concave in input density pa.

B.4 Extension of ΨR(z) to the Imaginary Axis

In this appendix we find an alternative representation for ΨR(z) that is valid in

the region arg(z) ∈ (π/4, 3π/4), and thus obtain the values of this function on the

imaginary axis. Observe that the expression in (3.17b) is valid for all values of z

such that Re(z) > 0; in particular, it is valid for arg(z) ∈ (π/4, π/2). We will start

with z in this region and transform (3.17b) into the form that is directly extended

onto and beyond the imaginary axis.
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Figure B.1: Contour of integration for extending ΨR(z) to the imaginary axis.

For that matter, let z be any nonzero complex number with arg(z) ∈ (π/4, π/2)

and make a change of variables in (3.17b) w = zr1 to get

ΨR(z) =

∫

C

e−(w/z)2/2 w

z2
I0(w) log I0(w)dw (B.20)

where C is the induced contour of integration: the straight line from the origin to

infinity in the direction of z (see Fig. B.1). The integrand is an analytic function in

w which has logarithmic branching at the zeros of I0(w) on the imaginary axis (call

them jαk, k = 1, 2 . . .). Draw another contour C ′ along the positive imaginary axis

from the origin to infinity which also goes around the zeros of I0(w) in the small

semicircles of radius ε so that the zeros remain on the left of the contour. Connect

the contours C and C ′ by the circular segment CR (centered at the origin) of radius

R going counter clockwise from C to C ′. The integrand is analytic in the triangular

shaped region surrounded by these three contours, and therefore we can apply the

Cauchy theorem to obtain

∫

C

X(w)dw +

∫

CR

X(w)dw =

∫

C′
X(w)dw. (B.21)
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where X(w) is the integrand in (B.20), and integration along C and C ′ is only

taken up to the point of intersection with CR. Observe that on CR, |w| = R and

arg(w/z) ∈ [0, π/4) and, therefore,

Re
( w2

2z2

)
≥ cos(2α)R2/|z|2, (B.22)

where α = π/2− arg(z) ∈ [0, π/4). Taking this into account we get

∣∣∣∣
∫

CR

X(w)

∣∣∣∣ ≤
∫

CR

|X(w)||dw| ≤ αR max
w∈CR

|X(w)|

≤ αRe−cos(2α)/|z|2R2 R

z2
I0(R)|R + jR| (B.23)

Since cos(2α) > 0, this expression goes to zero as R goes to infinity. Therefore, the

integral along C is equal to the integral along C ′. On the small semicircles of radius

ε around the zeros of I0(w) on the positive imaginary axis, I0(w) log I0(w) goes to

zero (uniformly for all values of w on the semicircle) as ε goes to zero. Hence, the

integral over the semicircles goes to zero as well, and the final result becomes

ΨR(z) = −
∫ ∞

0

er2/(2z2) r

z2
J0(r) log |J0(r)|dr − jπ

∫ ∞

0

er2/(2z2) r

z2
J0(r)ξ(r)dr (B.24)

where ξ(r) = 0 if r ∈ (0, α1) and ξ(r) = k if r ∈ (αk, αk+1). The second term is

due to the fact that the logarithm jumps in value by jπ every time a zero is passed.

Observe that the last equation is valid for all z such that arg(z) ∈ (π/4, 3π/4). It is

worth noting that ΨR(z) is a many valued function, with infinite number of branches.

B.5 Nonzero Imaginary Part of ΨR(z)

In this appendix it is shown that ΨR(z) is not purely real on the imaginary axis

z = jb by bounding the imaginary part of ΨR(jb) away from zero. First observe
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from (3.19) that

Im(ΨR(jb))

π
=

∫ ∞

0

e−r2/(2b2) r

b2
J0(r)ξ(r)dr =

∞∑

k=1

k

∫ αk+1

αk

e−r2/(2b2) r

b2
J0(r)dr

=
∞∑

k=1

∫ ∞

αk

e−r2/(2b2) r

b2
J0(r)dr =

∞∑

k=1

∫ ∞

αk/b

e−r2/2rJ0(br)dr =
∞∑

k=1

ck. (B.25)

Since |J0(r)| ≤ 1, a simple bound for |ck| is |ck| ≤ exp(−α2
k/(2b

2)). Further, using

the fact that the sequence αk satisfies αk+1 − αk > π/2 (actually, it can be seen

from [45, Sect. VII-98] that αk ' (3/4+k)π) the following bound can be established

∞∑

k=3

|ck| ≤ 2

π

∞∑

k=3

e−α2
k/(2b2)(αk − αk−1) ≤ 2

π

∫ ∞

α2

e−x2/(2b2)dx ≤ 2b2

πα2

e−α2
2/(2b2) (B.26)

A lower bound on |c1| will now be obtained using integration by parts4. Let β be

the zero of J1(r) that lies between α1 and α2 and consider

|c1| =
∣∣∣
∫ ∞

α1/b

e−r2/2rJ0(br)dr
∣∣∣ = b

∫ ∞

α1/b

e−r2/2J1(br)dr

= b

∫ β/b

α1/b

e−r2/2J1(br)dr + b

∫ ∞

β/b

e−r2/2J1(br)dr

≥ be−β2/(2b2)

∫ β/b

α1/b

J1(br)dr − b2

β
e−β2/(2b2)

= (|J0(β)| − b2

β
)e−β2/(2b2).

