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CHAPTER 1

Introduction

In modern communication systems, different applications have different require-

ments for quality of service (QoS). For example, the third-generation (3G) wireless

system is designed to provide various services such as real-time voice service, video

telephony, high-speed data transfer, full-motion video, high-quality audio, and so

on [1, 2]. In the 3G system, the data transfer rates may vary from 32 kb/s in voice

service to over 1 Mb/s in full-motion video, the delay requirements may vary from

1 ms in video telephony to a few seconds in web browsing, and the bit error rates

may vary from as high as 10−2 in voice service to as low as 10−8 in video conferenc-

ing. The conventional internet protocols are designed solely for nonreal-time data

services, and are inherently suboptimal for networks running heterogenous applica-

tions. One of the biggest challenges for modern communication system designers is

to design a system which simultaneously supports several QoS requirements while

still providing high-efficiency services. Although the complete design issues regarding

QoS in communication networks are quite complex, in this work we focus on one key

aspect of QoS - bit error rate. In particular, we are interested in achieving different

bit error rates for different users in a multi-user system. Some practical solutions

to this problem have been proposed in the literature, collectively known as unequal
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error protection (UEP). These techniques, which provide UEP to different users, can

be divided roughly into two categories - time-division coded modulation (TDCM)

and superposition coded modulation (SCM) [3, 4]. TDCM is a form of resource

sharing in which different users transmit on disjoint time intervals. In SCM, both

users transmit on the same time intervals using superposition of channel codes. For

practical channel codes, there exist examples where TDCM, or a hybrid of TDCM

and SCM, outperforms SCM [3, 4].

Although practical UEP schemes have been deployed in existing systems, there

is currently no framework in information theory which deals with different bit error

rates in a multi-user channel. A traditional approach concerning bit error rates in a

point-to-point channel is the study of the reliability-rate tradeoff through the notion

of error exponent [5, 6, 7, 8, 9, 10, 11], which is also known as the reliability function

of a channel. A straightforward extension of this concept can be realized in a multi-

user setting by defining the probability of system error. A system is considered to

be in error if at least one user’s codeword is decoded erroneously. For the study of

the capacity region of a multi-user channel, it is sufficient to show that this single

performance measure, probability of system error, approaches zero as the block length

increases. This approach, however, does not solve the problem of assigning different

error protections to different users in a multi-user channel, since there is only one

error probability considered here, i.e., the probability of system error. Therefore,

on the one hand, there are practical schemes to provide different error protections

for different users, but on the other hand, the current information-theoretic analysis

can not cope with the issues of QoS in a multi-user system. Hence our goal is to

provide an information-theoretic framework which can address these issues by giving

concrete design methodologies for such systems.

We ask the following question: is it possible to simultaneously provide an in-
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creased reliability for one user and a reduced reliability for the other user, while

keeping their rates the same in a two-user channel? More generally, for a fixed pair

of data rates for the two users, is it possible to provide a set of choices of individual

reliabilities for these two users? The main contribution of this work is to provide

a positive answer to these questions by formalizing these ideas in the context of

information theory, studying the fundamental limits of such tradeoffs of individual

reliabilities among the users for a fixed vector of data rates, and developing efficient

transmission strategies that approach these limits. This is done by defining individ-

ual error probabilities for each user and studying the tradeoff of the corresponding

error exponents. This tradeoff is quantified by introducing the concept of error ex-

ponent region (EER) for a multi-user channel. Although the idea proposed in this

work is very general, we present it in the context of broadcast and multiple access

channels [12, 13, 14, 15].

1.1 Thesis Outline

We first review the concept of error exponent in Chapter 2, and provide an

overview of the reliability-rate tradeoff for single-user and multi-user channels as

studied in the literature. We then review the diversity-multiplexing tradeoff in

multiple-input multiple-output (MIMO) fading channels obtained by Zheng and

Tse [16]. The multiplexing gain and the diversity gain defined in [16] can be regarded

as the rate and the error exponent at high signal-to-noise ratio (SNR), respectively.

In Chapter 3, we introduce the notion of error exponent regions for multi-user

channels. Our approach hinges on the following two observations. First, one can

define a separate probability of error for each user. Therefore, there can be multiple

error exponents, one for each user. Second, in contrast to a single-user channel where

the error exponent is fixed for a given rate, in a multi-user channel one can tradeoff
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the error exponents among different users even for a fixed vector of users’ rates.

We consider only two kinds of multi-user channels in this work, either a two-user

broadcast channel or a two-user multiple access channel. Thus the term “multi-

user channel” in this work is referred to either one of these two kinds of multi-user

channels.

In Chapter 4, we consider the EERs for Gaussian broadcast channels. We derive

inner and outer bounds for the EERs. The inner bound is derived based on the

random codebook method. In contrast to the standard approach, we use two different

probability distributions to construct each user’s random codebook. It turns out that

the achievable region is enlarged by this approach. The outer bound is derived by

transforming the original broadcast channel into a superior single-user channel, then

applying the error exponent upper bounds for a single-user channel. One of the

main goals in this work is to show that one can tradeoff error exponents among the

users even for a fixed vector of transmission rates. From the derived inner and outer

bounds, we show that this tradeoff indeed exists.

In Chapter 5, we consider the EERs for Gaussian multiple access channels. Inner

and outer bounds for the EERs are derived based on similar techniques used in

broadcast channels. In contrast to Gaussian broadcast channels, the EER inner and

outer bounds for Gaussian multiple access channels are tight in some cases. We

also show that a Gaussian multiple access channel is equivalent to two independent

Gaussian single-user channels in the sense that each user does not suffer the side-

interference from the other user at low rates.

In Chapter 6, we provide improved outer bounds for the EERs for Gaussian

broadcast and multiple access channels, which explicitly incorporate the fact that

two users are simultaneously communicating with one transmitter (in a broadcast

channel) or receiver (in a multiple access channel). In particular, we extend the con-
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cept of minimum distance bound to a multi-user setting with multiple message sets.

The proofs of these new outer bounds are based on a geometric conjecture, which

deals with packing codewords on a high-dimension sphere under an area constraint.

Thus the final results depend on the correctness of this geometric conjecture.

In Chapter 7, we turn our attention to MIMO fading channels and consider the

diversity gain regions (DGR). The DGR can be regarded as the EER at high SNR. In

contrast to a Gaussian broadcast channel, we show that it is possible for either one

of the two users to achieve the optimum single-user diversity gain without suffering

the side-interference from the other user. We also define the multiplexing gain region

(MGR), which is the counterpart of the channel capacity region, and derive inner

and outer bounds for the MGR.

In Chapter 8, we consider the DGRs for MIMO fading multiple access channels.

Due to lack of an effective bounding technique for our decoding strategy, the DGR

inner bound derived here is achieved by two simpler encoding strategies. Similar

to Gaussian multiple access channels, the DGR inner and outer bounds are tight in

some cases.

In Chapter 9, we discuss some future directions and consider an on-going work

- the EERs for discrete memoryless multi-user channels. In contrast to Gaussian or

MIMO fading multi-user channels, there is no one single “optimum” input distri-

bution in discrete memoryless multi-user channels, whereas in Gaussian or MIMO

fading multi-user channels the optimum input distribution is (shelled) Gaussian. We

derive an EER outer bound for a discrete memoryless multiple access channel, where

the boundary of the EER outer bound is achieved by different probability distribu-

tions.

5



1.2 Notation

The following notation is used throughout this work. R, C and Z denote the

sets of real numbers, complex numbers and integers, respectively. We write a , b to

mean “a is defined as b”. Rn
+ is the set of real n-vectors with nonnegative elements,

and (x)+ is defined as max(x, 0), i.e., (x)+ , max(x, 0). We use boldface letters to

denote random variables (e.g. X), and lightface letters to denote their realizations

(e.g. X). The calligraphic letters A, B, etc., denote general sets or probability

events. The abbreviation “i.i.d” stands for independent and identically distributed.

The zero-mean, unit-variance, real Gaussian distribution is denoted by N (0, 1), and

the zero-mean, unit-variance, circular symmetric, complex Gaussian distribution is

denoted by CN (0, 1). We don’t distinguish between a scalar and a matrix in our

notation.
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CHAPTER 2

Background: Error Exponent and Diversity Gain

It is well-known that the error exponent for a single-user channel provides the

rate of exponential decay of the average probability of error as a function of the block

length of the codebooks [5, 6, 7, 8, 9, 10, 11]. The concept of the error exponent was

extended to a Gaussian multiple access channel in [17, 18], where an upper bound

on the probability of system error (i.e., the probability that any user is in error) was

derived for random codes. Zheng and Tse considered error exponents under a high

signal-to-noise ratio (SNR) approximation, called diversity gains, for MIMO fading

single-user channels [16], and for MIMO fading multiple access channels [19]. In this

chapter, we briefly review some basic results regarding error exponents and diversity

gains for single-user and multiple access channels.

2.1 Error Exponent

Consider a discrete-time memoryless stationary single-user channel. Let Pe(N,R)

denote the smallest average probability of block decoding error, i.e., codeword error,

of any code of block length N and rate R for this channel. The error exponent at
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rate R is defined as

E(R) , lim
N→∞

− log Pe(N,R)

N
, (2.1)

where the limit in (2.1) (and throughout this work) should be interpreted as lim sup

or lim inf from the context whenever the limit does not exist. Define f(N) ∼= eNb if

lim
N→∞

log f(N)

N
= b, (2.2)

and &, . are defined similarly. Thus, the probability of error Pe(N, R) can be written

as Pe(N, R) ∼= e−NE(R).

Error exponents have been studied in detail for discrete memoryless channels and

additive white Gaussian noise (AWGN) channels [5, 6, 7, 8, 9, 10, 11]. Lower and

upper bounds are known for the error exponent E(R) for these channels. A lower

bound, known as random coding exponent Er(R), was developed by Fano [8]. The

random coding exponent was tightened at low rates by Gallager to yield expurgated

exponent Eex(R) [10]. Two upper bounds, known as sphere packing exponent Esp(R)

and minimum distance exponent Emd(R), were developed by Shannon, Gallager, and

Berlekamp [11]. A straight line connecting any two points of Esp(R) and Emd(R)

was shown to be an error exponent upper bound, which is known as straight line

exponent Est(R) [11]. The random coding exponent and the sphere packing exponent

agree at rates R ≥ Rcrit, where Rcrit is called the critical rate. These five bounds are

shown in Fig. 2.1. The lower solid curve and the upper solid curve are the expurgated

exponent Eex(R) and the straight line exponent Est(R), respectively. The dashed

curve is the random coding exponent Er(R). The dash-dotted curve is the sphere

packing exponent Esp(R), which agrees with Er(R) for R ≥ Rcrit. The dotted curve

is the minimum distance exponent Emd(R). For R < Rcrit, the error exponent lies
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inside the shaded region.

R

E(R)

Rcrit C0

Er(R)

Eex(R)

Esp(R)

Emd(R)

Est(R)

Figure 2.1: Error exponent lower and upper bounds.

Error exponents have also been studied for multiple access channels [17, 18]. For

a given multiple access channel, let Pe,sys(N, R1, R2) denote the smallest average

probability of block decoding system error of any code of block length N and rates

R1, R2 for user 1, user 2, respectively. The error exponent for a multiple access

channel is defined as

Esys(R1, R2) , lim
N→∞

− log Pe,sys(N, R1, R2)

N
. (2.3)

In the following, we summarize the basic technique used by Gallager to provide an

upper bound on the probability of system error in a multiple access channel [17]. A

variation of this method will be used later to provide similar upper bounds. Consider

a codebook CB1 = {C1,1, C1,2, . . . , C1,M1} for user 1, where C1,i is the ith codeword

with length N (1 ≤ i ≤ M1) and M1 is the number of the codewords in the codebook

CB1. Similarly, CB2 = {C2,1, C2,2, . . . , C2,M2} is a codebook for user 2. Gallager [17]

9



derived the random coding exponent using joint maximum likelihood (ML) decoding,

i.e., decoding users’ messages based on the pair (i, j) maximizing P (Y N |C1,i, C2,j),

where Y N is the received sequence of length N . Let (̂i, ĵ) denote the indexes of the

decoded codewords for user 1 and user 2. The probability of system error can be

written as

Pe,sys = P (̂i 6= i or ĵ 6= j)

= P (̂i 6= i and ĵ = j) + P (̂i = i and ĵ 6= j) + P (̂i 6= i and ĵ 6= j)

= Pe,t1 + Pe,t2 + Pe,t3, (2.4)

where we define

Pe,t1 , P (̂i 6= i and ĵ = j)

Pe,t2 , P (̂i = i and ĵ 6= j)

Pe,t3 , P (̂i 6= i and ĵ 6= j). (2.5)

Thus there are three types of error events. Type 1 error occurs when user 1’s code-

word is decoded erroneously, but user 2’s codeword is decoded correctly. Type 2

error occurs when user 2’s codeword is decoded erroneously, but user 1’s codeword

is decoded correctly. Type 3 error occurs when both users’ codewords are decoded

as wrong codewords. Applying the random coding argument, it was shown in [17]

that there exist codebooks CB1 and CB2 such that Pe,ti can be upper bounded by

Pe,t1 ≤ e−NEt1(R1)

Pe,t2 ≤ e−NEt2(R2)

Pe,t3 ≤ e−NEt3(R1+R2), (2.6)
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where Eti, 1 ≤ i ≤ 3, is an exponent which accounts for type i error. The probability

of system error can be upper bounded by

Pe,sys = Pe,t1 + Pe,t2 + Pe,t3

≤ e−NEt1(R1) + e−NEt2(R2) + e−NEt3(R1+R2)

≤ 3e−N min{Et1(R1),Et2(R2),Et3(R1+R2)}, (2.7)

and the system error exponent can be lower bounded by

Esys(R1, R2) ≥ min{Et1(R1), Et2(R2), Et3(R1 + R2)}. (2.8)

2.2 Diversity Gain

Error exponents have also been studied for MIMO fading single-user channels

in the high SNR regime [16]. Consider a MIMO fading single-user channel with m

transmit antennas and n receive antennas. The channel model is

Y =

√
SNR

m
HX + Z. (2.9)

The channel fading matrix between the transmitter and the receiver is represented

by an n × m matrix H. We assume that H remains constant over a block with

length l, and changes to a new independent realization in the next block. H has

i.i.d. entries distributed as CN (0, 1). We assume that the fading matrix H is known

by the receiver but not known by the transmitter. X is an m × l matrix and is

normalized such that the average SNR at each receive antenna is SNR. The noise

Z is an n× l matrix with i.i.d. entries CN (0, 1). The channel output Y is an n× l

matrix.
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In contrast to a single-antenna system, multiple antennas provide spatial diversity,

which can be used to support higher data rate than a single-antenna system. The

channel capacity of a MIMO fading channel can be written as

C(SNR) = min{m,n} log SNR + O(1) (2.10)

at high SNR [20]. In addition to supporting higher data rate, multi-antenna channels

can also improve the reliability of the link. As an example, the probability of error at

high SNR for uncoded binary phase-shift keying (PSK) signals over a single-antenna

fading channel (m = n = l = 1) is approximately 1
4
SNR−1, but the probability of

error for a receiver equipped with two antennas is approximately 3
16

SNR−2 at high

SNR [21]. Note that in both cases the probabilities of error go to zero as SNR goes

to infinity and this implies that the error exponent goes to infinity as SNR goes to

infinity. Nevertheless, we can define a “normalized” error exponent, with respect to

SNR, for a multi-antenna channel. To be specific, let the channel be operated at a

rate R = R(SNR) which is a fraction of the channel capacity at high SNR, i.e.,

lim
SNR→∞

R(SNR)

log SNR
= r. (2.11)

The normalized error exponent e(r) (with respect to SNR) is thus defined as

e(r) , lim
SNR→∞

E(R(SNR))

log SNR
= lim

SNR→∞

{
lim

N→∞
− log Pe(N,R(SNR))

N log SNR

}
. (2.12)

If we define d(N, r) as

d(N, r) , lim
SNR→∞

− log Pe(N,R(SNR))

N log SNR
, (2.13)

and if we can exchange the order of limSNR→∞ and limN→∞ in (2.12), then the
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normalized error exponent can be expressed as e(r) = limN→∞ d(N, r). 1 Define

f
.
= SNRb if

lim
SNR→∞

log f

log SNR
= b, (2.14)

and ≥̇, ≤̇ are defined similarly. Thus (2.13) can be written as Pe(N,R(SNR))
.
=

SNR−Nd(N,r).

It was shown in [16] that in a MIMO fading single-user channel with m transmit

antennas, n receive antennas, and block length l, both the random coding diversity

gain dm,n,l(r) and the expurgated diversity gain dex
m,n,l(r) are lower bounds of d(r) ,

d(1, r), where d(r) is used as a shorthand notation for d(1, r), and r and d(r) were

referred to as the multiplexing gain and the diversity gain, respectively, in [16]. The

random coding diversity gain dm,n,l(r) is defined as

dm,n,l(r) = min
α∈Rmin(m,n)

+ \B

{ min(m,n)∑
i=1

(2i− 1 + |m− n|)αi + l
[ min(m,n)∑

i=1

(1− αi)
+ − r

]}
,

(2.15)

with

B =
{

α ∈ Rmin(m,n)
+ | α1 ≥ α2 ≥ . . . ≥ αmin(m,n) ≥ 0;

min(m,n)∑
i=1

(1− αi)
+ < r

}
, (2.16)

where α = (α1, α2, . . . , αmin(m,n)). The expurgated diversity gain dex
m,n,l(r) is defined

1In general, the order of limSNR→∞ and limN→∞ might not be exchangeable, i.e.
limx→∞ limy→∞ f(x, y) might not be equal to limy→∞ limx→∞ f(x, y) in general, where
f(x, y) is an arbitrary function with variables x and y. Moreover, we don’t know
how to evaluate limN→∞− log Pe(N,R(SNR))

N log SNR , but an upper bound and a lower bound for

limSNR→∞− log Pe(N,R(SNR))
N log SNR were derived in [16].
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as

dex
m,n,l(r) = n d−1

m,l,n(lr), (2.17)

where d−1
m,l,n is the inverse function of dm,l,n(r). In addition, it was shown in [16]

that d(N, r) is upper bounded by the outage diversity gain dout
m,n(r), which is the

piecewise linear function connecting the points (k, dout
m,n(k)) = (k, (m−k)(n−k)), k ∈

{0, 1, . . . , min(m,n)}. Finally, it was also shown in [16] that dm,n,l(r) and dout
m,n(r)

coincide for l ≥ m + n − 1. As an illustration in Fig. 2.2, the solid curve is the

random coding diversity gain dm,n,l(r), the dashed curve is the expurgated diversity

gain dex
m,n,l(r), and the dash-dotted curve is the outage diversity gain dout

m,n(r).

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r

d

Figure 2.2: Random coding diversity gain (solid), expurgated diversity gain (dashed) and
outage diversity gain (dash-dotted) for m = 2, n = 2, l = 2.

In [19], these concepts were extended to MIMO fading multiple access channels.

In particular, the channel was considered to operate at a rate pair R1 = R1(SNR),
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R2 = R2(SNR), such that

lim
SNR→∞

R1(SNR)

log SNR
= r1, lim

SNR→∞
R2(SNR)

log SNR
= r2, (2.18)

and dsys(N, r1, r2) was defined as

dsys(N, r1, r2) , lim
SNR→∞

− log Pe,sys(N,R1(SNR), R2(SNR))

N log SNR
. (2.19)

For a MIMO fading multiple access channel with m transmit antennas for user 1 and

user 2, n receive antennas, and block length l ≥ 2m+n−1, it was shown in [19] that

dsys(N, r1, r2) = dsys(1, r1, r2) = dsys(r1, r2) = min{dout
m,n(r1), d

out
m,n(r2), d

out
2m,n(r1 + r2)},

where dsys(r1, r2) is a shorthand notation for dsys(1, r1, r2).
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CHAPTER 3

Error Exponent Region

In this chapter, we introduce the notion of error exponent region (EER) for a

multi-user channel. Recall that for a multi-user channel, the probability of system

error (or equivalently, the corresponding system error exponent) is not sufficient to

capture the different reliability requirements of the users. Our approach to addressing

this issue hinges on the following two observations. First, one can define a separate

probability of error for each user. Therefore, there can be multiple error exponents,

one for each user. Some earlier results in this area are the work by Marton and

Sgarro [22] which considers a broadcast channel with degraded message sets, and

the work by Diggavi et al. [23, 24], which considers a single-user channel with two

different messages, i.e., a high- and a low-reliability message.

Second, in contrast to a single-user channel where the error exponent is fixed

for a given rate, in a multi-user channel one can tradeoff the error exponents among

different users even for a fixed vector of users’ rates. To illustrate this point, consider

the capacity region of a multi-user channel as shown in Fig. 3.1(a). As expected, the

error exponents for the two users are functions of both the operating point A and

the channel capacity region. However, unlike the case in a single-user channel where

the channel capacity boundary is a single point, in a multi-user channel we have
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multiple points on the capacity boundary (e.g. B, D in Fig. 3.1(a)). Thus one can

expect to get different error exponents (and thus a tradeoff among them) depending

on which target point on the capacity boundary is considered. For instance, consider

the operating point A (corresponding to a rate pair (R1, R2)) obtained by backing

off from a target point B on the capacity boundary in Fig. 3.1(a). It is expected that

the error exponent for user 1 is smaller than that for user 2, since user 1 operates

at rate R1 which is very close to the corresponding capacity (determined by B, see

Fig. 3.1(b)), while user 2 backs off significantly from the corresponding capacity

(determined again by B, see Fig. 3.1(b)). On the other hand, if we consider point A

as if it is obtained by backing off from a target point D on the capacity boundary

in Fig. 3.1(a), we then expect the error exponent for user 1 to be larger than that

for user 2 (see Fig. 3.1(c)). Therefore, a tradeoff of error exponents between users

might be possible by considering different points on the capacity boundary.

(b) (c)(a)
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rate 2
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Figure 3.1: Channel capacity region: (a) multiple points on the capacity boundary; (b)
users back off from point B to point A; (c) users back off from point D to point A.

This leads us to the notion of error exponent region (EER) for a multi-user

channel. For a given operating point characterized by the rate pair (R1, R2), the

error exponent region consists of all achievable error exponent pairs for the two

users. For example, the error exponent region for a channel operated at point A in

Fig. 3.1 is a two-dimensional region which depends on rates R1 and R2 (see Fig. 3.2).

Note that the concepts of EER and channel capacity region (CCR) are fundamentally
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different. For a given channel, there is only one CCR. One the other hand, an EER

depends on the channel operating point (R1, R2). Thus, for a given channel, there is

one EER for every operating point inside the CCR.

0

EER(R
1
,R

2
)

error exponent 1

error exponent 2

Figure 3.2: Error exponent region for a rate pair (R1, R2).
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CHAPTER 4

Error Exponent Regions for Gaussian Broadcast

Channels

A discrete memoryless stationary broadcast channel with two receivers is a tuple

{X ,Y1,Y2, P (Y1, Y2|X)} of input alphabet X , output alphabets Yi for i = 1, 2, and

a conditional probability distribution P (Y1, Y2|X). We formally define the EER for

a broadcast channel in the following.

Definition 4.1 An (N, M1,M2, Pe1, Pe2) code for a broadcast channel consists of an

encoder

e : {1, 2, . . . , M1} × {1, 2, . . . , M2} → XN , (4.1)

a pair of decoders

di : YN
i → {1, 2, . . . ,Mi} (4.2)
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for i = 1, 2, and a pair of error probabilities

Pe1 =
1

M1M2

M1∑

k=1

M2∑

l=1

P [d1(Y
N
1 ) 6= k|XN = e(k, l)]

Pe2 =
1

M1M2

M1∑

k=1

M2∑

l=1

P [d2(Y
N
2 ) 6= l|XN = e(k, l)]. (4.3)

Definition 4.2 Given a pair of transmission rates (R1, R2), a pair of error expo-

nents (E1, E2) is said to be achievable for a broadcast channel if for all δ > 0, there

exists a sequence of (N, M1,M2, Pe1, Pe2) codes such that

1

N
log M1 > R1 − δ, − 1

N
log Pe1 > E1 − δ

1

N
log M2 > R2 − δ, − 1

N
log Pe2 > E2 − δ (4.4)

for all sufficiently large N .

Definition 4.3 Given a pair of transmission rates (R1, R2), the error exponent re-

gion is the set of all achievable error exponent pairs.

Now, let us consider a scalar Gaussian broadcast channel [12, 13]

Y1 = X + Z1

Y2 = X + Z2, (4.5)

where X is the channel input with average power constraint P , and Y1 and Y2 are

the channel outputs for user 1 and user 2. Assume that the noise power for Z1 is

σ2
1 and for Z2 is σ2

2. We derive inner and outer bounds for the EER in the following

sections.
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4.1 Inner Bound for Error Exponent Region

Define the shelled Gaussian distributionN sh(N, P ) [25, Chap. 7] as the following.

