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CHAPTER 1

Introduction

Today’s world is flooded with communication systems, from systems that com-

municate between many small, wireless devices to systems that communicate with

spacecraft throughout the solar system and beyond. Regardless of the application,

the main goal is to transmit data reliably from one place to another, and commu-

nications theory has helped to greatly improve the capabilities of communication

systems.

A typical digital communication system consists of several components, as shown

in Fig. 1.1. At the transmitter, the digital source data is first compressed by the

source coder to remove redundancy and then coded by the channel coder for error-

correction capabilities. Next, the modulator places the digital data onto a carrier

frequency to be sent over the channel, the medium for communication. At the

receiver, the process is reversed: the received signal is first demodulated to recover

the digital data, then decoded by the channel decoder which can correct some errors

introduced by the channel, and finally uncompressed by the source decoder to obtain

a reproduction of the original source data.

The ever-increasing demand for higher data rates, higher reliability, and lower

complexity in communication systems drives research in all components of commu-
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Figure 1.1: A typical digital communication system block diagram.

nication systems, including channel coding, which is the component under investi-

gation in this dissertation. To increase the robustness of a communication system,

channel coding strategically adds redundancy to the transmitted data stream such

that the receiver can more accurately decode the data it receives, despite any errors

or noise introduced by the channel.

In 1948, Shannon developed fundamental limits on the performance of communi-

cation systems in his seminal works [5, 6]. For channel coding, Shannon derived the

channel capacity, which is the fundamental limit on how much data rate a channel

can support with arbitrarily small error probability. While the fundamental limits

have been known for many years, only fairly recent work on turbo codes [7] and low-

density parity-check (LDPC) codes [8,9] has resulted in practical codes that can come

close to capacity. However, these codes only approach capacity in the limit as code-

length approaches infinity and only on particular channels. Thus, the channel-coding

component still has much room for growth, particularly in the areas of finite-length

codes and coding for other channels. Different scenarios present different challenges

to channel coding, and this dissertation will address two such challenges.
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We first consider communication over a time-selective, frequency-non-selective

complex-fading channel where the fading is constant over a block of N symbols,

where N is the channel coherence time and is independent from block to block. The

fading models a variety of wireless communication channels where the transmitted

signal reaches the receiver through multiple paths and thus creates multipath fading.

In this case, both the amplitude and phase of the signal are altered by the channel,

making it more difficult for the receiver to correctly determine what the transmitter

sent. The challenge for communication over this channel is how to recover the data,

without knowledge of the channel state, through channel estimation and coding

techniques. The phase component of the fading is particularly damaging to the

signal because it allows signals to be more easily confused. For example, consider

binary phase-shift keying (BPSK) modulation where the signal constellation consists

of +
√

Es and −√
Es where Es is the energy per transmitted symbol. If the channel

changes the phase of the transmitted signal by 180◦, then each symbol is mapped

onto the other, and the receiver will decode every symbol incorrectly.

Next, we consider the challenge of designing practical, finite-length codes which

can achieve extremely low error rates. Such high performance is desired in many

scenarios. For example, in deep-space communications, since signals must travel

between Earth and various spacecraft scattered around the solar system and beyond,

the signal-to-noise ratios (SNR) are very small, making communication more difficult.

The challenge for channel coding is to provide high data rates with extremely low

bit-error-rates at small SNR values while still keeping complexity low. Due to the

complexity of analysis, we will investigate performance on a simplified channel—the

binary erasure channel (BEC), where bits are either received correctly or are erased

with probability ε. The analysis here will provide insight into code behavior and

code design for the BEC and may extend to more realistic channels as well.
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To address these two challenges, we will study low-density parity-check (LDPC)

codes. LDPC codes in conjunction with iterative decoding based on message-passing

algorithms have been shown to achieve excellent performance over a variety of chan-

nels, e.g., the binary erasure channel (BEC) [8], the additive white Gaussian noise

(AWGN) channel [10, 11], the Rayleigh fading channel where only amplitude is af-

fected by the fading [4, 12, 13], and interference channels [13–15]. In the limit as

codelength grows toward infinity, there exist sequences of LDPC codes which ap-

proach capacity for the BEC [8] and there exists a code which is within 0.0045 dB

of capacity for the AWGN channel [9].

LDPC codes were originally developed by Gallager [16] in the 1960’s. However,

the true potential of these codes was not realized until the 1990’s when turbo codes

were introduced [7]. Turbo codes were a major breakthrough in channel coding

because their performance could come close to capacity while all existing codes at

the time were still several decibels (dB) away from capacity. Further, turbo codes

only require low-complexity decoders that utilize iterative-decoding methods. The

similarities between turbo codes and LDPC codes led to the rediscovery of LDPC

codes. In fact, if the convolutional codes making up the turbo code are terminated to

generate a linear block code, then the turbo code can be viewed as a type of LDPC

code.

In this dissertation, we first investigate the use of LDPC codes for the time-

selective, frequency-non-selective complex-fading channel where both the amplitude

and the phase of the transmitted signal are altered by the channel. While LDPC

codes have shown their prowess in a variety of applications, including the BEC and

AWGN channels, their potential as capacity-achieving codes for more realistic wire-

less channels has not been established yet. However, experimental evidence as well as

some preliminary analytical results [4] have led to the conjecture [17] that LDPC—
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or in general, turbo-like codes—can achieve capacity for a wide range of channels.

Thus, we analyze and design LDPC codes for the complex-fading channel. To com-

bat the fading, we use a pilot-symbol-assisted scheme where known pilot symbols

are added to the LDPC code and used to help estimate the channel at the receiver.

Using infinite-length analysis, we investigate several iterative message-passing joint-

estimation-and-decoding strategies, optimal energy distribution between pilot and

data symbols, and LDPC code design. Several interesting results are obtained re-

garding unification of analysis and code design.

Next, we investigate the use of LDPC codes for very high reliability, i.e., very

low error rates, over the BEC. In the limit as codelength approaches infinity, LDPC

codes can approach capacity for the BEC. However, in practical applications, the

codelength must be finite and finite-length codes suffer from error floors, which limit

the achievable error rate. Error floors arise since the probability of error does not

continue to drop dramatically as the erasure probability decreases to small values

but instead tends to flatten out to what is known as the error floor, thus, making

it very difficult to reach low error rates. To achieve very low error rates desired

for high reliability while keeping power requirements low and codelengths relatively

short, the error floor must be lowered. We will investigate factors affecting the error

floor through finite-length analysis to gain insight into how finite-length LDPC codes

can be designed to improve error-floor performance. Previous work has shown that

error-floor performance of LDPC codes is determined by stopping sets [1]. Asymp-

totic analysis of weight and stopping-set enumerators, for codewords and stopping

sets which grow linearly with codelength, has aided in designing LDPC codes with

lower error floors but does not reflect the behavior of sublinearly-sized stopping sets,

which can dominate the iterative-decoding error-floor performance [2, 18–20]. Thus,

we provide a perspective on protograph-based and standard LDPC ensemble enu-
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merators, based on analysis of stopping sets with sublinear growth, which brings new

insight into sublinear stopping-set behavior, advantages of protograph structure, and

effects of precoding. We show for stopping sets that grow at most logarithmically

with codelength, the enumerators follow a polynomial relationship with codelength,

unlike the exponential relationship for linearly-growing stopping sets, and this poly-

nomial relationship can be approximately captured by a single parameter. Further,

we begin to address the question, “Given finite stopping-set sizes and finite code-

lengths, do the stopping sets follow the behavior predicted by linear or sublinear

analysis?”

This chapter provides the necessary background for LDPC codes and a brief intro-

duction to our research work. In Chapter 2, the first main topic of performance anal-

ysis and code design of LDPC codes for the time-selective, frequency-non-selective

complex-fading channel is investigated. Chapter 3 discusses the second main topic of

finite-length analysis of LDPC codes for the binary erasure channel. Finally, Chap-

ter 4 concludes the dissertation with a summary of the research and possible areas

of future work.

1.1 LDPC Background

In this section, the relevant background on LDPC codes will be provided, in-

cluding LDPC code structure and representation, decoding algorithms, performance

analysis for infinite-length and finite-length code ensembles, and protograph-based

structures.
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1.1.1 Binary Linear Block Codes

First, we provide a very brief overview of binary linear block codes, since LDPC

codes are binary linear block codes. A binary linear block code with codelength n

consists of a codebook C which is a linear subspace of {0, 1}n with dimension k. At

the transmitter, the channel coder uniquely maps information sequences of length k

to binary codewords of length n from the codebook C.

A binary linear block code can be described as the kernel of an (n−k)×n parity-

check matrix H where each row in H represents a parity check on the codewords.

Thus, an n × 1 vector c is a codeword in C if and only if Hc = 0.

1.1.2 LDPC Code Structure and Representation

An LDPC code is a binary linear block code characterized by a low density of 1’s

in its parity-check matrix H. A regular (dv,dc) LDPC code has exactly dv 1’s in each

column and exactly dc 1’s in each row of H. For irregular LDPC codes, the number

of 1’s in each column or row is not constant, so the number of 1’s in a column can

vary from column to column and the number of 1’s in a row can vary from row to

row. These increased degrees of freedom allow irregular codes to achieve improved

performance over regular codes.

Factor graphs [21] provide a useful, compact representation of LDPC codes and

are particularly useful for describing low-complexity iterative-decoding algorithms

for decoding LDPC codes. In a bipartite factor graph, each symbol (or bit) in the

codeword is represented by a variable node while each parity-check equation, i.e., each

row in H, is represented by a code check node. An edge connects a variable node

with a check node if the corresponding code symbol is present in the corresponding

parity-check equation. For example, the factor graph for a regular (3,6) LDPC code

is shown in Fig. 1.2.

7
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Figure 1.2: Factor graph for a regular (3, 6) LDPC code.

The degree of a node in the LDPC graph denotes the number of edges connected

to that node. Thus, for a regular (dv,dc) LDPC code, each variable node, which is

connected to dv check nodes via dv edges, has degree dv while each check node, which

is connected to dc variable nodes via dc edges, has degree dc. Irregular LDPC codes

are described by the distribution of degrees across the nodes in the factor graph, and

this degree distribution is specified by the degree polynomials

λ(x) =
dv∑
i=1

λix
i−1 ρ(x) =

dc∑
i=1

ρix
i−1, (1.1)

where λi (ρi) is the fraction of edges connected to variable (check) nodes with degree

i and dv (dc) is the maximum degree of a variable (check) node [11]. The rate of

an LDPC code is given by R = 1 − ∫ 1

0
ρ(x)dx/

∫ 1

0
λ(x)dx. For regular codes, this

expression simplifies to R = 1 − dv/dc.

The degree polynomials can also be denoted using the node perspective where

the fraction of nodes is considered instead of the fraction of edges. Specifically,

l(x) =

dv∑
i=1

lix
i r(x) =

dc∑
i=1

rix
i, (1.2)

where li (ri) is the fraction of variable (check) nodes with degree i. We will also

represent the degree polynomials from the node perspective where the number of
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nodes is considered instead of the fraction of nodes:

L(x) =
dv∑
i=1

Lix
i R(x) =

dc∑
i=1

Rix
i, (1.3)

where Li (Ri) is the number of variable (check) nodes with degree i.

The concept of a cycle in the graph is important for developing the infinite-length

analysis of an LDPC code. A cycle in the factor graph exists if there is a collection

of edges which connect a node back to itself. The girth of a factor graph is the length

of the shortest cycle. If the factor graph is cycle-free, then the graph is a tree. These

concepts are important in proving the optimality of the decoding algorithm, as will

be discussed in Section 1.1.4.

Given degree polynomials λ(x) and ρ(x), the standard LDPC ensemble will de-

note the ensemble of all possible codes (or equivalently, graphs) with the given degree

polynomials for a given codelength n. To generate the standard ensemble, first let

e = n∑dv
i=1 λi/i

denote the total number of edges in the graph, and let a variable-node or

check-node socket represent a position that an edge can connect to on that particular

node, so the total number of sockets associated with a node equals the degree of that

node. Next, enumerate all variable-node sockets from 1 to e and all check-node sock-

ets from 1 to e. Then, randomly permute the check-node-socket numbering. Finally,

connect variable-node socket i with check-node socket i with an edge for each i from 1

to e. Completing this process, for all possible permutations of the check-node-socket

numbering, generates the standard ensemble. Note that in the standard ensemble,

there exists the possibility that a single variable node is connected to a single check

node by multiple edges.
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Figure 1.3: Factor graph for a regular (3, 6) LDPC code extended to include channel
constraint nodes for a memoryless channel.

1.1.3 Decoding

At the receiver, the optimal decoding strategy that minimizes the probability

of codeword or symbol error is maximum-likelihood (ML) decoding, where the re-

ceiver chooses the codeword or symbol, respectively, with the highest probability

(likelihood) of being sent, given the received signal. However, ML decoding has high

complexity since it requires calculating the probability of each codeword or symbol

being sent. For LDPC codes, iterative, message-passing algorithms on the LDPC

factor graphs provide a more practical, low-complexity solution with faster decoding

and without much performance loss despite its suboptimality.

To decode on an LDPC factor graph, the factor graph is first extended to include

channel constraint nodes, which represent the information obtained from the received

symbols, based on the channel model, about each variable node in the LDPC code.

An example of such an extended factor graph is shown in Fig. 1.3 for a memoryless

channel, where each received symbol from the channel is only dependent on the

corresponding code symbol sent across the channel and is independent of all other

received symbols and code symbols.

In this dissertation, we investigate practical, iterative-decoding algorithms, based

on message-passing on factor graphs, for LDPC codes. Since decoding LDPC codes

10
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Figure 1.4: The binary erasure channel (BEC).

is simplest for the BEC, the decoding concepts will first be introduced for the BEC

and then extended to more realistic channels via the sum-product algorithm, which

can be applied to any channel.

Decoding for the BEC

On the BEC, symbols are either received correctly with probability 1− ε or they

are erased with probability ε, i.e., the receiver declares that the symbol is unknown,

as shown in Fig. 1.4. The decoding algorithm, which decodes the codewords sent

across the BEC, can be viewed as an iterative method of solving the linear system

Hc = 0 where H is the n(1−R)×n parity-check matrix and c is the n×1 codeword

for which we are solving.

At the receiver, the codeword c is partially received: some symbols are erased and

all other symbols are received correctly. Let ce represent the vector of erased symbols

and He be the matrix consisting of the corresponding columns of H. Similarly, let cne

represent the vector of correctly received symbols and Hne be the matrix consisting of

the corresponding columns of H. Then, the linear system Hc = 0 can be expressed

as Hece + Hnecne = 0, and this equation can be rearranged to obtain

Hece = Hnecne � d (1.4)

where d is a known quantity since all non-erased symbols are known at the receiver.

To solve for ce, the iterative decoding algorithm first looks for a row i in He with
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a single 1 in column j and zeros in all other positions, for some j ∈ {1, . . . , n}. If

such an i and j exist, then we can determine the value of the jth symbol of ce to be

dj , the jth value of d. Next, the ith row and jth column of He as well as the jth

symbol of ce can be moved to the known right-hand side of the linear system (1.4),

and the process is iteratively repeated until there is no longer a row in He with only

a single 1.

A graphical interpretation of this algorithm is shown in Fig. 1.5 where the variable

nodes take values from {0, 1, ?} where ? represents an erasure. At the beginning of

the algorithm, the variable nodes are initialized to the corresponding value (0, 1, or

?) that the receiver received from the channel. This initialization is equivalent to the

channel constraint nodes passing their received symbols along edges in the graph to

the corresponding code symbols. (The channel constraint nodes are not explicitly

shown in Fig. 1.5 to keep the figure simple.) Next, the binary number stored next

to each check node is initialized to zero. This number will keep track of the partial

binary sum of variable-node values for variable nodes connected to that particular

check node. In the first step, the variable nodes pass their value along the edges to

the check nodes. Next, the following two steps are iteratively processed.

Check-Node Step: Each check node computes the binary sum of its current

stored number and all non-erased incoming messages. The check node now stores

this new number. Each of the edges with non-erased messages are now removed from

the graph since they have already passed along all the information that they can.

This is equivalent to the removal of the jth column of He. Now, we look for check

nodes which have only one remaining edge connected to it. These are the check nodes

which can be resolved. This step is equivalent to looking for a row in He with only a

single 1. For each of these singly-connected check nodes, the binary sum stored next

to the check node is now passed along the remaining edge.
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Figure 1.5: An example of iterative decoding on a regular (3,6) LDPC code for the
BEC. Dashed edges represent edges on which new values are being passed. Bolded
numbers represent numbers whose values have been updated. The LDPC decoding
graph is shown (a) after initialization, (b) after the first check-node step, (c) after
the first variable-node step, (d) after the second check-node step, (e) after the sec-
ond variable node step, (f) after the third check-node step, and (g) after the third
variable-node step. At this point, all erasures have been resolved, so the receiver has
successfully decoded the codeword.
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Variable-Node Step: For each variable node, if it is connected to at least one

edge which now has a non-erased value, then the value of the variable node is now

known and is set to this non-erased value passed along the edge(s) from the check

node(s). This step is equivalent to setting the jth symbol of ce to dj. Note that

the BEC can only produce erasures, not errors, so messages cannot be conflicting.

Now, all edges with non-erased messages are removed from the graph. This step is

equivalent to the removal of the ith row of He. For each variable node which now

has a non-erased value, that value is now passed along all remaining edges connected

to that variable node.

The above two steps are iteratively repeated. The algorithm stops when either

there are no more edges in the graph or when no more values can be resolved. The

former case indicates that all the variable-node values are known, and thus, the

receiver has successfully decoded the codeword. The latter case occurs when all the

check nodes have either zero or at least two edges remaining. Thus, the algorithm

can proceed now further.

An equivalent description of this algorithm is useful for understanding the gen-

eralization of this algorithm to the sum-product algorithm, which will be described

in the next section. This equivalent description is as follows. The initialization step

remains the same.

Check-Node Step: At each check node, the outgoing message on edge e is

calculated as follows, for each edge connected to that particular check node. If at

least one of the incoming messages to the check node from edges other than edge e

is an erasure, then the outgoing message on edge e will also be an erasure. However,

if all the incoming messages to the check node from edges other than edge e are not

erasures, then the outgoing message on edge e is computed as the binary sum of all

the incoming messages from edges other than edge e. Note that this step is simply
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calculating the parity check at the check node.

Variable-Node Step: At each variable node, the outgoing message on edge e

is calculated as follows, for each edge connected to that particular variable node. If

at least one of the incoming messages to the variable node from edges other than

edge e is not an erasure, then the value of the variable node is known to be the value

of the non-erased incoming message(s), and the outgoing message on edge e takes

that value. Note that on the BEC, there are no errors, only erasures, so there will

never be a conflict between incoming messages. If all of the incoming messages to the

variable node from edges other than edge e are erasures, then the outgoing message

on edge e is also an erasure.

The algorithm stops when either all variable-node values are known or when no

further progress can be made, i.e., no more erasures can be determined.

If the iterative decoder successfully decodes the entire codeword, as in Fig. 1.5,

then the maximum-likelihood decoder will also succeed in decoding the codeword

correctly. However, the converse is not true, i.e., there are cases where the iterative

decoder fails but the maximum-likelihood decoder succeeds. For example, Fig. 1.6

provides a scenario where the iterative decoder fails to decode three variable nodes.