The imaginary part of ΨR(jb) can now be bounded away from zero as

|Im(ΨR(jb))|
π

=
∣∣∣
∞∑

k=1

ck

∣∣∣ ≥ |c1| −
∞∑

k=2

|ck|

≥ (|J0(β)| − b2

β
)e−β2/(2b2) − (1 +

2b2

πα2

)e−α2
2/(2b2) (B.27)

which is positive for small values of b (e.g., for 0 < b < 1.23).

4Actually the exact expression for ck can be found in [73] as

ck = e−b2/2 − e−(αk/b)2/2
∞∑

n=1

(αk

b2

)n

Jn(αk)

However, we will use simpler bounding techniques to get the desired result
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B.6 Bound on Lagrange Multiplier

In this appendix we prove Lemma 3.4 which states that the Lagrange multiplier

µ is strictly less than 1/2.

Proof of Lemma 3.4: The left-hand side of (3.22) is zero at a = ak and positive

otherwise. Therefore, its derivative is zero at a = ak as well. Using the formula

∂

∂a
pN(r|a) = a(pN+1(r|a)− pN(r|a))

and differentiating the left-hand side of (3.22) with respect to a (and evaluating at

a = ak 6= 0) we get

∫ ∞

0

(p2(r|ak)− p1(r|ak)) log
p1(r|ak)

r
dr−

−
∫ ∞

0

(pN+1(r|ak)− pN(r|ak)) log
cN−1pN(r)

r2N−1
dr = 2µ (B.28)

Noting that ∫ ∞

0

pN(r|a)r2dr = a2 + 2N, (B.29)

we can simplify the left-hand side of (B.28) to

∫ ∞

0

(p2(r|ak)− p1(r|ak)) log I0(akr)dr−

−
∫ ∞

0

(pN+1(r|ak)− pN(r|ak)) log(
∑

i

pie
−a2

i SN−1(air))dr (B.30)

Observe that for each N and a there exists R > 0 such that pN+1(r|a)− pN(r|a)

is negative for r < R and positive for r > R. Therefore, for any increasing function

f(r), we have

∫ ∞

0

(pN+1(r|a)−pN(r|a))f(r) =

∫ ∞

0

(pN+1(r|a)−pN(r|a))(f(r)−f(R)) ≥ 0 (B.31)

where the equality follows from the fact that
∫

(pN+1(r|a)− pN(r|a))dr = 0, and the

inequality follows from the fact that the integrand is the product of two negative
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terms to the left of R, and the product of two positive terms to the right of R.

Similarly, for a decreasing function f(r), the inequality in (B.31) is reversed.

Using this observation and noting that the expression inside the logarithm in

the second integral in (B.30) is the sum of increasing functions we get that the

second term is positive. Now observe that I0(x) exp(−x) is a decreasing function

and therefore, using (B.31), for the first term we have

∫ ∞

0

(p2(r|ak)− p1(r|ak)) log I0(akr)dr ≤
∫ ∞

0

(p2(r|ak)− p1(r|ak))akrdr

= ak

√
π

2
e−a2

k/4 1

2

(
I0(

a2
k

4
) + I1(

a2
k

4
)

)
< 1 (B.32)

where the last inequality follows by using the fact that (I0(x)+ I1(x))/2 < ex/
√

2πx.

Combining these results we get that the left-hand side of (B.28) is less than 1 and

hence µ < 1/2, which we set out to prove. ¥

B.7 Mass Point at Zero

In this section we prove Theorem 3.5, that there always exists a mass point at

zero.

Let a = {0, a1, a2 . . .} and p = {p0, p1, p2 . . .} be the locations and probabilities

of the mass points, respectively, so that the pair (a,p) denotes a valid input ampli-

tude density. For notational simplicity also assume that the sequence a is (strictly)

increasing and let I(a,p) be the mutual information corresponding to this input

density.

We start with the simple case of N = 1. In this case this fact is both very

intuitive and easy to prove. In particular, for any given discrete input density with

no mass point at zero, let a1 > 0 be the smallest amplitude with nonzero probability.

Evaluating the partial derivative of the mutual information expression with respect
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to a1 we get

p1a1

∫ ∞

0

(p2(r|a1)− p1(r|a1)) log
p1(r|a1)

p1(r)
dr < 0, (B.33)

where the inequality follows by observing that the ratio p1(r|a1)
p1(r)

is a decreasing func-

tion of r, and then using a simple fact used in Section B.6 in the proof of Lemma 3.4.

This in turn implies that reducing a1 increases the mutual information and hence

the original input density can not be the optimal one.

In the general case of N > 1, it is not always true that reducing the smallest

mass point will increase the mutual information. However, it can be shown that

it is always possible to alter the input density in a certain way that the mutual

information indeed increases.