Definition 4.4 The probability density function Q(XN) of an N-dimensional shelled

Gaussian random vector XN = (X1, . . . ,XN) with variance (power) P is given by

Q(XN) = µ−1φ(XN)
N∏

k=1

1√
2πP

e−
X2

k
2P , (4.6)

where

φ(XN) =





1, for NP − δ <
∑N

k=1 X2
k ≤ NP

0, otherwise
, (4.7)

and δ is an arbitrary positive number and µ is a normalizing constant to make Q(XN)

integrate to 1.

We write N sh(N, P ) as N sh(P ) when the dimension N is clear from the context.

We now derive an EER inner bound using two encoding strategies - single-code

encoding and superposition encoding. In single-code encoding, we construct a ran-

dom codebook CB = {Ci,j| 1 ≤ i ≤ M1, 1 ≤ j ≤ M2} of size M3 , M1M2. Each

random vector Ci,j is i.i.d. with N sh(N, P ). In the receivers, user 1 decodes the

message based on the pair (i, j) maximizing P (YN
1 |Ci,j), and user 2 decodes the

message based on the pair (i, j) maximizing P (YN
2 |Ci,j).

In superposition encoding, we construct two independent random codebooks CB1

and CB2 of size M1 and M2, respectively (see Fig. 4.1). Let C1,i and C2,j denote

the ith and the jth codewords in the codebooks CB1 and CB2, respectively. The

channel input XN is equal to C1,i + C2,j. Further, let C1,i(k) and C2,j(k) denote
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the kth elements in the codewords C1,i and C2,j, respectively. The random vec-

tors (C1,i(1), . . . ,C1,i(αN)) and (C1,i(αN + 1), . . . ,C1,i(N)) are independent with

distributions N sh(αN,P11) and N sh((1 − α)N, P12), respectively, where α = a
N

for

some a ∈ {0, 1, . . . , N}. Similarly, the random vectors (C2,j(1), . . . ,C2,j(αN)) and

(C2,j(αN + 1), . . . ,C2,j(N)) are independent with distributions N sh(αN,P21) and

N sh((1 − α)N,P22), respectively. Due to the power constraint P , we have the fol-

lowing equality

α(P11 + P21) + (1− α)(P12 + P22) = P. (4.8)

Note that superposition includes two special and important encoding schemes, namely

“uniform” superposition and “on-off” superposition. In uniform superposition, the

parameter α in Fig. 4.1 is chosen to be zero or one, so the random codebooks CB1

and CB2 have uniform entries. In on-off superposition, the parameters P12 and P21 in

Fig. 4.1 are chosen to be zero, so the transmitter switches between user 1 and user 2

(on-off) during the transmission. On-off superposition is more commonly referred to

as time-sharing in the literature.

In the receivers, the optimum decoding strategy is individual ML decoding, which

minimizes the probabilities of error for user 1 and user 2. In particular, decoding

user 1’s message is based on the index i maximizing P (YN
1 |C1,i) =

∑M2

j=1 P (YN
1 |C1,i+

C2,j)P (C2,j) and decoding user 2’s message is based on the index j maximizing

P (YN
2 |C2,j) =

∑M1

i=1 P (YN
2 |C1,i + C2,j)P (C1,i), where YN

1 and YN
2 are the received

channel outputs (with length N) for user 1 and user 2, respectively. However, it

turns out that it is difficult to derive analytical, single-letter expressions for error

exponents using individual ML decoding, so we use joint ML decoding to analyze

the performance instead. In joint ML decoding, user 1’s message is decoded based

on the pair (i, j) maximizing P (YN
1 |C1,i + C2,j), and user 2’s message is decoded
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Figure 4.1: Random codebooks for user 1 and user 2 using superposition encoding.

based on the pair (i, j) maximizing P (YN
2 |C1,i + C2,j). Note that we can substitute

the optimal decoder with the joint ML decoder or any other decoding scheme and

still provide valid inner bounds for the EER. Furthermore, as it will become evident

in the subsequent analysis, the performance bounds based on joint ML decoding can

be tightened by considering another decoding strategy, namely the naive single-user

decoding. In naive single-user decoding, user 1 simply regards user 2 as noise, and

similarly, user 2 regards user 1 as noise.

Before summarizing the EER inner bound in the following theorem, we define a

few error exponent functions. Let Er(R,SNR) and Eex(R, SNR) denote the random

coding exponent and the expurgated exponent for a scalar Gaussian channel with

rate R and signal-to-noise ratio SNR. Define the nonuniform-power random coding
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exponent Enp
r (R,SNR1, SNR2, α) as

Enp
r (R, SNR1, SNR2, α) , max

ρ,θ1,θ2

{Enp
r,0(ρ, θ1, θ2, α)− ρR}

Enp
r,0(ρ, θ1, θ2, α) , α

[
1 + ρ

2
ln

(
eθ1

1 + ρ

)
− θ1

2
+

ρ

2
ln

(
1 +

SNR1

θ1

)]
+

(1− α)

[
1 + ρ

2
ln

(
eθ2

1 + ρ

)
− θ2

2
+

ρ

2
ln

(
1 +

SNR2

θ2

)]
,

(4.9)

where the maximization is over 0 ≤ ρ ≤ 1 and 0 < θ1, θ2 ≤ 1 + ρ.

Define the nonuniform-power expurgated exponent Enp
ex (R, SNR1, SNR2, α) as

Enp
ex (R, SNR1, SNR2, α) , max

ρ,θ1,θ2

{Enp
ex,0(ρ, θ1, θ2, α)− ρR}

Enp
ex,0(ρ, θ1, θ2, α) , α

[
ρ ln

(
eθ1

2ρ

)
− θ1

2
+

ρ

2
ln

(
1 +

SNR1

θ1

)]
+

(1− α)

[
ρ ln

(
eθ2

2ρ

)
− θ2

2
+

ρ

2
ln

(
1 +

SNR2

θ2

)]
, (4.10)

where the maximization is over ρ ≥ 1 and 0 < θ1, θ2 ≤ 2ρ.

Define Enp
t3 (R,SNR11, SNR12, SNR21, SNR22, α) as

Enp
t3 (R, SNR11, SNR12, SNR21, SNR22, α) ,

max
ρ,θ11,θ12,θ21,θ22

{Enp
t3,0(ρ, θ11, θ12, θ21, θ22, α)− ρR}

Enp
t3,0(ρ, θ11, θ12, θ21, θ22, α) ,

α

[
(1 + ρ) ln

(
e
√

θ11θ21

1 + ρ

)
− θ11 + θ21

2
+

ρ

2
ln

(
1 +

SNR11

θ11

+
SNR21

θ21

)]
+

(1− α)

[
(1 + ρ) ln

(
e
√

θ12θ22

1 + ρ

)
− θ12 + θ22

2
+

ρ

2
ln

(
1 +

SNR12

θ12

+
SNR22

θ22

)]
,

(4.11)
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where the maximization is over 0 ≤ ρ ≤ 1 and 0 < θ11, θ12, θ21, θ22 ≤ 1+ρ. The func-

tion Enp
t3 (·) accounts for type 3 error in a scalar Gaussian multiple access channel [17]

when the random codebooks for the two users are given in Fig. 4.1.

Finally, let Enp(R,SNR1, SNR2, α) denote the maximum of the nonuniform-

power random coding exponent Enp
r (R, SNR1, SNR2, α) and the nonuniform-power

expurgated exponent Enp
ex (R, SNR1, SNR2, α). We now summarize the EER inner

bound based on single-code and superposition encoding in the following theorem.

Theorem 4.1 For a Gaussian broadcast channel with power constraint P and noise

power σ2
1 and σ2

2 for user 1 and user 2, respectively, an inner bound for EER

is EERsc(R1, R2) ∪ EERsp(R1, R2), where EERsc(R1, R2) and EERsp(R1, R2) are

given by

EERsc(R1, R2) =
{
(E1, E2) : E1 ≤ max{Er(R1 + R2,

P

σ2
1

), Eex(R1 + R2,
P

σ2
1

)}

E2 ≤ max{Er(R1 + R2,
P

σ2
2

), Eex(R1 + R2,
P

σ2
2

)}} (4.12)

EERsp(R1, R2) =

{
(E1, E2) : 0 ≤ α ≤ 1, α(P11 + P21) + (1− α)(P12 + P22) = P,

E1 ≤ max
{

min
{
Enp(R1,

P11

σ2
1

,
P12

σ2
1

, α), Enp
t3 (R1 + R2,

P11

σ2
1

,
P12

σ2
1

,
P21

σ2
1

,
P22

σ2
1

, α)
}
,

Enp(R1,
P11

σ2
1 + P21

,
P12

σ2
1 + P22

, α)
}

E2 ≤ max
{

min
{
Enp(R2,

P21

σ2
2

,
P22

σ2
2

, α), Enp
t3 (R1 + R2,

P11

σ2
2

,
P12

σ2
2

,
P21

σ2
2

,
P22

σ2
2

, α)
}
,

Enp(R2,
P21

σ2
2 + P11

,
P22

σ2
2 + P12

, α)
}}

, (4.13)

and the subscript “sc” of EERsc(R1, R2) and the subscript “sp” of EERsp(R1, R2)

denote single-code and superposition, respectively.
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Proof: The probabilities of error for user 1 and user 2 using single-code encoding

can be upper bounded by

Pe1 = P (i 6= i1) ≤ P (i 6= i1 or j 6= j1) ≤ e
−N max{Er(R1+R2, P

σ2
1
),Eex(R1+R2, P

σ2
1
)}

(4.14a)

Pe2 = P (j 6= j2) ≤ P (i 6= i2 or j 6= j2) ≤ e
−N max{Er(R1+R2, P

σ2
2
),Eex(R1+R2, P

σ2
2
)}

,

(4.14b)

where user 1 decodes (i, j) as (i1, j1) and user 2 decoded (i, j) as (i2, j2). The last

inequalities in (4.14a) and (4.14b) are derived based on the achievable error exponents

for Gaussian single-user channels. Thus the achievable error exponents using single-

code encoding are

Esc
1 = max{Er(R1 + R2,

P

σ2
1

), Eex(R1 + R2,
P

σ2
1

)}

Esc
2 = max{Er(R1 + R2,

P

σ2
2

), Eex(R1 + R2,
P

σ2
2

)}. (4.15)

We next consider the superposition encoding shown in Fig. 4.1. The proof is

given in three steps. The inner bound (4.13) is derived based on joint ML decoding

and naive single-user decoding. The achievable error exponents based on joint ML

decoding are derived in step 1 and step 2, and the achievable error exponents based

on naive single-user decoding are derived in step 3. In particular, in step 1, we show

that there exist a pair of random codebooks achieving the error exponents given

in (4.13) (based on joint ML decoding), and in step 2, we show that there exist a

pair of deterministic codebooks achieving the error exponents given in (4.13) (based

on joint ML decoding).

Step 1 Let Pe11 denote type 11 error probability, the probability that user 1

decodes (i, j) as (̂i, j), and let Pe13 denote type 13 error probability, the probability

that user 1 decodes (i, j) as (̂i, ĵ), where i 6= î and j 6= ĵ. Similarly, let Pe22 denote
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type 22 error probability, the probability that user 2 decodes (i, j) as (i, ĵ), and let

Pe23 denote type 23 error probability, the probability that user 2 decodes (i, j) as

(̂i, ĵ). Applying the random coding argument used in [17], it can be shown that there

exist codebooks for user 1 and user 2 using joint ML decoding such that

Pe11 ≤ e
−NEnp(R1,

P11
σ2
1

,
P12
σ2
1

,α)

Pe22 ≤ e
−NEnp(R2,

P21
σ2
2

,
P22
σ2
2

,α)

Pe13 ≤ e
−NEnp

t3 (R1+R2,
P11
σ2
1

,
P12
σ2
1

,
P21
σ2
1

,
P22
σ2
1

,α)

Pe23 ≤ e
−NEnp

t3 (R1+R2,
P11
σ2
2

,
P12
σ2
2

,
P21
σ2
2

,
P22
σ2
2

,α)
. (4.16)

The probabilities of error for user 1 and user 2 using joint ML decoding can be upper

bounded by

Pe1 = Pe11 + Pe13 ≤ e
−NEnp(R1,

P11
σ2
1

,
P12
σ2
1

,α)
+ e

−NEnp
t3 (R1+R2,

P11
σ2
1

,
P12
σ2
1

,
P21
σ2
1

,
P22
σ2
1

,α)

≤ 2e
−N min{Enp(R1,

P11
σ2
1

,
P12
σ2
1

,α),Enp
t3 (R1+R2,

P11
σ2
1

,
P12
σ2
1

,
P21
σ2
1

,
P22
σ2
1

,α)}

Pe2 = Pe22 + Pe23 ≤ e
−NEnp(R2,

P21
σ2
2

,
P22
σ2
2

,α)
+ e

−NEnp
t3 (R1+R2,

P11
σ2
2

,
P12
σ2
2

,
P21
σ2
2

,
P22
σ2
2

,α)

≤ 2e
−N min{Enp(R2,

P21
σ2
2

,
P22
σ2
2

,α),Enp
t3 (R1+R2,

P11
σ2
2

,
P12
σ2
2

,
P21
σ2
2

,
P22
σ2
2

,α)}
. (4.17)

Thus the error exponents obtained using joint ML decoding are upper bounded by

Esp,jm
1 = min{Enp(R1,

P11

σ2
1

,
P12

σ2
1

, α), Enp
t3 (R1 + R2,

P11

σ2
1

,
P12

σ2
1

,
P21

σ2
1

,
P22

σ2
1

, α)}

Esp,jm
2 = min{Enp(R2,

P21

σ2
2

,
P22

σ2
2

, α), Enp
t3 (R1 + R2,

P11

σ2
2

,
P12

σ2
2

,
P21

σ2
2

,
P22

σ2
2

, α)}, (4.18)

where the superscript “sp,jm” denotes superposition and joint ML.

Step 2 In the previous discussion, we have showed that, averaged over the en-

semble of the random codebooks, (CB1,CB2), the error probabilities satisfy Pe1 ≤
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e−NEsp,jm
1 and Pe2 ≤ e−NEsp,jm

2 , where Esp,jm
1 and Esp,jm

2 are given in (4.18). This

implies that there exist a pair of deterministic codebooks (CB′
1, CB′

2) with user 1’s

error probability P ′
e1 satisfying P ′

e1 ≤ e−NEsp,jm
1 , and there exist another pair of

deterministic codebooks (CB′′
1 , CB′′

2 ) with user 2’s error probability P ′′
e2 satisfying

P ′′
e2 ≤ e−NEsp,jm

2 . However, this does not mean that there exist a pair of determin-

istic codebooks (CB∗
1 , CB∗

2) with a pair of error probabilities (P ∗
e1, P

∗
e2) satisfying

P ∗
e1 ≤ e−NEsp,jm

1 and P ∗
e2 ≤ e−NEsp,jm

2 simultaneously. 1 To prove the existence of

deterministic codebooks (CB∗
1 , CB∗

2), we can apply Markov inequality to get

P (Pe1 > βPe1) ≤ 1

β

P (Pe2 > βPe2) ≤ 1

β
(4.19)

for any β > 0, where Pe1 and Pe2 are the (random) probabilities of error for user 1

and user 2, respectively, based on random codebooks (CB1,CB2), and Pe1 and Pe2

are the ensemble averages of Pe1 and Pe2, respectively. Thus

P ({Pe1 ≤ βPe1} ∩ {Pe2 ≤ βPe2}) = 1− P ({Pe1 > βPe1} ∪ {Pe2 > βPe2})

≥ 1− P (Pe1 > βPe1)− P (Pe2 > βPe2)

≥ 1− 2

β

> 0 (4.20)

1This difficulty does not arise in a multi-user channel when there is only one error probability
criterion. For example, in the case of the system error probability for a multiple access channel
considered in [17], the existence of a pair of random codebooks (CB1,CB2) satisfying Pe,sys ≤
e−NE implies directly the existence of a pair of deterministic codebooks (CB∗

1 , CB∗
2) satisfying

P ∗e,sys ≤ e−NE .
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by choosing an appropriate β, say β = 10. This implies that there exist at least a

pair of deterministic codebooks (CB∗
1 , CB∗

2) with

P ∗
e1 ≤ βe−NEsp,jm

1

P ∗
e2 ≤ βe−NEsp,jm

2 , (4.21)

where the factor β has no effect on the error exponents.

Step 3 When naive single-user decoding is utilized, the probability of error for

user 1 can be upper bounded by

Pe1 ≤ e
−NEnp(R1,

P11
σ2
1+P21

,
P12

σ2
1+P22

,α)
. (4.22)

Strictly speaking, the side-interference XN
2 is shelled Gaussian distributed, so the

noise XN
2 + ZN seen by user 1 is not exactly Gaussian, whereas (4.22) is written

based on the assumption that the noise XN
2 + ZN is Gaussian. Nevertheless, the

shelled Gaussian distribution N (N, P ) given in Definition 4.4 can be upper bounded

by

Q(XN) = µ−1φ(XN)
N∏

k=1

1√
2πP

e−
X2

k
2P ≤ µ−1

N∏

k=1

1√
2πP

e−
X2

k
2P , (4.23)

where the right hand side of the last inequality is a Gaussian distribution except for

the factor µ−1. We can use the upper bound in (4.23) to derive an upper bound for

Pe1, and the final result is

Pe1 ≤ µ−2e
−NEnp(R1,

P11
σ2
1+P21

,
P12

σ2
1+P22

,α)
, (4.24)

where the factor µ−2 = µ−1 · µ−1 is due to using two shelled Gaussian distributions

in each random codebook, and each shelled Gaussian distribution results in one µ−1
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in (4.24). Thus (4.22) is a valid upper bound except for the factor µ−2, which has

no effect on the error exponent and is omitted for simplicity.

Similarly, the probability of error for user 2 can be upper bounded by

Pe2 ≤ e
−NEnp(R2,

P21
σ2
2+P11

,
P22

σ2
2+P12

,α)
. (4.25)

Therefore, the achievable error exponents using naive single-user decoding are

Esp,ns
1 = Enp(R1,

P11

σ2
1 + P21

,
P12

σ2
1 + P22

, α)

Esp,ns
2 = Enp(R2,

P21

σ2
2 + P11

,
P22

σ2
2 + P12

, α), (4.26)

where the superscript “sp,ns” denotes superposition and naive single-user.

Since both users can choose either joint ML decoding or naive single-user decod-

ing, the maximum of the corresponding error exponents are achievable, i.e.,

Esp
1 = max

{
min

{
Enp(R1,

P11

σ2
1

,
P12

σ2
1

, α), Enp
t3 (R1 + R2,

P11

σ2
1

,
P12

σ2
1

,
P21

σ2
1

,
P22

σ2
1

, α)
}
,

Enp(R1,
P11

σ2
1 + P21

,
P12

σ2
1 + P22

, α)
}

Esp
2 = max

{
min

{
Enp(R2,

P21

σ2
2

,
P22

σ2
2

, α), Enp
t3 (R1 + R2,

P11

σ2
2

,
P12

σ2
2

,
P21

σ2
2

,
P22

σ2
2

, α)
}
,

Enp(R2,
P21

σ2
2 + P11

,
P22

σ2
2 + P12

, α)
}

. (4.27)

This completes the proof.

Several comments are in order at this point.

• It may seem surprising that we use two different probability distributions

N sh(P11) and N sh(P12) to construct the random codebook CB1 (and simi-

larly for CB2). This requires some explanation. Consider two special cases

of superposition encoding - uniform superposition and on-off superposition.
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In Fig. 4.2(a), the achievable EERs obtained by these two special cases are

illustrated. The dashed curve is the boundary of the achievable EER using

uniform superposition, and the dotted curve is the boundary of the achievable

EER using on-off superposition (the dotted curve merging with the solid curve

at (E1, E2) = (0.046, 0.008) and (E1, E2) = (0.008, 0.046)). In Fig. 4.2(b),

the achievable EERs for the same Gaussian channel but with unequal rates

for user 1 and user 2 are illustrated. Based on these two encoding schemes,

it is now clear that superposition encoding includes these two special cases

(uniform and on-off) and also serves as a smooth transition between these two

encoding schemes. One may ask if it is possible to improve the EER by using

three, four, or even more probability distributions to construct each random

codebook. Our numerical results indicated that going beyond two distributions

provides only marginal improvements. However, multiple distributions might

be beneficial for a broadcast channel with more than two users.
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Figure 4.2: EER inner bound using on-off superposition (dotted), uniform superposi-
tion (dashed), superposition (solid) and single-code (dash-dotted) for (a) R1 = 0.5, R2 =
0.5, P

σ2
1

= 10, P
σ2
2

= 10; (b) R1 = 0.2, R2 = 0.7, P
σ2
1

= 10, P
σ2
2

= 10.

31



• In Fig. 4.2(a), the maximum equal error exponent pair achieved by superpo-

sition encoding is (E1, E2) = (0.044, 0.044), which is slightly smaller than the

error exponent pair (E1, E2) = (0.046, 0.046) achieved by single-code encoding.

The broadcast channel in Fig. 4.2(a) is symmetric and it is easy to show that

single-code encoding is optimum (in the sense of equal error exponents) for

symmetric broadcast channels. It also happens that in Fig. 4.2(a) the use of

(nonuniform) superposition does not enlarge the achievable EER beyond what

is obtained by uniform superposition, on-off superposition, and single-code en-

coding. This is not true in general. We point out that the EERsp(R1, R2)

achieved by superposition in (4.13) is non-vanishing for any point (R1, R2)

inside the capacity region, but the EERsc(R1, R2) achieved by single-code en-

coding in (4.12) is empty when R1 +R2 > 1
2
log(1+ P

σ2
2
) (assuming σ2

2 > σ2
1). As

illustrated in Fig. 4.3(a), the EERsc(R1, R2) achieved by single-code encoding

is empty, and (nonuniform) superposition indeed enlarges the region achieved

by using only uniform and on-off superposition. In Fig. 4.3(b), it happens

that the achievable EER using on-off superposition is completely inside the

achievable EER using uniform superposition (the dashed curve merging with

the solid curve at (E1, E2) = (0.038, 0.002)). Note that on-off superposition

is not a capacity-achieving strategy. On the other hand, it is easy to verify

that the achievable EER using uniform superposition is non-vanishing for any

point (R1, R2) inside the capacity region. Hence, it is possible that the achiev-

able EER using on-off superposition is included in the achievable EER using

uniform superposition for some operating points (R1, R2)’s.

• In Fig. 4.2(a), the maximum achievable equal error exponent pair using uni-

form superposition is E1 = E2 = 0.0319, which is smaller than the maximum

achievable equal error exponent pair E1 = E2 = 0.044 using (nonuniform) su-
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Figure 4.3: EER inner bound using on-off superposition (dotted), uniform superposition
(dashed), superposition (solid) and single-code (dash-dotted) for (a) R1 = 1, R2 = 0.1, P

σ2
1

=

10, P
σ2
2

= 5; (b) R1 = 0.2, R2 = 0.65, P
σ2
1

= 10, P
σ2
2

= 5.

perposition. Given that the broadcast channel is symmetric and is operated

at equal rates R1 = R2, why does uniform superposition (P11 = P21 = P
2
)

not achieve the maximum equal error exponent pair? Recall that in joint ML

decoding, there are four types of error events - type 11, type 13, type 22, and

type 23 errors. The point (E1, E2) = (0.0319, 0.0319) in Fig. 4.2(a) can be

achieved using uniform superposition, and the corresponding error exponent

lower bound for type 11 error is Et11 = 0.2103, which is much larger than the

error exponent lower bound for type 13 error Et13 = 0.0319. Further, if we plot

Et11 and Et13 as a function of P11 given by

Et11 = Enp(R1, P11, P − P11, α)

Et13 = Enp
t3 (R1 + R2, P11, P − P11, P − P11, P11, α) (4.28)

while keeping R1 = R2 = 0.5, P = 10, α = 1
2

fixed, then Et11 decreases
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as P11 increases from P
2

to P , but Et13 increases as P11 increases from P
2

to

P (see Fig. 4.4). Since E1 = min{Et11, Et13}, the error exponent for user 1

(and the error exponent for user 2) increases when we use superposition. Thus

superposition (compared to uniform superposition) provides one more degree

of freedom to tradeoff between type 11 and type 13 errors, which increases the

maximum achievable equal error exponent pair when the dominant error event

is type 13 error.
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Figure 4.4: Et11 and Et13 plotted as a function of P11.

• The result that the performance bound based on joint ML decoding can be

improved by naive single-user decoding might not have been anticipated. To

illustrate this, let’s consider a broadcast channel operated at (R1, R2) = (0.4, 1)

with P = 50, σ2
1 = 1 and σ2

2 = 5. The sum rate R1 + R2 = 1.4 > 1.2 =

1
2
log(1+ P

σ2
2
), so Esc

2 = 0 and Esp,jm
2 = 0, because it can be verified (numerically)

that for any R, SNR11, SNR12, SNR21, SNR22 and α, we have

Enp
t3 (R,SNR11, SNR12, SNR21, SNR22, α) ≤

Er(R, α(SNR11 + SNR12) + (1− α)(SNR21, SNR22)), (4.29)
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so Enp
t3 = 0 for user 2 in the case (R1, R2) = (0.4, 1). On the other hand, if we

use uniform superposition (α = 1) with P11 = 10 and P21 = 40, then even user 2

simply regards the side-interference XN
1 as noise, the achievable error exponent

for user 2 is Esp,ns
2 = Er(R2,

P21

P11+σ2
2
) = 0.084 (and Esp,jm

1 = 0.328). This

example illustrates that the achievable error exponents derived using joint ML

decoding might be much worse than the actual performance using individual

ML decoding. There are two possible explanations for this, though we can not

verify which one is the main reason: either joint ML decoding is significantly

inferior to individual ML decoding, or the bound derived for joint ML decoding

is loose. Nevertheless, naive single-user decoding serves as an assisted decoding

scheme to partially close the performance gap between the optimum individual

ML decoding and the suboptimum joint ML decoding.