However, by closer inspection, observe that the only possible way to satisfy all check-

node constraints is for all three of these variable nodes to take the value 0. Thus,

the maximum-likelihood decoder will be able to decode these three variable nodes,

and hence decode the entire codeword correctly. This example illustrates the subop-

timality of the iterative decoder.

The Sum-Product Algorithm

The sum-product algorithm is a general, low-complexity, iterative-decoding, belief-

propagation algorithm described as a message-passing algorithm on a factor graph [22,
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Figure 1.6: An example of iterative decoding on a regular (3,6) LDPC code for
the BEC where iterative decoding fails but maximum-likelihood decoding succeeds.
When the iterative decoder receives the channel values given in (a), then at the next
iteration, the decoder stops at (b) with three variable nodes still erased and can
decode no further.

23]. The concept can be implemented for any channel, and for the BEC, it reduces

down to the decoding algorithm given above. The sum-product algorithm can be con-

sidered a generalization of the BEC decoding algorithm. In this section, we describe

a specific application of the sum-product algorithm to LDPC codes.

The sum-product algorithm uses message-passing on the LDPC graph to calcu-

late maximum-likelihood symbol probabilities for each variable node in the LDPC

codeword to determine the most likely value of that particular variable node. We

describe below how the sum-product algorithm is implemented to decode the kth

variable node in the codeword for each k ∈ {1, . . . , n} where n is the codelength.

First, consider a cycle-free factor graph. Then, the graph can be described as a

tree with the kth variable node at the root. The general idea behind the sum-product

algorithm is to split the evaluation and marginalization of a global function to local

functions which are only dependent on a small neighborhood in the tree. Beginning

with the leaf nodes, the local functions are calculated up the tree until the root node
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is reached, resulting in the desired marginalized function for the kth variable node.

For LDPC codes, the sum-product algorithm is used to generate symbol prob-

abilities p(z, ak = a) for each variable node ak and each possible symbol value a,

where z is the vector of received symbols. The global function to be marginalized

is p(z, a) where a is the vector (a1, . . . , an). This global function can be factored as

follows.

p(z, a) = p(z|a)p(a) =
∏

k

p(zk|ak)
1

|C|
∏

j

I(jth check node is satisfied) (1.5)

where the second equality follows for memoryless channels and equiprobable code-

words, |C| is the size of the codebook C, and I(·) is the indicator function which is

used here to represent the parity-check equations of the parity-check matrix. The

desired marginalized function is

p(z, ak = a) =
∑

a:ak=a

p(z, a) =
∑

a:ak=a

∏
k

p(zk|ak)
1

|C|
∏

j

I(jth check node is satisfied).

(1.6)

Thus, the symbol probability p(z, ak = a) is split into functions with dependence

only on local areas in the tree.

Fig. 1.7 shows the computation on a tree representing the neighborhood of ak in

the graph. Let N (c) denote the immediate neighbors of check node c and N (c)\v
denote the immediate neighbors of c excluding variable node v. Beginning at each

leaf variable node ai, p(zi|ai) is calculated and sent up the tree to the adjacent check

nodes c′. Each check node c′ then calculates the following expression for the variable

node aj above c′ in the tree.

p(zj, aj = a) =
∑

ai∈N (c′)\aj

I(N (c′) satisfies parity check c′)
∏

l:al∈N (c′)\aj

p(zl|al) (1.7)
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Figure 1.7: Sample tree for calculating p(z, ak = a) for a regular (3, 6) LDPC code.
Typically, the trees will have greater depth than shown here.

where zj represents all received symbols in the tree below aj . The process is continued

until the root node is reached and p(z, ak = a) is calculated. Finally, the value for

ak is chosen to maximize p(z, ak = a).

Note that the sum-product algorithm does not need separate trees and separate

sets of computation to decode each variable node. The messages passed along the

edges in the graph appear in the final marginalized function for many variable nodes

ak, so the computed messages can be reused for many p(z, ak = a) calculations. By

passing messages iteratively through the graph, the algorithm can simultaneously

perform computations for all the variable nodes. Specifically, at each iteration, each

node sends messages to its neighboring nodes based on the information it has received

so far from the rest of the graph. Each additional iteration is equivalent to adding

another layer to the computation tree for every variable node. This iterative process

is successful because the messages are based on local functions whose contributions

are passed along and processed through the graph just as they are passed along and

processed up through the computation trees.

If the factor graph is cycle-free, the sum-product algorithm converges after a finite
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number of iterations [22]. Thus, at the termination of the algorithm, p(z, ak = a) is

computed for each variable node ak and each possible symbol value a. By choosing

ak to maximize p(z, ak = a), the result is maximum a posteriori symbol detection. If

the graph has cycles, then the sum-product algorithm is suboptimal but still provides

a good low-complexity, iterative-decoding solution.

The particular implementation of the sum-product algorithm used in this disser-

tation is as follows. The message from a variable node to a code check node, the

message from a code check node to a variable node, and the message from the chan-

nel check node to the kth variable node are denoted by μvc, μcv, and qk respectively,

for k = 1, . . . , n, as shown in Fig. 1.3.

Since ak is binary, instead of sending two messages p(zk|ak = 0) and p(zk|ak = 1),

the message-passing can be simplified by using messages in the form of log-likelihood

ratios, e.g., log p(zk|ak=0)
p(zk|ak=1)

. Thus, communication from one node to another can be

completed with a single message.

Using messages in the form of log-likelihood ratios, the initial message from the

kth channel node to the kth variable node is

qk = log
P (zk|ak = 0)

P (zk|ak = 1)
. (1.8)

We can express the evolution of the log-likelihood messages through the factor graph

as follows [24]. At the kth variable node vk with degree dk, let ci for i = 0, · · · , dk−1

represent the dk code check nodes which are connected to the kth variable node.

Then the outgoing message to the code check node c at the lth iteration is

μl
vkc = qk +

dk−1∑
i=0,ci �=c

μl−1
civk

. (1.9)

At the ith code check node ci with degree di, let vj for j = 0, · · · , di−1 represent the
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di variable nodes which are connected to the ith code check node. Then the outgoing

message to the variable node v at the lth iteration is

μl
civ

= 2 tanh−1[

di−1∏
j=0,vi �=v

tanh
μl

vjci

2
]. (1.10)

At the lth iteration, the kth variable node can be decoded as follows. Compute

Ql
k = qk +

dk−1∑
i=0

μl−1
civk

= μl−1
cvk

+ μl
vkc (1.11)

for any code check node c connected to vk. Then, we decode ak = 0 if Ql
k > 0 and

ak = 1 if Ql
k < 0.

Note that at each iteration, all the messages to all n variable nodes can be com-

puted simultaneously, and all the messages to all check nodes can be computed simul-

taneously. Further, at each iteration, the algorithm produces a best-guess value for

each of the n variable nodes; separate message-passing algorithms are not necessary

to decode each variable node. So, the sum-product algorithm provides an efficient

iterative-decoding method for decoding.

1.1.4 Performance Analysis

Analysis of LDPC code performance has shown that LDPC codes can approach

capacity on a number of channels. For example, certain sequences of LDPC codes

are proven to be capacity approaching on the binary erasure channel (BEC) [8].

Experimental evidence suggests that LDPC codes can also approach capacity on the

AWGN channel [10,11] as well as the Rayleigh fading channel where only amplitude

is affected by the fading [4]. This capacity-approaching ability of LDPC codes is an

asymptotic property where in the limit as codelength approaches infinity, arbitrarily
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low error probability can be achieved.

In this dissertation, we will investigate the performance of LDPC codes with the

iterative-decoding schemes discussed in Section 1.1.3. The analysis will be divided

into two main categories: infinite-length analysis and finite-length analysis.

In infinite-length analysis, the performance is computed in the limit as the code-

length approaches infinity. A method called density evolution, discussed in the next

subsection, can be used to calculate this performance. As the codelength approaches

infinity, the effect of cycles is eliminated since the probability of a finite cycle ex-

isting in the graph approaches zero. Thus, density evolution assumes a cycle-free

code. The end result of density evolution is the threshold—the smallest SNR (or

equivalently the largest erasure probability for the BEC) such that arbitrarily low

error probability can be achieved with a particular LDPC code ensemble.

In all practical scenarios, the codelength must be finite. Thus, to capture the

true achievable performance, finite-length analysis is needed. A typical probability

of error versus erasure probability curve for iteratively-decoded LDPC ensembles for

the BEC is provided in Fig. 1.8. The plot shows that performance of LDPC codes

can be divided into two main regions: the threshold region and the error-floor region.

In the threshold or waterfall region, seen at higher erasure probabilities, the bit error

rate drops off quickly. In the error-floor region, seen at lower erasure probabilities,

the bit error rate begins to level off to an error floor even with large codelengths.

Empirical evidence shows a trade-off between the level of the error floor and the

threshold for LDPC codes [25, 26] and turbo codes [27], but this tradeoff has not

been proven to exist.

An upper bound on the maximum-likelihood decoding performance follows sim-

ilar trends as the iterative-decoding performance, as shown in Fig. 1.9. Assuming

this upper bound is fairly tight, Fig. 1.9 shows that the presence of an error floor
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Figure 1.8: Ensemble block-error probability vs. erasure probability for iteratively-
decoded regular (3,6) LDPC ensembles with codelength n ∈ {2i : i = 1, . . . , 10}
for the BEC [1]. In the ensemble block-error probability expression, EG[P IT

B (ε)],
G is a particular LDPC graph realization, the expectation is taken over all possible
graphs G in the ensemble, B denotes block-error probability, and IT denotes iterative
decoding.

is a result of the structure of the LDPC ensembles and is not introduced by the

suboptimal iterative-decoding algorithm. Using iterative decoding does result in

performance degradation, but this degradation is fairly small in the error-floor re-

gion, and iterative decoding has the advantage of greatly reduced complexity com-

pared to maximum-likelihood decoding. Determining the error-floor performance of

these decoders relies on analyzing codewords and weight enumerators for maximum-

likelihood decoding and stopping sets and stopping-set enumerators, described in

Section 1.1.6, for iterative decoding. In this dissertation, the influence of stopping

sets on error-floor performance will be analyzed since stopping sets describe the more

practical iterative-decoding algorithm and since more tractable approximations and
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analysis can be obtained.

1.1.5 Infinite-Length Analysis with Density Evolution

For iterative decoding schemes, density evolution provides a practical method

for analyzing the performance of regular and irregular LDPC code ensembles [10].

Analysis using density evolution involves evaluating the probability density functions

(pdfs) of the messages exchanged between the nodes of the factor graph, given the

pdfs of the initial messages.

Due to symmetry in the channel and in the message-passing algorithm, we can

assume, in the performance analysis, that the all-zero codeword is transmitted. Thus,

the pdfs of the messages from the channel constraint nodes are calculated using this
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assumption. For example, consider the AWGN channel where the kth channel output

is

yk =
√

Es(−1)xk + n (1.12)

where Es is the transmitted symbol energy, xk ∈ {0, 1} is the kth channel input, and

n is the Gaussian noise with variance σ2. The initial log-likelihood message for the

kthe code symbol is

qk = log
P (yk|xk = 0)

P (yk|xk = 1)
=

2
√

Es

σ2
yk. (1.13)

Thus, the initial message pdf from the kth channel constraint node to the kth variable

node, given that the all-zero codeword was transmitted, is

f(qk) =
1√

2πσ2
qk

exp

{
− 1

2σ2
qk

(qk − 2Es

σ2
)2

}
, (1.14)

i.e., qk is a Gaussian random variable with mean 2Es/σ
2 and variance σ2

qk
= 4Es/σ

2.

Note that the initial message pdf (1.14) is the same pdf for all k; thus, only one pdf

is needed to describe all messages from channel constraint nodes to variable nodes.

Once the pdf of the messages from the channel constraint nodes, which is also the

pdf of the initial outgoing messages from the variable nodes to the check nodes, is

calculated, then standard pdf transformations described in [10] can be used to itera-

tively trace the pdfs of the messages as they are exchanged back and forth between

the variable and check nodes. Note that the message pdf from the channel constraint

nodes does not change with iterations. At each iteration, the density-evolution al-

gorithm computes the average message pdf for all of the outgoing messages from all

of the variable nodes, by averaging over all possible variable-node degrees. Thus,

a single, average pdf describes all of the outgoing messages from all of the variable

nodes. The same is true for the outgoing messages from the check nodes. Thus,

density evolution only requires tracing a single pdf as it evolves through the graph.
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Detailed description of this evolution can be found in [10].

Let f l(q) be the pdf associated with the log-likelihood ratio for a variable node

at iteration l. For a given SNR, density evolution is used to determine if the error

probability at iteration l, calculated as
∫ 0

−∞ f l(q)dq, decreases to arbitrarily small

values as l increases. By searching over SNR values and performing density evo-

lution, we find the threshold—the smallest SNR value for which arbitrarily small

error probability can be achieved. This threshold value provides a single metric for

capturing the infinite-length performance of an LDPC code ensemble.

Under the standard assumptions of large girth (compared to the iteration num-

ber), the neighborhood of a graph is essentially a tree. In this case, all messages

passed in the factor graph are independent and all calculated pdfs are exact. In the

practical situation where cycles are present in the graph, the average behavior of the

code converges to the cycle-free case as the length of the code increases [10].

1.1.6 Finite-Length Analysis

Analyzing the finite-length iterative-decoding performance of LDPC codes over

the BEC requires investigation of stopping sets [1]:

Definition 1.1. For a given bipartite graph describing an LDPC code, a stopping

set S is a subset of the variable nodes such that the check nodes connected to S are

connected to S at least twice.

For example, Fig. 1.10 provides examples of how a set of variable nodes can be

connected to the check nodes such that a stopping set is or is not formed. Fig. 1.10(a)

shows an example of a stopping set while Fig. 1.10(b) is not a stopping set since one

check node is connected exactly once to the set of variable nodes.

Defining a maximal stopping set on a subset S of the variable nodes to be the

(unique) largest stopping set within S, it can be shown that iterative decoding on
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(a) (b)

Figure 1.10: Examples showing how a set of variable nodes can be connected to the
check nodes such that (a) it is a stopping set and (b) it is not a stopping set.

the graph fails exactly on the maximal stopping set within the set of erased variable

nodes [1]. Thus, the stopping sets provide a method of calculating the probability of

error of a code.

To calculate the average performance of an LDPC code ensemble, the average

number of maximal stopping sets must be calculated and this calculation is largely

a combinatorial problem. However, evaluating the number of maximal stopping sets

requires a recursion, e.g., in [28, 29], which has high complexity—O(n3) in time and

O(n2) in space. Therefore, an upper bound on performance is determined based on

calculating the average number of stopping sets of a given size regardless of whether

or not they are maximal.

As shown in [30], the upper bound on performance is found through evaluation

of the ensemble stopping-set enumerators given by s(n, v) where n denotes code-

length and v denotes stopping-set size. The quantity s(n, v) can be calculated as the

expected number of stopping sets of size v in an LDPC ensemble with codelength

n. Then, for iteratively-decoded LDPC ensembles, the expected probability of block

error resulting from stopping sets of size v over a BEC with erasure probability ε can

be upper bounded by

EG[P IT
B (n, v, ε)] ≤ εvs(n, v) (1.15)

where G is a particular LDPC graph realization, the expectation is taken over all

possible graphs G in the ensemble, B denotes block-error probability, and IT denotes

iterative decoding. Based on numerical evaluations in [30], this bound appears to be
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quite tight in the error-floor region. Since this bound is much easier to evaluate than

the exact expression, it can provide insight into the error-floor behavior of LDPC

ensembles.

To see how to arrive at this upper bound, we first condition on the pattern of

erased symbols U as follows. Let V ⊆ U ⊆ W be a candidate stopping set, where

W is the set of all variable nodes, G is a graph in the ensemble, and s.s. denotes

stopping set(s). Then, for a given graph G,

P IT
B (n, v, ε) =

∑
U⊆W

P (U erased)P IT
B (n, v, ε|U erased)

=
∑
U⊆W

P (U erased)P (the maximal s.s. V ⊆ U in G has size v)

≤
∑
U⊆W

P (U erased)P (∃ a s.s. V ⊆ U with size v in G)

=
∑
U⊆W

ε|U |(1 − ε)n−|U |P (
⋃

V ⊆U :|V |=v

{V is a s.s. in G})

≤
∑
U⊆W

ε|U |(1 − ε)n−|U | ∑
V ⊆U :|V |=v

P (V is a s.s. in G)

=
∑

V ⊆W :|V |=v

I(V is a s.s. in G)
∑

U :V ⊆U⊆W

ε|U |(1 − ε)n−|U | (1.16)

where I(·) is the indicator function. The last equality follows from a change in

the order of the summations and since P (V is a s.s. in G) only takes values 0 or 1.

Taking the expectation over all graphs G in the ensemble, we obtain

EG[P IT
B (n, v, ε)] ≤ EG

⎡
⎣ ∑

V ⊆W :|V |=v

I(V is a s.s. in G)

⎤
⎦ n∑

u=v

(
n − v

u − v

)
εu(1 − ε)n−u

= EG [# s.s. with size v in G]

n∑
u=v

(
n − v

u − v

)(
ε

1 − ε

)u

(1 − ε)n

= s(n, v)(1 − ε)n
n−v∑
i=0

(
n − v

i

)(
ε

1 − ε

)i+v

(1.17)
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where the first expression follows since the second summation in (1.16) is only de-

pendent on the sizes of the sets U, V, and W . Since the summation in (1.17) is a

binomial expansion, the right-hand side of (1.17) simplifies as follows:

EG[P IT
B (n, v, ε)] ≤ s(n, v)(1 − ε)n

(
ε

1 − ε

)v (
1 +

ε

1 − ε

)n−v

= s(n, v)(1 − ε)n

(
ε

1 − ε

)v (
1

1 − ε

)n−v

= s(n, v)εv. (1.18)

This derivation shows that the inequality in the bound arises from two main

sources: (1) finding existence of all stopping sets of size v rather than finding only

maximal stopping sets and (2) the union bound on {V ⊆ U : |V | = v}.
To see why this bound on block-error probability is useful for investigating error-

floor performance, consider the union bound over {V ⊆ U : |V | = v}. When ε is

small (a high-reliability channel), the most probable sets U of erased variable nodes

are those with small size |U |. Since |U | is small, the number of sets V ⊆ U with

|V | = v is also small and thus, the union bound is tight. However, when ε is large (a

low-reliability channel), then the most probable sets U of erased variable nodes are

those with large size |U |. Since |U | is large, there exists many different sets V ⊆ U ,

with |V | = v, with correlated probabilities P (V is a s.s.). Thus, the union bound

becomes loose. This shows that the upper bound in (1.15) is loose at large ε but is

tighter at low ε. Thus, this bound is useful for studying error-floor behavior, which

occurs at low ε.