We start with a case when there is a single mass point. In this case, the strategy

is to introduce the zero mass point of some positive probability and increase the

amplitude of the nonzero mass point accordingly so as to balance the total power.

More precisely, let a1 be the amplitude of the single mass point, and consider for

some positive x, the new two-mass-point input density pair

p∗(x) = {x, 1− x} (B.34a)

a∗(x) = {0, a
√

1

1− x
}, (B.34b)

which corresponds to introducing a mass point at zero of probability x and accord-

ingly increasing the nonzero amplitude to keep the average power the same. Observe

that the case of x = 0 corresponds to the original input density pair. We will show

that

d

dx
I(a∗(x),p∗(x))

∣∣∣
x=0

> 0, (B.35)

which implies that there is a x0 > 0 so that I(a∗(x0),p
∗(x0)) > I({a1}, {1}), proving

our claim.
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Observe that

d

dx
I(a∗(x),p∗(x))

∣∣
x=0

=
∂I

∂p0

− ∂I

∂p1

+
1

2

a1

p1

∂I

∂a1

, (B.36)

where the partial derivative with respect to ak is the left-hand side of (B.28) in

Section B.6 multiplied by pkak, and the partial derivative with respect to pk is given

by ∂I
∂pk

= Fpa(ak) − 1. Therefore, the derivative in (B.35) after some manipulation

becomes

a2
1

2
+

∫ ∞

0

(
a2

1

2
p2(r|a1)− (1 +

a2
1

2
)p1(r|a1)

)
log I0(a1r)dr (B.37)

−
∫ ∞

0

(
pN(r|0)− (1 +

a2
1

2
)pN(r|a1) +

a2
1

2
pN+1(r|a2)

)
log

pN(r|a1)

r2N−1
dr. (B.38)

We first show that the integral in (B.38) is negative. For that purpose let us analyze

the expression inside the brackets in (B.38), call it f(r, a1). Observe that for any

a1 > 0, there exists two positive numbers R1 and R2, so that f(r, a1) > 0 for r < R1

and r > R2, and f(r, a1) < 0 for R1 < r < R2. Furthermore, using the fact that

pN(r|a) is a density function with the second moment given by (B.29), one can see

that for any a, f(r, a) satisfies

∫ ∞

0

f(r, a)dr = 0 (B.39)

∫ ∞

0

f(r, a)r2dr = 0. (B.40)

Therefore, the integral in (B.38) is equal to

∫ ∞

0

f(r, a1) log
pN(r|a1)

r2N−1
dr =

∫ ∞

0

f(r, a1) log SN−1(a1r)e
b+cr2

dr (B.41)

for any constants b and c. By realizing that SN−1(ar)eb+cr2
is increasing up to some

value of r and decreasing afterwards if c < 0, and choosing

b =
R2

2 log SN−1(aR1)−R2
1 log SN−1(aR2)

R2
2 −R2

1

c =
1

R2
2 −R2

1

log
SN−1(aR1)

SN−1(aR2)
< 0
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we see that the sign of log SN−1(a1r)e
b+cr2

is the same as the sign of −f(r, a1) for all

values of r. Therefore, the integrand in the second integral in (B.41) is non-positive5

for all values of r, which proves that the integral in (B.38) is negative.

We now show that the expression in (B.37) is positive. Rewrite this expression

as

a2
1

2
−

∫ ∞

0

p1(r|0) log I0(a1r)dr (B.42)

+

∫ ∞

0

(
p1(r|0)− (1 +

a2
1

2
)p1(r|a1) +

a2
1

2
p2(r|a1)

)
log I0(a1r)dr (B.43)

and observe that the expression inside brackets in (B.43) has the same properties as

the function f(r, a1) defined above (cf. (B.38)). Using the fact that the function

log(I0(ar))− a2p3(r|a1)

p2(r|a1)
= log(I0(ar))− ar

I2(ar)

I1(ar)
(B.44)

is negative and decreasing in r for any a, we can see that replacing log(I0(ar)) by

a2 p3(r|a1)
p2(r|a1)

in (B.42) and (B.43) will only decrease the resulting expression. Therefore,

we have that

d

dx
I(x)

∣∣
x=0

≥ a2
1

2
+

∫ ∞

0

(
a2

1

2
p2(r|a1)− (1 +

a2
1

2
)p1(r|a1)

)
a2

1

p3(r|a1)

p2(r|a1)
dr (B.45)

= a2
1(1 +

a2
1

2
)

∫ ∞

0

(p2(r|a1)− p1(r|a1))
p3(r|a1)

p2(r|a1)
dr − a2

1

2
. (B.46)

Finally using the bound

∫ ∞

0

(p2(r|a1)− p1(r|a1))
p3(r|a1)

p2(r|a1)
dr ≥ 1

a2
1 + 2

(B.47)

we get that (B.37) is positive as well, proving the case of a single mass point.