• In Fig. 4.2(a), it seems that there are abrupt changes in the achievable EER

using superposition encoding around (E1, E2) = (0.008, 0.046) and (E1, E2) =

(0.046, 0.008). This is due to the switch between the joint ML and naive sin-

gle decoding at the receivers. To illustrate this point, we plot two curves

in Fig. 4.5(a), where in the solid curve user 2 uses only joint ML decoding

and in the dashed curve user 2 uses only naive single-user decoding (user 1

uses a mixture of joint ML and naive single-user decoding in both curves).

Although Esp,jm
2 increases slowly as E1 decreases from 0.044 to 0, Esp,ns

2 in-

creases much more rapidly as E1 decreases. Esp,ns
2 is equal to Esp,jm

2 around

(E1, E2) = (0.008, 0.046), and this is why there is an abrupt change over here.

We believe that the abrupt change of the achievable EER using superposition

in Fig. 4.2(a) is an artificial effect due to the switch between joint ML and naive

single-user decoding, and we anticipate that the actual achievable EER using

the optimum individual ML decoding would be much more smooth (see the
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dash-dotted curve in Fig. 4.5(b)). However, we can not verify this speculation.
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Figure 4.5: EER inner bound for R1 = 0.5, R2 = 0.5, P
σ2
1

= 10, P
σ2
2

= 10 (a) user 2 using
joint ML decoding (solid) and naive single-user decoding (dashed); (b) anticipated EER
using individual ML decoding (dash-dotted).

4.2 Outer Bound for Error Exponent Region

We now derive an EER outer bound and summarize the result in the following

theorem.

Theorem 4.2 For a Gaussian broadcast channel with power constraint P and noise

power σ2
1 and σ2

2 for user 1 and user 2, respectively, an outer bound for EER is

E1 ≤ Esu(R1,
P

σ2
1

)

E2 ≤ Esu(R2,
P

σ2
2

)

min{E1, E2} ≤ max
{
Esu(R1 + R2,

P

σ2
1

), Esu(R1 + R2,
P

σ2
2

)
}
, (4.30)
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where Esu(·) is any error exponent upper bound for a scalar Gaussian channel and

the subscript “su” denotes single-user upper (bound).

Proof: For any broadcast channel, the probability of decoding error for user i

can always be lower bounded by the probability of decoding error for user i operating

over a point-to-point channel defined by the marginal distribution P (Yi|X), where

i = 1 or 2. This implies that

E1 ≤ Esu(R1,
P

σ2
1

)

E2 ≤ Esu(R2,
P

σ2
2

). (4.31)

Given any encoding and decoding schemes, it is true that

Pe,sys ≤ Pe1 + Pe2 ≤ 2 max{Pe1, Pe2}, (4.32)

where the first inequality follows from the union bound. The broadcast channel

considered in (4.5) is stochastically degraded [26, Chap. 14]. Since the performance

of a broadcast channel depends only on the marginal distributions, we may further

assume that the broadcast channel considered in (4.5) is physically degraded, i.e.,

P (Y1, Y2|X) = P (Y1|X)P (Y2|Y1) if σ2
2 ≥ σ2

1. If we now allow the two receivers to

cooperate, we have a single-user channel, whose probability of error, P ′
e, should be

less than or equal to the probability of system error Pe,sys in the original broadcast

channel [27]. The probability of error P ′
e of the new single-user channel can be lower

bounded by

e
−N max{Esu(R1+R2, P

σ2
1
),Esu(R1+R2, P

σ2
2
)} ≤ P ′

e, (4.33)
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since the original broadcast channel is physically degraded. Combining (4.32) and

(4.33), we have

e
−N max{Esu(R1+R2, P

σ2
1
),Esu(R1+R2, P

σ2
2
)} ≤ P ′

e ≤ Pe,sys ≤ 2 max{Pe1, Pe2}, (4.34)

which implies that

min{E1, E2} ≤ max{Esu(R1 + R2,
P

σ2
1

), Esu(R1 + R2,
P

σ2
2

)}. (4.35)

This completes the proof.

This outer bound is illustrated in Fig. 4.6(a), where the solid curve is the EER

inner bound, and the dash-dotted curve is the EER outer bound. One of the main

goals in this work is to show that one can tradeoff the error exponents among the

users even for a fixed vector of transmission rates in a multi-user channel. This is

equivalent to saying that the EER is not a rectangle. A possible boundary of the

EER (dotted curve) is shown in Fig. 4.6(b), where Fig. 4.6(b) is a zoom-in version of

Fig. 4.6(a). It is clear from Fig. 4.6(b) that there is indeed a tradeoff between user 1’s

and user 2’s error exponents, i.e., the EER is not a rectangle, when the channel is

operated at (R1, R2) = (0.5, 0.5). Note that the EER inner and outer bounds are

tight at the equal error exponents (E1, E2) = (0.046, 0.046). This follows from the

fact that the broadcast channel in Fig. 4.6 is symmetric and is operated at high

rates, so the random coding exponent and the sphere packing exponent are tight at

the sum rate R1 + R2.
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Figure 4.6: EER inner bound (solid) and outer bound (dash-dotted) for R1 = 0.5, R2 =
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CHAPTER 5

Error Exponent Regions for Gaussian Multiple

Access Channels

Consider a discrete-time memoryless stationary scalar Gaussian multiple access

channel

Y = X1 + X2 + Z, (5.1)

where X1 and X2 are the channel inputs for user 1 and user 2 with average power

constraints P1 and P2, and Y is the channel output. Assume that the noise power

for Z is σ2. We derive inner and outer bounds for the EER in the following sections.

5.1 Inner Bound for Error Exponent Region

In the transmitters, we use superposition encoding and construct two indepen-

dent random codebooks CB1 and CB2 of size M1 and M2, respectively. Let C1,i and

C2,j denote the ith and the jth codewords in the codebooks CB1 and CB2, respec-

tively. Let C1,i(k) and C2,j(k) denote the kth elements in the codewords C1,i and

C2,j. The random vectors (C1,i(1), . . . ,C1,i(αN)) and (C1,i(αN + 1), . . . ,C1,i(N))
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are independent with distributions N sh(αN, P11) and N sh((1 − α)N, P12), respec-

tively, where α = a
N

for some a ∈ {0, 1, . . . , N}. Similarly, the random vectors

(C2,j(1), . . . ,C2,j(αN)) and (C2,j(αN + 1), . . . ,C2,j(N)) are independent with dis-

tributions N sh(αN,P21) and N sh((1 − α)N, P22), respectively. Due to the power

constraint P , we have the following equalities

αP11 + (1− α)P12 = P1

αP21 + (1− α)P22 = P2. (5.2)

In the receivers, we use a mixture of joint ML decoding and naive single-user

decoding. We summarize the result in the following theorem.

Theorem 5.1 For a Gaussian multiple access channel with power constraints P1

and P2 for user 1 and user 2 and noise power σ2, an inner bound for EER is

EER(R1, R2) =
{

(E1, E2) : 0 ≤ α ≤ 1, αP11 + (1− α)P12 = P1, αP21 + (1− α)P22 = P2,

E1 ≤ max
{

min
{
Enp(R1,

P11

σ2
,
P12

σ2
, α), Enp

t3 (R1 + R2,
P11

σ2
,
P12

σ2
,
P21

σ2
,
P22

σ2
, α)

}
,

Enp(R1,
P11

σ2 + P21
,

P12

σ2 + P22
, α)

}

E2 ≤ max
{

min
{
Enp(R2,

P21

σ2
,
P22

σ2
, α), Enp

t3 (R1 + R2,
P11

σ2
,
P12

σ2
,
P21

σ2
,
P22

σ2
, α)

}
,

Enp(R2,
P21

σ2 + P11
,

P22

σ2 + P12
, α)

}}
, (5.3)

where Enp(·) is the maximum of the nonuniform-power random coding exponent

Enp
r (·) and the nonuniform-power expurgated exponent Enp

ex (·), and Enp
t3 (·) is the func-

tion which accounts for type 3 error in a scalar Gaussian multiple access channel.

Proof: Following [17], we define three types of error events, type 1, type 2, and
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type 3, using joint ML decoding. It can be shown by using random coding arguments

that there exist codebooks for user 1 and user 2 using joint ML decoding such that

Pet1 ≤ e−NEnp(R1,
P11
σ2 ,

P12
σ2 ,α)

Pet2 ≤ e−NEnp(R2,
P21
σ2 ,

P22
σ2 ,α)

Pet3 ≤ e−NEnp
t3 (R1+R2,

P11
σ2 ,

P12
σ2 ,

P21
σ2 ,

P22
σ2 ,α). (5.4)

The probabilities of error for user 1 and user 2 using joint ML decoding can be upper

bounded by

Pe1 = Pet1 + Pet3 ≤ e−NEnp(R1,
P11
σ2 ,

P12
σ2 ,α) + e−NEnp

t3 (R1+R2,
P11
σ2 ,

P12
σ2 ,

P21
σ2 ,

P22
σ2 ,α)

≤ 2e−N min{Enp(R1,
P11
σ2 ,

P12
σ2 ,α),Enp

t3 (R1+R2,
P11
σ2 ,

P12
σ2 ,

P21
σ2 ,

P22
σ2 ,α)}

Pe2 = Pet2 + Pet3 ≤ e−NEnp(R2,
P21
σ2 ,

P22
σ2 ,α) + e−NEnp

t3 (R1+R2,
P11
σ2 ,

P12
σ2 ,

P21
σ2 ,

P22
σ2 ,α)

≤ 2e−N min{Enp(R2,
P21
σ2 ,

P22
σ2 ,α),Enp

t3 (R1+R2,
P11
σ2 ,

P12
σ2 ,

P21
σ2 ,

P22
σ2 ,α)}. (5.5)

Thus the achievable error exponents using joint ML decoding are

Esp,jm
1 = min

{
Enp(R1,

P11

σ2
,
P12

σ2
, α), Enp

t3 (R1 + R2,
P11

σ2
,
P12

σ2
,
P21

σ2
,
P22

σ2
, α)

}

Esp,jm
2 = min

{
Enp(R2,

P21

σ2
,
P22

σ2
, α), Enp

t3 (R1 + R2,
P11

σ2
,
P12

σ2
,
P21

σ2
,
P22

σ2
, α)

}
. (5.6)

So far we have shown that there exist a pair of random codebooks satisfying (5.6).

The proof for the existence of a pair of deterministic random codebooks satisfy-

ing (5.6) is the same as given in the Gaussian broadcast channel and is omitted

here.
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When naive single-user decoding is utilized, the achievable error exponents are

Esp,ns
1 = Enp(R1,

P11

σ2 + P21

,
P12

σ2 + P22

, α)

Esp,ns
2 = Enp(R2,

P21

σ2 + P11

,
P22

σ2 + P12

, α). (5.7)

Since both users can choose either joint ML or naive single-user decoding, the maxi-

mum of the corresponding error exponents are achievable. This completes the proof.

In Fig. 5.1(a), we illustrate this inner bound using an example. The dotted curve

is the boundary of the achievable region obtained by on-off superposition, which

merges with the solid curve (obtained by superposition) at (E1, E2) = (0.0028, 0.0004)

and (E1, E2) = (0.0028, 0.0004). The maximum equal error exponent pair achieved

by uniform superposition (dashed curve) is (E1, E2) = (0.0023, 0.0023), which is less

than the maximum equal error exponent pair (E1, E2) = (0.0028, 0.0028) achieved

by superposition (solid curve). In Fig. 5.1(b), we illustrate the inner bound using an

example when the power constraints for user 1 and user 2 are different.

Before we continue for the outer bound, we make a remark here. Although we

have shown that (nonuniform) superposition encoding provides an improvement over

uniform superposition in terms of the error exponent region, it can also be shown that

the former continues to perform better than the latter when the performance mea-

sure is system error exponent. The system error exponent is equal to min{E1, E2},
which can be derived easily from the EER (the maximum value along the E1 = E2

line inside the EER). It is mentioned in [17] that

“This means that we can define a region Rα of rate pairs as the convex hull of all pairs R1 > 0,

R2 > 0 for which Er(R1, R2) > α. . . . First, the random coding ensemble itself could use different
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probability assignments Q1Q2 on different letters of the block. . . . No examples have been found

where this approach enlarges the region Rα defined above;”

The example of Fig. 5.1(a) indeed shows such an improvement is possible.
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Figure 5.1: EER inner bound using on-off superposition (dotted), uniform superposition
(dashed) and superposition (solid) for (a) R1 = 0.25, R2 = 0.25, P1

σ2 = 1, P2
σ2 = 1; (b)

R1 = 0.1, R2 = 0.5, P1
σ2 = 4, P2

σ2 = 2.

5.2 Outer Bound for Error Exponent Region

We now derive an EER outer bound and summarize the result in the following

theorem.

Theorem 5.2 For a Gaussian multiple access channel with power constraints P1
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and P2 for user 1 and user 2 and noise power σ2, an outer bound for EER is

E1 ≤ Esu(R1,
P1

σ2
)

E2 ≤ Esu(R2,
P2

σ2
)

min{E1, E2} ≤ Esu(R1 + R2,
P1 + P2

σ2
), (5.8)

where Esu(·) is any error exponent upper bound for a scalar Gaussian channel.

Proof: For a Gaussian multiple access channel with power constraints P1 and

P2 for user 1 and user 2, respectively, the probabilities of decoding error for user 1

and user 2 can always be lower bounded by the probabilities of decoding error for

user 1 and user 2 operating over the point-to-point channel Y = Xi + Z with power

constraint Pi, for i = 1, 2. This implies that

E1 ≤ Esu(R1,
P1

σ2
)

E2 ≤ Esu(R2,
P2

σ2
). (5.9)

Given any two codebooks CB1 = {C1,1, . . . , C1,M1} and CB2 = {C2,1, . . . , C2,M2}
for the Gaussian multiple access channel satisfying the power constraints P1 and P2,

we have

1

M1M2

M1∑
i=1

M2∑
j=1

(C1,i + C2,j)
2 =

1

M1

M1∑
i=1

C2
1,i +

1

M2

M2∑
j=1

C2
2,j ≤ P1 + P2. (5.10)

Here we assume that the codebooks CB1 and CB2 are zero-mean, i.e.,

M1∑
i=1

C1,i =

M2∑
j=1

C2,j = 0, (5.11)
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since any nonzero-mean codebook can be modified to zero-mean with the same per-

formance and using less power. Let Di,j denote the decision region associated with

the codewords C1,i and C2,j. Now construct a codebook CB = {C1, . . . , CM3} with

codewords C(i−1)M2+j = C1,i + C2,j and decision regions D(i−1)M2+j = Di,j, where

M3 = M1M2, then the probability of system error is lower bounded by

Pe,sys =
1

M1M2

M1∑
i=1

M2∑
j=1

P (YN /∈ Di,j|C1,i + C2,j)

=
1

M3

M3∑

k=1

P (YN /∈ Dk|Ck)

≥ min
1

M3

∑M3
k=1 C′2k ≤P1+P2

1

M3

M3∑

k=1

P (YN /∈ D′
k|C ′

k)

≥ e−NEsu(R1+R2,
P1+P2

σ2 ), (5.12)

where CB′ = {C ′
1, . . . , C

′
M3
} is any codebook with M3 codewords and D′

k is the

optimum decision region associated with the codewords C ′
k. This implies that

min{E1, E2} ≤ Esu(R1 + R2,
P1 + P2

σ2
). (5.13)

This completes the proof.

In Fig. 5.2, we illustrate this outer bound using an example. The solid curve is

the achievable EER and the dash-dotted curve is the outer bound for the EER. It

is also clear from Fig. 5.2 that for the rate pair (R1, R2) = (0.25, 0.25), there is a

tradeoff between user 1’s and user 2’s error exponents.
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Figure 5.2: EER inner bound (solid) and outer bound (dash-dotted) for R1 = 0.25, R2 =
0.25, P1

σ2 = 1, P2
σ2 = 1.

5.3 Operating Points with Tight Inner and Outer

Bounds

From Theorem 5.1 and Theorem 5.2, we can show that the EER inner and outer

bounds are tight for certain operating points (R1, R2). It is known that for a single-

user channel the random coding exponent Er(R,SNR) and the sphere packing ex-

ponent Esp(R,SNR) are tight for rates R ≥ Rcrit, where Rcrit is the critical rate [7].

From Theorem 5.1, the achievable error exponents using uniform superposition and

joint ML decoding are

Eus,jm
1 = min

{
E(R1,

P1

σ2
), Et3(R1 + R2,

P1

σ2
,
P2

σ2
)
}

Eus,jm
2 = min

{
E(R2,

P2

σ2
), Et3(R1 + R2,

P1

σ2
,
P2

σ2
)
}
, (5.14)

47



where the superscript “us,jm” denotes uniform superposition and joint ML, and

E(R, SNR) , max{Er(R, SNR), Eex(R,SNR)}

Et3(R,SNR1, SNR2) , Enp
t3 (R,SNR1, SNR1, SNR2, SNR2, α). (5.15)

Thus the CCR of the Gaussian multiple access channel can be divided into four

regions R12, R13, R23, and R3 as the following

R12 , {(R1, R2) : E(R1,
P1

σ2
) ≤ Et3(R1 + R2,

P1

σ2
,
P2

σ2
), E(R2,

P2

σ2
) ≤ Et3(R1 + R2,

P1

σ2
,
P2

σ2
)}

R13 , {(R1, R2) : E(R1,
P1

σ2
) ≤ Et3(R1 + R2,

P1

σ2
,
P2

σ2
) ≤ E(R2,

P2

σ2
)}

R23 , {(R1, R2) : E(R2,
P2

σ2
) ≤ Et3(R1 + R2,

P1

σ2
,
P2

σ2
) ≤ E(R1,

P1

σ2
)}

R3 , {(R1, R2) : Et3(R1 + R2,
P1

σ2
,
P2

σ2
) ≤ E(R1,

P1

σ2
), Et3(R1 + R2,

P1

σ2
,
P2

σ2
) ≤ E(R2,

P2

σ2
)}

(5.16)

depending on whether the bound for type 1 error, type 2 error, or type 3 error

dominates when using uniform superposition and joint ML decoding (see Fig. 5.3).

In region R12, each user attains the maximal achievable single-user error exponent.

In region R13, the first user achieves the maximal single-user error exponent, while

the second user’s error probability is dominated by type 3 error. A similar statement

also holds for region R23. In region R3, type 3 error is dominant over both type 1

and type 2 errors. If (R1, R2) ∈ R12 with R1 ≥ R1,crit and R2 ≥ R2,crit, where R1,crit

and R2,crit are the critical rates for a Gaussian single-user channel with SNR equal

to P1

σ2 and P2

σ2 , respectively, then

Eus,jm
1 = Er(R1,

P1

σ2
) = Esp(R1,

P1

σ2
)

Eus,jm
2 = Er(R2,

P2

σ2
) = Esp(R2,

P2

σ2
), (5.17)
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i.e., the EER inner and outer bounds are tight. In Fig 5.3, the dotted region is the

rate region with tight EER inner and outer bounds.
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Figure 5.3: Channel capacity region for P1
σ2 = 1, P2

σ2 = 1.
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CHAPTER 6

Conjectured EER Outer Bound for Gaussian

Multi-User Channels

The EER outer bounds derived in the previous chapters are essentially based on

the upper bounds for the error exponent for a single-user channel. In particular,

the performance of the system with two independent messages of the two users is

bounded by that of a system involving only one message of one user. In this chap-

ter our objective is to provide improved outer bounds for the EERs which explicitly

incorporate the fact that two users are simultaneously communicating with one trans-

mitter or receiver. In particular, we extend the concept of minimum distance bound

to a multi-user setting with multiple message sets. To do this, we first consider a

single-user communication system where a transmitter wishes to communicate two

messages to a receiver, where these messages require different reliabilities. This leads

to the notion of EER for a single-user channel with two message sets. The basic idea

behind this outer bound for EER can be understood in the following. The output

space is divided into several regions (dashed curve in Fig. 6.1), where each region

contains codewords with the same value of the first index (for message 1). The set

of the codewords inside each region, i.e., the set of codewords with the same value
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of the first index, is called one subcode. When E1 and E2 are roughly the same,

the codewords are distributed uniformly inside the regions (see Fig. 6.2(a)). On the

other hand, when E1 and E2 are extremely asymmetric, e.g., E1 >> E2, the distance

between the subcodes, e.g. the distance d in Fig. 6.1, increases and the minimum

distance of the subcode, e.g. the distance d′ in Fig. 6.1, reduces. Thus the codewords

concentrate at the center of the regions and the minimum distance of the codebook

is reduced (see Fig. 6.2(b)). This induces a tradeoff between E1 and E2. The proof

of this new outer bound is based on a geometric conjecture (Conjecture 6.1), so the

final result depends on the correctness of this geometric conjecture. This single-

user two-message EER outer bound can then be applied to Gaussian broadcast and

multiple access channels (Theorem 6.2, Theorem 6.3).

C
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C
1,2

C
1,M2

C
2,1

C
2,2

C
2,M2

C
M1,1

C
M1,2

C
M1,M2

d
d '

Figure 6.1: Partition codewords into subcodes.

We first review spherical codes and the minimum distance bound [7, 28, 29]. We

state our main result in Theorem 6.1, which is based on Conjecture 6.1 given in

Section 6.3.
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(a) (b)

Figure 6.2: Codeword distributions when (a) E1 and E2 are roughly the same; (b) E1 and
E2 are extremely asymmetric.

6.1 Preliminaries: Spherical Code and Minimum

Distance Bound

In the following, we review spherical codes and the minimum distance bound for

Gaussian single-user channels (with one message set) [7, 28]. A brief summary of

spherical codes and the minimum distance bound for Gaussian channels can be found

in [29].

For a scalar Gaussian channel with average power constraint P , it was shown

in [7] that the optimum codebook (with sufficiently large codeword length N) can be

constructed with each codeword having power exactly P . Therefore, it is sufficient to

consider only spherical codes when transmitting over a Gaussian channel, i.e., a code

with codewords on the unit sphere SN−1 in RN . The noise variance is normalized

correspondingly to satisfy the required SNR.

In [7], the following notation is used.

• Ω(N, θ): solid angle in RN of a circular cone of half-angle θ, i.e., the area of

unit sphere SN−1 cut out by the cone.

As pointed out in [30], for any spherical code (with positive rate) the angle

between any two codewords is less than π
2
, so it can be assumed that any angle θ
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appeared here is less than π
4
. It is shown in [7] that

Ω(N, θ)

Ω(N, π)
∼= sinN θ. (6.1)

Now consider the minimum distance bound for Gaussian channels. Consider a

spherical code C = {C1, . . . , CM} ⊂ SN−1 with M = eNR codewords. Define

• dmin(C): minimum (Euclidean) distance of spherical code C. dmin(C) ,

mink 6=k′ d(Ck, Ck′), where d(x, y) is the distance between any two points x and

y in RN .

• dmin(N, R): dmin(N, R) , maxC⊂SN−1 dmin(C), where the maximization is over

all spherical codes C ⊂ SN−1 with M = eNR codewords.

• dmin(R): dmin(R) , lim supN→∞ dmin(N, R).

The minimum distance exponent Emd(R, SNR) is defined as

Emd(R, SNR) , SNR

8
d2

min(R). (6.2)

It can be shown that the minimum distance exponent is an error exponent upper

bound for Gaussian channels by evaluating the pairwise error probability of the two

codewords with the minimum distance in the codebook. The minimum distance

dmin(R) is unknown, but there are upper and lower bounds. The best known upper

bound is given in [28] as

dmin(R) ≤





√
2(
√

1+ρ−√ρ)√
1+2ρ

0 ≤ R ≤ 0.234
√

2e−R−0.0686 0.234 < R
, (6.3)

where the real numbers 0.0686 and 0.234 here are approximate, and ρ is the root of
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the equation

R = (1 + ρ)H(
ρ

1 + ρ
). (6.4)

6.2 Outer Bound for Error Exponent Region

In the following, we derive an EER outer bound for a Gaussian single-user channel

with two message sets based on Conjecture 6.1 (to be stated in Section 6.3), then

apply this EER outer bound (with slight modifications) to Gaussian broadcast and

multiple access channels. Roughly speaking, Conjecture 6.1 concerns the problem of

packing codewords on SN−1 such that the surface area “occupied” by the codewords

is minimal. However, Conjecture 6.1 is lengthy and technical in nature, so, for better

readability, we present it after the EER outer bounds.