For standard ensembles, the stopping set enumerator can be calculated through

combinatorics as follows [30]:

s(n, v) =

L′(1)∑
e=0

coef{∏dv

i=1 (1 + yxi)Li , yvxe} coef{∏dc

i=1 [(1 + x)i − ix]Ri , xe}(
L′(1)

e

) (1.19)
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where e is the number of edges in the stopping set and coef{p(x), xk} is the coefficient

of the xk term in the polynomial p(x). The first term in the numerator represents

the number of ways to choose v variable nodes such that there are exactly e edges

emanating from them. The second term in the numerator represents the number of

ways to connect e edges to a subset of the check nodes such that a stopping set is

formed, i.e., such that all check nodes are connected to at least two of the e edges

or to none at all. The denominator represents the number of ways to choose e edges

out of the L′(1) total edges in the graph.

1.1.7 Protograph-Based Structure

The introduction of protographs [31] produced low-complexity LDPC-decoder

implementations without sacrificing performance. By introducing more structure

into the LDPC graph, protographs provide a compact description of the LDPC code,

resulting in a savings in the number of gates/transistors needed to implement the

graph description in a field-programmable gate-array (FPGA) or other integrated

circuit (IC).

A protograph is an LDPC code which typically consists of a small number of

nodes. Each variable (check) node in the protograph will denote a variable (check)

node type in the final LDPC code. Similarly, every edge in the protograph will

denote an edge type in the final LDPC code.

To generate an LDPC ensemble based on a protograph structure, we first replicate

the protograph to create a total of Z copies. Consider a particular edge type e which

is connected to variable-node type i and check-node type j. We randomly permute

the Z connections from the Z type-e edges to the Z type-j check nodes. This

creates all possible combinations of connections between variable nodes of type i

and check nodes of type j such that each node has one and only one connection.
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This permutation is done on all edge types in the protograph. Fig. 1.11 provides an

example of this protograph-expansion procedure.

Note that multiple connections between two nodes in the protograph are allowed

but do not imply that individual nodes in the final code are connected multiple times.

A simple way to guarantee that no multiple connections occur between individual

nodes in the final code is to first expand the protograph by a small number Z such

that no multiple connections exist in this intermediate protograph. Then, expand

the intermediate protograph to the final desired code size.

Protographs enforce structure on an LDPC code, so protograph-based ensembles

are a subset of the standard ensemble. Thus, enforcing protograph structure can be

viewed as an expurgation technique.

Implementing a decoder for a protograph-based code only requires the storage

of the original protograph; the entire LDPC code graph does not need to be stored.

This results in a savings of a factor of roughly Z in the storage space needed on the

decoder chip (often an FPGA). The permutation of the edges can be stored succinctly

when circulant matrices can be used to describe the particular permutations used.

Circulant matrices are simply square matrices which can be generated by summing

shifted versions of the identity matrix.

To see how circulant matrices can be used to describe a protograph-based LDPC

code, consider a protograph with M variable-node types and J check-node types

connected via E edge types. The parity-check matrix H is subdivided into MJ

submatrices of size Z ×Z where each submatrix represents the connections between

variable nodes of a type i and check nodes of type j for some i ∈ {1, . . . , M} and

j ∈ {1, . . . , J}. For each edge type connecting variable-node type i and check-node

type j in the protograph, generate a unique shifted version of the identity matrix.

After summing these shifted identity matrices, the result is the submatrix of H
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0 0 1 0  0 0 0 1  0 0 0 0  0 0 0 0
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0 1 0 0  0 1 0 0  0 0 1 1  0 0 0 0
0 0 1 0  0 0 1 0  1 0 0 1  0 0 0 0
0 0 0 1  0 0 0 1  1 1 0 0  0 0 0 0
1 0 0 0  1 0 0 0  0 1 1 0  0 0 0 0

0 0 0 0  0 0 0 0  0 0 1 0  0 1 1 0
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0 0 0 0  0 0 0 0  1 0 0 0  1 0 0 1
0 0 0 0  0 0 0 0  0 1 0 0  1 1 0 0

(c)

(d)

H =

A B C

1 432

Figure 1.11: Example of a protograph expansion using circulant matrices: (a) the
protograph, (b) Z copies of the protograph, (c) the final code generated from (b)
through permutation of edges within each edge type, and (d) the parity-check matrix
H for the code represented in (c).
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corresponding to connections between type-i and type-j nodes. An example of this

type of code generation is given in Fig. 1.11. To represent protograph-based LDPC

codes built from circulants, one only needs to know the protograph structure, the

number of copies Z in the expansion, and the E shift values corresponding to the

amount of shift from an identity matrix for each edge type.

In a decoder implementation, message-passing can be accomplished with Z serial

passes through the stored protograph structure. Each of the Z passes corresponds

to one of the Z protograph copies in the full LDPC code. Specifically, to complete

one set of message transfers from the variable nodes to the check nodes or vice versa

(see steps in Section 1.1.3), Z passes through the protograph structure are completed

where in each pass, messages are passed in one direction along each edge in one of

the Z protograph copies. In other words, message transfer within one protograph

copy is computed simultaneously and each protograph copy is processed serially.

Flarion Technologies implements another version of protograph decoding where

each edge type is processed serially [32]. All messages traveling in a given direction

on edges of a particular type are computed simultaneously, and the decoder moves

serially through each edge type. An advantage of this method is that there are no

wasted computation cycles since all nodes which are processed simultaneously have

the same degree. In the previous method, processing one protograph copy requires

waiting for the highest degree node to finish processing before moving on to the next

protograph copy.

Experimental evidence suggests that enforcing protograph structure on an LDPC

code does not compromise the threshold (infinite-length) or error-floor (finite-length)

performance significantly. In fact, the additional structure may help to improve both

the threshold and the error floor. This idea will be investigated in this dissertation.

32



1.2 Dissertation Outline

The research presented in this dissertation consists of two main components:

LDPC coding for time-selective complex-fading channels and finite-length analysis

for the BEC.

1.2.1 LDPC Codes for Time-Selective Complex-Fading

Channels

The model considered in this dissertation is a block complex-fading model where

the fading is constant throughout a single block and independent from block to block.

This block-independent fading model closely models several wireless communication

environments. For example, in a frequency-hopped spread-spectrum modulation

scheme, each time the system hops to a different frequency band, a new fading chan-

nel realization is encountered. Further, if the fading is slow enough, then we can

model the fading as being constant throughout an entire block. Applications include

cellular communications and partial-band jamming channels in satellite communica-

tions.

Fading arises in wireless communications because the transmitted signal propa-

gates through the medium to the receiver via multiple paths due to effects such as

reflection and refraction. Due to differences in path length, the signal arrives at the

receiver with a different phase and amplitude for each path. At the receiver, the

combination of these multiple paths, each with its own phase delay and amplitude

level, results in amplitude and phase changes in the signal, i.e., fading. In the prac-

tical case when the channel fading is unknown to the receiver, the fading effects,

particularly phase changes, can be quite significant.

In order to combat unknown fading in the channel, we use a simple pilot-symbol-
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Figure 1.12: Factor graph for a pilot-symbol-assisted LDPC code in a flat, block-
independent fading channel.

assisted (PSA) scheme where known pilot symbols are periodically sent by the trans-

mitter to help the receiver estimate the channel. Specifically, in each block of size

N , where N is the channel coherence time, known pilot symbols are transmitted

in addition to the code symbols from the channel code. The channel codes used in

this dissertation are LDPC codes since they can achieve excellent performance even

when decoded with low-complexity, iterative decoders. Further, the factor graph rep-

resentation of LDPC codes along with the iterative-decoding algorithm can easily be

extended to include the unknown fading. Thus, the receiver can iteratively perform

joint channel estimation and decoding. Fig. 1.12 provides the complete factor graph,

including pilot symbols, code symbols from the LDPC code, and channel constraint

nodes representing the fading parameters.

Optimal decoding on the factor graph in Fig. 1.12 is obtained by implementing

the sum-product algorithm. However, computation at the channel constraint nodes is

exponentially complex with N . Thus, we investigate several simpler but suboptimal

decoding strategies as well as some ideal decoders which will provide bounds on

performance:

• Perfect channel state information (CSI): In this ideal case, the receiver knows

the channel state information exactly. Thus, the performance of this decoder
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provides a bound on the performance of all other decoders.

• Pilot and data correct decision feedback (PDCDF): This is a hypothetical de-

coder which cannot actually be implemented but provides bounds on the per-

formance of other decoders. In this decoding algorithm, the channel estimates

are calculated from the pilot symbols as well as the coded symbols where the

correct values of the coded symbols are provided by a genie. Any practical

decoding scheme, including the sum-product algorithm, cannot perform better

than the PDCDF decoder.

• Pilot-only (PO): This is a simple, practical algorithm where only the pilot

symbols are used to estimate the channel realizations.

• Quantized decision feedback (QDF): This is an ad-hoc, practical algorithm in

which channel estimates are calculated based on the pilot symbols as well as

some of the code symbols. At each iteration, the code symbols which participate

in the channel estimate as those which have a high reliability of being a 0 or a

1. Those code symbols whose values are less certain are not considered in the

channel estimation. This algorithm is more complex than the PO algorithm,

but it provides improved performance since the channel estimation makes use

of additional information provided by the code symbols.

For each of these decoding algorithms, the energy distribution between pilot and

code symbols is optimized and the design of optimal LDPC codes is investigated.

Some interesting results, which will be discussed in Chapter 2 but are mentioned

briefly here, are obtained regarding unification of analysis and code design in certain

scenarios. For the perfect-CSI, PO, and PDCDF receivers, we will show the following:

• Density evolution only needs to be numerically evaluated once over a single

parameter b. Then, for any of these receiver types, any channel coherence
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time, and any energy allocation, the infinite-length analysis can be directly

obtained from the single density-evolution evaluation by mapping channel and

receiver parameters to b appropriately.

• Finding the optimal energy distribution between pilot and code symbols only

requires a simple closed-form calculation from b.

• The optimal LDPC code for one of these receivers will also be optimal for the

other receivers and for any system parameters.

These results significantly simplify the analysis and code design for these three de-

coder types.

In Chapter 2, density evolution and simulation results are presented for the PSA

decoding algorithms using regular and irregular LDPC codes. For the examples

provided, we will show the following:

• Optimizing the allocation of power to the pilots and the code symbols results

in 1 to 2 dB improvement in performance.

• By utilizing the iterative, joint decoding/estimation provided by the QDF al-

gorithm, the performance improves over the best PO receiver by 0.9 dB with

BPSK modulation and 0.2 dB with QPSK modulation.

• Although the best proposed practical scheme, the optimized QDF receiver,

provides significant gains over the non-optimized PO receiver, its performance

is still 2.4 dB away from capacity.

Details of our work with LDPC codes on the time-selective, frequency-non-selective

complex-fading channel are provided in Chapter 2, and this work has also been pub-

lished in [33] and [34].
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1.2.2 Finite-Length Analysis for the BEC

In the world of communications, there exists a constant demand for communica-

tion systems capable of delivering higher data rates with low power, low error rate,

and low complexity. LDPC codes, with their capacity-achieving capabilities and low

complexity, are excellent candidates for high-performance communications. The re-

search community has developed LDPC codes with very good finite-length threshold

performance, i.e., with sharper waterfall regions. However, current LDPC codes are

still plagued by error floors. Due to limited power available at transmitters, SNR

cannot be indefinitely increased to obtain lower and lower error probabilities, par-

ticularly in the error-floor region where small improvements in error rate come at

a high cost, i.e., large increases in SNR. To be able to achieve extremely low error

rates without high-power requirements, the error floor must be lowered.

We will analyze error-floor performance of LDPC codes over the BEC. Due to

the simplicity of this channel, analysis is much simpler and trends are more easily

recognizable. Although we would ideally study more realistic channels, such as the

AWGN channel, analysis for the AWGN channel is very difficult and no closed form

solution exists [35]. Some simulation is still required to obtain analytical results, and

obtaining a tractable theoretical analysis is not promising. However, analysis for the

BEC channel can still provide insights into code behavior for the AWGN channel

since the effects of the code structure on performance are related for both channels.

As shown in Section 1.1.6, the error-floor performance of LDPC codes over the

BEC is determined by stopping sets. Asymptotic analysis of weight and stopping-set

enumerators, for codewords and stopping sets which grow linearly with codelength,

has aided in designing LDPC codes with lower error floors but does not reflect the be-

havior of sublinearly-sized stopping sets, which can dominate the iterative-decoding

error-floor performance [2, 18–20]. Thus, we provide a perspective on protograph-
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based and standard LDPC ensemble enumerators, based on analysis of stopping sets

with sublinear growth, which brings new insight into sublinear stopping-set behavior,

advantages of protograph structure, and effects of precoding.

In Chapter 3, we present our finite-length analysis of protograph-based and stan-

dard LDPC code ensembles based on sublinear stopping-set enumerators. By ap-

proximating the enumerator expressions, the following results and derivations are

obtained for sublinearly-growing stopping sets:

• For stopping sets which grow at most logarithmically with codelength, the

stopping-set enumerators follow a polynomial relationship with codelength.

This behavior is contrasted with the exponential relationship with codelength

characteristic of linearly growing stopping sets, shown in [2, 19].

• Bounds are derived for the region of validity of the approximations to help

address the question, “Given a finite stopping-set size and a finite codelength,

do the stopping sets follow the behavior predicted by the analysis of linear or

sublinear stopping sets?”

• Protograph-based LDPC ensembles always perform at least as well as standard

LDPC ensembles, in terms of sublinear stopping-set behavior, and can, in fact,

perform strictly better.

• Using linear and integer programming, the dominating enumerator exponents

can be easily evaluated.

• The dominating enumerator exponent generally follows a linear trend with

stopping-set size, and the slope of this linear trend can provide a single metric

for comparing the error-floor performance of different LDPC ensembles.

• The technique of precoding, which provides improved threshold performance,

is analyzed to see its affect on error-floor performance. A worst-case bound
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is derived for the change in the dominating enumerator exponent when a

protograph-based LDPC ensemble is precoded.

Illustrative examples, including (3,6) LDPC ensembles, are provided to verify the

analytical results and illustrate the insights and concepts discussed.

The analysis and results in this dissertation help to provide a better understand-

ing of how LDPC code structure influences error-floor performance. Details of our

work on finite-length analysis of LDPC ensembles for the BEC are provided in Chap-

ter 3 and are partially published in [36].
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CHAPTER 2

LDPC Codes for Time-Selective Complex-Fading

Channels

As the demands on wireless communication systems continually increase, the

design of better coding schemes is necessary to achieve high data rates with low error

probabilities and low complexity. A major challenge in many wireless environments

is multipath fading. Multipath fading occurs when a signal propagates from the

transmitter to the receiver via multiple paths, e.g., after reflections off objects in

the environment, refraction, or other miscellaneous effects. Since each path results

in a different received amplitude and phase, the combination of the different paths

results in multipath fading where both the amplitude and the phase of the received

signal is altered by the channel. The unknown phase shift introduced by the fading

channel can be detrimental to the performance since the phase shift may cause the

transmitted signals to be mapped onto other points in the signal constellation and

hence, causing all signals to be decoded incorrectly.

In this chapter, we consider an independent block-fading channel model. Not only

is this model easier to analyze, but it also closely represents several real-world scenar-

ios. For example, for applications using frequency-hopped spread-spectrum (FHSS),
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the transmitter changes the carrier frequency of the transmitted signal every block

and hence, each block has independent fading. Various applications include cellular

phone communications to satellite communications facing partial-band jamming.

To combat the unknown phase shift and amplitude degradation of the signal

at the receiver introduced by the fading, known pilot symbols will be transmitted

for each block. The techniques and results presented in this chapter can be used to

approximate behavior for continuously changing fading channels, as well, by choosing

block sizes on the order of the channel coherence time.

For the channel coder, low-density parity-check (LDPC) codes are an excellent

candidate for use on the fading channel. These codes in conjunction with iterative

decoding based on message-passing algorithms have been shown to achieve excellent

performance over the AWGN channel [10, 11]. Their potential as capacity-achieving

codes for more realistic wireless channels has not been established yet. However,

experimental evidence as well as some preliminary analytical results [4] have led to

the conjecture [17] that LDPC—or in general, turbo-like codes—can achieve capacity

for a wide range of channels1.

Recently, it was demonstrated that LDPC codes show very good performance

over the memoryless frequency-non-selective (i.e., flat) Rayleigh fading channel [4]

and for the noncoherent AWGN channel [37,38]. A more realistic channel is consid-

ered in this chapter. Specifically, a time-selective, frequency-non-selective complex

fading channel is considered, where both the effects of amplitude and phase variation

are taken into account. This is certainly a more realistic model than the one assum-

ing only amplitude [4] or only phase [37, 38] variations of the transmitted signal.

Furthermore, in this work, the memoryless assumption of [4] is raised and channel

dynamics are explicitly taken into account by considering a block-independent fading

1Although the focus of this chapter is on LDPC codes, the decoding algorithms and analysis
techniques can also be applied to other turbo-like codes.
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model. In particular, the complex fading is considered constant for a block of length

N (which can be thought of as the channel coherence time) and independent from

block to block. This model is quite accurate for frequency-hopping or time-division

multiple-access schemes. It is also a good model for more general channels since it

simplifies analysis by modeling the dynamics of the fading process through a single

parameter N .

Although coding for this channel is generally complicated as evidenced in [39]2, in

this chapter we consider a simple coding scheme, namely pilot-symbol-assisted (PSA)

LDPC codes3. Pilot symbol(s) of specified energy are added in the beginning of each

block of length N to establish a reference for the phase of the symbols and to aid

(implicitly) the estimation/decoding process. We consider a general scenario where

both the number of pilots as well as the pilot energy are design parameters4. Clearly,

the quality of channel estimation improves with increased energy in the pilots, while

the quality of the decoded symbols depends on the energy spent on the code symbols.

Thus, for a fixed energy per information bit, a trade-off between allocation of energy

to the pilot and code symbols exists. Using density evolution [10, 11], this trade-

off is studied without resorting to simulations, and the optimal power allocation

is obtained for several PSA receiver structures first suggested and analyzed in [38]

for the block-independent noncoherent AWGN channel. The optimized PSA LDPC

codes are shown to have significantly improved performance over the non-optimized

codes, and the optimal energy allocation to pilot and code symbols depends both

on the channel coherence time and the particular receiver used. Thus a quantitative

2It is noted that the work in [39] refers to the more interesting case of multiple-input/multiple-
output complex-fading channels.

3When the channel state information is known perfectly at the receiver (i.e., for the perfect-CSI
receiver), the PSA scheme is not needed and hence, it is not used.

4One can consider an equivalent—or actually a more bandwidth efficient—system having a single
pilot per block of length N with a specified energy. However, multiple pilots per block are useful
when the total pilot energy needs to be spread in time due to amplifier dynamic-range constraints
at the transmitter.
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answer, which is closely related to a particularly simple family of codes and decoders,

is obtained to the question of “how much pilot energy is required for transmission in

the noncoherent fading channel?” [40, 41] for the single-antenna scenario.

In this chapter, two classes of receivers are considered. In the first one, channel

estimation is performed once, followed by iterative decoding. In the second one, esti-

mation and decoding are performed in an iterative fashion, resulting in performance

closer to that of belief propagation (i.e., the sum-product algorithm) but with only

a fraction of its complexity. As mentioned earlier, these receiver structures have

been discussed before in the context of LDPC decoding in the noncoherent AWGN

channel [38], and similar receivers have also been proposed in the context of decoding

turbo codes in the presence of time-selective fading [42, 43]. The presented formu-

lation, however, leads to a number of surprising results regarding the analysis and

design of these codes.