5The only values of r at which this expression is zero are 0, R1, and R2. Therefore, the integral
is strictly negative.
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Now we deal with the general case when the original distribution has more than

one mass point. In this case the scheme similar to (B.34) is utilized

p∗(x) = {x, p1 − x, p2, . . .} (B.48a)

a∗(x) = {0, a1

√
p1

p1 − x
, a2 . . .}, (B.48b)

which results in

d

dx
I(a∗(x),p∗(x))

∣∣
x=0

=

a2
1

2
+

∫ ∞

0

(
a2

1

2
p2(r|a1)− (1 +

a2
1

2
)p1(r|a1)

)
log I0(a1r)dr (B.49)

−
∫ ∞

0

(
pN(r|0)− (1 +

a2
1

2
)pN(r|a1) +

a2
1

2
pN+1(r|a2)

)
log

pN(r|a1)

r2N−1
dr. (B.50)

−
∫ ∞

0

(
pN(r|0)− (1 +

a2
1

2
)pN(r|a1) +

a2
1

2
pN+1(r|a2)

)
log

pN(r)

pN(r|a1)
dr. (B.51)

The expressions in (B.49) and (B.50) are exactly the same as (B.37) and (B.38),

respectively. The integral in (B.51) can be positive, however, by calling the expression

inside the brackets in (B.51) g(r, a1) we have

∫ ∞

0

g(r, a1) log
pN(r)

pN(r|a1)
dr ≤

∫ ∞

0

g(r, a1) log
(
1 + A

pN(r|a′)
pN(r|a1)

)
dr (B.52)

≤
√

log A

∫ ∞

0

g(r, a1) log
1

r
dr, (B.53)

where A = 1−p1

p1
, and a′ = a1 +

√
log A. For log A < N the expression in (B.53) is

less than the total value in (B.49) and (B.50). On the other hand, when left hand

side of (B.52) is bigger than the total value in (B.49) and (B.50), we have that

1

a1

∂I

∂a1

<
1

ak

∂I

∂ak

for some k, (B.54)

which implies that the scheme

p′(x) = p (B.55a)

a′(x) = {0,
√

a2
1 −

x

p1

, a2, . . . , ak−1,

√
a2

k +
x

pk

, ak+1, . . .}, (B.55b)



143

improves mutual information as can be observed from

d

dx
I(a′(x),p′(x))

∣∣
x=0

=
1

ak

∂I

∂ak

− 1

a1

∂I

∂a1

> 0. (B.56)

Therefore, in this pathological case the scheme in (B.55) should be followed before

applying the general scheme of (B.48). It should also be noted that when the smallest

amplitude satisfies a1 > N−1, then simply introducing a mass point at zero, without

increasing a1 (i.e., using only (B.48a) and not (B.48b)), increases mutual information.



APPENDIX C

POWERFUL ERROR-CORRECTING CODES

As we have seen in the code design problem, binary error-correcting codes play a

major role in the overall coding scheme. In this section, we give a brief introduction to

widely used binary error-correcting codes, that are utilized throughout the chapters.

Recently, several practical coding schemes have been developed for the coherent

AWGN channel, that come very close to its information-theoretic limit. Of these,

we briefly mention the two most powerful ones, namely, (i) concatenated schemes,

collectively known as turbo codes, and (ii) the recently rediscovered low-density

parity-check (LDPC) codes. Turbo codes, first introduced in [10], use relatively

short block or convolutional codes in a concatenated manner (either in parallel or

serially) together with large pseudorandom interleavers to effectively obtain a large

memory span. Although the theoretical performance of turbo codes is very close

to the capacity of the AWGN channel, it is the existence of practical suboptimal

powerful iterative decoders that makes them attractive. Several extensions to turbo

codes have been suggested with most notable being the serially concatenated turbo

codes (the original turbo codes were parallel concatenated) and turbo trellis coded

modulation (TCM) schemes [4].
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â

outer
CC π inner

TCM

M
ap

pe
r

channel

inner

SISO

outer

SISO

b c p/n d
n bits

k/p
a

z

x

Figure C.1: SCTCM encoder and iterative decoder structure

In this appendix we discuss two coding schemes in detail, namely, serially concate-

nated TCM codes (SCTCM), and LDPC codes. Their general structure is presented,

which is followed by the discussion of the design and analysis tools available for each

coding scheme.

C.1 Serially Concatenated Turbo Codes

A typical SCTCM, shown in Fig. C.1, consists of a rate k/p outer convolutional

code (CC), the output of which is fed into an inner TCM code of rate p/n, after

symbol-wise or bit-wise interleaving (denoted by π). These n bits are then mapped

onto a transmitted symbol, resulting in an overall throughput of k bits/symbol. For

a length Lp (bits) interleaver the overall code can be thought of as an equivalent

block code which takes Lk bits and outputs L symbols. The number of states in the

equivalent code is large and thus the complexity of the maximum likelihood sequence

detection (MLSD) decoder is very high. However, a practical sub-optimal decoder for

such a code is the iterative decoder [4], which consists of two soft-input soft-output