Consider transmission of two messages over a discrete-time memoryless stationary

scalar Gaussian single-user channel

Y = X + Z, (6.5)

where X is the channel input with average power constraint P , Y is the channel

output, and Z is the additive noise with variance σ2. The codebook C = {Ci,j | 1 ≤
i ≤ M1, 1 ≤ j ≤ M2} consists of M3 , M1M2 codewords with codeword length N .

Denote (i, j) as the index of the transmitted codeword and (̂i, ĵ) as the index of the

decoded codeword. The first index i is used for message 1 and the second index j is

used for message 2. Message 1 is decoded in error if î 6= i and message 2 is decoded

in error if ĵ 6= j. Define message 1’s rate R1 , log M1

N
, message 2’s rate R2 , log M2

N
,

and sum rate R3 , log M3

N
= R1 + R2. The EER for a single-user channel with two

message sets is defined in the following.
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Definition 6.1 Consider a single-user channel operated at rates R1 and R2 for mes-

sage 1 and message 2, respectively. The EER is defined as the set of all achievable

error exponent pairs (E1(R1, R2), E2(R1, R2)), where E1(R1, R2) and E2(R1, R2) are

defined as

E1(R1, R2) , lim
N→∞

− log Pe1(N,R1, R2)

N

E2(R1, R2) , lim
N→∞

− log Pe2(N,R1, R2)

N
, (6.6)

and Pe1(N, R1, R2) and Pe2(N,R1, R2) are the probabilities of error for message 1

and message 2, respectively.

An EER outer bound for the Gaussian channel with two message sets is summa-

rized in the following theorem.

Theorem 6.1 Based on Conjecture 6.1, for a Gaussian single-user channel with two

message sets under power constraint P and noise power σ2, an outer bound for EER

is

E1 ≤
[
sin η(R2, R1, E2,

P

σ2
)
]2

Emd(R1,
P

σ2
)

E2 ≤
[
sin η(R1, R2, E1,

P

σ2
)
]2

Emd(R2,
P

σ2
), (6.7)

where

η(R1, R2, E, SNR) , sin−1
( e−2R1

sin
(
sin−1(e−R1) + δ

(
R2, sin

−1(e−R1), sin−1(
√

2E
SNR

)
))

)

(6.8a)

δ(R, θ′r, θ
′
e) , ψ(R, θ′r, θ

′
e)− θ′r (6.8b)
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and

ψ(R, θ′r, θ
′
e) = sin−1

(β +
√

β2 − 4αγ

2α

)
(6.9a)

α = sin2 θ′r cos2 φ + cos2 θ′r (6.9b)

β = (2− 4 sin2 θ′e
2

) sin θ′r cos φ (6.9c)

γ = 1− 4 sin2 θ′e
2

+ 4 sin4 θ′e
2
− cos2 θ′r (6.9d)

φ = cos−1
(
1− 1

2
d2

min(R)
)

(6.9e)

with the assumption that 2 sin θ′e
2

> sin θ′r dmin(R) for the arguments of ψ(R, θ′r, θ
′
e).

1

Proof: The proof is given in Appendix A. The function dmin(·) in (6.9e) can

be substituted for any upper bound for dmin(·).
The EER outer bound given in Theorem 6.1 can be easily modified and applied

to Gaussian broadcast and multiple access channels. We summarize the result in the

following theorems.

Theorem 6.2 Based on Conjecture 6.1, for a Gaussian broadcast channel with

power constraint P and noise power σ2
1 and σ2

2 for user 1 and user 2, respectively,

an outer bound for EER is

E1 ≤
[
sin η(R2, R1, E2,

P

σ2
2

)
]2

Emd(R1,
P

σ2
1

)

E2 ≤
[
sin η(R1, R2, E1,

P

σ2
1

)
]2

Emd(R2,
P

σ2
2

). (6.10)

Proof: The proof for this theorem is the same as the proof given for Theorem 6.1

with some minor changes and is omitted here.

1The outer bound is not valid when this condition is not satisfied.
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Theorem 6.3 Based on Conjecture 6.1, for a Gaussian multiple access channel with

power constraints P1 and P2 for user 1 and user 2 and noise power σ2, an outer bound

for EER is

E1 ≤
[
sin η(R2, R1, E2,

P1 + P2

σ2
)
]2

Emd(R1,
P1 + P2

σ2
)

E2 ≤
[
sin η(R1, R2, E1,

P1 + P2

σ2
)
]2

Emd(R2,
P1 + P2

σ2
). (6.11)

Proof: The proof follows directly from Theorem 6.1 by comparing the perfor-

mance achieved by the codebook CB in a single-user channel under power constraint

P1 + P2 with the performance achieved by the codebooks CB1 and CB2 in the mul-

tiple access channel under power constraints P1 and P2.

We illustrate these outer bounds in Fig. 6.3. In Fig. 6.3(a) the solid curve is the

boundary of the EER inner bound, the dashed-dotted curve is the boundary of the

EER outer bound given in Theorem 4.2, and the dashed curve is the boundary of

the EER outer bound given in Theorem 6.2. In Fig. 6.3(b), the solid curve is the

boundary of the EER inner bound, the dashed-dotted curve is the boundary of the

EER outer bound given in Theorem 5.2, and the dashed curve is the boundary of

the EER outer bound given in Theorem 6.3. Note that in Theorem 6.1 we require

the arguments of ψ(R, θ′r, θ
′
e) to satisfy 2 sin θ′e

2
> sin θ′r dmin(R). This is true for

E1 ≥ 0.25 in Fig. 6.3(a) and for E1 ≥ 5 in Fig. 6.3(b). For E1 < 0.25 in Fig. 6.3(a) and

E1 < 5 in Fig. 6.3(b), the EER outer bounds given in Theorem 6.2 and Theorem 6.3

are no longer valid.

6.3 Conjectured Minimum-Area Spherical Code

In this section, we state a geometric conjecture about spherical codes which is

used in the derivation of the two-message EER outer bound given in Theorem 6.1.
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Figure 6.3: EER inner bound (solid) and outer bound (dashed-dotted, dashed) for (a)
broadcast channel with R1 = 0.5, R2 = 2.4, P

σ2
1

= 100, P
σ2
2

= 1000; (b) multiple access

channel with R1 = 0.5, R2 = 1.6, P1
σ2 = 200, P2

σ2 = 200.

As mentioned earlier, the EER outer bound is derived by partitioning the output

space into several regions, where the area of each region is upper bounded by some

quantity depending only on the rates. When E1 and E2 are extremely asymmetric,

the codewords inside each region are far away from the region boundary and this

reduces the minimum distance of the codewords due to the area constraint for each

region. In order to estimate the reduction of the minimum distance, we consider an

equivalent problem and its conjectured solution - Conjecture 6.1.

Define the following quantities.

• Cone(N, θ,W ): circular cone of half angle θ with vertex at the origin O and

axis OW , where W is a point on SN−1 (see Fig. 6.4).

• Cones(N, θ, W ): surface cap. Cones(N, θ,W ) , Cone(N, θ, W ) ∩ SN−1.

• ∂Cones(N, θ,W ): boundary of surface cap Cones(N, θ,W ).

• A(·): measure of surface areas on SN−1.
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Figure 6.4: Circular cone Cone(N, θ, W ), surface cap Cones(N, θ,W ) and its boundary
∂Cones(N, θ, W ).

We write Cone(N, θ, W ) as Cone(θ, W ) when the dimension N is clear from the

context. Consider the following problem:

“Assuming d < 2 sin Φ, what is the minimum of A
( ⋃M

k=1 Cones(N, Φ, Ck)
)

under

the distance constraint dmin(C) ≥ d, where the minimization is over all spherical

codes C = {C1, . . . , CM} ⊂ SN−1 with M = eNR codewords?”

We are only interested in this problem in high dimensions (N → ∞). In the

following, we give a motivation of our conjecture.

Motivation of the conjecture: Under the assumption that d < 2 sin Φ given in

the problem, any two different surface caps Cones(N, Φ, Ck) and Cones(N, Φ, Ck′)

can overlap and still satisfy the distance constraint d(Ck, Ck′) ≥ d. Intuitively, the

optimum code should pack the codewords on SN−1 as densely as possible (without vi-

olating the distance constraint d), because the more the surface caps Cones(N, Φ, Ck)

overlap, the less the total area A
( ⋃M

k=1 Cones(N, Φ, Ck)
)
. It seems to us that the
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most efficient way to pack the codewords Ck’s in SN−1 is to pack them in some sur-

face cap Cones(N, θ′,W ), where θ′ is the smallest angle such that the spherical code

C still satisfies the distance constraint dmin(C) ≥ d (see Fig. 6.5). The area around

the boundary of Cones(N, θ′, W ) is dominant in high dimensions, and this can be

seen by the following

A
(
Cones(N, θ′ − ε,W )

)

A
(
Cones(N, θ′,W )

) =
Ω(N, θ′ − ε)

Ω(N, θ′)
∼= sinN(θ′ − ε)

sinN θ′
∼= 0 (6.12)

for any 0 < ε < θ′. Therefore, we may further assume that all the codewords are in

the boundary ∂Cones(N, θ′,W ).

O

SN-1

' θ

Figure 6.5: Spherical code in surface cap.

We now formally provide a description of a code that we conjecture to be one of

the solutions to the above optimization problem.

Description: Define an angle Υ , sin−1 d
dmin(N−1, N

N−1
R)

. Note that ∂Cones(N, Υ,W )

is an (N−2)-dimensional sphere with radius sin Υ. From the definition of dmin(N,R),
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there exists a code D = {D1, D2, . . . , DM} ⊂ ∂Cones(N, Υ,W ) with M codewords

and dmin(D) = d. Next, we augment the code D to become the “densest” code

D′ ⊂ ∂Cones(N, Υ,W ) in the following way:

(a) Start with D′ = D.

(b) If there is a point U ∈ ∂Cones(N, Υ,W ) such that the interior of the surface cap

Cones(N, 2 sin−1 d
2
, U) contains no codewords of D′, then add this point U to D′ as

a new codeword.

(c) Continue this procedure until we can’t add any more codeword to D′.

From the construction of D′, any surface cap Cones(N, 2 sin−1 d
2
, V ) must include

at least one codeword of D′, where V is an arbitrary point in ∂Cones(N, Υ,W ).

Hence we refer to D′ as the densest code due to this property. This densest code

property of D′ is used in the proof of Theorem 6.1.

Define M ′ , |D′|, and we have M ′ ∼= M due to the assumption that D is the

code achieves dmin(N − 1, N
N−1

R). Let the kth codeword of D′ be denoted as D′
k. We

make the following conjecture.

Conjecture 6.1 The area corresponding to D′, i.e. A
( ⋃M ′

k=1 Cones(N, Φ, D′
k)

)
, is

asymptotically equal to the area corresponding to the optimum code for the above

problem in the following sense:

lim
N→∞

1

N
log

minC⊂SN−1 A
( ⋃M

k=1 Cones(N, Φ, Ck)
)

A
( ⋃M ′

k=1 Cones(N, Φ, D′
k)

) = 0. (6.13)

¥
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From Conjecture 6.1, we also have

lim
N→∞

1

N
log

minC⊂SN−1 A
( ⋃M

k=1 Cones(N, Φ, Ck)
)

A
( ⋃M

k=1 Cones(N, Φ, Dk)
) = 0, (6.14)

since

min
C⊂SN−1

A
( M⋃

k=1

Cones(N,Φ, Ck)
) ≤ A

( M⋃

k=1

Cones(N,Φ, Dk)
) ≤ A

( M ′⋃

k=1

Cones(N,Φ, D′
k)

)
.

(6.15)

Therefore, the area corresponding to the code D is also asymptotically minimum.

Since the code rates of D′ and D are asymptotically equal, i.e. M ′ ∼= M , we

will simply regard these two codes D′ and D the same and say that the code D
(with M codewords) is asymptotically optimum (in the sense of the corresponding

area) and is also the densest code. Here the densest code means that any sur-

face cap Cones(N, 2 sin−1 d
2
, V ) must include at least one codeword of D for any

V ∈ ∂Cones(N, Υ,W ).
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CHAPTER 7

Diversity Gain Regions for MIMO Fading

Broadcast Channels

7.1 Diversity Gain Region

Consider a MIMO fading broadcast channel with m transmit antennas and n1

and n2 receive antennas for user 1 and user 2, respectively. The channel model is

Y1 =

√
SNR

m
H1X + Z1

Y2 =

√
SNR

m
H2X + Z2. (7.1)

The channel fading matrices between the transmitter and the receiver 1 and the

receiver 2 are represented by an n1 × m matrix H1 and an n2 × m matrix H2,

respectively. We assume that H1 and H2 remain constant over a block with length

l, and change to a new independent realization in the next block. H1 and H2 have

i.i.d. entries and each entry is distributed as CN (0, 1). We assume that the fading

matrices are known to the receivers but unknown to the transmitter. The channel

input X is an m × l matrix and is normalized such that the average power at each
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transmit antenna is 1, which means that the average SNR at each receive antenna

is SNR. The noise Z1 and Z2 are n1 × l and n2 × l matrices with i.i.d. entries

distributed as CN (0, 1). The channel outputs Y1 and Y2 are n1 × l and n2 × l

matrices, respectively.

We define the diversity gain region (DGR) for a MIMO fading broadcast channel

in the following.

Definition 7.1 Consider a MIMO fading broadcast channel operated at a rate pair

R1 = R1(SNR), R2 = R2(SNR) over N blocks such that

lim
SNR→∞

R1(SNR)

log SNR
= r1

lim
SNR→∞

R2(SNR)

log SNR
= r2, (7.2)

where r1 and r2 are referred to as the multiplexing gains for user 1 and user 2,

respectively. Given a multiplexing gain pair (r1, r2) of the two users, we define the

DGR (corresponding to coding over N blocks) as the set of all achievable diversity

gain pairs (d1(N, r1, r2), d2(N, r1, r2)) for all encoding schemes, where d1(N, r1, r2)

and d2(N, r1, r2) are defined as

d1(N, r1, r2) , lim
SNR→∞

− log Pe1(N, R1(SNR), R2(SNR))

N log SNR

d2(N, r1, r2) , lim
SNR→∞

− log Pe2(N, R1(SNR), R2(SNR))

N log SNR
, (7.3)

where Pe1(N, R1(SNR), R2(SNR)), Pe2(N,R1(SNR), R2(SNR)) are the probabili-

ties of error for user 1 and user 2, respectively.

When N = 1, we use d1(r1, r2) and d2(r1, r2) as shorthand notations for d1(1, r1, r2)

and d2(1, r1, r2), respectively. Note that if (d∗1, d
∗
2) is achieved by an encoding scheme
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over one single block, i.e., (d∗1, d
∗
2) = (d1(r1, r2), d2(r1, r2)) for some encoding scheme,

then for any N > 1 there exists an encoding scheme over N blocks such that

d∗1 ≤ d1(N, r1, r2) and d∗2 ≤ d2(N, r1, r2), since encoding over multiple blocks can only

improve the diversity gains of the users. Therefore, a DGR inner bound achieved by

an encoding scheme over one single block is also a valid DGR inner bound for an

encoding scheme over N blocks (N > 1). Similarly, if a DGR outer bound is valid

for all encoding schemes over sufficiently large N (N →∞), this DGR outer bound

is also valid for any encoding scheme over a finite number of blocks.

7.2 Inner Bound for Diversity Gain Region

The inner bound derived in this section is based on encoding over one block, i.e.,

N = 1, so it is also a valid inner bound for encoding over multiple blocks N > 1.

We derive a DGR inner bound using superposition encoding, and a mixture of

joint ML and naive single-user decoding. In superposition encoding, we construct

two independent random codebooks CB1 and CB2, of size M1 and M2, respectively

(see Fig. 7.1). Let C1,i and C2,j denote the ith and the jth codewords in the codebooks

CB1 and CB2, respectively. Note that C1,i and C2,j are m × l random matrices.

The channel input X is equal to C1,i + C2,j. Let C1,i(q, k) and C2,j(q, k) denote the

kth elements in the qth transmit antenna in the codewords C1,i and C2,j, respectively.

Each random variable C1,i(q, k) is i.i.d. with distribution CN (0, 1) for 1 ≤ k ≤ βl,

and is i.i.d. with distribution CN (0, SNR−(1−p1)) for βl + 1 ≤ k ≤ l, where β = a
l
,

for some a ∈ {0, 1, . . . , l}, and 0 ≤ p1 ≤ 1. Similarly, each random variable C2,j(q, k)

is i.i.d. with distribution CN (0, SNR−(1−p2)) for 1 ≤ k ≤ βl and is i.i.d. with

distribution CN (0, 1) for βl + 1 ≤ k ≤ l, where 0 ≤ p2 ≤ 1. Note that the average

power per transmit antenna in superposition encoding is 1 + SNR−(1−p2) for the

first βl transmissions and is 1+SNR−(1−p1) for the remaining (1−β)l transmissions,
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which are slightly more than the power constraint 1. However, we are only interested

in the high SNR approximation, so a power constraint of 1 or 2 makes no difference

on the diversity gains.

For comparison, we also consider two special cases of superposition encoding

- uniform superposition and on-off superposition. In uniform superposition, the

parameter β in Fig. 7.1 is chosen to be zero or one, so the random codebook CB1 or

CB2 has i.i.d. entries. In on-off superposition, the parameters p1 and p2 in Fig. 7.1

are chosen to be zero, so the transmitter switches between user 1 and user 2 during

the transmission.

k
0

k
0

CB
2

E{|C
1,i

(q,k)|2} E{|C
2,j

(q,k)|2}

CB
1

1,1C

2,1C

1,1 MC

1,2C

2,2C

2,2 MC

lβ l)1( β− lβ l)1( β−

1 1

)1( 1p
SNR

−−

)1( 2p
SNR

−−

Figure 7.1: Random codebooks for user 1 and user 2 using superposition encoding.

Before deriving the DGR inner bound, we first derive two intermediate results.

The first result is a diversity gain dns
m,n,l,p(r) for a MIMO fading broadcast channel as-

suming naive single-user decoding. The second result is a nonuniform-power random

coding diversity gain dnp
m,n,l,p1,p2,β(r) for a MIMO fading single-user channel.
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7.2.1 Naive Single-User Diversity Gain

For the naive single-user diversity gain, consider the broadcast channel using

uniform superposition encoding (β = 1). If we decode user 1’s message using naive

single-user decoding, i.e., user 1 simply regards user 2 as noise, we can derive an

achievable diversity gain for user 1. We summarize the result in the following lemma.

Lemma 7.1 For a MIMO fading broadcast channel operated at a multiplexing gain

pair (r1, r2) with m transmit antennas, n1, n2 receive antennas and block length l, the

optimal probability of detection error for user 1 using uniform superposition encoding

(β = 1) and naive single-user decoding is upper-bounded by

Pe1≤̇SNR−dns
m,n1,l,p2

(r1), (7.4)

where

dns
m,n1,l,p2

(r1) = min
α∈Rmin(m,n1)

+ \B

{ min(m,n1)∑
i=1

(2i− 1 + |m− n1|)αi+

l
[ min(m,n1)∑

i=1

(1− αi − (p2 − αi)
+)+ − r1

]}
, (7.5)

and

B =
{

α ∈ Rmin(m,n1)
+ | α1 ≥ α2 ≥ · · · ≥ αmin(m,n1) ≥ 0;

min(m,n1)∑
i=1

(1− αi − (p2 − αi)
+)+ < r1

}
. (7.6)
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Proof: If we use uniform superposition encoding with β = 1, the channel output

for user 1 is

Y1 =

√
SNR

m
H1(X1 + X2) + Z1, (7.7)

where X1 and X2 are independent with i.i.d elements CN (0, 1) and CN (0, SNR−(1−p2)),

respectively. If we decode user 1’s message using naive single-user decoding, we can

consider the following MIMO fading side-interference single-user channel

Y =

√
SNR

m
H(X + S) + Z, (7.8)

where H is an n×m matrix with i.i.d. entries CN (0, 1), and Z and S are n× l noise

and side-interference matrices with i.i.d. entries CN (0, 1) and CN (0, SNR−(1−p))

respectively. The channel input X is an m× l matrix and is normalized such that the

average power at each transmit antenna is 1. We want to show that the probability of

detection error in this side-interference channel is upper bounded by SNR−dns
m,n,l,p(r).

Note that dns
m,n,l,p(r) = 0 for r ≥ min(m,n)(1−p), so SNR−dns

m,n,l,p(r) is a valid (trivial)

upper bound for r ≥ min(m,n)(1− p).

At high SNR, we can ignore the integral of the probability of error over the range

H /∈ Rmin(m,n)
+ . The probability of error can be upper bounded by

Pe ≤ P (H ∈ B) + P (error,H /∈ B), (7.9)

where

B =
{

α ∈ Rmin(m,n)
+ | α1 ≥ α2 ≥ · · · ≥ αmin(m,n) ≥ 0;

min(m,n)∑

i=1

(1− αi − (p− αi)+)+ < r
}

.

(7.10)
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Define

α∗ , arg min
α∈B

min(m,n)∑
i=1

(2i− 1 + |m− n|)αi, (7.11)

where B is the closure of B, i.e.,

B =
{

α ∈ Rmin(m,n)
+ | α1 ≥ α2 ≥ · · · ≥ αmin(m,n) ≥ 0;

min(m,n)∑

i=1

(1− αi − (p− αi)+)+ ≤ r
}

.

(7.12)

It is easy to verify that

min(m,n)∑
i=1

(1− α∗i − (p− α∗i )
+)+ = r (7.13)

for 0 ≤ r ≤ min(m,n)(1− p), so

min
α∈B

min(m,n)∑

i=1

(2i− 1 + |m− n|)αi =
min(m,n)∑

i=1

(2i− 1 + |m− n|)α∗i

=
min(m,n)∑

i=1

(2i− 1 + |m− n|)α∗i + l
[ min(m,n)∑

i=1

(1− α∗i − (p− α∗i )
+)+ − r

]

≥ min
α∈Rmin(m,n)

+ \B

{ min(m,n)∑

i=1

(2i− 1 + |m− n|)αi + l
[ min(m,n)∑

i=1

(1− αi − (p− αi)+)+ − r
]}

= dns
m,n,l,p(r), (7.14)

69



where the above inequality is due to α∗ ∈ Rmin(m,n)
+ \ B. At high SNR, P (α) can be

approximated by
∏min(m,n)

i=1 SNR−(2i−1+|m−n|)αi [16]. Hence

P (H ∈ B) =

∫

B
P (α)dα

.
= SNR−minα∈B

∑min(m,n)
i=1 (2i−1+|m−n|)αi ≤ SNR−dns

m,n,l,p(r),

(7.15)

so it remains to prove that P (error,H /∈ B) is also upper bounded by SNR−dns
m,n,l,p(r).

Conditioned on a channel realization H = H, we can write the channel as

Y =

√
SNR

m
HX + (

√
SNR

m
HS + Z). (7.16)

Since H is known at the receiver, we can whiten the noise
√

SNR
m

HS+Z by multiply-

ing
(

SNRp

m
HH ′+ I

)− 1
2 at the channel output Y, where H ′ is the conjugate transpose

of H. Thus we have the following equivalent channel

Y =

√
SNR

m

(SNRp

m
HH ′ + I

)− 1
2 HX + Z. (7.17)

Assume X(0), X(1) are two possible transmitted codewords and ∆X = X(1)−
X(0). Suppose X(0) is transmitted, then the probability that a receiver will make a

detection error in favor of X(1) is

P (X(0) = X(0) →X(1) = X(1) | H = H) =

P
(SNR

m

∥∥∥1

2

(SNRp

m
HH ′ + I

)− 1
2 H∆X

∥∥∥
2

F
≤ ||w||2

)
, (7.18)

where I is an identity matrix, ‖·‖F is the Frobenius norm, and w is the additive noise

with variance 1/2 on the direction of
(

SNRp

m
HH ′ + I

)− 1
2 H∆X. With the standard
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approximation of the Gaussian tail function: Q(t) ≤ 1/2 exp(−t2/2), we have

P (X(0) = X(0) →X(1) = X(1) | H = H) ≤

exp
{
− SNR

4m

∥∥∥
(SNRp

m
HH ′ + I

)− 1
2 H∆X

∥∥∥
2

F

}
. (7.19)

Averaging over the ensemble of random codes, we have the average pairwise error

probability (PEP) given the channel realization H

P (X(0) → X(1) | H = H) ≤
∣∣∣I +

SNR

2m

(SNRp

m
HH ′ + I

)− 1
2 HH ′(SNRp

m
HH ′ + I

)− 1
2

∣∣∣
−l

=
{ min(m,n)∏

i=1

(
1 +

SNR
2m λi

1 + SNRp

m λi

)}−l

.=
min(m,n)∏

i=1

SNR−l(1−αi−(p−αi)
+)+ , (7.20)

where λi = SNR−αi (α1 ≥ · · · ≥ αmin(m,n) ≥ 0) and λi’s are the nonzero eigenvalues

of HH ′.