First, it is shown that for a given (regular or irregular) LDPC code, and for the

first class of receivers described above, performance analysis in the form of density

evolution only needs to be performed once regardless of the channel dynamics N , the

number of pilots, and the energy allocation to pilot and code symbols. Moreover, this

analysis is exactly the same as if the code operated in an equivalent fading channel

with perfect channel-state information (CSI) available at the receiver and with a

smaller signal-to-noise ratio.

Second, design and optimization of irregular LDPC codes for the first class of

receivers discussed above is greatly simplified. In particular, the design process can

be decomposed into two steps. The first one, which is the most time consuming,

involves degree polynomial optimization and is usually performed by computer search

using differential evolution techniques [4, 44]. It is shown here that this step need

only be performed once regardless of whether the code operates with perfect-CSI or
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with no CSI at the receiver and regardless of the channel dynamics, N . Thus, the

best codes for perfect-CSI are also the best codes for no CSI and for any channel

dynamics, for the receivers of the first class. The second step involves optimization

of the allocation of energy to the pilot and code symbols and can be performed using

closed-form expressions.

The above two results are very different from the corresponding results observed

in [37, 38] for the noncoherent AWGN channel. In particular, in the noncoherent

AWGN channel, analysis and code design cannot be unified as discussed above for

the complex-fading channel and must be conducted separately for each receiver, for

each value of the channel coherence time N , and for each value describing the energy

allocation to pilot and code symbols.

When additional complexity can be afforded, one can utilize the receiver struc-

tures of the second class that perform estimation and decoding in an iterative fashion.

When these receivers are used, the two results mentioned above are no longer valid.

We optimize PSA LDPC codes for these receivers and show performance gains over

the receivers of the first class.

The rest of this chapter is structured as follows. In Section 2.1, we discuss, in de-

tail, the system and channel model under consideration. The specific message-passing

estimation/decoding algorithms are described in Section 2.2 while performance anal-

ysis using density evolution and code design are presented in Section 2.3. Finally,

section 2.4 presents numerical results and conclusions.

2.1 System and Channel Model

For the channel model, we consider a block-independent fading model where the

fading is constant for a block of N symbols and is independent from block to block.

To facilitate channel estimation in each block, we use the PSA scheme depicted in

44



... ...a0 a1 a2 aNp-1 aNp
aN-2 aN-1

Np pilot 
symbols

N-Np code
symbols

{ {

Figure 2.1: Block diagram for the pilot-symbol-assisted scheme in a block of length
N .

Fig. 2.1 where the first Np transmitted symbols are pilot symbols, each with energy

Ep, followed by N − Np code symbols, each with energy Es. For the block-fading

model, the exact placement of the pilot symbols in the block will not affect the

performance.

An LDPC code is used as the underlying code for the system. For each block of

length N , we transmit symbols (−1)ak for all k = 0, . . . , N − 1 with pilot symbols

ak = 0 for k = 0, . . . , Np −1 and with code symbols from the LDPC code ak ∈ {0, 1}
for k = Np, . . . , N − 1. The analysis presented in this chapter is applied to general

irregular LDPC codes with maximum variable (check) node degree of dv (dc) and

degree polynomials λ(x) and ρ(x) as defined in [11], but they can also be applied to

other codes which can be represented by a factor graph.

The received symbols for each block of length N can be expressed as

zk = c
√

Ek(−1)ak + nk k = 0, . . . , N − 1, (2.1)

where

Ek =

⎧⎪⎨
⎪⎩

Ep k = 0, . . . , Np − 1

Es k = Np, . . . , N − 1.
(2.2)

In the above equations, the fading coefficient c is modeled as a zero-mean, circular

complex Gaussian random variable with E[|c|2] = 1. Thus, the fading amplitude has

a Rayleigh density while the fading phase has a uniform density in [0, 2π). The addi-

tive noise is modeled by independent zero-mean, circular complex Gaussian random
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Figure 2.2: (a) Factor graph for a pilot-symbol-assisted LDPC code in a block-
independent flat-fading channel. (b) Equivalent representation of the channel con-
straint node in (a). The channel variable node represents the fading coefficient c.

variables nk with E[|nk|2] = N0.

The effective energy per information bit is

Eb =
1

R
(Es +

NpEp

N − Np
) (2.3)

where R is the rate of the LDPC code. Due to the pilot transmission, the overall rate

(throughput) of the code is reduced to Rc = R(N−Np)/N (bits/complex dimension).

For the channel model presented above, if no constraints on the pilot energy Ep exist,

then a PSA scheme with Np > 1 is suboptimal since we can simply put the total

energy NpEp into a single pilot and increase the total throughput by a factor of

(N −1)/(N −Np). However, if the peak power is limited due to linearity constraints

at the transmitter amplifier, then multiple pilots per block might be necessary to

achieve higher effective pilot energies at the cost of lowering the overall throughput.

We consider a regular PSA scheme where the number of pilot symbols per block,

Np, and the energy per pilot symbol, Ep, are the same for all blocks. The factor

graph [21] of this system is shown in Fig. 2.2(a). Each transmitted symbol, i.e., each

46



pilot symbol and each code symbol, is represented by a variable node while each

parity check is represented by a code check node. In addition, the variable nodes

are connected to channel constraint nodes which represent the constraints imposed

by the fading channel. In an equivalent representation, each channel constraint

node can be decomposed as in Fig. 2.2(b) to explicitly express the dependence on

the fading coefficient c. In this case, a variable node describes c while each of the

channel constraint nodes here represents the channel constraint, based on c, on a

single transmitted symbol. It will be shown in Section 2.2 that the two factor graph

representations are indeed equivalent. Although a channel interleaver is usually

inserted between the encoder and the channel, this device is not necessary for LDPC

codes due to the fact that interleaving is inherent since the order of the code symbols

is irrelevant.

2.2 Decoding Algorithms

The PSA LDPC codes can be iteratively decoded by message-passing algorithms

operating on the factor graph of the system. Since message exchange between variable

and check nodes for LDPC codes is well understood (see Section 1.1.3), we concen-

trate here on the messages generated at the channel constraint node in Fig. 2.2(a). In

the following, we describe several receiver algorithms which rely on different options

for message generation at the channel constraint node. The receivers discussed here

were proposed in [38] for the noncoherent AWGN channel. Thus, in the following,

we concentrate on the details of these receivers that are specific to the channel under

consideration. In particular, (i) analytical results are easier to obtain here compared

to [38] since closed-form expressions exist for the message densities, as will be shown

in Section 2.3, and (ii) analysis and code design for different system and channel

parameters are unified for the first class of receivers in the complex-fading channel
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considered here, which was not the case for the noncoherent AWGN channel in [38].

2.2.1 Perfect Channel-State Information

When perfect-CSI is available at the receiver, i.e., when the fading coefficient c is

exactly known at the receiver side, the message qk from the channel constraint node

to the kth variable node can be evaluated as in [4]

qk = log
f(zk|ak = 0, c)

f(zk|ak = 1, c)
=

4
√

Es

N0
Re{zkc

∗}. (2.4)

Since the fading coefficient is known, no pilot symbol is necessary. In addition,

since qk is independent of all incoming messages ri (as shown in Fig. 2.2(a)) for

i ∈ {0, . . . , N − 1}\{k}, the message qk is evaluated once at the beginning of the

iterative algorithm and does not change in subsequent iterations.

2.2.2 Sum-Product Algorithm

When CSI is not available at the receiver, iterative detection and estimation can

be performed using the sum-product algorithm. In particular, the channel constraint

node generates a log-likelihood ratio for the kth variable node based on the informa-

tion it receives from the N − 1 other variable nodes and from the N channel output

values. Assuming that the incoming message from the ith variable node to the chan-

nel constraint node is a log-likelihood ratio of the form ri = log(pi(ai = 0)/pi(ai =

1)),5 the outgoing message to the kth variable node can be expressed as

qk = log
f(z|ak = 0)

f(z|ak = 1)
= log

∑
a:ak=0

CNN(z; 0,K(a))
N−1∏

i=0,i�=k

pi(ai)

∑
a:ak=1

CNN(z; 0,K(a))
N−1∏

i=0,i�=k

pi(ai)

, (2.5)

5It is assumed that the incoming messages corresponding to the pilot symbols are rk = +∞ for
k = 0, . . . , Np − 1.
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where z = (z0, . . . , zN−1)
T , the summations are over all possible vectors a ∈ {0, 1}N

with the kth element given as ak = 0 or ak = 1, and CNN(z; 0, K(a)) denotes

an N -dimensional, zero-mean, complex Gaussian probability density function with

covariance matrix

K(a) = E[zzH |a] = μμH + N0IN , (2.6)

where μ = (μ0, . . . , μN−1)
T , μi =

√
Ei(−1)ai for all i ∈ {0, . . . , N − 1}, and IN is the

N × N identity matrix.

The expression in (2.5) does not explicitly involve the unknown channel parameter

c since it has been implicitly integrated out of the expression. The message qk can

also be expressed following the equivalent factor graph representation in Fig. 2.2(b)

where the dependence on the complex fading coefficient c is explicit:

qk = log

∫
C

f(z|ak = 0, c)f(c)dc∫
C

f(z|ak = 1, c)f(c)dc

= log

∫
C

CN (zk;
√

Ekc, N0)CN (c; 0, 1)
N−1∏

i=0,i�=k

ri(c)dc

∫
C

CN (zk;−
√

Ekc, N0)CN (c; 0, 1)
N−1∏

i=0,i�=k

ri(c)dc

(2.7)

where C is the complex plane and

ri(c) =

1∑
a=0

CN (zi;
√

Eic(−1)a; N0)pi(ak = a) (2.8)

for i = 0, . . . , N − 1. By explicitly integrating over c, it can be shown that the

messages in (2.5) and (2.7) are equal, thus establishing the equivalence between the

factor graphs in Figs. 2.2(a) and 2.2(b).

It is a well-known fact that if the factor graph is cycle-free, then at the termi-

nation of the sum-product algorithm, the maximum a posteriori (MAP) estimate
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of each code symbol is obtained [21]. However, evaluating the channel-to-variable-

node message in (2.5) has exponential complexity in N . Similarly, evaluating the

complex integrals in (2.7) has—at least theoretically—infinite complexity. The in-

tegration can be approximated by quantizing the amplitude and phase of c, which

is the method commonly used in practice [45]. Motivated by the high complexity

of the exact sum-product algorithm in evaluating the channel-to-variable-node mes-

sage, suboptimal implementations of this operation are suggested in Sections 2.2.3

and 2.2.5. In addition, the hypothetical receiver described in Section 2.2.4 provides

a bound on the performance of the exact sum-product algorithm.

2.2.3 Pilot-Only Detection

In the pilot-only (PO) receiver, only the pilot symbol(s) are used by the channel

constraint node to obtain information about the channel. The message qk for the

kth variable node is computed by

qk = log
f(zk, z0, . . . , zNp−1|ak = 0)

f(zk, z0, . . . , zNp−1|ak = 1)

=

4
√

EsRe{zk

√
Ep

Np−1∑
i=0

z∗i }
N0(N0 + NpEp + Es)

. (2.9)

Similar to the perfect-CSI case, the message qk is independent of all messages ri

for i ∈ {0, . . . , N − 1}\{k}, so it is evaluated once at the beginning of the iterative

process and remains the same at each iteration.

2.2.4 Pilot and Data Correct Decision Feedback

The pilot and data correct decision feedback (PDCDF) receiver is a hypothetical

receiver which cannot be implemented in practice. However, it can be used to derive
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a lower bound on the minimum Eb/N0 required to achieve error-free transmission

using the exact sum-product algorithm. In the PDCDF receiver, the output of the

channel constraint node for the kth symbol is determined by the Np pilot symbols

as well as the other N − Np − 1 code symbols in the block. It is assumed that due

to the presence of a genie, the correct values of these N − Np − 1 code symbols

a′
k = (aNp, . . . , ak−1, ak+1, . . . , aN−1) are available at each iteration. The resulting

message is of the form

qk = log
f(z|a′

k, ak = 0)

f(z|a′
k, ak = 1)

=

4
√

EsRe{zk(
√

Ep

Np−1∑
i=0

zi +
√

Es

N−1∑
i=Np,i�=k

(−1)aizi)
∗}

N0(N0 + NpEp + Es(N − Np − 1) + Es)
. (2.10)

Once again, it is observed that the messages qk remain the same at each iteration.

In addition, (2.10) is equivalent to (2.9) with (N −Np − 1) additional pilot symbols,

each with energy Es. Thus, as will be verified in Section 2.3.1, the PDCDF receiver

is equivalent to a PO receiver with an effective pilot energy of NpEp+(N−Np−1)Es,

since the other N − Np − 1 code symbols in the block also act as pilots for the kth

variable node. Following an argument similar to the one used in [38], one can show

rigorously that the PDCDF receiver cannot perform worse than the sum-product

algorithm.

2.2.5 Quantized Decision Feedback

In the PDCDF receiver, N − Np − 1 code symbols in a block act as pilots for

calculating the log-likelihood ratio for the kth variable node. This is a hypothetical

scenario where the receiver knows exactly the values of these N − Np − 1 symbols.

In practical scenarios, when the ri messages entering the channel constraint node
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are strongly biased towards ±∞, the corresponding symbols can act as pilots as

well. Motivated by this observation, we propose an ad-hoc algorithm, the quantized

decision feedback (QDF) receiver, which operates as follows. The incoming messages

are first quantized according to the following rule

r̂i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞ if ri > T

0 if − T ≤ ri ≤ T

−∞ if ri < −T,

(2.11)

for i ∈ {0, . . . , N − 1}\{k} where T is a predetermined threshold value. Using these

quantized messages r̂i in evaluating the message qk is equivalent to assuming that

symbols for which |ri| > T act as pilots, while those for which |ri| ≤ T do not

contribute to the channel-estimation process. For notational simplicity, let ŝi =

sgn(r̂i) where sgn(x) equals +1 if x > 0, 0 if x = 0, and −1 if x < 0. When ŝi 	= 0,

ŝi represents an estimate of the transmitted symbol (−1)ai . Also, let z′k and r̂′k be

the vectors of zi’s and r̂i’s, respectively, for all indices i such that i ∈ {0, . . . , N −1},
i 	= k, and r̂i 	= 0. The resulting expression for the message qk is

qk = log
f(z′k|r̂′k, ak = 0)

f(z′k|r̂′k, ak = 1)

=

4
√

EsRe{zk(
√

Ep

Np−1∑
i=0

zi +
√

Es

N−1∑
i=Np,i�=k

ŝizi)
∗}

N0(N0 + NpEp + N ′
kEs + Es)

, (2.12)

where N ′
k =
∑N−1

i=Np,i�=k |ŝi| is the number of non-zero quantized messages r̂i excluding

messages from pilot symbols and the message corresponding to the kth variable node.

It is emphasized that unlike the previous cases, in the QDF scheme, the channel

constraint node must recalculate the message qk at each iteration, resulting in an

iterative joint-detection/estimation technique.
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2.3 Performance Analysis and Code Design

The performance of the decoding algorithms in Section 2.2 is analyzed using

density evolution (Section 1.1.4), which involves evaluating the probability density

functions (pdfs) of the messages exchanged between the nodes of the factor graph [10],

given the pdfs of the initial messages. For an LDPC code ensemble and a particular

decoding algorithm, density-evolution analysis produces the threshold—the smallest

SNR value for which arbitrarily small error probability can be achieved.

To apply density evolution, we assume that the all-zero codeword is transmitted.

This assumption is not restrictive since the fading channel considered herein satisfies

the channel symmetry condition f(zk|ak = 0) = f(−zk|ak = 1). In addition, for

these decoding algorithms, the channel constraint node preserves symmetry since a

flip in sign of zk results in a flip in sign of qk at each iteration.

Under the standard assumptions of large girth (compared to the iteration num-

ber), the neighborhood of a graph is essentially a tree. In this case, all messages

passed in the factor graph are independent and all calculated pdfs are exact. In the

practical situation where cycles are present in the graph, it was shown in [10] that

the average behavior of the code converges to the cycle-free case as the length of the

code increases.

Using density-evolution analysis techniques, codes can be designed by optimizing

irregular LDPC-code degree polynomials and energy distributions Ep/Es to minimize

the Eb/N0 threshold—the value of Eb/N0 required to achieve arbitrarily small error

probability—obtained from density evolution. In practical, numerical optimization

schemes, the optimization is completed subject to an upper bound on the maximum

degrees dv and dc of the variable and check degree polynomials, respectively.

In this section, performance analysis and code design will be discussed for two

sets of receivers: a) the perfect-CSI, PO, and PDCDF receivers which belong to
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the class of receivers where channel estimation is only performed once and b) the

QDF receiver which belongs to the class of receivers where channel estimation and

decoding are performed in an iterative fashion.

2.3.1 The Perfect-CSI, PO, and PDCDF Receivers

For all the receivers described in Section 2.2 except the QDF receiver, the mes-

sages from the channel constraint nodes do not change with iterations. Thus, in

order to perform density evolution for these receivers, it suffices to evaluate the ini-

tial message pdf passed from the channel constraint nodes to the variable nodes and

then, follow the standard pdf transformations described in [10] to trace the pdfs of

the messages exchanged in the code portion of the factor graph. Furthermore, it can

be observed that all qk messages described previously are of the form q = CRe{xy∗}
where C is a constant, x and y are zero-mean, complex Gaussian variables, and

the subscript k is dropped for notational simplicity. The pdf of q can be expressed

as [46, Appendix B]

f(q) =
v1v2

v1 + v2
[ev2qu(−q) + e−v1qu(q)] (2.13)

where u(q) is the unit step function, and v1 and v2 are given by

v1 =
2

C(
√

E[xx∗]E[yy∗] + E[xy∗])

v2 =
2

C(
√

E[xx∗]E[yy∗] − E[xy∗])
. (2.14)

For the perfect-CSI, PO, and PDCDF receivers, v2 = v1 + 1 and thus, the initial

pdfs can all be expressed with the same equation dependent on a single parameter,
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b:

f(q) =
b(1 + b)

1 + 2b
[e(1+b)qu(−q) + e−bqu(q)] (2.15)

where b = v1. For the perfect-CSI receiver, C = 4
√

Es/N0, x = zk, y = c, E[xx∗] =

Es + N0, E[yy∗] = 1, and E[xy∗] =
√

Es, which results in the following simplified

expression for b:

b =
1

2

√
1 +

N0

Es

− 1

2
. (2.16)

Since no pilots are necessary, b and f(q) are independent of Np and Ep. For the PO

receiver, C = 4
√

Es/(N0(N0 + NpEp + Es)), x = zk, y =
√

Ep

∑Np−1
i=0 zi, E[xx∗] =

Es + N0, E[yy∗] = NpEp(NpEp + N0), and E[xy∗] = NpEp

√
Es, which results in the

following simplified expression for b:

b =
1

2

√
(1 +

N0

Es
)(1 +

Es

Ep,eff

N0

Es
) − 1

2
(2.17)

where Ep,eff = NpEp. Clearly the performance of this receiver is only dependent on

Es/N0 and Ep,eff/Es. For the PDCDF receiver, b is given by (2.17) with Ep,eff =

NpEp + (N − Np − 1)Es.