(SISO) modules [6] and an interleaver/deinterleaver pair, as shown in Fig. C.1. The

two SISO modules evaluate the bit likelihoods and exchange them in an iterative
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fashion to converge to the final decision after several iterations. Each SISO module

has complexity proportional to the number of states of the corresponding constituent

code.

rewrite below to make clear. explain exponential thing. The important perfor-

mance figure of the turbo codes is the interleaving gain. This gain is obtained as

a result of having negative powers of the interleaver size as coefficients in front of

pairwise probability of error terms in the union bound expression. The pairwise

probability of error is, in turn, exponentially decreasing in the squared output dis-

tance. It can be shown that for large values of interleaver size, L, and for a recursive

inner code, the dominant error event in the inner code is the one that consists of

concatenation of simple error events all corresponding to input Hamming distance of

two bits. Furthermore, for bit-error probability the coefficient in front of such term

is O(L−β), where β = b(do + 1)/2c, with do being the minimum Hamming distance

of the outer code. Based on these the following design guidelines are implied

1. Make the inner code recursive

2. Maximize the effective free distance, d2
f,eff, of the inner code. This parameter is

defined as the minimum output distance between inner-code input sequences

that are Hamming distance 2 apart, i.e.,

df,eff = min
dH(c,c′)=2

d(x(c),x(c′)). (C.1)

3. Maximize the minimum Hamming distance of the outer code.

For the coherent AWGN channel the output distance is taken to be the Euclidean

distance, while for the noncoherent channel, that distance can be taken as
√

1− ρ,

where ρ is the magnitude of cross correlation.
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C.2 Low-Density Parity-Check Codes

LDPC codes, introduced as early as 1962 in [29, 30], are large binary linear codes

with sparse parity check matrices. These codes have not received much attention

until recently, when it was established that their performance is comparable to that

of turbo codes [51].

Due to the sparse structure of the parity check matrix, LDPC codes can be

decoded with practical complexity using a suboptimal iterative decoding based on

factor graphs. Furthermore, a newly developed graph-based technique, called density

evolution, enables the precise analysis of the LDPC codes; this technique is also very

useful from code design point view.

Because of these properties LDPC codes are represented by factor graphs. A

factor graph consists of two kind of nodes, variable and functional nodes. These nodes

are connected by the edges, with the property that no two nodes of the same kind are

connected by an edge. A generic factor graph corresponding to a binary LDPC code

is given in Fig. C.2. Here empty circles (variable nodes) represent the binary variables

that make up the codeword, and the bottom filled circles (functional nodes) represent

the parity-checks in the code. Every parity check is connected to the variables whose

parity it controls. The sparse structure of the parity check matrix is guaranteed



148

by restricting a number of edges connected to every node. The top filled circles

connected to each variable node are used for decoding purposes, and represent the

function nodes that give the reliability at the receiver of the corresponding variable

nodes given the channel output.

A given word is a valid codeword if all the parity checks are satisfied. The

suboptimal decoding algorithm is a message passing algorithm called Sum-Product

Algorithm. The nodes in the graph iteratively update and exchange the messages

along the edges with the neighboring nodes. A typical message represents the log-

likelihood of the particular variable. The algorithm initializes messages with log-

likelihoods obtained from the channel output, denoted by µFXi
in Fig. C.2. The

messages exchanged by the sum-product algorithm at the variable and check nodes

are given, in the logarithmic domain, by (see [77])

µXC =
dv−1∑
i=1

µCiX + µFX (C.2)

µCX = 2 tanh−1

(
dc−1∏
j=1

tanh
(µXjC

2

)
)

, (C.3)

where µXC and µCX represent variable-to-check and check-to-variable node messages,

with dv +1 and dc being the number of edges connected to variable and check nodes,

respectively, and {Ci}dv−1
i=1 ({Xj}dc−1

j=1 ) is the set of check (variable) nodes connected

to variable node X (check node C), other than the check node C (variable node

X). The algorithm proceeds by iteratively updating messages at the variable and

check nodes for a certain number of iterations. The final decisions are made on the

combined message at the variable node.

The message update equations above assume the number of edges connected to

variable and check nodes is fixed. LDPC codes with such a restriction are called

regular. However, it was recently discovered that considerable gains can be obtained
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by allowing these to vary. The LDPC codes that allow to have varying variable and

check degrees are called irregular. For irregular LDPC codes, the design parameter

is the distribution of the variable and check degrees.

A very useful method for design purposes is a recently discovered analysis tool,

called density evolution. The idea is to keep track of the message densities that

are exchanged by the sum-product algorithm. This way the probability density of a

single message is evaluated through the iterations to obtain the density of the final

message on which the hard decision will be made. The main theorem that justifies

this approach is called Concentration Theorem, which states that with increasing

code length and iterations the empirical behaviour of all the exchanged messages

converges to the density of a single message propagated through the graph.