Applying the union bound, we have

P (error| α)≤̇SNRlr

min(m,n)∏
i=1

SNR−l(1−αi−(p−αi)
+)+

= SNR−l[
∑min(m,n)

i=1 (1−αi−(p−αi)
+)+−r]. (7.21)

Therefore,

P (error,H /∈ B)
.
=

∫

Rmin(m,n)
+ \B

P (α)P (error| α)dα

≤̇
∫

Rmin(m,n)
+ \B

SNR−∑min(m,n)
i=1 (2i−1+|m−n|)αiSNR−l[

∑min(m,n)
i=1 (1−αi−(p−αi)

+)+−r]dα

.
= SNR−dns

m,n,l,p(r). (7.22)
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This completes the proof.

We now give an explicit expression for dns
m,n,l,p(r) in the form of a piecewise lin-

ear function of the multiplexing gain r. It is easy to see that dns
m,n,l,p(r) = 0 for

r ≥ min(m,n)(1− p). For r ≤ min(m,n)(1− p), dns
m,n,l,p(r) can be classified into the

following three cases.

Case 1: p ≤ 1− m+n−1
l

dns
m,n,l,p(k(1− p)) = (m− k)(n− k) for k ∈ {0, . . . , min(m,n)}. For (k − 1)(1− p) <

r < k(1 − p), dns
m,n,l,p(r) consists of two line segments with slopes m + n − 2k + 1

and l, i.e. dns
m,n,l,p(r) is a function connecting the following three points (r, d) =

((k− 1)(1− p), (m− k + 1)(n− k + 1)), (k(1− p)− sp
1−s

, (m− k)(n− k) + sp
1−s

l), and

(k(1− p), (m− k)(n− k)), where s = m+n−2k+1
l

(see Fig. 7.2).

Case 2: 1− m+n−1
l

< p < 1− |m−n|+1
l

Define k′ = max{a ∈ Z | (1 − p)l ≤ m + n − 2a + 1}. For r ≤ k′(1 − p),

dns
m,n,l,p(r) = (m−k′)(n−k′)+(k′(1−p)− r)l. For r > k′(1−p) and (k−1)(1−p) <

r < k(1 − p), dns
m,n,l,p(r) consists of two line segments with slopes m + n − 2k + 1

and l, i.e. dns
m,n,l,p(r) is a function connecting the following three points (r, d) =

((k− 1)(1− p), (m− k + 1)(n− k + 1)), (k(1− p)− sp
1−s

, (m− k)(n− k) + sp
1−s

l), and

(k(1− p), (m− k)(n− k)), where s = m+n−2k+1
l

(see Fig. 7.3).

Case 3: p ≥ 1− |m−n|+1
l

dns
m,n,l,p(r) is a linear function with slope l, i.e. dns

m,n,l,p(r) = (min(m,n)(1 − p) − r)l

(see Fig. 7.4).

Naive single-user diversity gains for case 1, 2, and 3 are illustrated in Fig. 7.5.

In case 1, dns
m,n,l,p(r) = dm,n,l(r) for r ≤ (1−p)l−(m+n−1)

l−(m+n−1)
. This means that one can

still achieve the (single-user) random coding diversity gain dm,n,l(r) even with side
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Figure 7.2: Naive single-user diversity gain: p ≤ 1− m+n−1
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Figure 7.3: Naive single-user diversity gain: 1− m+n−1
l < p < 1− |m−n|+1
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Figure 7.4: Naive single-user diversity gain: p ≥ 1− |m−n|+1
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Figure 7.5: Naive single-user diversity gain for m = n = 4, l = 30 (a) p = 0.5; (b) p = 0.85;
(c) p = 0.97.
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interference. This is a quite interesting and important phenomenon, so we give some

intuition behind this. Consider the following two conditions

p < 1− m + n− 1

l
(7.23a)

r ≤ (1− p)l − (m + n− 1)

l − (m + n− 1)
. (7.23b)

Note that the power of the side-interference at the receiver is SNR · SNR−(1−p) =

SNRp, so roughly speaking the first condition p < 1− m+n−1
l

says that the power of

the side-interference is small and the second condition r ≤ (1−p)l−(m+n−1)
l−(m+n−1)

says that

the channel is lightly used (small multiplexing gain). Since (1−p)l−(m+n−1)
l−(m+n−1)

is always

less than 1− p, we can never achieve full (single-user) random coding diversity gain

for r ≥ 1− p. To understand the implications of these two conditions in more detail,

we can consider a single-input single-output (SISO) fading side-interference single-

user channel (m = n = 1). The optimum probability of detection error for a SISO

fading single-user channel can be upper bounded by

Pe(SNR)≤̇P (H ∈ B) + P (error,H /∈ B), (7.24)

where

B =
{

α ≥ 0 | (1− α− (p− α)+)+ < r
}

. (7.25)

We can upper bound P (H ∈ B) by

P (H ∈ B)≤̇SNR− infα∈B α, (7.26)
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and upper bound P (error,H /∈ B) by

P (error,H /∈ B)≤̇SNR−dns
1,1,l,p(r) = SNR−minα∈R+\B{α+l[(1−α−(p−α)+)+−r]}. (7.27)

Under conditions (7.23a), (7.23b), the minimization in (7.26), (7.27) is achieved

by α = 1 − r, so the dominant error event happens when the power of the side-

interference at the channel output

SNRp · SNR−α = SNR−(1−r−p)<̇1 (7.28)

is less than the power of the Gaussian noise Z, i.e., the side interference is negligible

compared to additive Gaussian noise. This explains why one can still achieve the

single-user diversity gain even with side interference. In general, the values of the

minimization in (7.26), (7.27) might be different such that there is a gap between

the naive single-user diversity gain dns
m,n,l,p(r) and the random coding diversity gain

dm,n,l(r).

7.2.2 Nonuniform-Power Random Coding Diversity Gain

For the nonuniform-power random coding diversity gain, consider a random code-

book CB with M codewords (see Fig. 7.6). Denote Ci as the ith codeword in the

codebook CB. Note that Ci is a m× l random matrix. Denote Ci(q, k) the kth ele-

ment in the qth transmit antenna in the codeword Ci. Each random variable Ci(q, k)

is i.i.d. with CN (0, SNR−(1−p1)) for 1 ≤ k ≤ βl, and is i.i.d. with CN (0, SNR−(1−p2))

for βl + 1 ≤ k ≤ l, where β = a
l
, for some a ∈ {0, 1, . . . , l}, and 0 ≤ p1, p2 ≤ 1.

Extending the derivation of the random coding diversity gain dm,n,l(r) in [16],

we can derive a nonuniform-power random coding diversity gain dnp
m,n,l,p1,p2,β(r) for a

nonuniform-power random codebook CB. The result is summarized in the following
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Figure 7.6: Nonuniform-power random codebook.

lemma.

Lemma 7.2 For a MIMO fading single-user channel operated at a multiplexing gain

r with m transmit antennas, n receive antennas and block length l, the optimal prob-

ability of detection error is upper-bounded by

Pe≤̇SNR−dnp
m,n,l,p1,p2,β(r), (7.29)

where

dnp
m,n,l,p1,p2,β(r) = min

α∈Rmin(m,n)
+ \B

{ min(m,n)∑
i=1

(2i− 1 + |m− n|)αi +

l
[
β

min(m,n)∑
i=1

(p1 − αi)
+ + (1− β)

min(m,n)∑
i=1

(p2 − αi)
+ − r

]}
, (7.30)
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and

B =
{

α ∈ Rmin(m,n)
+ | α1 ≥ α2 ≥ · · · ≥ αmin(m,n) ≥ 0;

β

min(m,n)∑
i=1

(p1 − αi)
+ + (1− β)

min(m,n)∑
i=1

(p2 − αi)
+ < r

}
. (7.31)

Proof: The derivation for dnp
m,n,l,p1,p2,β(r) is a straight forward extension of the

derivation for the random coding diversity gain dm,n,l(r) in [16]. The probability of

error can be upper bounded by

Pe ≤ P (H ∈ B) + P (error,H /∈ B). (7.32)

It is easy to verify that P (H ∈ B) is upper bounded by SNR−dnp
m,n,l,p1,p2,β(r), so we only

need to prove that P (error,H /∈ B) is also upper bounded by SNR−dnp
m,n,l,p1,p2,β(r).

The pairwise error probability given the channel realization H is upper bounded

by

P (X(0) → X(1) | H = H) ≤
∣∣∣SNRp1

2m
HH ′ + I

∣∣∣
−βl

·
∣∣∣SNRp2

2m
HH ′ + I

∣∣∣
−(1−β)l

.
= SNR−l[β

∑min(m,n)
i=1 (p1−αi)

++(1−β)
∑min(m,n)

i=1 (p2−αi)
+].

(7.33)

Applying the union bound, we have

P (error| α)≤̇SNRlr · SNR−l[β
∑min(m,n)

i=1 (p1−αi)
++(1−β)

∑min(m,n)
i=1 (p2−αi)

+]

.
= SNR−l[β

∑min(m,n)
i=1 (p1−αi)

++(1−β)
∑min(m,n)

i=1 (p2−αi)
+−r]. (7.34)
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Therefore,

P (error,H /∈ B)
.
=

∫

Rmin(m,n)
+ \B

P (α)P (error| α)dα ≤̇ SNR−dnp
m,n,l,p1,p2,β(r). (7.35)

This completes the proof.

We now give an explicit expression for dnp
m,n,l,p1,p2,β(r) in the form of a piecewise

linear function of the multiplexing gain r. It is easy to verify that dnp
m,n,l,p1,p2,β(r) =

p2 dm,n,l(
r
p2

) for β = 0, and dnp
m,n,l,p1,p2,β(r) = p1 dm,n,l(

r
p1

) for β = 1. For 0 <

β < 1, we may assume p2 ≤ p1 without loss of generality. dnp
m,n,l,p1,p2,β(r) is a

piecewise linear function and it is easy to see that dnp
m,n,l,p1,p2,β(r) = 0 for r ≥

min(m,n)(βp1 +(1−β)p2). For (k−1)(βp1 +(1−β)p2) < r < k(βp1 +(1−β)p2) and

k ∈ {1, 2, . . . , min(m,n)}, dnp
m,n,l,p1,p2,β(r) consists of two line segments with slopes

min(m+n−2k+1
β

, l) and min(m + n − 2k + 1, l), respectively, i.e., dnp
m,n,l,p1,p2,β(r) is a

function connecting the following three points (r, d) =

(
(k − 1)(βp1 + (1− β)p2),

min(m,n)∑

q=k

{
p1 min(sq, βl) + p2[min(sq, l)−min(sq, βl)]

})
,

(
k(βp1 + (1− β)p2)− p2,

min(m,n)∑

q=k+1

{
p1 min(sq, βl) + p2[min(sq, l)−min(sq, βl)]

}
+ p2 min(sk, l)

)
,

(
k(βp1 + (1− β)p2),

min(m,n)∑

q=k+1

{
p1 min(sq, βl) + p2[min(sq, l)−min(sq, βl)]

})
,

where sq = m + n− 2q + 1 (see Fig. 7.7).

7.2.3 Inner Bound for Diversity Gain Region

We are now ready to derive a DGR inner bound. We summarize the result in the

following theorem.

Theorem 7.1 For a MIMO fading broadcast channel operated at a multiplexing gain

pair (r1, r2) with m transmit antennas, n1, n2 receive antennas and block length l,
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an inner bound for DGR is given by

DGR(r1, r2) =

{
(d1, d2) : β =

a

l
, a ∈ {0, 1, . . . , l}, 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1,

d1 ≤ max
{

min
{
dnp

m,n1,l,1,p1,β(r1), dm,n1,l(r1 + r2)
}
, dns

m,n1,βl,p2
(
r1

β
)
}

d2 ≤ max
{

min
{
dnp

m,n2,l,p2,1,β(r2), dm,n2,l(r1 + r2)
}
, dns

m,n2,(1−β)l,p1
(

r2

1− β
)
}}

,

(7.36)

where dns
m,n1,βl,p2

( r1

β
) should be interpreted as 0 for β = 0 and dns

m,n2,(1−β)l,p1
( r2

1−β
) should

be interpreted as 0 for β = 1.

Proof: Let Pe11 denote type 11 error probability, the probability that user 1

decodes (i, j) as (̂i, j), and let Pe13 denote type 13 error probability, the probability

that user 1 decodes (i, j) as (̂i, ĵ), where i 6= î and j 6= ĵ. Similarly, let Pe22 denote

type 22 error probability, the probability that user 2 decodes (i, j) as (i, ĵ), and

let Pe23 denote type 23 error probability, the probability that user 2 decodes (i, j)

as (̂i, ĵ). Applying the random coding argument, it can be shown that there exist

codebooks for user 1 and user 2 using joint ML decoding such that

Pe11 ≤ SNR−dnp
m,n1,l,1,p1,β(r1)

Pe22 ≤ SNR−dnp
m,n2,l,p2,1,β(r2)

Pe13 ≤ SNR−dm,n1,l(r1+r2)

Pe23 ≤ SNR−dm,n2,l(r1+r2). (7.37)
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The probabilities of error for user 1 and user 2 using joint ML decoding can be upper

bounded by

Pe1 = Pe11 + Pe13 ≤ SNR−dnp
m,n1,l,1,p1,β(r1) + SNR−dm,n1,l(r1+r2)

≤ 2SNR−min{dnp
m,n1,l,1,p1,β(r1),dm,n1,l(r1+r2)}

Pe2 = Pe22 + Pe23 ≤ SNR−dnp
m,n2,l,p2,1,β(r2) + SNR−dm,n2,l(r1+r2)

≤ 2SNR−min{dnp
m,n2,l,p2,1,β(r2),dm,n2,l(r1+r2)}. (7.38)

Thus the achievable diversity gains using joint ML decoding are

d1 = min
{
dnp

m,n1,l,1,p1,β(r1), dm,n1,l(r1 + r2)
}

d2 = min
{
dnp

m,n2,l,p2,1,β(r2), dm,n2,l(r1 + r2)
}
. (7.39)

When naive single-user decoding is utilized, the probability of error for user 1

can be upper bounded by

Pe1 ≤ SNR−dns
m,n1,βl,p2

(
r1
β

). (7.40)

Similarly, the probability of error for user 2 (using naive single-user decoding) can

be upper bounded by

Pe2 ≤ SNR
−dns

m,n2,(1−β)l,p1
(

r2
1−β

)
. (7.41)

Thus the achievable diversity gains using naive single-user decoding are

d1 = dns
m,n1,βl,p2

(
r1

β
)

d2 = dns
m,n2,(1−β)l,p1

(
r2

1− β
). (7.42)
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Since both users can choose either joint ML decoding or naive single-user decoding,

the maximum of the corresponding diversity gains are achievable. This completes

the proof.

Several comments are in order at this point.

• One might question the efficiency of superposition encoding when encoding

over only one single block. This scheme is motivated by the fact that su-

perposition encoding is a capacity achieving strategy for degraded broadcast

channels [12, 13] (by encoding over sufficiently large N blocks). It should be

clear that in the present setting we directly evaluate the corresponding error

probabilities without using the property that the broadcast channel considered

here is degraded.

• It is possible to improve the DGR inner bound for small block length l by

expurgating codebooks and deriving a nonuniform-power expurgated diversity

gain. The derivation of such improved bound is a straightforward extension of

Theorem 7.1 and thus is omitted.

• Other encoding or decoding strategies can also be applied to provide upper

bounds on the error probabilities of the two users. For instance, a decoding

technique commonly used in the literature is successive cancellation. Diggavi

et al. derived an achievable diversity gain pair for a single-user channel with

two different messages (high- and low-reliability messages) using successive

cancellation [23]. Our numerical results indicate that this decoding strategy

does not improve the DGR inner bound given in Theorem 7.1. It can also be

shown that the single-code encoding, used in Gaussian broadcast channels in

Theorem 4.1, does not improve the DGR inner bound, either.
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As illustrated in Fig. 7.8, the solid square is the boundary of the achievable DGR

using uniform superposition and joint ML decoding, the dashed curve is the bound-

ary of the achievable DGR using uniform superposition and a mixture of joint ML

and naive single-user decoding (the dashed curve merging with the solid square at

(d1, d2) = (9, 4.5) and (d1, d2) = (4.5, 9), and merging with the dash-dotted curve at

(d1, d2) = (12.5, 3.6) and (d1, d2) = (3.6, 12.5)), and the dotted curve is the boundary

of the achievable DGR using on-off superposition. The dash-dotted curve in Fig. 7.8

is the boundary of the achievable DGR using superposition encoding, which pro-

vides a smooth transition between the achievable regions using uniform and on-off

superposition.
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Figure 7.8: DGR inner bound using on-off superposition (dotted), uniform superposition
with joint ML decoding (solid), uniform superposition with a mixture of joint ML and naive
single-user decoding (dashed) and superposition (dash-dotted) for m = 4, n1 = 4, n2 =
4, l = 60, r1 = 0.5, r2 = 0.5.
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7.3 Outer Bound for Diversity Gain Region

In this section, we derive a DGR outer bound valid for any transmission scheme

over sufficiently large N blocks (N →∞), so this DGR outer bound is also valid for

any scheme over finite blocks.

We summarize the result in the following theorem.

Theorem 7.2 For a MIMO fading broadcast channel operated at a multiplexing gain

pair (r1, r2) with m transmit antennas, n1, n2 receive antennas and block length l,

an outer bound for DGR is given by

d1 ≤ dout
m,n1

(r1) (7.43a)

d2 ≤ dout
m,n2

(r2) (7.43b)

min{d1, d2} ≤ max{dout
m,n1

(r1 + r2), d
out
m,n2

(r1 + r2)}. (7.43c)

Proof: It is true that for any broadcast channel the probability of decoding

error for user i can always be lower bounded by the probability of decoding error for

user i operating over a point-to-point channel defined by the marginal distribution

P (Yi|X). This implies that di ≤ dout
m,ni

(ri), for i = 1, 2.

Given an encoding and decoding scheme, it is true that

Pe,sys ≤ Pe1 + Pe2 ≤ 2 max{Pe1, Pe2}, (7.44)

where the first inequality follows from the union bound. The broadcast channel

considered here is a stochastically degraded broadcast channel [26, Chap. 14]. Since

the performance of a broadcast channel depends only on the marginal distributions,

we may further assume that the broadcast channel considered here is a physically

degraded broadcast channel, i.e., P (Y1, Y2|X) = P (Y1|X)P (Y2|Y1) if n1 ≥ n2. If
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we now allow the two receivers to cooperate, we have a single-user channel with

n1 +n2 receive antennas, whose probability of error, P ′
e, should be less than or equal

to the probability of system error Pe,sys in the original broadcast channel [27]. The

probability of error P ′
e of the new single-user channel can be lower bounded by

SNR−max{dout
m,n1

(r1+r2),dout
m,n2

(r1+r2)}≤̇P ′
e, (7.45)

since the original broadcast channel is physically degraded. Combining (7.44) and

(7.45), we have

SNR−max{dout
m,n1

(r1+r2),dout
m,n2

(r1+r2)}≤̇P ′
e ≤ Pe,sys ≤ 2 max{Pe1, Pe2}, (7.46)

which implies that min{d1, d2} ≤ max{dout
m,n1

(r1 + r2), d
out
m,n2

(r1 + r2)}.
Note that the single-user diversity gain d(N, r) is upper bounded by dout

m,n(r) for any

N , so the DGR outer bound given here is valid for any N .

In Fig. 7.9, the derived inner and outer DGR bounds are shown for two channel

scenarios. In this figure, the solid curve is the boundary of the DGR inner bound

and the dash-dotted curve is the boundary of the DGR outer bound. Two important

results are observed in Fig. 7.9: (i) the DGR inner and outer bounds are tight at the

lower-right and the upper-left corners; (ii) for a symmetric MIMO fading broadcast

channel, the DGR inner and outer bounds are tight at d1 = d2 (Fig. 7.9(a)). Result

(i) implies that the appearance of the second user does not affect the first user (for

a certain range of diversity gains for the second user) since the first user achieves

the optimal single-user diversity gain dout
m,n1

(r1) (and similarly for the second user).

These results are formally expressed in the following theorem.

Theorem 7.3 For a MIMO fading broadcast channel operated at a multiplexing gain

86



pair (r1, r2) with m transmit antennas, n1, n2 receive antennas and block length l,

the following are true:

(a) If r1 < 1 and r2 < (1 − r1)(1 − m+n1−1
l

) min(m, n2), then user 1 achieves

the single-user diversity gain dout
m,n1

(r1), and simultaneously user 2 achieves a

diversity gain d2 > 0. A similar result holds for user 2.

(b) If the MIMO fading broadcast channel is symmetric (n1 = n2) and l ≥ m +

n1 − 1, the DGR inner and outer bounds are tight at d1 = d2.

Proof:

(a) Assume r1 < 1. The tightness of the DGR inner and outer bounds at the

lower-right corner is a direct consequence applying naive single-user decoding

to user 1. From (7.23a), (7.23b), user 1 using uniform superposition encoding

with β = 1 can achieve the single-user diversity gain dout
m,n1

(r1) using naive

single-user decoding as long as

p2 < 1− m + n1 − 1

l

r1 ≤ (1− p2)l − (m + n1 − 1)

l − (m + n1 − 1)
. (7.47)

Choose p∗2 = (1− r1)(1− m+n1−1
l

), then both conditions in (7.47) are satisfied.

The achievable diversity gains for user 1 using naive single-user decoding and

for user 2 using joint ML decoding are

d1 = dns
m,n1,l,p∗2

(r1) = dout
m,n1

(r1) (7.48a)

d2 = min{dnp
m,n2,l,p∗2,1,β(r2), dm,n2,l(r1 + r2)}

= min{p∗2 dout
m,n2

(
r2

p∗2
), dm,n2,l(r1 + r2)}. (7.48b)
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Note that the chosen p∗2 is the largest value of p2’s for which the equation

dns
m,n1,l,p2

(r1) = dout
m,n1

(r1) still holds, i.e., dns
m,n1,l,p2

(r1) < dout
m,n1

(r1) for p2 > p∗2.

Under the assumption r2 < p∗2 min(m,n2) = (1 − r1)(1 − m+n1−1
l

) min(m,n2),

both r2

p∗2
and r1 + r2 in (7.48b) are smaller than min(m,n2), and thus d2 >

0. The proof of this argument for user 2, with a multiplexing gain r2 < 1,

achieving the optimal single-user diversity gain dout
m,n2

(r2) if r1 < (1 − r2)(1 −
m+n2−1

l
) min(m,n1) is similar.

(b) For a symmetric MIMO fading broadcast channel (n1 = n2), the achievable

diversity gains using uniform superposition with β = 1, p2 = 1 and joint ML

decoding are

d1 = min
{
dnp

m,n1,l,1,p1,β(r1), dm,n1,l(r1 + r2)
}

= min
{
dm,n1,l(r1), dm,n1,l(r1 + r2)

}

= dm,n1,l(r1 + r2) = dout
m,n1

(r1 + r2)

d2 = min
{
dnp

m,n2,l,p2,1,β(r2), dm,n2,l(r1 + r2)
}

= min
{
dm,n2,l(r2), dm,n2,l(r1 + r2)

}

= dm,n2,l(r1 + r2) = dout
m,n1

(r1 + r2). (7.49)

Comparing (7.49) with the DGR outer bound (7.43c), it is clear that the inner

bound and bounds are tight at d1 = d2.

7.4 Multiplexing Gain Region

At last, we define the CCR counterpart in a MIMO fading broadcast channel,

namely the multiplexing gain region (MGR), and derive an inner bound and an outer

bound for the MGR.
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Figure 7.9: DGR inner bound (solid) and outer bound (dash-dotted) for (a) m = 4, n1 =
4, n2 = 4, l = 60, r1 = 0.5, r2 = 0.5; (b) m = 4, n1 = 4, n2 = 3, l = 55, r1 = 0.5, r2 = 0.5.

Definition 7.2 Consider a MIMO fading broadcast channel with coding over N

blocks. The MGR is defined as the closure of the set of all achievable multiplex-

ing gain pairs (r1, r2) with d1(N, r1, r2) > 0 and d2(N, r1, r2) > 0 for all encoding

schemes.

Note that in the above definition, the MGR is a function of N . We now derive

an MGR inner bound and an MGR outer bound and summarize the result in the

following theorem.

Theorem 7.4 For a MIMO fading broadcast channel with m transmit antennas, n1,

n2 receive antennas and block length l, an MGR inner bound MGRin and an MGR
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outer bound MGRout for any encoding scheme over N blocks are

MGRin =
{

(r1, r2) :
r1

min(m,n1)
+

r2

min(m,n2)
≤ 1

}
(7.50)

MGRout =
{

(r1, r2) : 0 ≤ α ≤ 1,

r1 ≤ (min(m,n1)−min(m,n2))
+ + α min

{
min(m, n1), min(m,n2)

}
,

r2 ≤ (min(m,n2)−min(m,n1))
+ + (1− α) min

{
min(m,n1), min(m,n2)

}}
.

(7.51)

Proof: The inner bound is proved for N = 1 and the outer bound is proved for

N →∞, so both bounds are valid for any N .