In light of the fact that the performance of the perfect-CSI, PO, and PDCDF

receivers depends on the system parameters (i.e., N , Np, Es/N0, Ep/Es) only through

a single parameter b, performance analysis using density evolution for a given LDPC

code ensemble can be performed easily for all of these receivers as follows.

First, using density evolution with initial message pdfs given in (2.15), the thresh-

old value b∗ is obtained such that for all b < b∗, the iterative-decoding algorithm con-

verges to zero probability of bit error as the number of iterations and the codelength

increases, while for all b > b∗, the iterative-decoding algorithm does not converge

to zero probability of bit error. Such a b∗ exists because the performance of the

receivers is monotonically decreasing with b. A proof of this monotonicity is pro-
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vided in Appendix A. Since this step is independent of the particular receiver type

and independent of the system parameters, this single number b∗ characterizes the

performance of all of these systems.

Once b∗ is found, the Eb/N0 threshold can be obtained through closed-form ex-

pressions for each receiver type. To derive these closed-form expressions, we first

find (Eb/N0)
′, the minimum Eb/N0 required to achieve a given value of b. For the

perfect-CSI receiver, one can solve (2.16) to obtain (Es/N0)
′ = (B − 1)−1 where

B = (1 + 2b)2 and hence,

(
Eb

N0

)′
=

(
Es

N0

)′
1

R
=

1

(B − 1)R
=

1

4b(b + 1)R
. (2.18)

For the PO receiver with system parameters N , Np, and R, equations (2.17) and (2.3)

involve the quantities Es/N0, Ep,eff/Es, and Eb/N0. Solving this system of two

equations and three unknowns for Eb/N0 by eliminating Es/N0, we obtain

Eb

N0

=
1

R

(
1 +

ρ

N − Np

)
ρ + 1 +

√
(ρ + 1)2 + 4(B − 1)ρ

2(B − 1)ρ
(2.19)

where B = (1 + 2b)2 and ρ = Ep,eff/Es. The optimal Ep,eff/Es that minimizes

Eb/N0 is given by the following closed-form expression:

(
Ep,eff

Es

)′
=

B(N − Np) +
√

B(N − Np)

B +
√

B(N − Np)
. (2.20a)

This results in the minimum Eb/N0 given by

(
Eb

N0

)′
=

1

R

[(
N − Np + 1

N − Np

)
1

4b(b + 1)
+

1

2
√

N − Np

(
1

b
+

1

b + 1

)]
. (2.20b)

Similarly, for the PDCDF receiver when N ≥ Np + 2,6 combining (2.17) and (2.3)

6When N = Np + 1, the PDCDF receiver is a PO receiver and hence, the equations in (2.20)
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along with Ep,eff = NpEp + (N − Np − 1)Es results in

Eb

N0
=

1

R

(
ρ + 1

N − Np

)
ρ + 1 +

√
(ρ + 1)2 + 4(B − 1)ρ

2(B − 1)ρ
. (2.21)

The optimal Ep,eff/Es in this case satisfies the boundary condition

(
Ep,eff

Es

)′
= N − Np − 1 (2.22a)

which results in the minimum Eb/N0 given by

(
Eb

N0

)′
=

√
(N − Np)2 + 4(B − 1)(N − Np − 1)

2R(B − 1)(N − Np − 1)
+

N − Np

2R(B − 1)(N − Np − 1)
.

(2.22b)

For all of the receivers here, (Eb/N0)
′ is a monotonically decreasing function of

b. Thus, since arbitrarily small error probability is possible if and only if b < b∗,

(Eb/N0)
′ evaluated at b = b∗ is the Eb/N0 threshold.

At this point, a comparison with the analysis in [38] is in order. For the case

of the noncoherent AWGN channel, finding the minimum Eb/N0 value for the PO

receiver requires running density evolution for each value of Es/N0 and Ep,eff/Es.

Thus, searching over a two-dimensional space is required. However, in this work,

due to the established equivalence among the first class of receivers, the search need

only be conducted over a single parameter, b, to obtain analytical results for the

perfect-CSI, PO, and PDCDF receivers and for all system and channel parameters.

Code design is also unified for all three receivers and all system and channel pa-

rameters. In particular, code design can be divided into two steps. The first step

relies on the fact that since the Eb/N0 threshold is monotonically decreasing with

b∗ as shown above, b∗ provides an ordering for LDPC codes for these receivers over

apply in this case.
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the complex-fading channel, i.e., LDPC codes with larger values of b∗ will have bet-

ter performance. Thus, in the first step, the irregular LDPC degree polynomials

are optimized using differential evolution [4, 44], subject to an upper bound on the

maximum node degrees, to produce an LDPC code with the largest b∗. The process

of degree-polynomial optimization is usually aided by imposing a constraint on the

degree polynomials known as the stability condition [11], which is presented in Sec-

tion 2.3.3. In the case of perfect-CSI receivers, this step concludes the code design.

For PO and PDCDF receivers, the second step is optimizing the energy distribution

between pilot and code symbols for the LDPC code found in the first step. This

optimization can be determined through the closed-form expressions given in (2.20)

and (2.22).

The above discussion is essentially a constructive proof of the statement that the

optimal LDPC codes for the perfect-CSI receiver coincide with the optimal codes for

the PO and PDCDF receivers for arbitrary channel dynamics N and pilots per block

Np. More precisely, the optimal irregular LDPC code for all of these cases should be

the same. The only difference is the allocation of power to pilot and code symbols,

which depends on the particular receiver used and the channel dynamics through

the closed form expressions (2.20) and (2.22). We emphasize that this equivalence

results in a tremendous complexity reduction in designing good codes since the de-

gree optimization is usually the most time consuming portion of the design process.

Furthermore, even if design complexity is not an issue, the above statement guaran-

tees that only a single binary LDPC code needs to be designed and utilized, even

if a system is supposed to operate in an environment where the channel dynamics

are not known a priori. For instance, the LDPC codes optimized for the perfect-CSI

receiver in [4] are also optimal codes for the PO and PDCDF receivers for arbitrary

channel dynamics (although this was not apparent to the authors of [4]).
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2.3.2 The QDF Receiver

Analysis for the QDF receiver is more complicated since the pdf describing the

outgoing messages from a channel constraint node at the lth iteration is dependent

on the pdf f (l−1)(ri) of the incoming messages ri for i ∈ {0, . . . , N − 1} from the

previous iteration.

To derive the pdf for the outgoing messages from the channel constraint nodes

at iteration l, we first consider when the code symbols act as effective pilots in the

channel estimation at a particular channel constraint node. For a particular outgoing

message from the channel constraint node, there are N −Np−1 code symbols (other

than the one corresponding to the outgoing message) which can take part in the

channel estimation. If the quantized message r̂i = +∞, then the decoder correctly

guesses the value of the corresponding code symbol and this code symbol acts as a

correct effective pilot in the channel estimation. Let c be the number of code symbols,

out of the N−Np−1 possibilities, that act as correct effective pilots, i.e., the number

of code symbols for which r̂i = +∞. If the quantized message r̂i = −∞, then the

decoder incorrectly guesses the value of the corresponding code symbol and this code

symbol acts as an erroneous effective pilot in the channel estimation. Let e is the

number of code symbols that act as erroneous effective pilots, i.e., the number of

code symbols for which r̂i = −∞. Then, the joint probability mass function p(l)(c, e),

describing the probability that c correct and e erroneous effective pilots are used by

the channel constraint node to help estimate the channel at the lth iteration, is given

by a multinomial distribution:

p(l)(c, e) =

(
N − Np − 1

c , e

)
pc

cp
e
e(1 − pc − pe)

N−Np−1−c−e (2.23)

where pc, the probability that a code symbol acts as a correct effective pilot, is given
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by

pc = P (r̂i = +∞) =

∫ ∞

T

f (l−1)(ri)dri (2.24)

and pe, the probability that a code symbol acts as an erroneous effective pilot, is

given by

pe = P (r̂i = −∞) =

∫ −T

−∞
f (l−1)(ri)dri. (2.25)

Since c code symbols act as correct effective pilots, e code symbols act as incorrect

effective pilots, and N − Np − c − e − 1 code symbols do not contribute at all to

the message evaluation, the pdf f(q|c, e) of the outgoing messages from the channel

constraint node, conditioned on c and e, has the form of (2.13) with the constants

v1 and v2 determined using (2.14) with

E[xx∗] = Es + N0 (2.26a)

E[yy∗] = (NpEp + Es(c − e))2 + N0(NpEp + Es(c + e)) (2.26b)

E[xy∗] =
√

Es(NpEp + Es(c − e)). (2.26c)

Finally, the message pdf from the channel constraint nodes at the lth iteration

can be evaluated using total probability as

f (l)(q) =

N−Np−1∑
c=0

N−Np−1−c∑
e=0

f(q|c, e)p(l)(c, e). (2.27)

Unlike the simplified analysis in Section 2.3.1, the analysis here requires running

separate density evolutions for each set of values of Ep/Es and Es/N0 in order to find

the optimal set of values which minimizes the Eb/N0 threshold for the given LDPC

code. Further, this analysis must be completed separately for each set of values of

N and Np.

Code design is also much more difficult for the QDF receiver and is dependent
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on the values of N and Np. The procedure for code design described here can, in

general, be applied for any receiver type. Using differential evolution [4,44], a search

over degree polynomials, subject to an upper bound on the maximum node degrees,

can be completed to find the best LDPC code and energy distribution, given N and

Np. The performance of each LDPC code is determined in this process by using

density evolution and searching over Ep/Es and Es/N0 to find the Eb/N0 threshold.

Since this optimization process is computationally expensive, we simplify the

process slightly by using the following ad-hoc iterative procedure. First, we initialize7

Ep/Es = 1. A target value is set for the Eb/N0 threshold, and differential evolution is

used to find a code, with the given value of Ep/Es, that can achieve arbitrarily small

error probability for that value of Eb/N0. The target Eb/N0 threshold is decreased

until no such code can be found. With the best LDPC code found in the previous

step, we find the optimal Ep/Es. Then, the procedure is repeated for this new value

of Ep/Es. The iterative procedure ends when no improvement in Eb/N0 is obtained

from the last iteration. This ad-hoc procedure is not necessarily optimal and may

not converge to the globally-optimal solution. However, we repeated this process for

several other initial Ep/Es values, and no significant improvement in performance

was observed.

2.3.3 Symmetry and Stability Conditions

The stability condition in [11] provides necessary and sufficient conditions for den-

sity evolution on an LDPC graph to converge to zero probability of error, for binary-

input/scalar-output memoryless channels. In this section, we extend the stability

condition for the perfect-CSI, PO, and PDCDF receivers. Due to the complexity of

7This initial value was chosen based on extensive experiments and experience gained from [38],
which showed that for LDPC degree polynomials with better performance, the optimal value of
Ep/Es is close to 1 for the range of values of N examined.
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the message generation at the channel constraint node, conditions for convergence

for the QDF receiver were not attainable.

The basic result in this area was derived in [11] for LDPC codes operating on

binary-input/scalar-output memoryless channels. In particular, it was shown that

if the channel input/output description is symmetric, i.e., if the pdf of the scalar

output y, conditioned on the binary input a satisfies

f(y|a = 0) = f(−y|a = 1), (2.28)

then the pdf f(q) of the initial message q = log f(y|a=0)
f(y|a=1)

satisfies an exponential

symmetry of the form

f(−q) = e−qf(q) q > 0. (2.29)

Furthermore, it was shown that this exponential symmetry is invariable to message

transformations in the sum-product algorithm for messages exchanged between vari-

able nodes and check nodes in the LDPC graph. Based on this result, necessary and

sufficient conditions, involving the degree polynomials and the channel parameters,

that guarantee the convergence of density evolution (with the sum-product algo-

rithm) to zero probability of error were derived. Specifically, the general stability

condition stated in [11] is as follows. For an exponentially-symmetric initial-message

density f(q), define

s = − log

∫ ∞

−∞
f(q)e−q/2dq. (2.30)

If λ′(0)ρ′(1) > es, then density evolution will be bounded away from zero probability

of error at all iterations. If λ′(0)ρ′(1) < es, then there exists an ε > 0 such that∫ 0

−∞ f(q)dq < ε implies that density evolution converges to zero probability of error

as the number of iterations increases to infinity.

There are two main obstacles in applying the above results to the algorithms

62



presented in Section 2.2: (i) the channels under consideration are not memoryless,

and (ii) the channel output is not a scalar, but a complex vector. Regarding the first

obstacle, the requirement of a memoryless channel is not actually necessary if the

decoding algorithm and the channel satisfy the following conditions: the messages

from the channel constraint node do not change with iterations, and all messages

arriving at a given variable or code check node are independent, at each iteration.

It can be shown for the PO receiver that the channel is equivalent to a binary-input

vector-output channel where the input ak results in a channel output (zk, z0), where

z0 is the received symbol corresponding to the pilot symbol. This case satisfies the

above conditions as long as the code is long enough and the interleaver is chosen

suitably.

In the following, we present a method that overcomes the second obstacle by

transforming this vector channel to an equivalent scalar channel with input/output

symmetry as in (2.28). In particular, consider a new channel which takes the output

of the original channel, (zk, z0), and creates a new output

yk = log
f(zk, z0|ak = 0)

f(zk, z0|ak = 1)
. (2.31)

It should be clear that yk is a sufficient statistic for ak since no information is lost

in the new channel. Thus, the concatenation of the original and new channels forms

an equivalent binary-input scalar-output channel (from ak to yk).

Furthermore, the density f(yk|ak = 0) is in the form of (2.13) where v1 and v2

are given by

v1 =
N0(Ep + Es + N0)

2
√

EpEs(
√

(Ep + N0)(Es + N0) +
√

EpEs)
(2.32a)

v2 =
N0(Ep + Es + N0)

2
√

EpEs(
√

(Ep + N0)(Es + N0) −
√

EpEs)
(2.32b)
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for the PO receiver, and the density f(yk|ak = 1) is the same as f(yk|ak = 0) except

that v1 and v2 are switched. Thus, the equivalent channel satisfies the input/output

symmetry of (2.28). As a result, the corresponding initial message q′k used by the

sum-product algorithm,

q′k = log
v1v2

v1+v2
[ev2yku(−yk) + e−v1yku(yk)]

v1v2

v1+v2
[ev1yku(−yk) + e−v2yku(yk)]

= (v2 − v1)yk = (v2 − v1)
4
√

EsRe{zk

√
Epz

∗
0}

N0(N0 + Ep + Es)
, (2.33)

will satisfy the exponential symmetry of (2.29).

Based on these results, the stability condition of [11] holds for the PO receiver

with the quantity es evaluated as

es = 1 +
EpEs

N0(Ep + Es + N0)
, (2.34)

which implicitly depends on the channel coherence time N . Furthermore, since the

PDCDF receiver is equivalent to the PO receiver with an effective pilot energy of

Ep,eff = Ep+(N−2)Es, the above symmetry and stability results, with this effective

pilot energy used in place of Ep in (2.34), also apply to the PDCDF receiver. Finally,

for the perfect-CSI receiver, which can be viewed here as a PO receiver with Ep = ∞,

the corresponding result can be found to be es = 1 + Es/N0, which agrees with the

result of [4].

2.4 Numerical Results

In this section, density evolution results are generated using discretized density

evolution [9]. In particular, each message is quantized using an 8-bit uniform quan-

tizer with 28−1 quantization levels. The range of the quantizer is roughly optimized
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to obtain low Eb/N0 thresholds. Since messages are quantized, only probability

mass functions need to be evaluated. Thus, the resulting Eb/N0 thresholds can be

considered as upper bounds for belief propagation with continuous messages. How-

ever, discretized density evolution is exact for a practical receiver that quantizes the

messages before iterative processing.

The results presented here, for all receiver types, use a single pilot symbol in each

block, i.e., Np = 1, since this is the optimal choice for Np. For the perfect-CSI, PO,

and PDCDF receivers, a search over b with a resolution of 0.001 is conducted to

find b∗, the largest b such that the bit error rate is less than 10−8 in at most 1000

iterations. Results for the QDF receiver are obtained by searching over Es/N0 and

Ep/Es values to find the minimum possible Eb/N0 (with a resolution of 0.001 dB)

required to obtain a bit error rate less than 10−8 in at most 1000 iterations. For the

QDF receiver, a separate search must be completed for each value of the channel

coherence time N . At each iteration during discretized density evolution, the value

of the threshold T for the QDF receiver is numerically optimized to minimize the

probability of bit error at that iteration.

Fig. 2.3 displays a summary of the density-evolution results for the regular (3, 6)

LDPC code ensemble with a quantizer range of (−35, 35). Discretized density evo-

lution results in b∗ = 0.203. Thus, the perfect-CSI receiver has an Eb/N0 threshold

of 3.06 dB, which agrees with the results in [4]. We note that for the perfect-CSI

receiver, the overall code rate Rc = R = 0.5. However, for the other receivers where

a pilot symbol was transmitted, Rc = R(N − 1)/N = 0.5(N − 1)/N . Thus, the

comparison between these receivers with the perfect-CSI receiver is not exactly fair,

especially for small values of N . This inconsistency can be corrected by using irreg-

ular LDPC codes with appropriate degree polynomials such that the overall rates of

the compared systems are equal.
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Figure 2.3: Discretized density-evolution results for the regular (3,6) LDPC code
over a complex Gaussian flat-fading channel.

In Fig. 2.3, the PDCDF curve provides a lower bound on the Eb/N0 threshold

for practical receivers. It is observed that for large N , the performance of both the

PO and PDCDF receivers approaches the perfect-CSI performance, which can also

be proved using (2.16), and (2.17).

The performance gain when the energy distribution between Ep and Es is op-

timized can also be observed in Fig. 2.3. For N = 20, the threshold for the PO

receiver is about 1.7 dB lower with the energy distribution optimized compared to

the case when Ep = Es. A 0.8 dB improvement is seen in the equivalent scenario for

the QDF receiver. The optimal values of Ep/Es for N = 10 and N = 20 are 5.4 dB

and 7.2 dB, respectively, for the PO receiver and 3.5 dB and 3.3 dB for the QDF
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Table 2.1: Rate-1/2 Irregular LDPC Degree Polynomials Optimized for the Perfect-
CSI Receiver in [4].

λ(x) ρ(x)

λ1 0 ρ1 0

λ2 0.292439 ρ2 0

λ3 0.253636 ρ3 0

λ4 0.060454 ρ4 0

λ5 0 ρ5 0

λ6 0 ρ6 0.007254

λ7 0 ρ7 0.979220

λ8 0 ρ8 0.013526

λ9 0.031610

λ10 0.361861

receiver.

The performance of the QDF receiver is significantly better than the PO receiver.

For N = 20, the Eb/N0 threshold for the optimized QDF receiver is about 4.4 dB,

which is roughly 1.0 dB lower than the optimized PO threshold and 0.8 dB higher

than the PDCDF lower bound. For N = 40, the QDF threshold is 3.7 dB, which

is about 1.1 dB lower than the PO receiver and 0.4 dB away from the PDCDF

lower bound. As N increases, the gap between the QDF and PDCDF performance

decreases.