The density evolution is mainly used to find an SNR threshold of an LDPC

code, that is the value of SNR below which probability of error does not converge

to zero with increasing iterations. Using this method irregular LDPC code can be

optimized in terms of minimizing the threshold for a given rate. Several optimization

algorithms have been devised and successfully used in the literature. In fact, for

large blocklengths, the best irregular LDPC codes, optimized using such techniques,

outperform turbo codes, and come as close as 0.04 dB to the capacity of the AWGN

channel [15].



APPENDIX D

LOWER BOUND ON THE PERFORMANCE

OF SCTCM

D.1 Introduction

Serially concatenated (SC) trellis coded modulation (TCM) coding schemes were

introduced in [4] as alternatives to the well known “turbo” coding schemes [10, 3],

which are parallel concatenated codes. A typical SCTCM, consists of a rate k/p

outer convolutional code, the output of which is interleaved1, and fed into an inner

rate p bits/symbol TCM code with 2n-point constellation, resulting in an overall

code rate of k bits/symbol (see Fig. C.1 of Appendix C). For a length N interleaver

the overall code can be thought of as an equivalent block code which takes Nk bits

and outputs N symbols.

Performance analysis of concatenated codes is usually based on upper bounds on

the symbol error probability, averaged over all uniform interleavers [4, 3, 8, 6]. These

random coding bounds, can be used to provide a proof for the existence of good

codes, as well as to aid the design process of SCTCM. On the other hand, the MLSD

1The interleaving can be done symbol-wise as well as bit-wise.
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performance – let alone the performance of the iterative receiver – of a particular code

can be worse than the bound itself. Recently, true, interleaver specific, upper bounds

have been derived [46], but the complexity of these bounds is quite substantial. It is

noted that lower bounds on the performance of SCTCM, or any other “turbo-like”

code, have not been derived, at least to the authors’ knowledge.

In this appendix we derive a simple, interleaver independent lower bound that

applies to a certain class of SC codes. Specifically, a symbol-wise interleaver is

required, and the inner code is required to have parallel transitions, for the bound

to apply. The latter is a quite reasonable assumption, especially in the regime of

low-complexity inner codes (e.g., 2 to 4 states) and high rate inner codes (e.g., 8-ary,

16-ary, or 32-ary inner-code input alphabets). Although the suggested bound does

not predict the well known “interleaver gain” [4, 3], it provides a valuable design

tool. In particular, by utilizing the information provided by the bound, we are able

to improve existing SCTCM codes with only moderate complexity increase. A series

of design examples and simulations confirms our analysis and provides improved

SCTCM schemes with moderate complexity.

D.2 Symbol Error Probability Lower Bound for SCTCM

Let a = (a1, a2, a3, . . . aN) be the input sequence2 to the encoder, with symbols

from an M -ary input alphabet A, and let x(a) = (x1, x2, x3, . . . xN) be the corre-

sponding output of the modulator. Likewise, let z be the output of the channel at

the receiver input:

z = x(a) + w (D.1)

2In the following all the bold characters denote a sequence.
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where w is an i.i.d Gaussian noise sequence, with variance σ2 per dimension. We are

interested in finding a lower bound for the symbol error probability of the maximum

aposteriori symbol detection (MAPSyD) rule. The MAPSyD receiver minimizes the

probability of symbol error (for the ith symbol)

PS,i(E) = P (ai 6= âi) (D.2)

where â = (â1, â2, . . . âN) is the receiver output sequence, and âi is the corresponding

ith symbol. Note that since the MAPSyD receiver is the optimal receiver in the sense

of yielding the smallest symbol error probability, a lower bound on (D.2) is a valid

lower bound for other receivers as well, e.g., for the maximum likelihood sequence

detection (MLSD) receiver.

Since the purpose of this appendix is not the derivation of the bound itself, but

rather its application to SCTCM design, we state the bound without proof and refer

the interested reader to the relevant literature. Specifically, it can be shown that for

equally likely input sequences the symbol error probability can be lower bounded by

PS,i(E) ≥ max
d

P (A′
d,i)Q

(
d

2σ

)
(D.3)

where A′
d,i ⊂ Ad,i and Ad,i is defined as the set of all sequences a′ that have at least

one neighboring sequence a with Euclidean distance ||x(a)−x(a′)|| = d, and ai 6= a′i.

Several observations are in order at this point regarding the selection of the set A′
d,i.

In the original derivation [26] (for the similar problem of sequence detection in

intersymbol interference (ISI) channels), it was assumed that A′
d,i = Ad,i. Problems

with this selection arise from the use of a receiver aided by a “genie.” As pointed

out in [87], such reasoning is flawed if the side-information provides some bias to

the aided receiver before observing the channel output. In fact, it was recently

demonstrated in [14] (by means of a simple counter-example) that the lower bound
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Figure D.1: Parallel transitions in SCTCM. The intermediate trellis corresponds to
the inner code with input sequences b and b′ (without interleaving).

in (D.3) is invalid if A′
d,i = Ad,i. Furthermore, a valid bound in the form of (D.3) can

be derived by appropriately stripping the set Ad,i, such that the remaining set A′
d,i

satisfies an additional property, which was called “uniform side information” (USI)

property [14], and represents a generalization of the looser, but valid, lower bound

derived in [54].