We first show that (7.50) is an inner bound for the MGR. Without loss of gener-

ality, we may assume n1 ≥ n2. Applying uniform superposition with β = 0, we can

achieve a diversity gain pair (d1, d2)

d1 = min
{
dnp

m,n1,l,1,p1,β(r1), dm,n1,l(r1 + r2)
}

= min
{
p1dm,n1,l(

r1

p1

), dm,n1,l(r1 + r2)
}

d2 = dns
m,n2,(1−β)l,p1

(
r2

1− β
) = dns

m,n2,l,p1
(r2). (7.52)

Note that under the assumption n1 ≥ n2, dm,n1,l(r1 + r2) > 0 for any interior point

(r1, r2) of MGRin, so d1 > 0 as long as dm,n1,l(
r1

p1
) > 0. Since dm,n1,l(

r1

p1
) > 0 for

r1 < min(m,n1)p1, and d2 = dns
m,n2,l,p1

(r2) > 0 for r2 < min(m,n2)(1− p1), it is clear

that by choosing p1 a value between 0 and 1 we have d1 > 0 and d2 > 0 for any

interior point of MGRin.

It remains to show that (7.51) is an outer bound for the MGR. Let λ1 =

(λ1,1 λ1,2 . . . λ1,min(m,n1)) and λ2 =
(
λ2,1 λ2,2 . . . λ2,min(m,n2)) denote the vectors

of the nonzero eigenvalues of H′
1H1 and H′

2H2, where H′
1 and H′

2 are the conjugate

transposes of H1 and H2, respectively. Applying singular value decomposition to H1
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and H2, we can re-write the broadcast channel as

Y1 =

√
SNR

m
V1Σ1W1X + Z1 (7.53a)

Y2 =

√
SNR

m
V2Σ2W2X + Z2, (7.53b)

where Σ1 = [σ1,ij] is an n1 × m matrix with σ1,ii =
√

λ1,i for 1 ≤ i ≤ min(m,n1)

and σ1,ij = 0 otherwise, and Σ2 = [σ2,ij] is an n2 ×m matrix with σ2,ii =
√

λ2,i for

1 ≤ i ≤ min(m,n2) and σ2,ij = 0. V1 and V2 are n1×n1 and n2×n2 unitary random

matrices, and W1 and W2 are m×m unitary random matrices.

It is well-known that the capacity region of a broadcast channel depends only on

the marginal distributions, so we can consider the capacity region of the following

broadcast channel by replacing W2 with W1 in (7.53b)

Y1 =

√
SNR

m
V1Σ1W1X + Z1 (7.54a)

Y2 =

√
SNR

m
V2Σ2W1X + Z2. (7.54b)

If we now assume that the matrix W1 is also known at the transmitter in the broad-

cast channel (7.54), we can consider the following equivalent broadcast channel

Y1 =

√
SNR

m
Σ1X + Z1 (7.55a)

Y2 =

√
SNR

m
Σ2X + Z2, (7.55b)

whose MGR is an outer bound for the MGR of the original broadcast channel.

For any encoding scheme over N blocks, define the following notations.

U1, U2: input messages for user 1 and user 2.
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XN : m× lN channel input matrix. XN = f(U1,U2) for some deterministic function

f(·) depending on the encoding scheme.

YN
1 : n1 × lN channel output matrix of user 1.

HN
1 : n1 ×mN channel fading matrix of user 1.

H1,k: n1×m channel fading matrix of user 1 for the kth block, i.e., HN
1 = [H1,1 H1,2

. . . H1,N ].

Σ1,k: n1 ×m channel singular value matrix of user 1 for the kth block H1,k.

ΣN
1 : ΣN

1 = [Σ1,1 Σ1,2 . . . Σ1,N ].

λ1,k: 1×min(m,n1) vector of the nonzero eigenvalues of H′
1,kH1,k, where H′

1,k is the

conjugate transpose of H1,k.

λN
1 : λN

1 = [λ1,1 λ1,2 . . . λ1,N ].

A , [SNR−ε SNRε]min(m,n1): min(m, n1)
th-fold Cartesian product of the interval

[SNR−ε SNRε].

AN : N th-fold Cartesian product of A, i.e., AN = [SNR−ε SNRε]min(m,n1)N .

Since U1 and ΣN
1 are independent, the achievable rate R1 for user 1 can be written

as

R1 =
1

N
I(U1;Y

N
1 ,ΣN

1 ) (7.56a)

=
1

N
I(U1;Y

N
1 |ΣN

1 ) (7.56b)

=
1

N

∫

λN
1 ∈AN

I(U1;Y
N
1 |ΣN

1 = ΣN
1 )P (ΣN

1 )dΣN
1 +

1

N

∫

λN
1 ∈(AN )c

I(U1;Y
N
1 |ΣN

1 = ΣN
1 )P (ΣN

1 )dΣN
1 . (7.56c)
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The second term in (7.56c) can be upper bounded by

1

N

∫

λN
1 ∈(AN )c

I(U1;Y
N
1 |ΣN

1 = ΣN
1 )P (ΣN

1 )dΣN
1

≤ 1

N

∫

λN
1 ∈(AN )c

I(XN ;YN
1 |ΣN

1 = ΣN
1 )P (ΣN

1 )dΣN
1

≤
∫

λ1∈Ac

log |I +
SNR

m
Σ′

1Σ1|P (Σ1)dΣ1

=

∫

λ1∈Ac

min{m,n1}∑
i=1

log(1 +
SNR

m
λ1,i)P (λ1)dλ1, (7.57)

where the first inequality in (7.57) is due to U1−XN −YN
1 forming a Markov chain

and the second inequality in (7.57) is based on the fact that I(XN ;YN
1 |ΣN

1 = ΣN
1 ) is

maximized when XN has i.i.d. complex Gaussian entries. Note that P (λ1) goes to

zero exponentially for large λ1 but the other component of the integrand in (7.57) is

in the order of log(SNR), so the last term in (7.57) goes to zero as SNR →∞. Thus

R1 is equal to the first term in (7.56c) at high SNR. In other words, regarding the data

rate for user 1, we may assume that λN
1 ∈ AN . Let I1 = [I1,ij] be an n1 ×m matrix

with I1,ii = 1 for 1 ≤ i ≤ min(m,n1) and I1,ij = 0 otherwise, and let I2 = [I2,ij] be

an n2×m matrix with I2,ii = 1 for 1 ≤ i ≤ min(m,n2) and I2,ij = 0 otherwise. Since

I(U1;Y
N
1 |ΣN

1 = SNR−εI1) ≤ I(U1;Y
N
1 |ΣN

1 = ΣN
1 ) ≤ I(U1;Y

N
1 |ΣN

1 = SNRεI1) for

λN
1 ∈ AN and ε is any positive constant, we can take ε arbitrarily small and on the

scale of our interest (multiplexing gain) we may assume that λ1 is a vector with every

entry equal to one. A similar argument also applies to user 2. Therefore, regarding

multiplexing gains, we can consider the following broadcast channel

Y1 =

√
SNR

m
I1X + Z1

Y2 =

√
SNR

m
I2X + Z2. (7.58)
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The MGR of the broadcast channel defined in (7.58) is an outer bound of the

MGR of the original fading broadcast channel. However, it is easy to see that the

MGR of the broadcast channel defined in (7.58) is exactly (7.51). This completes

the proof.

Note that the inner bound (7.50) is derived using uniform superposition. It can

also be shown that the achievable MGR derived using (nonuniform) superposition is

the same region as given in (7.50). Again, without loss of generality, we may assume

n1 ≥ n2. Since dm,n2,l(r1 + r2) = 0 for r1 + r2 > min(m,n2), it’s sufficient to consider

only naive single-user decoding for user 2 because not all the interior points of MGRin

are achievable using joint ML decoding for user 2 when min(m,n1) > min(m,n2)

(d2 ≤ dm,n2,l(r1 + r2) = 0 for some interior points in this case). The following

diversity gains

d1 = min
{
dnp

m,n1,l,1,p1,β(r1), dm,n1,l(r1 + r2)
}

d2 = dns
m,n2,(1−β)l,p1

(
r2

1− β
) (7.59)

are achievable, where we assume using joint ML decoding for user 1. Note that under

the assumption n1 ≥ n2, dm,n1,l(r1 + r2) > 0 for any interior point (r1, r2) of MGRin,

so d1 > 0 as long as dnp
m,n1,l,1,p1,β(r1) > 0. Since

dnp
m,n1,l,1,p1,β(r1) > 0 for r1 < min(m,n1)(β + (1− β)p1) (7.60a)

dns
m,n2,(1−β)l,p1

(
r2

1− β
) > 0 for r2 < min(m,n2)(1− β)(1− p1), (7.60b)

it is clear that by choosing appropriate p1 and β we have d1 > 0 and d2 > 0 for

any interior point of MGRin, and d1 = 0 or d2 = 0 for any point outside MGRin.

Finally, note that dns
m,n1,βl,p2

( r1

β
) > 0 only for r1 < min(m,n1)β(1− p2), which is less

than min(m,n1)(β + (1 − β)p1) in (7.60a), so it is sufficient to consider only joint
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ML decoding for user 1 in the above derivation.

Examples of typical MGR inner and outer bounds are shown in Fig. 7.10. Al-

though the MGR might be a function of N , the inner bound (derived for N = 1)

and the outer bound (derived for N → ∞) given in Theorem 7.4 are valid for any

N .
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Figure 7.10: MGR inner bound (solid) and outer bound (dash-dotted) for (a) m = 3,
n1 = 4, n2 = 4 (solid = dash-dotted); (b) m = 3, n1 = 3, n2 = 2.
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CHAPTER 8

Diversity Gain Regions for MIMO Fading

Multiple Access Channels

Consider a MIMO fading multiple access channel with m1, m2 transmit antennas

for user 1 and user 2, respectively and n receive antennas. The channel model is

given by

Y =

√
SNR

m1

H1X1 +

√
SNR

m2

H2X2 + Z. (8.1)

The channel fading matrices between transmitter 1, transmitter 2 and the receiver

are represented by an n × m1 matrix H1 and an n × m2 matrix H2, respectively.

We assume that H1 and H2 remain constant over a block with length l, and change

to a new independent realization in the next block. H1 and H2 have i.i.d. entries

and each entry is distributed as CN (0, 1). We assume that the fading matrices are

known by the receiver but not known by the transmitters. The channel inputs X1

and X2 are m1× l and m2× l matrices, respectively, and are normalized such that the

average power at each transmit antenna is 1, which means that the average power of

each user’s signal at each receive antenna is SNR. The noise Z is an n × l matrix

with i.i.d. entries distributed as CN (0, 1). The channel output Y is an n× l matrix.
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Similar to a MIMO fading broadcast channel, an encoding scheme for a MIMO

fading multiple access channel over N blocks is said to achieve a multiplexing gain

pair (r1, r2) and a diversity gain pair (d1, d2) if

lim
SNR→∞

R1(SNR)

log SNR
= r1

lim
SNR→∞

R2(SNR)

log SNR
= r2, (8.2)

where R1(SNR) and R2(SNR) are the rates for user 1 and user 2, respectively, and

d1(N, r1, r2) , lim
SNR→∞

− log Pe1(N, R1(SNR), R2(SNR))

N log SNR

d2(N, r1, r2) , lim
SNR→∞

− log Pe2(N, R1(SNR), R2(SNR))

N log SNR
, (8.3)

where Pe1(N, R1(SNR), R2(SNR)) and Pe2(N, R1(SNR), R2(SNR)) are the proba-

bilities of error for user 1 and user 2, respectively. We use d1(r1, r2) and d2(r1, r2)

as shorthand notations for d1(1, r1, r2) and d2(1, r1, r2), respectively. Given a mul-

tiplexing gain pair (r1, r2), the DGR is defined as the set of all achievable diver-

sity gain pairs (d1(N, r1, r2), d2(N, r1, r2)) for all encoding schemes. Similarly, the

MGR is defined as the closure of the set of all multiplexing gain pairs (r1, r2) with

d1(N, r1, r2) > 0 and d2(N, r1, r2) > 0 for all encoding schemes. The MGR for a

MIMO fading multiple access channel with m1, m2 transmit antennas and n receive

antennas is

r1 ≤ min(m1, n)

r2 ≤ min(m2, n)

r1 + r2 ≤ min(m1 + m2, n). (8.4)
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The achievability of (8.4) for N = 1 is given in [19]. The proof that (8.4) is also

an outer bound for sufficiently large N (N → ∞) can be derived easily from the

channel capacity for a general multiple access channel [26, Chap. 14], and the channel

capacity for a MIMO fading single-user channel [20].

8.1 Inner Bound for Diversity Gain Region

As in a MIMO fading broadcast channel, an inner bound is developed for N = 1,

and thus is valid for any value of N .

Motivated by (nonuniform) superposition encoding in a MIMO fading broadcast

channel, it is reasonable to consider a similar technique for a MIMO fading multiple

access channel. The technique that enables an efficient bound using superposition

strategy in a MIMO fading broadcast channel is based on a combination of joint

ML and naive single-user decoding. However, this bounding technique does not

provide a tight bound in the case of multiple access channels. To see this, recall that

in a MIMO fading broadcast channel, when the intended signal of one of the two

users suffers from the channel fading, the side interference (from the other user) also

suffers from the same channel fading. In a MIMO fading multiple access channel,

on the other hand, the intended signal and the side interference go through different

and independent fading paths. This implies that sometimes the intended user’s signal

might suffer deep fading but the side interference is “unfaded” at the channel output.

Thus naive single-user decoding might work poorly in a MIMO fading multiple access

channel.

Using our bounding techniques, it is observed that (nonuniform) superposition

using joint ML decoding does not provide an advantage over uniform and on-off

superposition. Therefore, due to lack of an effective decoding strategy to close the

gap between individual and joint ML decoding, we only derive an inner bound us-
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ing two special cases of superposition encoding - uniform superposition and on-off

superposition. We summarize the result in the following theorem.

Theorem 8.1 For a MIMO fading multiple access channel operated at a multiplexing

gain pair (r1, r2) with m1, m2 transmit antennas, n receive antennas and block length

l, an inner bound for DGR is DGRus(r1, r2) ∪ DGRos(r1, r2), where DGRus(r1, r2)

and DGRos(r1, r2) are given by

DGRus(r1, r2) =
{

(d1, d2) :

d1 ≤ min
{

max{dm1,n,l(r1), d
ex
m1,n,l(r1)}, dm1+m2,n,l(r1 + r2)

}

d2 ≤ min
{

max{dm2,n,l(r2), d
ex
m2,n,l(r2)}, dm1+m2,n,l(r1 + r2)

}}
(8.5)

DGRos(r1, r2) =
{

(d1, d2) : β =
a

l
, a ∈ {1, 2, . . . , l − 1},

d1 ≤ max
{
dm1,n,βl(

r1

β
), dex

m1,n,βl(
r1

β
)
}

d2 ≤ max
{
dm2,n,(1−β)l(

r2

1− β
), dex

m2,n,(1−β)l(
r2

1− β
)
}}

. (8.6)

Proof: In uniform superposition encoding, the channel inputs X1 and X2 have

i.i.d. entries CN (0, 1). The bounds on the users’ error probabilities are obtained

using joint ML decoding. Following [17], we define three types of error events, type 1,

type 2, and type 3. It can be shown by using random coding arguments that there

exist codebooks for user 1 and user 2 such that

Pe,t1 ≤ SNR−max{dm1,n,l(r1),dex
m1,n,l(r1)}

Pe,t2 ≤ SNR−max{dm2,n,l(r2),dex
m2,n,l(r2)}

Pe,t3 ≤ SNR−dm1+m2,n,l(r1+r2). (8.7)
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The probabilities of error for user 1 and user 2 can be upper bounded by

Pe1 = Pe,t1 + Pe,t3 ≤ SNR−max{dm1,n,l(r1),dex
m1,n,l(r1)} + SNR−dm1+m2,n,l(r1+r2)

≤ 2SNR−min{max{dm1,n,l(r1),dex
m1,n,l(r1)}, dm1+m2,n,l(r1+r2)}

Pe2 = Pe,t2 + Pe,t3 ≤ SNR−max{dm2,n,l(r2),dex
m2,n,l(r2)} + SNR−dm1+m2,n,l(r1+r2)

≤ 2SNR−min{max{dm2,n,l(r2),dex
m2,n,l(r2)}, dm1+m2,n,l(r1+r2)}. (8.8)

Thus the achievable diversity gains derived from joint ML decoding are

dus
1 = min

{
max{dm1,n,l(r1), d

ex
m1,n,l(r1)}, dm1+m2,n,l(r1 + r2)

}
(8.9a)

dus
2 = min

{
max{dm2,n,l(r2), d

ex
m2,n,l(r2)}, dm1+m2,n,l(r1 + r2)

}
, (8.9b)

where the superscript “us” denotes uniform superposition.

In on-off superposition, the channel input X1 has i.i.d. entries CN (0, 1) for the

first βl transmissions (on) and is zero for the remaining (1− β)l transmissions (off),

where β = a
l

for some a ∈ {1, 2, . . . , l − 1}. Similarly, the channel input X2 is zero

for the first βl transmissions (off) and has i.i.d. entries CN (0, 1) for the remaining

(1−β)l transmissions (on). We can derive achievable diversity gains for this strategy

as

dos
1 = max

{
dm1,n,βl(

r1

β
), dex

m1,n,βl(
r1

β
)
}

(8.10a)

dos
2 = max

{
dm2,n,(1−β)l(

r2

1− β
), dex

m2,n,(1−β)l(
r2

1− β
)
}
, (8.10b)

where the superscript “os” denotes on-off superposition.

In Fig. 8.1(a) we depict the achievable DGR using on-off superposition. In this

figure, each point is a diversity gain pair corresponding to one particular β = a
l

in (8.10), and the achievable DGR using on-off superposition is shown in Fig. 8.1(b).
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Note that the boundary in Fig. 8.1(b) is not simply a smooth curve connecting the

corresponding achievable diversity gain pairs in Fig. 8.1(a). This is because the value

of βl assigned to user 1 must be an integer and each consecutive point in Fig. 8.1(a)

corresponds to one consecutive integer.
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Figure 8.1: On-off superposition for m1 = 4,m2 = 4, n = 4, l = 12, r1 = 0.5, r2 = 0.5 (a)
achievable diversity gain pairs; (b) DGR inner bound.

Based on Theorem 8.1, the MGR of a MIMO fading multiple access channel can
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be divided into four regions r12, r13, r23, and r3

r12 ,
{
(r1, r2) : max{dm1,n,l(r1), d

ex
m1,n,l(r1)} ≤ dm1+m2,n,l(r1 + r2),

max{dm2,n,l(r2), d
ex
m2,n,l(r2)} ≤ dm1+m2,n,l(r1 + r2)

}

r13 ,
{
(r1, r2) : max{dm1,n,l(r1), d

ex
m1,n,l(r1)} ≤ dm1+m2,n,l(r1 + r2),

dm1+m2,n,l(r1 + r2) ≤ max{dm2,n,l(r2), d
ex
m2,n,l(r2)}

}

r23 ,
{
(r1, r2) : max{dm2,n,l(r2), d

ex
m2,n,l(r2)} ≤ dm1+m2,n,l(r1 + r2),

dm1+m2,n,l(r1 + r2) ≤ max{dm1,n,l(r1), d
ex
m1,n,l(r1)}

}

r3 ,
{
(r1, r2) : dm1+m2,n,l(r1 + r2) ≤ max{dm1,n,l(r1), d

ex
m1,n,l(r1)},

dm1+m2,n,l(r1 + r2) ≤ max{dm2,n,l(r2), d
ex
m2,n,l(r2)}

}
, (8.11)

depending on whether the bound for type 1 error, type 2 error, or type 3 error

dominates when using uniform superposition (see an illustration in Fig. 8.2). In

region r12, each user attains the optimal single-user diversity gain, and thus there

is no diversity gain tradeoff between the users. In region r13, the first user achieves

the optimal single-user diversity gain, while the second user’s error probability is

dominated by type 3 error. Thus it is possible to provide a tradeoff of diversity

gains between the users using on-off superposition. In Fig. 8.3 we show the DGRs

for two channel scenarios. Observe that in Fig. 8.3(a), user 2’s diversity gain d2 can

go beyond dus
2 = 5 by reducing user 1’s diversity gain, where the solid curve is the

boundary of the achievable DGR using uniform superposition, and the dotted curve

is the boundary of the achievable DGR using on-off superposition. A similar result

also holds for region r23. In region r3, type 3 error is dominant over both type 1 and

type 2 errors, so it is possible to provide a tradeoff of diversity gains between the

two users. This is illustrated in Fig. 8.3(b).
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Figure 8.2: MGR for m1 = 4,m2 = 4, n = 4.
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Figure 8.3: DGR inner bound using on-off superposition (dotted) and uniform superposi-
tion (solid) for (a) m1 = 4,m2 = 4, n = 4, l = 60, r1 = 2.5, r2 = 0.5 ((r1, r2) ∈ region r13);
(b) m1 = 4,m2 = 4, n = 4, l = 240, r1 = 3.4, r2 = 0.5 ((r1, r2) ∈ region r3).
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8.2 Outer Bound for Diversity Gain Region

As in a MIMO fading broadcast channel, an outer bound is developed for suffi-

ciently large N (N →∞), and thus is valid for any finite value of N .

For a MIMO fading multiple access channel, the probabilities of decoding error

for user 1 and user 2 can always be lower bounded by the probabilities of decoding

error for user 1 and user 2 operating over the point-to-point channels defined by

Y =
√

SNR
mi

HiXi + Z, for i = 1, 2. Furthermore, if we allow the two transmitters

in the MIMO fading multiple access channel to cooperate, we have a MIMO fading

single-user channel with m1 + m2 transmit antennas and n receive antennas, whose

probability of error (using an optimal receiver) should be less than or equal to the

probability of system error in the original multiple access channel. Note that the

diversity gain corresponding to the probability of system error is equal to min{d1, d2}.
Collecting all these ideas, we have the following outer bound for the DGR

d1 ≤ dout
m1,n(r1) (8.12a)

d2 ≤ dout
m2,n(r2) (8.12b)

min{d1, d2} ≤ dout
m1+m2,n(r1 + r2). (8.12c)

If the block length l ≥ m1 +m2 +n−1, we can conclude from (8.9a), (8.9b), (8.12a),

(8.12b) that all the operating points inside the region r12 in Fig. 8.2 have tight DGR

inner and outer bounds.

In Fig. 8.4, two examples are considered for illustrating the derived inner and

outer bounds. The solid curve is the boundary of the achievable DGR, and the

dashed-dotted curve is the DGR outer bound. It is noted that in these particular

examples, it is not clear whether a tradeoff between the optimal diversity gains of the

two users exists. Furthermore, it is noted in Fig. 8.4(b) that the inner bound achieved
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by uniform superposition completely contains that achieved by on-off superposition.
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Figure 8.4: DGR inner bound (solid) and outer bound (dash-dotted) for (a) m1 = 4,m2 =
4, n = 4, l = 60, r1 = 2.5, r2 = 0.5; (b) m1 = 5,m2 = 2, n = 4, l = 55, r1 = 2.5, r2 = 1.
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CHAPTER 9

Future Directions

In this work, we only consider two-user broadcast and multiple access channels.

One natural generalization is to extend these results to cases with more than two

users. For example, suppose there are three users in a broadcast channel. User 1

can decode his/her own message using joint ML decoding, or decode his/her own

message regarding the other two messages as noise, or decode his/her own message

regarding only user 3’s message as noise, etc. The achievable region is a union of all

the above decoding strategies.

Another possible direction is to extend our results to other multi-terminal chan-

nels, for example, a relay channel [31]. A relay channel combines a broadcast channel

and a multiple access channel. The capacity is known for the special case of the phys-

ically degraded relay channel. One open problem is to find the error exponent for a

relay channel. It is interesting to derive new error exponent inner and outer bounds

for a relay channel based on our existing results in broadcast and multiple access

channels.

Finally, we consider the problem of error exponent regions for discrete memoryless

multi-user channels. In contrast to Gaussian or MIMO fading channels, where at least

one capacity achieving input distribution is known, e.g. Gaussian distribution, there
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is no fixed input distribution to achieve capacity in discrete memoryless channels.

For a channel with small input and output alphabets, a brute-force search for the

optimum input distribution might be possible. As the sizes of the input and output

alphabets increase, the optimum input distribution might be difficult to find.

The problem becomes even more complicated in discrete memoryless multi-user

channels when EERs are considered. In the following, we derive an EER outer bound

for discrete memoryless multiple access channels (DMMAC). Consider a DMMAC

with channel inputs X1 and X2 for user 1 and user 2, respectively, and channel output

Y. The channel transition matrix Q is given by Qk|ij = P (Y = k|X1 = i,X2 = j),

where i ∈ I, j ∈ J and k ∈ K, and I, J and K are the input alphabets (with finite

elements) for user 1 and user 2 and the output alphabet (with finite elements).

An EER outer bound for the DMMAC is summarized in the following theorem.