By using optimized irregular LDPC codes, improved performance over the regular

(3,6) LDPC code is achieved. The irregular LDPC code described by the parameters

given in Table 2.1 is a rate-1/2 code, with maximum degrees (dv, dc) = (10, 8),

optimized for the perfect-CSI receiver [4]8. This code is also optimal for the PO

and PDCDF receivers and for all values of the channel coherence time N , as shown

8Although the parameters λ1, λ5, λ6, λ7, λ8, ρ1, ρ2, ρ3, ρ4, ρ5 were set to zero in [4], optimization
over these values showed no noticeable improvement.

67



0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

10

Channel Coherence Time, N 

 E
b/N

0 T
hr

es
ho

ld
 (d

B
)

PO, Ep=Es 
PO, Optimal Ep/Es  
QDF, Ep=Es 
QDF, Optimal Ep/Es   
PDCDF, Optimal Ep/Es   
Perfect CSI

Figure 2.4: Discretized density-evolution results for the irregular LDPC code in
Table 2.1 over a complex Gaussian flat-fading channel.

in Section 2.3. Based on the results of [4], only minor performance improvement

can be expected by using irregular LDPC codes with higher maximum degrees. For

this code, discretized density evolution with a quantizer range of (−17, 17) results in

b∗ = 0.247.

Fig. 2.4 displays a summary of the density-evolution results for the irregular

LDPC code given in Table 2.1. For the perfect-CSI receiver, density evolution re-

sulted in an Eb/N0 threshold of 2.09 dB, which agrees with the results in [4]. Similar

to the regular (3, 6) LDPC code, the PO and PDCDF performances with optimized

energy allocations approach the perfect-CSI performance for large N . When Ep/Es

is optimized, a performance gain of about 1.2 dB for the PO receiver and about
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0.8 dB for the QDF receiver is achieved over the Ep = Es case at N = 10.

From Fig. 2.4, observe that the PO receiver with optimal Ep/Es values performs

better than the QDF receiver with Ep = Es. Thus, simply optimizing the energy

allocation in the PO receiver can be more beneficial than using the more complex

QDF receiver. When Ep/Es is also optimized for the QDF receiver, the gain of

the QDF receiver over the PO receiver is 0.5 dB at N = 10, which is comparable

to the corresponding gain seen in [38] for the noncoherent AWGN channel. When

Ep = Es, the QDF receiver has a more significant benefit over the PO receiver,

e.g., 0.9 dB at N = 10 and 1.3 dB at N = 20. Comparing this result to the

corresponding gains in [43] for turbo codes with a Jake’s complex-fading channel

model, the benefit of iterative decoding and estimation over separate estimation and

decoding is approximately 1 dB smaller here. This can be attributed to several

causes: (1) the QDF algorithm is an ad-hoc algorithm which is not very efficient

for iterative joint-detection/estimation, (2) in the Jake’s fading channel model, the

fading varies continuously, so greater performance gain can be achieved by utilizing

more symbols (in addition to the pilot symbols) for channel estimation than in the

block-independent model, where the fading is independent from block to block. More

precisely, the channel estimation filter in [43] uses 61 symbols whereas the QDF

receiver can only use at most N − 1 symbols in the channel estimation.

Fig. 2.5 shows the improvement in performance when the irregular LDPC code

in Table 2.1 is used, compared to the regular (3,6) LDPC code performance. The

Eb/N0 threshold is about 0.9 dB lower in the PO case and about 0.6 dB lower in

the QDF case compared to the regular (3, 6) LDPC code at N = 10 when Ep/Es is

optimized.

By optimizing an irregular LDPC code with maximal degrees (dv, dc) = (10, 8)

for the QDF receiver at N = 10 following the procedure in Section 2.3b, we obtain
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Figure 2.5: Comparison of density-evolution results for the regular (3,6) LDPC code
and the irregular LDPC code in Table 2.1 over a complex Gaussian flat-fading chan-
nel.

the code in Table 2.2, and this optimized code results in some improvement in perfor-

mance, as shown in Fig. 2.6. A significant gain of 1.1 dB is achieved when Ep = Es

while a small gain of 0.4 dB is achieved when Ep/Es is optimized. Thus, if adjusting

Ep/Es is a viable option in the transmitter architecture, then not much performance

is lost by simply using the code optimized for the perfect-CSI receiver.

The optimal energy distributions Ep/Es are shown in Fig. 2.7. The QDF receiver

requires less pilot energy than the PO receiver since the code symbols can also

contribute to the channel estimate. For the PO receiver, as N increases, more energy

can be used for the pilot symbol to obtain a better channel estimate since the Eb/N0

penalty due to pilots is reduced as N increases. The previous statement is also true
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Table 2.2: Rate-1/2 Irregular LDPC Degree Polynomials Optimized for the QDF
Receiver at N = 10.

λ(x) ρ(x)

λ1 0.000000 ρ1 0.000000

λ2 0.373027 ρ2 0.003367

λ3 0.304234 ρ3 0.026410

λ4 0.066596 ρ4 0.138425

λ5 0.082820 ρ5 0.164885

λ6 0.003623 ρ6 0.149070

λ7 0.009525 ρ7 0.117388

λ8 0.000279 ρ8 0.400455

λ9 0.032068

λ10 0.127828
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Figure 2.6: Performance comparison of the irregular LDPC codes in Tables 2.1
and 2.2, denoted by the labels “I” and “II”, respectively.
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for the QDF receiver when N is small. However, for large N in the QDF receiver,

more code symbols can contribute to the channel estimate and hence, less energy is

needed in the pilot symbol9. Although the performance of the QDF receiver with

optimized energy allocations is similar for the codes in Table 2.1 and Table 2.2, the

energy allocation that achieves this performance is quite different, as evidenced by

the two corresponding curves in Fig. 2.7. If the transmitter circuitry does not allow

for Ep/Es values much different than 1 (due to peak-power and/or power-added-

efficiency constraints), then it is beneficial to use the code in Table 2.2 which was

optimized for the QDF receiver. Thus, for the QDF receiver, good performance can

9This latter trend is also observed in the QDF I curve in Fig. 2.7 for larger values of N than
depicted.
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Figure 2.8: Performance of the optimized PSA LDPC codes compared to an approx-
imation of the capacity for the complex Gaussian flat-fading channel. The labels “I”
and “II” denote the irregular LDPC codes in Tables 2.1 and 2.2, respectively.

be achieved by optimizing the energy distribution Ep/Es and/or by optimizing the

LDPC code.

Fig. 2.8 compares the best performance of the optimized PSA LDPC codes for

the perfect-CSI, PO, PDCDF, and QDF receivers, where optimization has been

completed over the LDPC-code degree polynomials and the energy distribution in

the PSA scheme, to an approximation of the capacity for the complex-fading channel.

The approximation for capacity is obtained by using a two-point approximation with

capacity-achieving isotropically-distributed inputs [47].

Since the code in Table 2.1 is an optimal code for the PDCDF receiver, the

PDCDF curve provides a lower bound on the performance of any LDPC code with
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maximal degrees (dv, dc) = (10, 8) in a PSA scheme with BPSK modulation. Thus,

Fig. 2.8 shows that the performance of such LDPC codes must be at least 1 dB from

capacity.

The best QDF performance provides an improvement of 0.9 dB over the best

PO performance at N = 10. However, the best QDF performance is still 1.4 dB

away from the PDCDF bound and 2.4 dB away from capacity at N = 10. The

gap between the optimized QDF receiver and capacity may be due to limitations of

the pilot-symbol-assisted scheme, the suboptimality of the QDF receiver, and/or the

specific modulation scheme (i.e., BPSK) utilized.

Simulations were conducted to verify the density-evolution results and to further

investigate the performance of a more practical system utilizing quadrature phase-

shift keying (QPSK) modulation. For the QDF simulations, a QPSK symbol was

used as an effective pilot symbol in the message generation at the channel constraint

node only if |ri| > T for both the LDPC code bits that make up the QPSK symbol.

The simulation results for this system are presented in Fig. 2.9. The simulations

were conducted for a regular (3,6) LDPC code and for the rate-1/2 irregular LDPC

codes in Table 2.1 and Table 2.2 with a codelength of 10008, channel coherence time

N = 10, Np = 1, and 100 decoding iterations. For the QDF receiver, the threshold

T was set to a fixed value for all iterations, and this fixed value was numerically

optimized for each simulation point, resulting in values of T between 1 and 2.5.

The Ep/Es values used in Fig. 2.9 were roughly optimized through simulations for

the QPSK-modulation scheme. Compared to the optimal Ep/Es values obtained

through density-evolution analysis with BPSK modulation, the optimal values here

are roughly the same for the PO receiver and 1.4 dB larger for the QDF receiver.

The increase in the optimal Ep/Es values for the QDF receiver is expected since

the code bits cannot contribute as much information to the channel estimate which
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Figure 2.9: Simulations of a regular (3, 6) LDPC code and the irregular LDPC codes
in Table 2.1 and Table 2.2, denoted by the labels “(3, 6)”, “I”, and “II”, respectively,
with a codelength of 10008, channel coherence time of 10, QPSK modulation, and
100 decoding iterations.

QPSK modulation is used.

The simulation results show that the proposed iterative algorithms with QPSK

modulation have performance roughly comparable to the simulated performance with

BPSK modulation. For the PO receiver, performance improves by 0.1 to 0.2 dB with

QPSK modulation over BPSK modulation since the penalty due to pilot insertion per

information bit is smaller for QPSK modulation, and thus, a larger pilot can be used

for the same Eb/N0, resulting in better channel estimates and better performance.

For the QDF receiver, performance degrades by 0.3 to 0.7 dB when QPSK modula-

tion is used, due in part to the more stringent requirement that two code bits have
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to be strongly biased in order for the corresponding QPSK symbol to act as a pilot.

With QPSK modulation, the best PO performance is only slightly worse (0.2 dB)

than the performance of the optimized QDF receiver whereas with BPSK modula-

tion, the optimized QDF receiver provides a 0.9 dB improvement over the optimized

PO receiver in analysis and simulation. Based on this observation, one can argue

that well-designed PO schemes present an excellent performance/complexity trade-

off, compared to designs based on the QDF and other iterative decoding/estimation

techniques.

At this point, a comparison with the performance of receivers in [48] is in order.

In [48], turbo codes, convolutional codes, and RA codes in conjunction with differ-

ential QPSK modulation are used over a block complex-fading channel. The channel

estimation portion of the iterative channel-estimation/decoding algorithm is com-

pleted through an averaging estimator for the fading amplitude and trellis decoding

with quantized phases for the fading phase. Simulation results for the QDF receiver,

with optimized rate 1/4 LDPC codes, 100 iterations, and all other conditions equiv-

alent to [48], results in about 0.4 to 0.9 dB worse performance for N = 10, 20, and

50 compared to the best results reported in [48]. This loss is due largely to the

suboptimality of the QDF receiver. However, the complexity of the QDF receiver

is much lower than that of the receivers in [48], where the channel estimation re-

quires calculations with 20 quantization levels for the phase and four possibilities for

the transmitted QPSK symbol, for each of the N sections in the trellis. Thus, the

QDF receiver provides a low-complexity solution at a cost of about 0.4 to 0.9 dB in

performance.
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CHAPTER 3

Finite-Length Analysis for Binary Erasure

Channels

Infinite-length analysis of LDPC codes with density-evolution techniques has pro-

vided a method for determining the performance of a code ensemble in the asymptotic

case when codelength becomes infinite. However, practical limitations on codelength

prevent practical codes from achieving this asymptotic threshold performance. Thus,

the ability to analyze finite-length performance is key to understanding factors af-

fecting the performance of practical codes and to designing practical codes with good

finite-length performance.

As discussed in Section 1.1.4, practical LDPC codes with finite lengths suffer

from error floors, which limit the achievable error rate. In order for high-performance

LDPC codes to achieve very low error rates desired for high reliability while keeping

power requirements low and codelengths relatively short, this error floor must be

lowered. Thus, we investigate factors affecting the error floor through finite-length

analysis to gain insight into how finite-length LDPC codes can be designed to improve

error-floor performance.

The analysis in this chapter is completed for the binary erasure channel (BEC)
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with erasure probability ε since finite-length analysis is much more tractable on this

channel. For the BEC, stopping sets [1] determine the iterative-decoding LDPC per-

formance, and ensemble stopping-set enumerators capture the average performance

of an LDPC ensemble, as shown in Section 1.1.6. These stopping-set enumerators be-

have similarly to weight enumerators, and both enumerators are useful in analyzing

error-floor performance, e.g., in [2, 19, 20, 49, 50].

Asymptotic analysis of weight and stopping-set enumerators for standard and

protograph-based LDPC ensembles has been completed for the case when codeword

weight and stopping-set size grow linearly with codelength n [19, 20, 49, 50]. This

analysis has aided in the design of LDPC codes with linear minimum distance and

with good threshold and error-floor performance, e.g., [18,50]. However, the analysis

does not capture the behavior of stopping sets that grow sublinearly with n, and these

sublinear stopping sets can dominate the iterative-decoding error-floor performance.

As shown in [20,51], when λ′(0)ρ′(1) > 1, then with high probability there exists a

stopping set with size less than or equal to β log n for some nonzero constant β, so the

smallest, nonzero stopping-set size cannot grow faster than log n. More rigorously,

for an LDPC standard ensemble satisfying the condition λ′(0)ρ′(1) > 1, there exists

δ > 0 such that P (v∗ ≤ δ log n) ≥ 1−c
√

n where v∗ is the smallest, nonzero stopping-

set size in the ensemble and c ∈ (0, 1) is an appropriate constant [20, 51].

Thus, the stopping sets that dominate performance in this case have size less than

or equal to β log n, motivating the study of sublinearly-sized stopping sets. Further

details are provided in Section 3.1.

In this chapter, we provide a perspective on enumerators for protograph-based

and standard LDPC ensembles, based on analysis of stopping sets with sublinear

growth with codelength, which brings new insight into (1) how sublinear stopping-set

enumerators behave, (2) how this behavior impacts code design, (3) how protograph
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structure can improve performance over standard ensembles, and (4) how precod-

ing affects error-floor performance. We first obtain tractable approximations to the

stopping-set enumerators. Then, we address the question of when the approxima-

tions are valid, i.e., for what stopping-set sizes and codelengths do the approximations

apply. The resulting analysis shows that for stopping sets that grow at most loga-

rithmically with codelength, the enumerators follow a polynomial relationship with

codelength, unlike the exponential relationship for linearly-growing stopping sets.

Using linear and integer programming, we find a simple method for determining the

dominating exponent of this polynomial relationship, and this evaluation leads to

a single metric, based on the dominating exponent, for characterizing the sublinear

stopping-set enumerator behavior. We also begin to address the question, “For a

finite stopping-set size and a finite codelength, do the stopping sets follow the be-

havior predicted by the linear or sublinear analysis?” Answering this question is

beneficial for gaining insight into the design of practical, finite-length codes with low

error floors.

3.1 A Discussion on Stopping-Set Sizes: Motiva-

tion for Studying Sublinear Stopping Sets

In Section 1.1.6, the effect of stopping-sets of size v on error-floor performance was

presented. Specifically, for any given positive integer v ∈ {1, . . . , n}, we can tightly

upper bound the probability of error in the error-floor region resulting from stopping

sets of size v in a code ensemble of codelength n using (1.15). In order to obtain

insights into code design, we will need to determine for a given code ensemble with

codelength n, what stopping-set size v dominates and hence limits the error-floor

performance and how this dominating v scales with n.
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In the error-floor region, the error probability, which is closely upper bounded

by (1.15), is dominated by the smallest stopping-set in the ensemble. Intuitively, the

smallest stopping set has the most influence since the probability of all variable nodes

in a small stopping set being erased by the channel is larger than the correspond-

ing probability for larger stopping sets. Thus, an important metric for an LDPC

ensemble is the stopping number [20], v∗, defined to be the size of the smallest,

nonempty stopping set in the code ensemble.

Since the stopping number, v∗, in the code is a dominant factor in the error-floor

performance, the question arises of how fast v∗ can grow with n. We discuss here

prior work on stopping-set enumerators for linearly-growing stopping sets and on

analysis of stopping numbers. Using these results, we will motivate the study of

sublinear stopping sets.

Much of the work on stopping-set enumerators has focused on stopping sets that

grow linearly with n, i.e., v = δsn for some constant δs [18–20, 49, 50]. For these

linearly-growing stopping sets, the enumerator has been shown to follow an expo-

nential relationship with n, i.e.,

s(n, δsn) ∼ eE(δs)n (3.1)

where the exponent is defined as

E(δs) = lim
n→∞

log s(n, δsn)

n
. (3.2)

A metric δs,min is defined to be the exponent’s first zero crossing from negative to

positive, i.e.,

δs,min = inf{δs > 0 : E(δs) > 0}. (3.3)

Thus, for all δs ∈ (0, δs,min), the exponent is negative and hence, the enumerator

80



decays exponentially with n. To design codes with this analysis in mind, they seek

code ensembles with the largest possible δs,min [18, 50]. This design goal stems from

the idea of maximizing minimum distance.

However, even if an LDPC ensemble has the property that δs,min > 0, this does not

guarantee that the stopping number grows linearly with codelength. The analysis of

linearly-growing stopping sets shows that for a particular stopping-set size v = δsn for

any δs ∈ (0, δs,min), the probability that stopping sets of size v exist in the ensemble

is small for large n. However, this does not guarantee that there is a high probability

that a particular LDPC code from the ensemble does not contain any stopping sets

of size v < δs,minn. Sublinearly-sized stopping sets, which are not considered in this

linear stopping-set analysis, may have a significant probability of occurrence, and

hence, the stopping number may be sublinear with codelength.

In the case when the minimum variable-node degree is strictly greater than two,

Burshtein and Miller have shown that standard ensembles have linear stopping num-

ber with high probability [49]. Specifically, they show that with probability 1− o(1),

an LDPC code drawn from a standard ensemble defined by degree distributions λ(x)

and ρ(x) does not have stopping sets of size γN or less for an appropriately chosen

value γ > 0. However, many good codes require the presence of degree-2 nodes, e.g.,

the codes in [8, 11, 18, 52, 53].

Orlitsky and others have shown a stronger statement that considers standard en-

sembles with degree-2 variable nodes [20]. They show that if λ′(0)ρ′(1) < 1, then the

probability that the stopping number is linear with codelength is
√

1 − λ′(0)ρ′(1) >

0. However, if λ′(0)ρ′(1) > 1, then with high probability, the stopping number is at

most logarithmic with n [51].

Based on the flatness condition for the BEC, capacity-achieving sequences of

LDPC standard ensembles must approach the flatness condition λ′(0)ρ′(1) < 1/ε
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with equality [54]. Since λ′(0)ρ′(1) ≈ 1/ε > 1, then the stopping number for capacity-

approaching sequences must be sublinear [51].

These results show that the stopping number, which dominates performance in

the error-floor region, grows only sublinearly with codelength for many codes, in-

cluding all capacity-achieving sequences of LDPC standard ensembles for the BEC.