The problem with applying the bound in (D.3) arises when one tries to find se-

quence pairs at a distance d, as well as the corresponding sets A′
d,i for an SCTCM

scheme with an interleaver size on the order of thousand symbols. Furthermore, this

procedure should be repeated every time the interleaver is changed. The main idea

about the proposed bound is illustrated in Fig. D.1. Consider an input sequence a

and the corresponding outer codeword b, interleaved codeword c, and inner codeword

x. Also consider an input sequence a′, and the corresponding sequences b′, c′,x′. The

sequences a and a′ are such that their corresponding inner codewords x and x′ rep-

resent sequences in the inner trellis having only parallel transitions, that is differing

symbols between b and b′ result in parallel transitions in the inner code. Conse-

quently, permuting the outer codeword will not alter the output distance between

x and x′. Observe that this result holds for any interleaver, as mentioned earlier.

Thus, calculating the lower bound reduces to finding pairs of input sequences a, a′

that result in inner code sequences with parallel transitions.
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Figure D.2: Code A.1 description and the error sequence used in the lower bound.

It is required that bi and b′i result in parallel transitions departing from any state

in the inner code. This induces the property on the inner code that there is a

collection of disjoint sets of input symbols to the inner code, where any two symbols

in the same set result in the parallel transitions regardless of the initial state. This

is true in two important cases: 1) A TCM with a linear encoder (i.e., the mapping

from c to d is linear), and 2) for all codes designed following the rules in [4, 6, 86].

We denote this collection of inner code input symbols by

C = {L0, L1, . . . Lm} (D.4)

The problem now reduces to finding pairs of codewords of outer code whose disagree-

ing symbols bi and b′i fall into the same set Lki
. An example of such a partition is

shown in Fig. D.2, for which the inner code has 2 states and the obtained partition

consists of the sets L0 = {0, 3, 5, 6} and L1 = {1, 2, 4, 7}.

A great amount of simplification occurs when both encoders are linear and the

mapping f(·) of the inner encoded bits d to constellation points x possesses the

“distance linearity” property, that is: d(f(d), f(d ⊕ d′)) is independent of d for all
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encoder output symbols d and d′ such that f(d) and f(d ⊕ d′) fall within the same

sub-constellation in the set partitioning of the TCM constellation. This property is,

for example, true for 8-PSK and 16-QAM constellations with natural mapping and

Ungerboeck set partitioning. In this case we only need to perform the above described

procedure for the all zero input sequence, and only need to find one sequence at a

distance d, say e to obtain P (A′
d,i) = 1.

Similar arguments can be used to bound the probability of bit error. It is desir-

able, however, to derive a lower bound for the bit error probability of the optimal

MAP bit detector using exactly the same side information revealing mechanism used

in deriving the symbol error probability. It can be shown that we can always bound

the performance of MAP bit detector with the same bound found for MAPSyD ex-

cept for a constant factor 1/k. Moreover, by appropriately shifting the error sequence

e (symbol-wise), it is sometimes possible to increase the factor 1/k.

We conclude by emphasizing that aside from its value as an analytical tool, the

proposed lower bound can be a useful design tool. Specifically, if a given SCTCM

code is modified such that the conditions for evaluating the bound do not hold, then

it is possible that the resulting code is more powerful. This process was successfully

applied and is demonstrated in the next Section.

D.3 SCTCM Design Examples and Numerical Results

The first code is a construction described in [20] and uses a rate 2/3, 4 state outer

convolutional code with a 2 state, rate 1 (3/3) inner code and 8-PSK constellation,

resulting in a total rate of 2 bits per 8-PSK symbol. The code description is shown

in Fig. D.2.

Both encoders are linear, and although the mapping is not natural, the uti-
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Figure D.3: Simulation Results for Codes A.1 and A.2 (2/3× 3/3 → 8PSK).

lized mapping does possess a “distance linearity” property, which results in con-

siderable simplification. The partitioning of the input alphabet is C = {L0 =

{000, 011, 101, 110}, L1 = {001, 010, 100, 111}}, which consists of the set of code-

words of the (3,2,1) parity check code and its coset. We will only need L0 for our

calculations, for which the involved nonzero squared Euclidean distances are d2 = 2

and d2 = 4. Calculating the bound reduces to finding a codeword b of the outer

code with symbols from L0 and having the smallest output Euclidean distance to

the all zero sequence. A straightforward lookup quickly reveals one such sequence

whose only nonzero symbols are bi = 6(110) and bi+1 = 3(011) which is the re-
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sult of encoding the input sequence {0 . . . 0 10 01 0 . . . 0}. After interleaving and

inner encoding the sequence b = {0 . . . 0 110 011 0 . . . 0} we get an output binary

sequence which has only two nonzero terms 4(100) and 2(010) which are mapped

onto phases 2 and 6 of the 8-PSK constellation,3 and yield a total output squared

distance of d2 = d2(0, 2) + d2(0, 6) = 4. The obtained lower bound for this code

is Q(
√

4Eb/N0). It is noted that the above bound is also valid for the average bit

error rate. Simulations, shown in Fig. D.3 confirm our analysis. In the same plot, the

simulated performance of the SCTCM scheme using bit-wise, instead of symbol-wise,

interleaving is also shown for comparison.