Theorem 9.1 For a discrete memoryless multiple access channel with transition

matrix Q and data rates R1 and R2 for user 1 and user 2, respectively, an outer

bound for EER is

EER(R1, R2) =
{

(E1, E2) :
∑

i∈I,j∈J
pij = 1

E1 ≤ max
s̃≥0

min
q̃k|j

[
− s̃R1 − (1 + s̃)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s̃

k|ij q̃
s̃

1+s̃

k|j
)]

E2 ≤ max
ŝ≥0

min
q̂k|i

[
− ŝR2 − (1 + ŝ)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+ŝ

k|ij q̂
ŝ

1+ŝ

k|i
)]

min{E1, E2} ≤ max
s≥0

min
qk

[
− s(R1 + R2)− (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k

)]}
,

(9.1)

where the minimizations are over all the (conditional) probability distributions q̃, q̂

and q, i.e.,
∑

k∈K q̃k|j = 1 for ∀j ∈ J ,
∑

k∈K q̂k|i = 1 for ∀i ∈ I, and
∑

k∈K qk = 1.
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Proof: The proof is given in Appendix B.

For illustration, consider a DMMAC with input alphabets I = {0, 1}, J = {0, 1},
output alphabet K = {0, 1}, and channel transition matrix Q given by

Q0|00 = 0.80, Q0|01 = 0.05, Q0|10 = 0.10, Q0|11 = 0.85,

Q1|00 = 0.20, Q1|01 = 0.95, Q1|10 = 0.90, Q0|11 = 0.15.

In Fig. 9.1, the dash-dotted curve is the boundary of the EER outer bound. On the

other hand, the achievable error exponents using joint ML decoding can be derived

from [17, Theorem 2] as

E1 = min{Et1(R1, p1, p2), Et3(R1 + R2, p1, p2)}

E2 = min{Et2(R2, p1, p2), Et3(R1 + R2, p1, p2)}, (9.2)

where

Et1(R1, p1, p2) , max
0≤s̃≤1

{
− s̃R1 − log

( ∑

j∈J ,k∈K
p2j

[ ∑
i∈I

p1iQ
1

1+s̃

k|ij
]1+s̃)}

Et2(R2, p1, p2) , max
0≤ŝ≤1

{
− ŝR2 − log

( ∑

i∈I,k∈K
p1i

[ ∑
j∈J

p2jQ
1

1+ŝ

k|ij
]1+ŝ)}

Et3(R1 + R2, p1, p2) , max
0≤s≤1

{
− s(R1 + R2)− log

( ∑

k∈K

[ ∑
i∈I,j∈J

p1ip2jQ
1

1+s

k|ij
]1+s)}

,

(9.3)

and p1 and p2 are the probability distributions used to construct the random code-

books for user 1 and user 2, respectively. In Fig. 9.1, the solid curve is the EER

inner bound.

Arutyunyan developed a type of sphere packing bound for the probability of
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Figure 9.1: EER inner bound (solid) and outer bound (dashed-dotted) for R1 = 0.1,
R2 = 0.1.

system error in [32]. This type of sphere packing bound can be written as

Esys(R1, R2) ≤ max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)}, (9.4)

where

Eu1(R1, p) , max
s̃≥0

{
− s̃R1 − log

( ∑

j∈J ,k∈K
pj

[ ∑
i∈I

pi|jQ
1

1+s̃

k|ij
]1+s̃)}

Eu2(R2, p) , max
ŝ≥0

{
− ŝR2 − log

( ∑

i∈I,k∈K
pi

[ ∑
j∈J

pj|iQ
1

1+ŝ

k|ij
]1+ŝ)}

Eu3(R1 + R2, p) , max
s≥0

{
− s(R1 + R2)− log

( ∑

k∈K

[ ∑
i∈I,j∈J

pijQ
1

1+s

k|ij
]1+s)}

, (9.5)

and pi =
∑

j∈J pij and pj =
∑

i∈I pij are the marginal probability distributions,

and pi|j =
pij

pj
and pj|i =

pij

pi
are the conditional probability distributions. We claim

that, in the sense of probability of system error, the bound in Theorem 9.1 and

Arutyunyan’s bound are the same. In other words, the EER outer bound given in

Theorem 9.1 includes Arutyunyan’s bound as a special case. We summarize the
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result in the following theorem.

Theorem 9.2 The system error exponent upper bound derived from Theorem 9.1

is the same as Arutyunyan’s bound, i.e., if we define the right hand side of the

inequalities in Theorem 9.1 as

Ev1(R1, p) , max
s̃≥0

min
q̃k|j

[
− s̃R1 − (1 + s̃)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s̃

k|ij q̃
s̃

1+s̃

k|j
)]

Ev2(R2, p) , max
ŝ≥0

min
q̂k|i

[
− ŝR2 − (1 + ŝ)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+ŝ

k|ij q̂
ŝ

1+ŝ

k|i
)]

Ev3(R1 + R2, p) , max
s≥0

min
qk

[
− s(R1 + R2)− (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k

)]
,

(9.6)

then

max
p

min{Ev1(R1, p), Ev2(R2, p), Ev3(R1 + R2, p)} =

max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)}, (9.7)

where the left hand side of the equation is the system error exponent upper bound

derived directly from Theorem 9.1, and the right hand side of the equation is Aru-

tyunyan’s bound.

Proof: From [33, Theorem 10.1.5: Step 3], we have

Eu1(R1, p) ≤ Ev1(R1, p)

Eu2(R2, p) ≤ Ev2(R2, p)

Eu3(R1 + R2, p) ≤ Ev3(R1 + R2, p), (9.8)
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so

max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)} ≤

max
p

min{Ev1(R1, p), Ev2(R2, p), Ev3(R1 + R2, p)}. (9.9)

In addition, it is shown in [33, Theorem 10.1.5] that

max
p

Eu1(R1, p) = max
p

Ev1(R1, p)

max
p

Eu2(R2, p) = max
p

Ev2(R2, p)

max
p

Eu3(R1 + R2, p) = max
p

Ev3(R1 + R2, p), (9.10)

so

min{max
p

Eu1(R1, p), max
p

Eu2(R2, p), max
p

Eu3(R1 + R2, p)}

= min{max
p

Ev1(R1, p), max
p

Ev2(R2, p), max
p

Ev3(R1 + R2, p)}. (9.11)

Combining (9.9) and (9.11), we have

min{max
p

Eu1(R1, p), max
p

Eu2(R2, p), max
p

Eu3(R1 + R2, p)}

= min{max
p

Ev1(R1, p), max
p

Ev2(R2, p), max
p

Ev3(R1 + R2, p)}

≥ max
p

min{Ev1(R1, p), Ev2(R2, p), Ev3(R1 + R2, p)}

≥ max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)}. (9.12)
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Finally, it is shown in the proof of [32, Lemma 1] that

min{max
p

Eu1(R1, p), max
p

Eu2(R2, p), max
p

Eu3(R1 + R2, p)}

= max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)}, (9.13)

so

max
p

min{Ev1(R1, p), Ev2(R2, p), Ev3(R1 + R2, p)} =

max
p

min{Eu1(R1, p), Eu2(R2, p), Eu3(R1 + R2, p)} (9.14)

by (9.12), (9.13).
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APPENDIX A

Proof of Theorem 6.1

We now derive the EER outer bound given in Theorem 6.1. Without loss of

generality, we assume P = 1 and noise variance σ2 = 1
SNR

, so we consider only

spherical codes. Moreover, in most cases we consider a sequence of spherical codes

as the dimension N →∞, i.e., one spherical code for each N , so “a spherical code”

mentioned here should be understood as “a sequence of spherical codes” whenever

necessary.

The proof for Theorem 6.1 is outlined in the following.

• In Section A.1, we consider a spherical code with two message sets and with

user 1’s error exponent given by E1, i.e., Pe1 = e−NE1 . In Lemma A.1, we

find an index i∗ such that the area of the union of certain cones associated

with this index i∗ is bounded, i.e., A(
⋃

j Cones(θE1 , Ci∗,j)) ≤ 4Ω(N,π)
M1

, where

θE1 = sin−1
(√

2E1

SNR

)
. When θE1 is large, it is necessary for the codewords

⋃
j{Ci∗,j} to concentrate at the center of the region

⋃
j Cones(θE1 , Ci∗,j) due

to the area constraint 4Ω(N,π)
M1

.

• Our goal is to find an upper bound for the minimum distance dmin(
⋃

j{Ci∗,j}).
In Section A.2, we first consider the densest spherical code S∗ ⊂ ∂Cones(θ′1,W )
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satisfying the sum area constraint Ω(N,π)
M1

, where θ′1 is some positive angle and

W is the north pole of SN−1. Based on Conjecture 6.1, we can upper bound

dmin(
⋃

j{Ci∗,j}) by dmin(S∗). Since dmin(S∗) = sin θ′1 dmin(R2), we want to find

an upper bound for sin θ′1. To do this, it turns out that we only need to find

an upper bound for the ratio of Ω(N, θ′1) to A(
⋃

k Cones(θE1 , S
∗
k)). We derive

a lower bound for A(
⋃

k Cones(θE1 , S
∗
k)) in Lemma A.2.

• In Section A.3, based on Lemma A.2, we derive an upper bound for the ratio

of Ω(N, θ′1) to A(
⋃

k Cones(θE1 , S
∗
k)). Then we show that dmin(

⋃
j{Ci∗,j}) is

upper bounded by sin η1 dmin(R2), where η1 = η(R1, R2, E1, SNR). Hence

there exist a pair of codewords Ci∗,j1 and Ci∗,j2 such that Pe2,i∗j1 and Pe2,i∗j2

are lower bounded by e−N sin2 η1Emd(R2,SNR). Finally, applying the standard

technique that an error exponent upper bound for the maximum probability

of error is also an error exponent upper bound for the average probability of

error, the average probability of error for message 2 is also upper bounded by

e−N sin2 η1Emd(R2,SNR).

A.1 Union of Cones under Sum Area Constraint

For a two-message spherical code C = {Ci,j | 1 ≤ i ≤ M1, 1 ≤ j ≤ M2} ⊂ SN−1,

the probabilities of error for message 1 and for message 2 given that Ci,j is transmitted

are denoted as Pe1,ij and Pe2,ij, respectively. Define

Pe1,i , 1

M2

M2∑
j=1

Pe1,ij

Pe2,j , 1

M1

M1∑
i=1

Pe2,ij (A.1)
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as the probabilities of error for message 1 and for message 2 averaged out over the

codewords with the same first and the same second indices, respectively. Thus the

(average) probabilities of error for message 1 and message 2 can be written as

Pe1 =
1

M1

M1∑
i=1

Pe1,i =
1

M1M2

M1∑
i=1

M2∑
j=1

Pe1,ij

Pe2 =
1

M2

M2∑
j=1

Pe2,j =
1

M1M2

M1∑
i=1

M2∑
j=1

Pe2,ij. (A.2)

Assume Pe1 = e−NE1 for the spherical code C. Our goal is to show that there exist

two different codewords Ci∗,j1 and Ci∗,j2 such that the distance between Ci∗,j1 and

Ci∗,j2 is at most sin η(R1, R2, E1, SNR) dmin(R2). This, with an additional argument

given later, implies that the error exponent for message 2 is upper bounded by

sin2 η(R1, R2, E1, SNR) Emd(R2, SNR). Thus there is a tradeoff between the error

exponents of message 1 and message 2 through the quantity η(R1, R2, E1, SNR). On

the other hand, we can also start with the assumption Pe2 = e−NE2 for any spherical

code and derive an upper bound for message 1’s error exponent. Since these two

methods are identical, we only work on the first case.

Under the assumption Pe1 = e−NE1 , we show that the surface caps Cones(θE1 , Ci,j)

are subject to the sum area constraint 4Ω(N,π)
M1

. We summarize the result in the fol-

lowing lemma.

Lemma A.1 For any spherical code with two message sets satisfying Pe1 = e−NE1,

there exist Ĩ ⊂ {1, 2, . . . , M1} and Ji ⊂ {1, 2, . . . , M2} such that |Ĩ| = M1

4
, |Ji| = M2

2

and

A
( ⋃

j∈Ji

Cones(θE1 , Ci,j)
) ≤ 4

Ω(N, π)

M1

(A.3)
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for all i ∈ Ĩ.

Proof: Define

Cmin
i,j , arg min

Ci′,j′ : i′ 6=i
d(Ci,j, Ci′,j′), (A.4)

i.e., d(Ci,j, Ci′,j′) ≥ d(Ci,j, C
min
i,j ) for all i′ 6= i and j′, where 1 ≤ i′ ≤ M1 and

1 ≤ j′ ≤ M2. If there are more than two codewords satisfying (A.4) for the codeword

Ci,j, we choose one and denote the chosen one as Cmin
i,j .

Now consider the genie-aided receiver for message 1 in Fig. A.1. Assume that

the codeword Ci,j is transmitted. In addition to the channel output YN , a genie

tells the receiver that one of the two codewords {Ci,j, C
min
i,j } is transmitted. Denote

P ′
e1,ij as the probability of error in the genie-aided channel when the codeword Ci,j is

transmitted, and define P ′
e1,i and P ′

e1 correspondingly. Clearly, P ′
e1 ≤ Pe1, since the

extra information from the genie can only improve the performance for message 1.

YN
AWGN

Channel

Genie

XN

},{
min

,, jiji CC

Figure A.1: Genie-aided receiver.

Define I as the subset (with M1

2
elements) of the values of the first index i with

smaller probability of error P ′
e1,i, i.e., P ′

e1,i1
≤ P ′

e1,i2
for any i1 ∈ I and any i2 /∈ I.

Given an index i with 1 ≤ i ≤ M1, define Ji as the subset (with M2

2
elements) of

the values of the second index j with smaller probability of error P ′
e1,ij, i.e., P ′

e1,ij1
≤

P ′
e1,ij2

for any j1 ∈ Ji and any j2 /∈ Ji. Under the assumption Pe1 = e−NE1 , we
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have P ′
e1,i ≤ 2e−NE1 for all i ∈ I, since P ′

e1 ≤ Pe1 = e−NE1 . Similarly, we have

P ′
e1,ij ≤ 4e−NE1 for all i ∈ I and j ∈ Ji, since P ′

e1,i ≤ 2e−NE1 for all i ∈ I.

Given any codeword Ci,j, the error probability P ′
e1,ij is

P ′
e1,ij =

∫ ∞

d(Ci,j ,Cmin
i,j

)

2

√
N

SNR

2π
e−N SNR

2
x2

dx ∼= e−N SNR
8

d2(Ci,j ,Cmin
i,j ). (A.5)

Hence we have

SNR

8
d2(Ci,j, C

min
i,j ) = lim

N→∞
− log P ′

e1,ij

N
≥ lim

N→∞
− log(4e−NE1)

N
= E1, (A.6)

i.e.,

d(Ci,j, C
min
i,j ) ≥

√
8E1

SNR
(A.7)

for all i ∈ I and j ∈ Ji. Define

θE1 , sin−1
(√

2E1

SNR

)
, (A.8)

then the interiors of any two surface caps Cones(θE1 , Ci,j) and Cones(θE1 , Ci′,j′) are

disjoint, where i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′ , and i 6= i′. This implies that the interiors

of
⋃

j∈Ji
Cones(θE1 , Ci,j) and

⋃
j∈Ji′

Cones(θE1 , Ci′,j) are disjoint, where i, i′ ∈ I and

i 6= i′. Therefore, we have

∑
i∈I

A
( ⋃

j∈Ji

Cones(θE1 , Ci,j)
)

= A
( ⋃

i∈I

⋃
j∈Ji

Cones(θE1 , Ci,j)
) ≤ A(SN−1) = Ω(N, π).

(A.9)
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Define Ĩ as the subset (with M1

4
elements) of I with smaller surface area, i.e.,

A
( ⋃

j∈Ji

Cones(θE1 , Ci,j)
) ≤ A

( ⋃
j∈Ji′

Cones(θE1 , Ci′,j)
)

(A.10)

for all i ∈ Ĩ and i′ ∈ I \ Ĩ. From (A.9), (A.10) we have

A
( ⋃

j∈Ji

Cones(θE1 , Ci,j)
) ≤ 4

Ω(N, π)

M1

(A.11)

for all i ∈ Ĩ. This completes the proof.

A.2 Minimum Distance Under Sum Area Con-

straint

We now derive the EER outer bound. The basic idea behind this EER outer

bound is illustrated in Fig. A.2. Pick an element from the set Ĩ in Lemma A.1 and

denote it as i∗. In Fig. A.2, the solid curve is the boundary of
⋃

j∈Ji∗
Cones(θE1 , Ci∗,j)

and the black dots are the codewords Ci∗,j. When 2 sin
θE1

2
is large compared to

dmin(
⋃

j∈Ji∗
{Ci∗,j}), it is necessary to include enough “empty” space around the

boundary. The extra empty area inside
⋃

j∈Ji∗
Cones(θE1 , Ci∗,j) reduces the minimum

distance dmin(
⋃

j∈Ji∗
{Ci∗,j}) due to the total area constraint 4Ω(N,π)

M1
imposed on

A(
⋃

j∈Ji∗
Cones(θE1 , Ci∗,j)), and this increases the probability of error for message 2

since all the codewords Ci∗,j’s considered above have different values for the second

index.

In order to estimate (find an upper bound for) dmin(
⋃

j∈Ji∗
{Ci∗,j}), we consider

the following problem:
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Figure A.2:
⋃

j∈Ji∗ Cones(θE1 , Ci∗,j) and codewords Ci∗,j ’s (black dots).

“What is the maximum of dmin(S) under the area constraint A(
⋃M2

k=1 Cones(θE1 , Sk))

≤ Ω(N,π)
M1

, where the maximization is over all spherical codes S = {S1, . . . , SM2} ⊂
SN−1?”

Note that dmin(
⋃

j∈Ji∗
{Ci∗,j}) is upper bounded by maxS⊂SN−1 dmin(S), since

|Ji∗ | = M2

2
∼= M2 and A

( ⋃
j∈Ji∗

Cones(θE1 , Ci∗,j)
) ≤ 4Ω(N,π)

M1

∼= Ω(N,π)
M1

by Lemma A.1.

Equivalently, we may consider the following problem:

“What is the minimum of A
( ⋃M2

k=1 Cones(θE1 , Sk)
)

under the distance constraint

dmin(S) ≥ d, where the minimization is over all spherical codes S = {S1, . . . , SM2} ⊂
SN−1?”

Clearly, these two problems are equivalent. Denote S∗ , argmaxS⊂SN−1dmin(S)

as the solution of the optimum spherical code satisfying the area constraint in the

problem and define d′3 , dmin(S∗). Based on Conjecture 6.1, we may assume that

the solution S∗ is the densest spherical code in a surface cap Cones(θ′1,W ) for some
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θ′1 > 0, where W is the north pole, or is the densest spherical code in the boundary

∂Cones(θ′1,W ), since the area around the boundary of Cones(θ′1,W ) is dominant

in high dimensions. Here the densest spherical code S∗ means that for any point

V ∈ ∂Cones(θ′1, W ), the surface cap Cones(2 sin−1 dmin(S∗)
2

, V ) must include at least

one codeword of S∗. We regard the densest spherical code in the surface cap (S∗ ⊂
Cones(θ′1, W )) and the densest spherical code in the surface cap boundary (S∗ ⊂
∂Cones(θ′1,W )) the same and use these two terms interchangeably.

We now formulate the tradeoff between E1 and E2. Our goal is to find an upper

bound for the distance d′3. Note that d′3 = sin θ′1 dmin(N − 1, N
N−1

R2) from Conjec-

ture 6.1, so we only need to find an upper bound for sin θ′1. Since

sinN θ′1 ∼=
Ω(N, θ′1)
Ω(N, π)

=
Ω(N, θ′1)

A(
⋃M2

k=1 Cones(θE1 , S
∗
k))

× A(
⋃M2

k=1 Cones(θE1 , S
∗
k))

Ω(N, π)

≤ Ω(N, θ′1)

A(
⋃M2

k=1 Cones(θE1 , S
∗
k))

× 1

M1

, (A.12)

we need to find an upper bound for the ratio of Ω(N, θ′1) to A(
⋃M2

k=1 Cones(θE1 , S
∗
k)).

We now derive a lower bound for A(
⋃M2

k=1 Cones(θE1 , S
∗
k)), and summarize the

result in the following lemma.

Lemma A.2 For the densest spherical code S∗ in ∂Cones(θ′1, W ) with the assump-

tion 2 sin
θE1

2
> d′3 = sin θ′1 dmin(N − 1, N

N−1
R2), we have the following properties.

(a) The surface cap Cones(ψ, W ) ⊂ ⋃M2

k=1 Cones(θE1 , S
∗
k), where ψ(R2, θ

′
1, θE1) is

defined as

ψ(R2, θ
′
1, θE1) = sin−1

(β +
√

β2 − 4αγ

2α

)
, (A.13)
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where

α = sin2 θ′1 cos2 φ + cos2 θ′1 (A.14a)

β = (2− 4 sin2 θE1

2
) sin θ′1 cos φ (A.14b)

γ = 1− 4 sin2 θE1

2
+ 4 sin4 θE1

2
− cos2 θ′1, (A.14c)

and

φ = cos−1
(
1− 1

2
d2

min(N − 1,
N

N − 1
R2)

)
. (A.15)

(b) The function dmin(·) in (A.15) can be substituted by any upper bound for dmin(·),
i.e., if define

ψ̃(R2, θ
′
1, θE1) = sin−1

( β̃ +

√
β̃2 − 4α̃γ̃

2α̃

)
(A.16a)

α̃ = sin2 θ′1 cos2 φ̃ + cos2 θ′1 (A.16b)

β̃ = (2− 4 sin2 θE1

2
) sin θ′1 cos φ̃ (A.16c)

γ̃ = 1− 4 sin2 θE1

2
+ 4 sin4 θE1

2
− cos2 θ′1 (A.16d)

φ̃ = cos−1
(
1− 1

2
d2

min,u(N − 1,
N

N − 1
R2)

)
, (A.16e)

where dmin,u(·) is any upper bound for dmin(·), then ψ̃ ≤ ψ, which implies that

Cones(ψ̃, W ) ⊂ ⋃M2

k=1 Cones(θE1 , S
∗
k).

(c) The function δ(R2, θ
′
1, θE1), defined as

δ(R2, θ
′
1, θE1) , ψ(R2, θ

′
1, θE1)− θ′1, (A.17)

decreases as the argument θ′1 increases, while R2 and θE1 are fixed.
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Proof: Consider the following four points on SN−1 with coordinates given in

the following (see Fig. A.3).

W = (0, 0, 0, . . . , 0, 1). North pole.

A = (sin ψ, 0, 0, . . . , 0, cos ψ). Angle ∠AOC = θE1 .

B = (sin θ′1, 0, 0, . . . , 0, cos θ′1).

C = (sin θ′1 cos φ, sin θ′1 sin φ, 0, . . . , 0, cos θ′1). Length BC = d′3.

W

O

B

A
C

δ
'

1
θ

SN-1

ψ

Figure A.3: Spherical code in surface cap Cones(θ′1,W ). AC = 2 sin θE1
2 , BC = d′3.

Here we assume that 2 sin
θE1

2
= AC > BC = d′3, so ψ > θ′1. Since S∗ is the

densest code in the boundary ∂Cones(θ′1,W ), the surface cap Cones(2 sin−1 d′3
2
, B)

must include at least one codeword of S∗, and denote this codeword as S∗m (S∗m ∈
∂Cones(θ′1,W )). Note that ∠AOC = θE1 and BC = d′3, so ∠AOS∗m ≤ θE1 . This

implies that A ∈ Cones(θE1 , S
∗
m) and consequently A ∈ ⋃M2

k=1 Cones(θE1 , S
∗
k). The

above argument can be applied to any point on the boundary ∂Cones(N, ψ), so we

conclude that Cones(ψ, W ) ⊂ ⋃M2

k=1 Cones(θE1 , S
∗
k).
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The angle ψ can be expressed as a function of R2, θ′1 and θE1 . From

d′3 = BC =
√

(1− cos φ)2 + sin2 φ sin θ′1, (A.18)

we have

φ = cos−1
(
1− 1

2
(

d′3
sin θ′1

)2
)

= cos−1
(
1− 1

2
d2

min(N − 1,
N

N − 1
R2)

)
. (A.19)

From

2 sin
θE1

2
= AC =

√
(sin ψ − sin θ′1 cos φ)2 + (sin θ′1 sin φ)2 + (cosψ − cos θ′1)2,

(A.20)

we have

(
sin2 θ′1 cos2 φ + cos2 θ′1

)
sin2 ψ − (

(2− 4 sin2 θE1

2
) sin θ′1 cos φ

)
sin ψ

+
(
1− 4 sin2 θE1

2
+ 4 sin4 θE1

2
− cos2 θ′1

)
= 0. (A.21)

Define

α = sin2 θ′1 cos2 φ + cos2 θ′1 (A.22a)

β = (2− 4 sin2 θE1

2
) sin θ′1 cos φ (A.22b)

γ = 1− 4 sin2 θE1

2
+ 4 sin4 θE1

2
− cos2 θ′1, (A.22c)

then

ψ = sin−1
(β +

√
β2 − 4αγ

2α

)
(A.23)
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is the desired root of the equation (A.21).