Thus, in many cases, sublinear stopping sets dominate error-floor performance. This

motivates the study of sublinear stopping sets, which will be presented in this chap-

ter.

A few notes are in order. First, although some analysis of sublinear stopping sets

is completed in [20] for determining the stopping number, the analysis there focuses

on asymptotic behavior in the limit as codelength approaches infinity. The analysis

does not provide insight into the sublinear stopping-set behavior in the practical,

finite-length case.

Second, the analysis of sublinear stopping sets in [49] only applies to the case

when the minimum variable-node degree is strictly greater than two.

Lastly, note that the analysis and conclusions regarding stopping number in [20,

49, 51] apply to standard LDPC ensembles. When protograph-based structure is

enforced, the results may or may not be valid. In this case, the analysis of sublinear

stopping sets is still important to characterize the sublinear stopping-set behavior

and because the stopping number may still be sublinear with codelength for many

protograph-based codes.

3.2 Ensemble Stopping-Set Enumerators

First, we present expressions for the stopping-set enumerators for both standard

ensembles and protograph-based ensembles.
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3.2.1 Standard Ensembles

First, consider the standard LDPC ensemble with maximum variable-node degree

dv, maximum check-node degree dc, and rate R. Additional quantities describing

properties of the code are defined in Section 1.1.2.

The expected number of stopping sets of size v in the standard ensemble of LDPC

codes with codelength n is given by [30]

s(n, v) =

L′(1)∑
e=0

coef{∏dv

i=1 (1 + yxi)Li, yvxe} coef{∏dc

i=1 [(1 + x)i − ix]Ri , xe}(
L′(1)

e

) (3.4)

where e is the number of edges in the stopping set.

The first factor in the numerator represents the number of ways to choose v

variable nodes such that there are exactly e edges emanating from them. Evaluating

the first term in the numerator results in

Av = coef

{
dv∏
i=1

(1 + yxi)Li, yvxe

}
=
∑
k∈Sv

dv∏
i=1

(
nli
ki

)
(3.5)

where

Sv =

{
(k1, . . . , kdv) : 0 ≤ ki ≤ nli, ∀ 1 ≤ i ≤ dv;

dv∑
i=1

ki = v;
dv∑
i=1

iki = e

}
(3.6)

and ki is the number of variable nodes in the stopping set with degree i.

The second factor in the numerator represents the number of ways to connect e

edges to a subset of the check nodes such that a stopping set is formed, i.e., such

that all check nodes are connected to at least two of the e edges or to none at all.

83



Evaluating the second term in the numerator results in

Ac = coef

{
dc∏

i=1

[(1 + x)i − ix]Ri , xe

}
=
∑
n∈Sc

dc∏
i=1

⎧⎪⎪⎨
⎪⎪⎩

(n(1 − R)ri)!∏i
j=0,j �=1 ni,j!

i∏
j=0
j �=1

(
i

j

)ni,j

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

where

Sc = {n : ni,j ≥ 0, ∀ 2 ≤ j ≤ i ≤ dc; (3.8)

i∑
j=0

ni,j = n(1 − R)ri, ∀ 2 ≤ i ≤ dc;

dc∑
i=2

i∑
j=2

jni,j = e, ∀ 2 ≤ i ≤ dc},

n is the vector of all ni,j for 2 ≤ j ≤ i ≤ dc, and ni,j represents the number of

degree-i check nodes which are connected to the stopping set via j edges. Note that

ni,1 must always be zero in order to form a stopping set.

The denominator represents the number of ways to choose e edges out of the

L′(1) total edges in the graph.

Ad =

(
L′(1)

e

)
=

(
n
∑dv

i=1 ili
e

)
(3.9)

3.2.2 Protograph-Based Ensembles

Consider a protograph with M variable-node types and J check-node types con-

nected via E edge types. This protograph is repeatedly replicated to create a total

of Z copies of the protograph. Finally, for each edge-type e in the base protograph,

the endpoints of the Z type-e edges are randomly permuted between the Z variable

nodes and Z check nodes to which the Z edges are connected. The ensemble con-

sisting of all such permutations is the protograph-based LDPC ensemble, and the

codelength n = ZM .
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To derive an expression for s(n, v), we will first define several quantities for i =

1, . . . , M ; j = 1, . . . , J ; and k = 1, . . . , dc,j:

ni = number of type-i variable nodes in a set of v variable nodes

n =(n1, n2, . . . , nM) = vector of all ni’s for i = 1, . . . , M

dv,i = degree of the ith variable-node type

dc,j = degree of the jth check-node type

νj,k = variable-node type connected to the kth edge emanating from the

jth check-node type in the protograph.

Note that νj,k and νj,l can be the same variable-node type for k 	= l if a variable-node

type and check-node type are connected by multiple edges in the protograph.

Theorem 3.1. For a protograph-based LDPC ensemble generated from Z copies of a

protograph with M variable-node types and J check-node types connected via E edge

types, the expected number of stopping sets of size v is

s(n, v) =
∑
n∈Sp

⎡
⎣ M∏

i=1

(
Z

ni

)1−dv,i

×

J∏
j=1

coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭
⎤
⎦ (3.10)

where the codelength n = ZM and

Sp =

{
n ∈ Z

M : 0 ≤ ni ≤ Z, ∀i ∈ {1, . . .M};
M∑
i=1

ni = v

}
. (3.11)

The set Sp contains all possible distributions of the variable-node types within

a set of v variable nodes. In (3.10), the term
∏M

i=1

(
Z
ni

)
represents the number of
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ways to choose v variable nodes out of the Z protograph copies such that they follow

the distribution in n. The term
∏M

i=1

(
Z
ni

)dv,i
represents the total number of edge

permutations possible for the edges emanating from these v variable nodes. Finally,

the coefficient term in (3.10) represents the number of ways to connect the v variable

nodes to check nodes of type j such that a stopping set is formed.

Proof. See Appendix B.

Equation (3.10) is an exact expression and can be shown to be equivalent to the

expression in [50]. By expressing the enumerator with the coefficient term in (3.10),

we are able to describe a closed-form combinatorial expression which is then approx-

imated in Section 3.3. In [50], the equivalent term is calculated recursively using

multinomial z-transforms.

3.3 Enumerator Approximations for Sublinear-

Sized Stopping Sets

From the expressions in Section 3.2, the ensemble stopping-set enumerators for

sublinear-sized stopping sets will be approximated for large n. The approximations

will provide insight into how the enumerators scale with codelength. Results will be

presented for both standard ensembles and protograph-based ensembles.

3.3.1 Standard Ensembles

For standard ensembles, the combinatorial expressions in (3.4) can be approxi-

mated as n approaches infinity to obtain the following theorem.

86



Theorem 3.2. For a standard LDPC ensemble with dc > 2, codelength n, and

stopping-set size v such that

v ≤ xn min
1≤i≤dv:li �=0
1≤j≤dc:rj �=0

{
li,

2

dv

(1 − R)rj

}
, (3.12)

for any constant x ∈ [0, 1/dv), the expected number of stopping sets of size v is

approximated by

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2±O(v log v)
log n . (3.13)

Proof. See Appendix C.

The requirement that dc > 2 is not very restrictive since it is typically met by good

LDPC codes. The condition on v in (3.12) is also not restrictive since we are only

investigating sublinearly-sized stopping sets here. Although the condition (3.12) says

that the expression in (3.13) is valid for stopping-set sizes up to a linear proportion

of n, the approximation in (3.13) is only useful up to a sublinear proportion of n

for which the big-O term is insignificant compared to the rest of the exponent. For

example, the big-O term will be insignificant for stopping-set sizes that grow at most

logarithmically with n but not for stopping-sizes that grow proportionally to nx for

any x > 0.

When the stopping-set size v is a finite, fixed constant, then the theorem simpli-

fies.

Corollary 3.1. For a standard LDPC ensemble with a finite, fixed stopping-set size

v, dc > 2, and codelength n satisfying

n >
dvv

min1≤i≤dv :li �=0
1≤j≤dc:rj �=0

{
li,

2
dv

(1 − R)rj

} , (3.14)
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the expected number of stopping sets of size v is approximated by

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2O(1). (3.15)

Proof. Since v is a finite, fixed constant, we can find an n large enough to satisfy the

condition in (3.12). Formally, for all n such that (3.14) is satisfied,

v <
1

dv

n min
1≤i≤dv:li �=0
1≤j≤dc:rj �=0

{
li,

2

dv

(1 − R)rj

}
(3.16)

and hence,

v ≤ xn min
1≤i≤dv :li �=0
1≤j≤dc:rj �=0

{
li,

2

dv
(1 − R)rj

}

for some x ∈ [0, 1/dv). Thus, we can apply Theorem 3.2 to find

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2n±O(v log(v))
log n . (3.17)

The big-O notation in the last term indicates that there exists a positive constant α

and an integer n0 such that for all n > n0,

0 ≤ O(v log v) ≤ αv log v. (3.18)

Thus, we can bound that last term of (3.17) as follows:

nO(v log v)/ log n ≤ nαv log v/ log n = nlogn vαv

= vαv (3.19)

and

n−O(v log v)/ log n ≥ n−αv log v/ log n = nlogn v−αv

= v−αv. (3.20)
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Thus,

v−αv ≤ n±O(v log v)/ log n ≤ vαv. (3.21)

Since v is a finite, fixed constant, these upper and lower bounds are positive constants,

so n±O(v log v/ log n) = O(1). Hence,

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2O(1). (3.22)

Applying Theorem 3.2 to stopping sets which grow at most logarithmically with

codelength yields the following corollary.

Corollary 3.2. For a standard LDPC ensemble with dc > 2, stopping-set size v ≤
β log n for any constant β > 0, and codelength n large enough such that

log n

n
<

1

βdv

min
1≤i≤dv :li �=0
1≤j≤dc:rj �=0

{
li,

2

dv

(1 − R)rj

}
, (3.23)

the expected number of stopping sets of size v is approximated by

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2±O(log [log n]). (3.24)

When v = β log n, the big-O term in (3.24) grows proportionally with log v and

hence is insignificant compared to the rest of the exponent for large n. Also, note

that there exists a β > 0 small enough such that the condition in (3.23) is satisfied

for all n ≥ 1 and hence, (3.24) holds for all n ≥ 1 for this β value.
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Proof. Rearranging the condition in (3.23), we obtain

β log n <
n

dv
min

1≤i≤dv:li �=0
1≤j≤dc:rj �=0

{
li,

2

dv
(1 − R)rj

}
. (3.25)

Thus,

v ≤ β log n ≤ xn min
1≤i≤dv:li �=0
1≤j≤dc:rj �=0

{
li,

2

dv

(1 − R)rj

}
(3.26)

for some constant x ∈ [0, 1/dv). Applying Theorem 3.2 and noting that (3.26) gives

the relation

O(v log v)

log n
=

O(β log n log [β log n])

log n
= O(β log [β log n])

= O(β log β + βlog[log n]) = O(log[log n]) (3.27)

yields the final result:

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2±O(log [log n]). (3.28)

3.3.2 Protograph-Based Ensembles

Using similar techniques as for standard ensembles, s(n, v) will be approximated

for protograph-based ensembles as follows. Let V be the set of all variable nodes

in the graph and fix a subset Vv ∈ V such that the variable-node types in Vv are

distributed according to n, where n is a vector in Sp. Now, several quantities will be
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defined for a particular check-node type j. Let

B =

⎧⎨
⎩(b1, b2, . . . , bdc,j

) ∈ {0, 1}dc,j :

dc,j∑
k=1

bk 	= 1

⎫⎬
⎭ . (3.29)

This set represents the possible connections a single check node of type j can have

to Vv such that it is connected at least twice or not at all. Specifically, for each

k ∈ {1, . . . , dc,j}, bk is 1 if the kth edge emanating from the check node is connected

to Vv and is 0 otherwise. The size of the set B is

|B| = 2dc,j − dc,j. (3.30)

Enumerate the elements in B as {β0, β1, . . . , β|B|−1} where β0 is the all-zero vector

and all other vectors are enumerated in any fashion. Let βh,k be the kth element of

βh. Let mh be the number of check nodes of type j whose connections are described

by βh and let m = (m0, . . . , m|B|−1) be the vector of all such quantities. Finally, for

a given m, let wj be the number of check nodes of type j which are connected to Vv.

With these definitions, we can now express an approximation to s(n, v).

Theorem 3.3. For an LDPC ensemble based on Z copies of a protograph with M

variable-node types, J check-node types, E edge types, codelength n = ZM , and

stopping-set size v < n, the expected number of stopping sets of size v is approximated

by

s(n, v) =
∑
n∈Sp

Zv−e+w∗±O(v log v)
log n (3.31)

where e is the number of edges emanating from the set of variable nodes, Vv, which is

distributed according to n, and Sp is defined in (3.11). The quantity w∗ =
∑J

j=1 w∗
j
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where w∗
j = maxm∈Sm{wj} and

Sm =

⎧⎨
⎩m ∈ Z

|B| : 0 ≤ mh ≤ Z, ∀h = 0, . . . , |B| − 1;

|B|−1∑
h=0

mh = Z;

|B|−1∑
h=0

βh,kmh = nνj,k
, ∀k = 1, . . . , dc,j

⎫⎬
⎭ (3.32)

for each j ∈ {1, . . . , J}.

Proof. See Appendix D.

The quantity w∗ in Theorem 3.3 represents the largest number of check nodes

possible in a subgraph induced by a stopping set distributed according to n. The

difficulty in applying Theorem 3.3 is in determining w∗ for a given v and n.

Similar to the standard-ensemble case in Section 3.3.1, Theorem 3.3 for protograph-

based codes simplifies when the stopping-set size is a finite, fixed constant or grows

at most logarithmically with codelength, as shown in the next two corollaries.

Corollary 3.3. For a protograph-based LDPC ensemble with a finite, fixed stopping-

set size v and codelength n > v, the expected number of stopping sets of size v is

approximated by

s(n, v) =
∑
n∈Sp

Zv−e+w∗
O(1). (3.33)

Corollary 3.4. For a protograph-based LDPC ensemble with codelength n, stopping-

set size v ≤ β log n for any constant β > 0, and n large enough such that log n/n <

1/β, the expected number of stopping sets of size v is approximated by

s(n, v) =
∑
n∈Sp

Zv−e+w∗±O(log [log n]). (3.34)

When v = β log n, the big-O term in (3.34) grows proportionally with log v and
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hence is insignificant compared to the rest of the exponent for large n. Also, note

that there exists a β > 0 small enough such that the condition log n/n < 1/β is

satisfied for all n ≥ 1 and hence, (3.34) holds for all n ≥ 1 for the β value.

The proofs of Corollary 3.3 and Corollary 3.4 parallel the proofs of Corollary 3.1

and Corollary 3.2, respectively, for the standard ensemble (see Section 3.3.1), and

hence the proofs are omitted here.

3.4 Insights into Sublinear Stopping-Set

Enumerator Behavior

In this section, we discuss the insights provided by the enumerator approximations

and compare standard ensembles with protograph-based ensembles.

Theorems 3.2 and 3.3 show that the enumerator approximations, for stopping

sets that grow at most logarithmically with codelength, have a polynomial relation-

ship with the codelength n. In contrast, the asymptotic analysis in [19, 50] shows

that the enumerator follows an exponential behavior with codelength, for linearly-

growing stopping sets. This difference indicates that our analysis captures sublinear

behavior of the stopping sets which could not be captured in [19, 50]. Thus, the re-

sults here help to more fully capture stopping-set behavior and may be more useful in

gaining insight for finite codelengths, particularly for short codes where the dominat-

ing stopping-set size v = δs,minn in the linear analysis may be too small (e.g., small

enough to be avoided by an intelligent permutation algorithm) to provide meaningful

results.

We define two categories of behavior: category P contains stopping sets which

follow the polynomial behavior in Theorems 3.2 and 3.3, which includes finite stop-

ping sets and stopping sets which grow at most logarithmically with codelength.
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Category E contains stopping sets which follow the exponential behavior in [19, 50],

which includes stopping sets which grow linearly with codelength.

For standard ensembles with stopping sets in category P, Theorems 3.1 and 3.2

show that the exponent of n is dominated by v − �e/2� and this exponent decreases

with increasing e, where e is the number of edges in the stopping set. Thus, the

dominating term in the summation will be the one with the smallest value of e such

that a stopping set can be formed with v variable nodes and e edges. This value of e

will be denoted by emin and the corresponding dominating exponent will be denoted

by

ES = �emin/2� − v (3.35)

such that

s(n, v) ≈ cn−ES (3.36)

for some constant c and for large n. These results show that s(n, v) grows proportion-

ally with n−ES and hence, is dependent on n polynomially. Calculations on various

code ensembles agree with this result (for example, see Section 3.6).

For standard ensembles with finite v and n ≥ v/ldv,min
, then emin = vdv,min where

dv,min is the minimum variable-node degree in the graph. Hence, ES = �dv,minv/2�−
v. This indicates that improved error-floor performance can be obtained by increasing

the minimum variable-node degree and hence increasing ES. Thus, dv,min is the one

code characteristic which dominates the error-floor performance of s(n, v) for all

v ≤ β log n satisfying the conditions given in Corollary 3.2.

A special case occurs when dv,min = 2. In this case, ES = 0 and thus the expected

number of stopping sets of size v does not decay polynomially with n for any value

of v. This implies that there always exists a significant probability of small stopping

sets containing degree-2 variable nodes.

94



Another special case occurs when v = 1. In this case, we are examining the

trivial case when a single variable node has multiple connections to each check node

to which it is connected. In practice, this case will always be avoided in any prac-

tical design. Taking the dominating term of the probability of block error for the

LDPC code ensemble to be the term corresponding to the dominating term in the

s(n, v) expression for v = 1 (since this is the most probable scenario), the resulting

expression agrees with the expression given in Theorem 16 in [20]. Here, we were

able to provide a more general expression and intuition behind that expression.

If a capacity-achieving sequence of LDPC code ensembles satisfies the flatness

condition [54], then λ′(0)ρ′(1) → 1/ε. It has been conjectured that all capacity-

achieving sequences must satisfy the flatness condition, but this has yet to be proven.

Since λ′(0) = λ2, the flatness condition says that λ2 must approach 1/(ερ′(1)) 	= 0 in

order to obtain good threshold performance. Thus, codes with good thresholds need

degree-2 variable nodes. On the other hand, λ′(0)ρ′(1) → 1/ε > 1, so Theorem 3.2

applies and thus, good error-floor performance required high dv,min. These two re-

quirements are in direct conflict with each other, indicating that there may indeed

be a fundamental tradeoff between threshold and error-floor performance, at least

for standard ensembles (if the flatness condition is required for capacity-achieving

sequences).

Fig. 3.1 shows an example of this tradeoff for rate 1/2 LDPC standard ensembles.