As an example of how the lower bound can be utilized in improving code perfor-

mance, we constructed Code A.2 from Code A.1 by utilizing a 4 state inner code that

eliminates the parallel transitions enabling the derivation of the bound. The result-

ing performance is shown in Fig. D.3, where a gain of almost 3 dB at 10−5 compared

to the symbol-wise interleaved Code A.1. Furthermore, Code A.2 outperforms both

bit-wise interleaved codes A.1 and A.2 by 1.5 dB and 1 dB, respectively.

The second code (Code B.1) consists of a rate 2/3, 16 state outer convolu-

tional code with a rate 3/4, 2 state inner encoder followed by mapping onto 16-

QAM constellation (as designed in [4]). The obtained bound for bit error rate is

0.5Q(
√

6.4Eb/N0). This bound was utilized to design the 4 state inner code which

results in the Code B.2 with performance gain of more than 2 dB at 10−5 (symbol-

wise interleaving). Observe in this case, that bit-wise interleaving of the original

Code B.1 results in the best performance.

As a last example, consider Codes 3 and 3.1 of Chapter V. Both these codes

3Symbol i corresponds to the 8PSK constellation point exp(j2πi/8).
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Figure D.4: Simulation Results for Codes B.1 and B.2 (2/3× 3/4 → 16QAM).

are rate 3 codes over 16-QAM constellation, which consist of a rate 3/4 16-state

outer convolutional code followed by a rate 1 4-state inner convolutional code. The

corresponding BER curves are presented in Fig. 5.5. The obtained lower bound on

BER for both codes is Q(
√

4.8Eb/N0), which is shown on the graph as a dashed

line. It can be seen from the graph that the lower bound accurately predicts the

knee effect demonstrated by the symbolwise interleaved versions of these codes, thus

suggesting that the errors due to the parallel transitions dominate the probability of

error in the high SNR region.
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D.4 Conclusion

In this appendix, a simple interleaver independent lower bound that applies to a

certain class of SCTCM codes was derived. The validity of this bound was verified

via numerous examples. The result found herein were partially used in Chapter V.

This lower bound implies useful design criteria, which were utilized to derive im-

proved SCTCM codes. An extensive comparison between bit-wise and symbol-wise

interleaving (not reported here) showed that the choice between the two options de-

pends on the target BER and operating SNR region. For most of the codes, and for

moderate bit error rates symbol-wise interleaving is preferred, whereas at very low

desired error rates bit-wise interleaving is the choice of preference.

Derivation of lower bounds that predict the interleaving gain, is clearly an exciting

future research direction. Such generalization seems feasible, due to the generality

of the developed underlying theoretical framework for the lower bound in (D.3).
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ABSTRACT

COMMUNICATION OVER THE NONCOHERENT CHANNEL

by

Rza Nuriyev

Chair: Achilleas Anastasopoulos

Communication over the noncoherent additive white Gaussian noise (AWGN)

channel is considered, where the transmitted signal undergoes a phase rotation, un-

known to the transmitter and the receiver. The effects of phase dynamics are ex-

plicitly taken into account by considering a block-independent model for the phase

process.

Two main problems regarding this channel are investigated in this work. The

first is the design and analysis of practical powerful codes whose performance is

close to the theoretical limit. The second, more theoretical problem, is finding the

fundamental limits of communication over this channel.

Code design is initiated with a practical and intuitive coding scheme that uses

pilot symbols to facilitate phase estimation and effectively translate the noncoherent

channel into the coherent AWGN channel. This coding scheme is analyzed using

a recently discovered technique, called density evolution, and the inherent trade-off

associated with the pilot-power is quantified.

We consider a theoretical aspect of communication problem by analyzing the

information capacity and the structure of the capacity achieving signaling scheme.

In particular, the capacity achieving input distribution is characterized; it is shown



that the maximizing density has circular symmetry, is discrete in amplitude with

infinite number of mass points and always has a mass point at zero. Furthermore,

asymptotic expressions show that the probability of a mass point is decreasing double

exponentially with its amplitude. Based on these results, the capacity is evaluated

through numerical optimizations for unconstrained and modulation-constrained in-

put distributions.

Inspired by the capacity results, two novel classes of coding and modulation

schemes are proposed for fast and moderate phase dynamics. In the case of fast

phase dynamics, optimized modulation alphabets are designed in conjunction with

simple serially concatenated convolutional codes, and show close-to-capacity perfor-

mance with reasonable overall complexity. In the case of moderate phase dynam-

ics, specially designed modulation alphabets that have linear complexity with block

length, are utilized together with optimized irregular low-density parity-check codes.

Simulation results show that these codes can achieve close-to-capacity performance

with moderate complexity, and outperform the best known codes so far.