It is easy to verify that ψ decreases as we substitute the dmin(·) in (A.15) for any

upper bound for dmin(·). Finally, since the length AC

2 sin
θE1

2
= AC

=
√

(sin ψ − sin θ′1 cos φ)2 + (sin θ′1 sin φ)2 + (cos ψ − cos θ′1)2

=
√

2(1− sin ψ sin θ′1 cos φ− cos ψ cos θ′1)

=
√

2(1− sin ψ sin θ′1 − cos ψ cos θ′1 + sin ψ sin θ′1(1− cos φ))

=
√

2(1− cos δ + sin(θ′1 + δ) sin θ′1(1− cos φ)) (A.24)

is a constant (depending only on θE1) and the angle φ is a constant (depending only

on R2), the angle δ must decrease as θ′1 increases.

A.3 EER Outer Bound

We are now ready to derive the EER outer bound. Applying Lemma A.2, we

have

Ω(N, θ′1)

A(
⋃M2

k=1 Cones(θE1 , S
∗
k))

≤ Ω(N, θ′1)
Ω(N, θ′1 + δ(R2, θ′1, θE1))

∼= sinN θ′1
sinN(θ′1 + δ(R2, θ′1, θE1))

.

(A.25)

Define θ1 as the root θ of the equation Ω(N, θ) = Ω(N,π)
M1

, so θ′1 ≤ θ1 since Ω(N, θ′1) ≤
Ω(N,π)

M1
. Thus

sin θ′1
sin(θ′1 + δ(R2, θ′1, θE1))

≤ sin θ1

sin(θ1 + δ(R2, θ′1, θE1))
≤ sin θ1

sin(θ1 + δ(R2, θ1, θE1))
, (A.26)
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where the last inequality comes from the fact that δ(R2, θ
′
1, θE1) decreases as θ′1

increases.

From (A.12), (A.25), (A.26), we have

log(sin θ′1) = lim
N→∞

1

N
log

Ω(N, θ′1)
Ω(N, π)

≤ log
sin θ1

sin(θ1 + δ(R2, θ1, θE1))
−R1, (A.27)

i.e.,

sin θ′1 ≤
sin θ1 e−R1

sin(θ1 + δ(R2, θ1, θE1))
. (A.28)

Define

η1 , sin−1
( sin θ1 e−R1

sin(θ1 + δ(R2, θ1, θE1))

)
, (A.29)

thus

dmin(
⋃

j∈Ji∗

{Ci∗,j}) ≤ d′3 = sin θ′1 dmin(N − 1,
N

N − 1
R2) ≤ sin η1 dmin(N − 1,

N

N − 1
R2).

(A.30)

Therefore, we have shown that there exist a pair of codewords Ci∗,j1 and Ci∗,j2 such

that Pe2,i∗j1 and Pe2,i∗j2 are lower bounded by e−N sin2 η1Emd(R2,SNR) for sufficiently

large N .

A standard technique used in single-user channels is that an error exponent up-

per bound for the maximum probability of error of the codewords is also an error

exponent upper bound for the average probability of error of the codewords. 1 A

proof for this can be found in [33, Sec. 10.6]. Basically, this technique is shown

by applying the upper bound, say Eu, to half of the codewords with smaller prob-

1This is not true in multi-user channels. An counter-example can be found in [34]
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ability of error in the codebook, then the probability of error of every codeword in

the other half of the codebook (with larger probability of error) is lower bound by

e−NEu . Therefore, the average probability of error of the codebook is lower bounded

by 1
2
e−NEu by adding only the probabilities of error of the codewords from the other

half of the codebook (with larger probability of error), and a factor of 1
2

has no effect

on the error exponent.

Apply this argument to our case, we can write

1

|Ji|
∑
j∈Ji

Pe2,ij ≥ 1

2
e−N sin2 η1Emd(R2,SNR) (A.31)

for all i ∈ Ĩ. This can also be written as

∑
j∈Ji

Pe2,ij ≥ M2

4
e−N sin2 η1Emd(R2,SNR), (A.32)

since |Ji| = M2

2
. Thus the average probability of error for message 2 is lower bounded

by

Pe2 =
1

M3

M1∑
i=1

M2∑
j=1

Pe2,ij

≥ 1

M3

∑

i∈Ĩ

∑
j∈Ji

Pe2,ij

≥ 1

M3

∑

i∈Ĩ

M2

4
e−N sin2 η1Emd(R2,SNR)

=
1

M3

M1

4

M2

4
e−N sin2 η1Emd(R2,SNR)

=
1

16
e−N sin2 η1Emd(R2,SNR), (A.33)

so E2 ≤ sin2 η1Emd(R2, SNR).
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Finally, note that

θE1 = sin−1
(√

2E1

SNR

)

e−NR1 =
Ω(N, θ1)

Ω(N, π)
∼= sinN θ1, i.e., sin θ1 = e−R1 as N →∞, (A.34)

so we have

η1 = η(R1, R2, E1, SNR). (A.35)

Thus

E2 ≤ sin2 η(R1, R2, E1,
P

σ2
) Emd(R2,

P

σ2
) (A.36)

as claimed in Theorem 6.1.

The proof for

E1 ≤ sin2 η(R2, R1, E2,
P

σ2
) Emd(R1,

P

σ2
) (A.37)

is identical as the proof given above except exchanging the roles of message 1 and

message 2. This completes the proof.
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APPENDIX B

Proof of Theorem 9.1

The proof for Theorem 9.1 basically follows the derivation of the sphere packing

bound given in [33, Sec. 10.1 & Sec. 10.2] with a few modifications. We first review

the Neyman-Pearson theorem in Section B.1. Next, we derive an error exponent

upper bound for user 1 in Section B.2 (Lemma B.3) assuming that the input for

user 2 is fixed for some codeword C2,n∗ and is known at the receiver. Based on

Lemma B.3, we derive an error exponent upper bound for user 1 in Section B.3 by

transforming the original DMMAC into a genie-aided system. An error exponent

upper bound for user 2 can be derived similarly.

B.1 Neyman-Pearson Theorem

Consider a binary hypothesis testing problem with hypotheses H0 and H1 and

the corresponding output probabilities Q0 and Q1, i.e., P (Y = k|H0) = Q0k and

P (Y = k|H1) = Q1k. Accepting hypothesis H1 when H0 is actually true is called a

type I error, and the probability of this event is denoted by α. Accepting hypothesis

H0 when H1 is actually true is called a type II error, and the probability of this event
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is denoted by β. Denote D ⊂ K as the decision region for hypothesis H0, then

α =
∑

k/∈D
Q0k, β =

∑

k∈D
Q1k. (B.1)

We state the Neyman-Pearson theorem in the following lemma.

Lemma B.1 Define the Neyman-Pearson decision region as

DNP = {k : log
Q0k

Q1k

≥ T}, (B.2)

where T is the decision threshold, and let αNP and βNP be the probabilities of type I

and type II errors corresponding to this region. Suppose α and β are the probabilities

of type I and type II errors corresponding to some other decision region. Then α <

αNP implies β > βNP , and α = αNP implies β ≥ βNP .

Proof: See [33, Theorem 4.1.1].

Now consider a binary hypothesis testing with N independent but not identical

channel outputs. The lth channel output Yl is said to be in mode u ∈ U if P (Yl =

k|H0) = Q0k|u and P (Yl = k|H1) = Q1k|u, where U is the mode alphabet (with finite

elements), and Q0k|u and Q1k|u are the corresponding probability distributions for

H0 and H1, respectively. The probability distributions of the channel output YN are

given by

H0 : P (YN = Y N |H0) =
N∏

l=1

Q0Yl|ul
(B.3a)

H1 : P (YN = Y N |H1) =
N∏

l=1

Q1Yl|ul
, (B.3b)

where the lth channel output is assumed in mode ul.
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Define p as the composition of the modes, i.e., pu , |{l: ul=u}|
N

. Given the mode

vector uN = {u1, . . . , uN}, the Neyman-Pearson decision region for the binary hy-

pothesis testing with N independent channel outputs is

DNP = {Y N : log
P (YN = Y N |H0)

P (YN = Y N |H1)
≥ NT}

= {Y N :
1

N

N∑

l=1

log
Q0Yl|ul

Q1Yl|ul

≥ T}

= {Y N :
∑
u∈U

pu

∑

k∈K

|{l : Yl = k, ul = u}|
|{l : ul = u}| log

Q0k|u
Q1k|u

≥ T}

= {Y N :
∑
u∈U

pu

∑

k∈K
Qk|u(Y

N) log
Q0k|u
Q1k|u

≥ T}, (B.4)

where Qk|u(Y N) , |{l: Yl=k,ul=u}|
|{l: ul=u}| . Denote D(Q̃||Q̂|p) as the conditional discrimina-

tion function (Kullback-Leibler distance) between the probability distributions Q̃

and Q̂, i.e.,

D(Q̃||Q̂|p) =
∑
u∈U

pu

∑

k∈K
Q̃k|u log

Q̃k|u
Q̂k|u

. (B.5)

We summarize the result regarding the probabilities of type I and type II errors using

Neyman-Pearson decision region in the following lemma.

Lemma B.2 The probabilities of type I and type II errors based on Neyman-Pearson

decision region satisfy

e−ND(Qλ||Q0|p)−o(N) ≤ αNP ≤ e−ND(Qλ||Q0|p) (B.6a)

e−ND(Qλ||Q1|p)−o(N) ≤ βNP ≤ e−ND(Qλ||Q1|p), (B.6b)

where limN→∞
o(N)

N
= 0, p is the composition of the modes, Qλ is the “tilted” distri-

131



bution given by

Qλk|u ,
Q1−λ

0k|uQ
λ
1k|u∑

k∈K Q1−λ
0k|uQ

λ
1k|u

(B.7)

with 0 ≤ λ ≤ 1, and the decision threshold T in (B.4) is chosen equal to D(Qλ||Q1|p)−
D(Qλ||Q0|p).

Proof: See [33, Theorem 4.5.2 & Theorem 4.5.3].

Define

E(R, p, Q0, Q1) , min
D(Q̂||Q1|p)≤R

D(Q̂||Q0|p), (B.8)

where the minimization is over all distributions Q̂ satisfying D(Q̂||Q1|p) ≤ R. Apply-

ing the Lagrange multiplier method, it is shown in [33, Theorem 4.6.3] that the opti-

mal distribution Q̂ minimizing D(Q̂||Q0|p) under the constraint D(Q̂||Q1|p) ≤ R is

the tilted distribution Qλ with λ satisfying D(Qλ||Q1|p) = R. Therefore, Lemma B.2

can also be written as

e−NE(R,p,Q0,Q1)−o(N) ≤ αNP ≤ e−NE(R,p,Q0,Q1) (B.9a)

e−NR−o(N) ≤ βNP ≤ e−NR, (B.9b)

and the decision threshold T in (B.4) is chosen equal to T = R − E(R, p,Q0, Q1).

In addition, applying the Lagrange multiplier method for the minimization in (B.8),

E(R, p,Q0, Q1) can be simplified to

E(R, p, Q0, Q1) = max
s≥0

[
− sR− (1 + s)

∑
u∈U

pu log
( ∑

k∈K
Q

1
1+s

0k|uQ
s

1+s

1k|u
)]

. (B.10)

A proof for this can be found in [33, Theorem 4.6.4].
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B.2 Error Exponent Upper Bound with User 2’s

Input Fixed

Consider two codebooks CB1 = {C1,1, . . . , C1,M1} and CB2 = {C2,1, . . . , C2,M2}
with codeword length N for user 1 and user 2 in the DMMAC. Denote C1,m(l) and

C2,n(l) as the lth elements in the codewords C1,m and C2,n, respectively. Define the

compositions p(C1,m) and p(C2,n) of the codewords C1,m and C2,n as

pi(C1,m) , |{l : C1,m(l) = i}|
N

(B.11a)

pj(C2,n) , |{l : C2,n(l) = j}|
N

, (B.11b)

and the (joint) composition p(C1,m, C2,n) of C1,m and C2,n as

pij(C1,m, C2,n) , |{l : C1,m(l) = i, C2,n(l) = j}|
N

. (B.12)

Clearly, pi(C1,m) =
∑

j∈J pij(C1,m, C2,n) and pj(C2,n) =
∑

i∈I pij(C1,m, C2,n).

Now assume that the input for user 2 is fixed with some codeword C2,n∗ and this

information is known at the receiver (see Fig. B.1). We derive an error exponent

upper bound for user 1 in this channel under an additional assumption that the joint

compositions of the codewords C1,m’s and the codeword C2,n∗ are all the same, i.e.,

p(C1,m, C2,n∗) = p (B.13)

for some composition p, where 1 ≤ m ≤ M1. We summarize the result in the

following Lemma.

Lemma B.3 For the user 2’s input fixed DMMAC with a constant joint composition

codebook CB1, i.e., the joint composition of every codeword C1,m and user 2’s input
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DMMAC

Q
k|ij
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*,2 n
C

},...,{CB
1,11,11 M

CC=

Figure B.1: DMMAC with user 2’s input fixed.

C2,n∗ is the same composition p, the probability of error for user 1 is lower bounded

by

Pe1,n∗ =
1

M1

M1∑
m=1

Pe1,mn∗ ≥ e−NE(R1,p,Q)−o(N), (B.14)

where E(R1, p, Q) is defined as

E(R1, p, Q) , min
qk|j

max
s≥0

[
− sR1 − (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|j
)]

. (B.15)

Moreover, we have the following equality

min
qk|j

max
s≥0

[
− sR1 − (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|j
)]

=

max
s≥0

min
qk|j

[
− sR1 − (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|j
)]

, (B.16)

which means that we can exchange the order of min and max in (B.15).

Proof: The proof basically follows the derivation of the sphere packing bound

given in [33, Sec. 10.1 & Sec. 10.2].

Given any conditional probability distribution q = {qk|j|
∑

k∈K qk|j = 1,∀j ∈ J },
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construct a probability distribution qN on the channel output Y N as

qN(Y N) =
N∏

l=1

qYl|C2,n∗ (l). (B.17)

Suppose {Dm : m = 1, . . . , M1} is the partition of the output space KN into M1

decision regions. Select a decision region Dm∗ such that qN(Dm∗) ≤ 1
M1

. Consider

the following binary hypothesis testing

H0 : P (YN = Y N |H0) =
N∏

l=1

QYl|C1,m∗ (l)C2,n∗ (l)

H1 : P (YN = Y N |H1) = qN(Y N) =
N∏

l=1

qYl|C2,n∗ (l). (B.18)

The probabilities of type I and type II errors based on decision region Dm∗ are

α =
∑

Y N /∈Dm∗

P (YN = Y N |H0)

β =
∑

Y N∈Dm∗

P (YN = Y N |H1) = qN(D∗
m) ≤ 1

M1

. (B.19)

Note that α = Pe1,m∗n∗ . From Lemma B.2, the probabilities of type I and type II

errors based on Neymain-Pearson decision region DNP are

e−NE(R1,p,Q,q)−o(N) ≤ αNP ≤ e−NE(R1,p,Q,q)

e−NR1−o(N) ≤ βNP ≤ e−NR1 , (B.20)

where the decision threshold T in (B.4) is chosen equal to T = R1 − E(R1, p, Q, q).

Combining (B.19) and (B.20), we have

βNP ∼= 1

M1

≥ β, (B.21)
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which implies

Pe1,m∗n∗ = α & αNP ≥ e−NE(R1,p,Q,q)−o(N) (B.22)

by Lemma B.1. Since the conditional distribution q is chosen arbitrarily, we can

choose q to maximize the right hand side of (B.22), so

Pe1,m∗n∗ ≥ e
−N minqk|j E(R1,p,Q,q)−o(N)

. (B.23)

From (B.10) and (B.15), we have

E(R1, p, Q) = min
qk|j

E(R1, p, Q, q), (B.24)

so (B.23) can also be written as

Pe1,m∗n∗ ≥ e−NE(R1,p,Q)−o(N). (B.25)

A standard technique used in single-user channels is that an error exponent upper

bound for the maximum probability of error of the codebook is also an error exponent

upper bound for the average probability of error of the codebook. A proof for this

can be found in [33, Sec. 10.6]. Therefore, (B.25) implies that

Pe1,n∗ ≥ e−NE(R1,p,Q)−o(N). (B.26)

At last, we need to prove the equality in (B.16). For simplicity, define

fR(q, s) , −sR− (1 + s)
∑

i∈I,j∈J
pij log

( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|j
)
. (B.27)
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Note that from (B.10), (B.15) and (B.27), we have

E(R, p, Q) = min
qk|j

E(R, p,Q, q)

E(R, p, Q, q) = max
s≥0

fR(q, s). (B.28)

Assume

(q̆, s̆) = arg min
qk|j

max
s≥0

fR1(q, s), (B.29)

i.e.,

E(R1, p, Q) = E(R1, p, Q, q̆) = fR1(q̆, s̆). (B.30)

We want to show that (q̆, s̆) is a saddle point, i.e., fR1(q̆, s̆) satisfies

fR1(q̆, s) ≤ fR1(q̆, s̆) ≤ fR1(q, s̆) (B.31)

for all s ≥ 0 and conditional probabilities q. This implies that

min
qk|j

max
s≥0

fR1(q, s) = max
s≥0

min
qk|j

fR1(q, s) (B.32)

as claimed in (B.16).

From (B.28) and (B.30), we have

fR1(q̆, s) ≤ max
s≥0

fR1(q̆, s) = E(R1, p, Q, q̆) = fR1(q̆, s̆), (B.33)

so it remains to prove that fR1(q̆, s̆) ≤ fR1(q, s̆).

It is shown in [33, Theorem 4.6.2] and in [33, Section 10.1] that E(R, p,Q, q) and
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E(R, p,Q) are convex, nonincreasing and continuous as a function of R. E(R, p,Q) is

convex, so there is a line tangent to E(R, p,Q) at the value of R1. Since E(R, p,Q) =

minqk|j E(R, p,Q, q) ≤ E(R, p, Q, q̆) and E(R1, p, Q) = E(R1, p, Q, q̆), this line is also

tangent to E(R, p, Q, q̆) at the value of R1 (see Fig. B.2). From [33, Theorem 4.6.4],

the slope of the line tangent to E(R, p, Q, q̆) at the value of R1 is −s̆. Hence, we

have the following inequality

E(R1, p, Q)− s̆(R−R1) ≤ E(R, p, Q) (B.34)

for all R ≥ 0.

R
R

1
0

sslope

LineTangent 
⌣−=

),,,( qQpRE
⌣

),,( QpRE

Figure B.2: E(R, p,Q, q̆) and E(R, p,Q).

Define the tilted distribution Λ(Q, q, s) as

Λk|ij(Q, q, s) ,
Q

1
1+s

k|ij q
s

1+s

k|j
∑

k∈K Q
1

1+s

k|ij q
s

1+s

k|j

. (B.35)
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Define the rate function R(p,Q, q, s) as

R(p,Q, q, s) , D(Λ(Q, q, s)||q|p). (B.36)

From (B.8), (B.10) and (B.28), we have

E(R(p,Q, q, s), p, Q) = min
q̂k|j

E(R(p,Q, q, s), p, Q, q̂)

= min
q̂k|j

min
D(Q̂||q̂|p)≤R(p,Q,q,s)

D(Q̂||Q|p)

≤ min
D(Q̂||q|p)≤R(p,Q,q,s)

D(Q̂||Q|p)

≤ D(Λ(Q, q, s)||Q|p) (B.37)

for all s ≥ 0 and conditional probabilities q, where the last inequality is because

the probability distribution Λ(Q, q, s) satisfies the constraint in the minimization

(D(Λ(Q, q, s)||q|p) = R(p, Q, q, s) by definition). Note that fR1(q, s) can also be

written as

fR1(q, s) = −sR1 + D(Λ(Q, q, s)||Q|p) + sD(Λ(Q, q, s)||q|p)

= D(Λ(Q, q, s)||Q|p)− s(R1 − R(p,Q, q, s)), (B.38)

where the first equality is obtained by substituting the condition discrimination func-

tion defined in (B.5) into the right hand side of the equation. Combining (B.37)

and (B.38), we have

E(R(p,Q, q, s̆), p, Q)− s̆(R1 − R(p,Q, q, s̆))

≤ D(Λ(Q, q, s̆)||Q|p)− s̆(R1 − R(p,Q, q, s̆))

= fR1(q, s̆). (B.39)
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From (B.30), (B.34) and (B.39), we have

fR1(q̆, s̆) = E(R1, p, Q)

≤ E(R(p,Q, q, s̆), p, Q)− s̆(R1 − R(p,Q, q, s̆))

≤ fR1(q, s̆). (B.40)

This completes the proof.

B.3 Proof of Theorem 9.1

For any two codebooks CB1 = {C1,1, . . . , C1,M1} and CB2 = {C2,1, . . . , C2,M2}
with codeword length N , there are less than (N +1)|I||J | different joint compositions

of the codeword pairs. Let p be the most frequently occurring joint composition, i.e.,

|{(m,n) : p(C1,m, C1,n) = p̃, 1 ≤ m ≤ M1, 1 ≤ n ≤ M2}| ≤

|{(m,n) : p(C1,m, C1,n) = p, 1 ≤ m ≤ M1, 1 ≤ n ≤ M2}| (B.41)

for all joint compositions p̃. Define

Φ , {(m, n) : p(C1,m, C1,n) = p, 1 ≤ m ≤ M1, 1 ≤ n ≤ M2}, (B.42)

i.e., Φ is the (index) set of codeword pairs with joint composition p.
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Since

M3 =
∑

p̃

|{(m,n) : p(C1,m, C1,n) = p̃, 1 ≤ m ≤ M1, 1 ≤ n ≤ M2}|

≤
∑

p̃

|Φ|

≤ (N + 1)|I||J ||Φ|, (B.43)

we have |Φ| ∼= M3.

Define

Ψn , {m : (m,n) ∈ Φ, 1 ≤ m ≤ M1}

Υ , {n : |Ψn| ∼= M1, 1 ≤ n ≤ M2}, (B.44)

i.e., Ψn is the (index) set of codewords C1,m’s in CB1 with joint composition p with

the codeword C2,n, and Υ is the (index) set such that each codeword C2,n in Υ

has roughly M1 codewords C1,m’s in CB1 with joint composition p. We claim that

|Υ| ∼= M2. Otherwise, there exist some positive numbers ε and δ such that

|Φ| =
M2∑
n=1

|Ψn|

=
∑
n∈Υ

|Ψn|+
∑

n/∈Υ

|Ψn|

≤
∑
n∈Υ

eNR1 +
∑

n/∈Υ

eN(R1−δ)

≤ eN(R2−ε)eNR1 + eNR2eN(R1−δ)

≤ 2eN(R1+R2−min{ε,δ}), (B.45)

but this contradicts |Φ| ∼= M3.
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Now focus on the average error probability Pe1 for user 1. Further, we consider a

genie-aided system such that the index value of the transmitted codeword for user 2

is notified at the receiver by the genie. Denote the probability of error for user 1

in this new genie-aided system as P ′
e1,mn when the codewords C1,m and C2,n are

transmitted. Clearly, the average error probability for user 1 in the new genie-aided

system is no greater than that in the original DMMAC, since the extra information

from the genie can only improve the performance for user 1. Thus the average error

probability for user 1 can be lower bounded by

Pe1 =
1

M1M2

M2∑
n=1

M1∑
m=1

Pe1,mn (B.46a)

≥ 1

M1M2

M2∑
n=1

M1∑
m=1

P ′
e1,mn (B.46b)

≥ 1

M1M2

∑
n∈Υ

∑
m∈Ψn

P ′
e1,mn (B.46c)

& 1

M1M2

∑
n∈Υ

M1e
−NE(R1,p,Q) (B.46d)

∼= 1

M1M2

M2M1e
−NE(R1,p,Q) (B.46e)

= e−NE(R1,p,Q), (B.46f)

where the inequality “&” in (B.46d) is due to Lemma B.3 by noting that |Ψn| ∼= M1

for all n ∈ Υ, and the equality “∼=” in (B.46e) is due to |Υ| ∼= M2.

Hence we have proved that

E1 ≤ max
s≥0

min
qk|j

[
− sR1 − (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|j
)]

. (B.47)
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The proof for

E2 ≤ max
s≥0

min
qk|i

[
− sR2 − (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k|i
)]

(B.48)

is similar.

Finally, if we allow the two transmitters in the DMMAC to cooperate, we have a

single-user channel whose probability of error P ′′
e should be less than or equal to the

probability of system error Pe,sys in the original DMMAC. Thus

min{E1, E2} = Esys

≤ E ′′

≤ max
s≥0

min
qk

[
− s(R1 + R2)− (1 + s)

∑
i∈I,j∈J

pij log
( ∑

k∈K
Q

1
1+s

k|ij q
s

1+s

k

)]

(B.49)

where E ′′ is the error exponent of the transmitter-cooperate channel, and the last

inequality can be derived by applying [33, Theorem 10.1.5]. This completes the

proof of Theorem 9.1 by combining (B.47), (B.48), (B.49), and noting that the

EER(R1, R2) given in Theorem 9.1 is a union of the above three upper bounds over

all joint compositions p.
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