As discussed above, the error-floor behavior is characterized by dv,min. Ideally, an

ensemble will have both large dv,min and large threshold erasure probability ε. For

the regular codes, the tradeoff is clearly seen in Fig. 3.1. This leads to the question,

“Can irregular LDPC code ensembles do better?” Except when dv,min = 2, attempts

at irregular LDPC code optimization (using differential evolution on the degree poly-

nomials) with a fixed dv,min resulted in no improvement over the regular codes. The
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Figure 3.1: Error-floor vs. threshold performance for several rate-1/2 LDPC stan-
dard ensembles. Error-floor performance is characterized by dv,min and threshold
performance is characterized by the largest erasure probability ε such that density
evolution converges to arbitrarily small error probability.

case when dv,min = 2 is unique since the regular (2,4) ensemble behaves poorly. The

best irregular ensemble with dv,min = 2 displayed in Fig. 3.1 is the optimized code

from [11].

This example agrees with the conjecture that degree-2 variable nodes are neces-

sary to achieve high thresholds. To simultaneously improve the error-floor perfor-

mance, the quantity emin/v must increase above the value of dv,min for a given v.

This is where protograph-induced structure is beneficial, as will be shown below.

For protograph-based ensembles, the dominating term in the approximation for
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s(n, v) in Theorem 3.3 is n−EP where

EP = e∗ − v (3.37)

and

e∗ = min
n∈Sp

{e − w∗}. (3.38)

Thus,

lim
n→∞

s(n, v) = n−EP . (3.39)

Observe that w∗ ≤ �e/2� since the number of check nodes connected to a stopping

set is at most the number of edges emanating from the stopping set divided by 2,

i.e., when each check node is connected via exactly two edges (with one check node

connected via three edges if e is odd). Thus,

e∗ = min
n∈Sp

{e − w∗} ≥ min
n∈Sp

{e − �e/2�} = min
n∈Sp

{�e/2�}

= min
n∈Sp

⌈
M∑
i=1

nidv,i/2

⌉
≥ min

n∈Sp

⌈
M∑
i=1

[nidv,min] /2

⌉
= �dv,minv/2� ,

and hence, a direct comparison between the exponents EP and ES can be made:

EP = e∗ − v ≥ �dv,minv/2� − v = ES. (3.40)

Since large exponents EP and ES are desirable to make the exponent of n more

negative, this result shows that protograph-based ensembles perform at least as

well as standard ensembles. Further, protograph-based ensembles have the possi-

bility for achieving exponents which are strictly more negative. To maximize EP

in protograph-based ensembles, we need to minimize w∗—the maximum number of

check nodes in a subgraph induced by a stopping set Vv—which is dependent solely
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on the structure of the protograph. Intuitively, the structure of the protograph en-

forces structure so that we may not be able to simply connect exactly two edges to

each of the �e/2� check nodes (with one check node connected to 3 edges if e is odd).

Since the protograph structure limits the possible check nodes which the variable

nodes in Vv can connect to, such a scheme using �e/2� check nodes may not result in

a valid induced subgraph of Vv. Thus, the number of check nodes needed to form a

stopping set with Vv can be strictly smaller than for standard ensembles and hence,

protograph-based ensembles can have strictly more negative exponents, resulting in

better error-floor performance.

Additional insight provided by Theorems 3.2 and 3.3 includes the following. For

finite stopping sets,

• if (v − e + w∗) < 0, then the expected number of such stopping sets can be

made arbitrarily small by choosing a large enough n, or

• if (v − e + w∗) ≥ 0, then the expected number of such stopping sets is lower

bounded by a positive finite number for all n.

If dv,min ≥ 3, as in [55], then (v − e + w∗) < 0 for all stopping sets in the ensemble.

Thus, the expected number of all finite-sized stopping sets can be made arbitrarily

small by choosing a large enough n, and such codes are guaranteed to have good

error-floor performance for category-P stopping sets.

The above results on stopping-set enumerators for category-P stopping sets lead

to several questions. First, can we expurgate the ensemble or pick a specific code

from the ensemble such that the dominating stopping-set size is increased? Further,

can we find codes where the stopping number grows linearly with codelength, i.e.,

v ≥ δn for all stopping sets in the code for a given constant δ?

In [28], expurgation is accomplished by fixing the value of certain variable nodes

in a code ensemble to achieve a target stopping number. However, is it possible to

98



strategically design ensembles through protographs to increase the stopping num-

ber? Intuitively, we can see that the additional structure imposed by the protograph

can render certain sized stopping sets impossible. For example, by simply avoid-

ing any multiple connections in the protograph, i.e., connecting each edge from a

given variable-node type to different check-node types, all stopping sets of size 1 are

eliminated.

In Section 3.6, we will discuss an example in detail to illustrate the various insights

provided by the ensemble stopping-set enumerators. First, we examine when the

approximations of Section 3.3 are valid.

3.5 Region of Approximation Validity

To help determine whether stopping sets behave polynomially or exponentially,

we examine when the approximations of Section 3.3 are valid. Specifically, for what

values of stopping-set size v and codelength n do the approximations apply? We will

only present the analysis for protograph-based ensembles for which at most one edge

type connects any variable-node type to any check-node type in the protograph. For

all other protographs, one can simply expand the protograph to meet this condition

and then apply the analysis given here.

Given n ∈ Sp and m ∈ Sm, the corresponding term in the stopping-set enumera-

tor in Theorem 3.1 can be expressed as

ln sn,m(n, v) = ln c + (v − e + w∗) lnn + A (3.41)

where

c =
M∏
i=1

[
1

ni!

]1−dv,i J∏
j=1

1∏|β|−1
h=1 mh!

M−(v−e∗w∗) (3.42)

99



is independent of n and

A =

M∑
i=1

[
ni−1∑
k=1

ln

(
1 − k

Z

)(1−dv,i)
]

+

J∑
j=1

wj−1∑
k=1

ln

(
1 − k

Z

)
. (3.43)

Comparing the error term |A| to |(v−e+w∗) lnn| will show when the approximation

in Theorem 3.3 is valid.

Theorem 3.4. Consider a protograph-based ensemble for which at most one edge

type connects any variable-node type to any check-node type in the protograph. Given

a small fraction γ > 0 and any constant a ∈ (0, 1), let N0 be the solution of n in the

following equation:

n lnn =
Mv

γ

(
1 +

a

2(1 − a)2

)(
1 +

1

dv,avg − 2

)
(3.44)

where dv,avg is the smallest average variable-node degree in stopping sets of size v.

Then, for all v and n satisfying the conditions v/n ≤ a/M and n > N0, the error

term is upper bounded by

|A| ≤ γ|(v − e + w∗) lnn| (3.45)

and hence, for small γ, the stopping-set enumerator can be approximated by

ln sn,m(n, v) ≈ ln c + (v − e + w∗) ln n. (3.46)

Proof. See Appendix E.

Since v is proportional to N0 ln N0, the ratio of v/N0 monotonically increases as v

increases. Also, there may exist values of n < N0 such that the upper bound on the

error term still holds. Additional work to tighten the bounds used to generate the
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Figure 3.2: Protograph P analyzed in Section 3.6. The protograph contains 6
variable-node types (circles) and 3 check-node types (squares).

approximations are necessary to capture a larger portion of the region of validity.

3.6 A Detailed Example Illustrating Insights

Provided by Enumerator Approximations

Comparing the regular (3,6) LDPC standard ensemble to the ensemble generated

by protograph P in Fig. 3.2 provides an illustrative example of insights provided by

the sublinear analysis in Sections 3.2-3.5. The protograph-P ensemble is a subset

of the regular (3,6) standard ensemble. Among other restrictions, protograph P’s

structure prevents size-1 stopping sets from forming.

Examining the behavior of linearly-growing stopping sets (those that grow linearly

with codelength) as in [19], both ensembles have the same δs,min value. However, the

category-P stopping-set behavior is different for the two ensembles, as will be shown

next.

From Theorems 3.1 and 3.3, the exponents ES and EP , respectively, can be

calculated for category-P stopping sets as follows. First, note that these exponents

correspond directly to the negative slope of a log-log plot of s(n, v) versus n. For a

given stopping-set size v, the total number of edges in the stopping set is 3v. In order

to form a stopping set with the largest number of check nodes, we need to spread

out the edges as much as possible among the check nodes while still satisfying the
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constraint that all check nodes must have either zero or at least two connections to

the stopping set.

In protograph P, there are three types of check nodes: type A, type B, and type

C. First, consider check nodes of type A. Since each of the v variable nodes in the

stopping set has a single connection to a type-A check node, the type-A check nodes

must be connected to the stopping set via v edges. The maximum number of type-A

check nodes which can connect to the stopping set via v edges, with each check node

connected via zero or at least two edges, is �v/2�. The same analysis applies to check

nodes of type B and C, as well. Thus, the total maximum number of check nodes

connected to a stopping set of size v is w∗ = 3 �v/2�, and the resulting exponent

calculated from Theorem 3.3 is

EP (v) = −v + 3v − 3
⌊v
2

⌋
= 2v − 3

⌊v
2

⌋
. (3.47)

For the regular (3,6) standard ensemble, the exponent can be calculated directly

from Theorem 3.1:

ES(v) = −v +

⌈
3v

2

⌉
=
⌈v
2

⌉
. (3.48)

This can also be seen by observing that all check nodes in the standard ensemble are

of the same type. Since there is no distinction between the check nodes, the 3v edges

can be connected to any of the check nodes, as long as each check node is connected

zero or at least two times. Thus, the maximum number of check nodes connected to

the stopping set is w∗ = �3v/2�. Applying (3.37) and (3.38) gives the same exponent

as in (3.48).

Comparing the two results, we see that when v is even, the exponents are the
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Figure 3.3: Ensemble stopping-set enumerator vs. codelength for the regular (3,6)
standard ensemble and the protograph-P ensemble.

same for both ensembles. However, when v is odd, EP is exactly one more than ES:

EP (v) − ES(v) = 2v − 3
⌊v
2

⌋
−
⌈v
2

⌉
= 2v − 3

v − 1

2
− v + 1

2
= 1. (3.49)

Thus, in terms of the exponents for odd v, protograph P is strictly better than the

standard ensemble.

The ensemble stopping-set enumerators for the regular (3,6) standard ensemble

and the protograph-P ensemble are shown in Fig. 3.3 as a function of codelength n

for stopping-set sizes v = 1 to 5. The values plotted are exact, numerically evaluated

values calculated from Equation (3.4) and Theorem 3.1. Note that protograph P has

no stopping sets of size one. Fig. 3.3 provides some key observations.

First, the stopping-set enumerators follow the category-P behavior: the log-log
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plot is linear and the slope agrees with the exponent values EP and ES calculated

above.

Second, protograph P greatly reduces the number of stopping sets of odd size. For

odd v, the log-log slope was both analytically calculated and numerically evaluated to

be one less for the protograph-P ensemble than for the standard ensemble. For even

v, the protograph-P ensemble has the same log-log slope but higher offset than the

standard ensemble. This leads to several questions: (1) is there some conservation

of stopping-set numbers and (2) are there regions where the effect of the offset will

dominate over the effect of the slope and vice versa?

Third, the linear behavior in the log-log domain predicted for category-P stopping

sets seems to hold even for very small codelengths, e.g., n ≈ 10v. Since the v/n ratio

of 0.1 is significantly (one order of magnitude) larger than the δs,min values of 0.01-

0.03 in [19, 50], this suggests that category-P behavior may extend to stopping-set

sizes which grow faster than logarithmically with codelength. Further, the smallest

stopping set in the ensemble may fall into the range where category-P behavior is

applicable, which would mean that investigations into category-E stopping sets may

not be the critical analysis. However, these are simply conjectures based on a couple

ensemble examples with low v and n values. It is unclear whether this pattern will

hold for larger v and n values and for all ensembles.

Lastly, if we fix δ = v/n and trace the behavior as n grows, we begin to see

different trends in the plot, as shown in Fig. 3.4. The different behavior for even

and odd stopping set sizes is apparent from this figure. Also, there appears to be

an increase in the enumerators when v = 0.1n and a decrease when v = 0.01n. This

generally agrees with the trends predicted for category-E stopping sets in [19, 50].

Applying Theorem 3.4 to protograph P provides an illustrative example of when

the approximation in Theorem 3.3 holds. Specifically, using a = 0.25 and γ = 0.02,
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Figure 3.4: Trace of stopping-set enumerators in Fig. 3.3 for stopping sets growing
linearly with codelength. The stopping sets have size v = 0.1n and v = 0.01n.

we find the values of stopping-set size v and codelength n for which the approximation

is accurate within 2%. Applying Theorem 3.4, we obtain values for N0 in Table 3.1.

This table shows, for example, that for stopping sets of size v = 2, the stopping

sets follow category-P behavior for all codelengths n ≥ N0 = 104, i.e., for all ratios

v/n ≤ v/N0 = 0.019. Since v/N0 increases monotonically with v, all stopping sets of

size v ≤ 0.019n follow category-P behavior for all n ≥ 104.

Based on the analysis of category-E stopping sets in [19,50], the largest v/n ratio

resulting in a negative stopping-set enumerator exponent is δs,min = 0.018. Thus,

according to this category-E analysis, the stopping-set sizes of interest are around

0.018n. However, Table 3.1 shows that for all n ≥ 104, these stopping sets actually

follow category-P behavior.

This example has shown that category-P analysis is necessary to more fully cap-
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Table 3.1: Bounds on the Region of Enumerator-Approximation Validity for Stopping
Sets of Size v in the Protograph-P LDPC Ensemble

v N0 v/N0

1 59 0.017
2 104 0.019
3 145 0.021
4 184 0.022
5 222 0.023

10 399 0.025
20 726 0.028
50 1617 0.031

100 2986 0.034
200 5543 0.036
500 12647 0.040

ture the stopping-set enumerator behavior.

3.7 Calculating Enumerator Exponents for

Protograph-Based Ensembles

Theorem 3.3 showed that the polynomial enumerator exponent for protograph-

based ensembles is v − e + w∗ where w∗ represents the largest possible number of

check nodes connected to a stopping set characterized by the variable-node type

distribution n. The quantity w∗ is dependent on the structure of the protograph

and hence, in general, it is difficult to evaluate exactly. In this section, we will show

that an approximation to the enumerator exponent can be easily evaluated with

linear/integer programming.

3.7.1 Evaluating w∗

First, we provide a method for calculating w∗, the maximum number of check

nodes in a subgraph induced by a stopping set characterized by the variable-node
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distribution n, based on the stopping-set and protograph parameters.

Due to the protograph structure, connections to check nodes of type j are inde-

pendent of check nodes of all other types. Thus, we can consider each check-node

type j independently, and for each j, we evaluate w∗
j , the maximum number of type-j

check nodes in a subgraph induced by a stopping set characterized by n.

For the analysis, we assume that the maximum edge multiplicity in the protograph

is one, i.e., each variable-node type can be connected at most once to each check-

node type in the protograph. If this assumption does not hold, then we can simply

expand the protograph, by the maximum edge multiplicity, such that the assumption

is satisfied and then, apply the analysis.

Let νi,j ∈ {0, 1} be the number of edge connections between variable-node type i

and check-node type j in the protograph.

Theorem 3.5. Consider a set V of variable nodes with distribution n = (n1, . . . , nM)

where ni is the number of type-i variable nodes in the set.

For each check-node type j, if

2 max
1≤i≤M

niνi,j ≤
M∑
i=1

niνi,j, (3.50)

then we can connect type-j check nodes to V such that V is a stopping set. Further,

w∗
j = �ej/2� (3.51)

where ej =
∑M

i=1 niνi,j is the total number of edges connected to type-j check nodes.

If (3.50) is not satisfied for any check-node type j, then V cannot be a stopping

set.

Proof. See Appendix F.
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To see the intuition behind the role of (3.50) in Theorem 3.5, first rearrange

the inequality (3.50), which is expressed in a form for easy evaluation, into a more

intuitive form:

nkνk,j ≤
M∑

i=1,i�=k

niνi,j (3.52)

where k = arg max1≤i≤M niνi,j, i.e., the number of connections from type-k variable

nodes to type-j check nodes must be less than or equal to the number of connec-

tions from all other variable-node types to type-j check nodes. Next, recall from

Section 1.1.6 that in order to form a valid stopping set, each check node must be

connected to V at least twice or not at all. Since each edge type in the protograph

is permuted independently of all other edge types, the connections to each check-

node type j can be considered separately from all other check-node types. Thus,

fix a check-node type j. Then, for each variable-node type k which is connected to

check-node type j in the protograph, i.e., νk,j = 1, the nk type-k variables nodes in V
are connected to nk unique type-j check nodes due to the protograph expansion. In

order for these nk type-j check nodes to be connected to V at least twice, there must

be at least nk other variable nodes in V of any type i 	= k with νi,j = 1 which can

also connect to these nk type-j check nodes. This results in the inequality (3.52). It

suffices to require the inequality to be satisfied for the variable-node type k with the

largest nkνk,j value since the inequality will subsequently be satisfied for all other

variable-node types as well. On the other hand, if (3.52) is not satisfied, then there

are not enough variable nodes in V of type i 	= k which can connect to the nk type-j

check nodes. Thus, there exists at least one singly-connected type-j check node and

hence, a stopping set cannot be formed.

To summarize the main intuition behind (3.52), a valid stopping set can be formed

if and only if each type-k variable node in V can be matched with a unique variable

node in V of any other type i 	= k such that νi,j = 1. Fig. 3.5(a) shows an example
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(a)

(b)

Figure 3.5: Two examples illustrating the intuition behind the role of (3.50) in
Theorem 3.5. Each color denotes a different variable-node type. In example (a),
(3.50) is satisfied. In example (b), (3.50) is not satisfied, leaving a singly-connected
check node and hence keeping a stopping set from forming.

where (3.52) is satisfied while Fig. 3.5(b) shows an example where (3.52) is not

satisfied and hence a stopping set cannot be formed.

To see the intuition behind (3.51) in Theorem 3.5, first observe that ej is defined

to be the number of edges connecting the set V to type-j check nodes. If (3.50) is

satisfied, then these ej edges can be spread out such that the type-j check nodes are

all connected to V by exactly two edges, except one check node will be connected

via three edges when ej is odd. This configuration maximizes the number of type-j

check nodes connected to V, resulting in w∗
j = �ej/2�.

Using the evaluation of w∗
j provided by Theorem 3.5 and the fact that w∗ =∑J

j=1 w∗
j , we can revise Theorem 3.3 to more explicitly represent the enumerator

exponent, resulting in an expression for the enumerator approximation which is easier

to analyze.

Theorem 3.6 (Theorem 3.3 Version 2). For an LDPC ensemble based on Z copies of

a protograph with M variable-node types, J check-node types, E edge types, codelength

n = ZM , and stopping set size v < n, the expected number of stopping sets of size v
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is approximated by

s(n, v) =
∑
n∈Sd

Zv−∑J
j=1�ej/2±O(v log v)

log n (3.53)

where

Sd =

{
n ∈ Sp : 2 max

1≤i≤M
niνi,j ≤

M∑
i=1

niνi,j , ∀j

}
, (3.54)

ej is the number of edges connecting type-j check nodes to the stopping set Vv dis-

tributed according to n, and Sp is defined in (3.11).

Theorem 3.6 differs from the original Theorem 3.3 in several ways. First, the

summation in (3.53) of Theorem 3.6 is restricted to include only those variable-node

distributions n which can form valid stopping sets, as determined by Theorem 3.5.

Thus, all terms in the summation will be nonzero. Further, for these distributions

n ∈ Sd, the enumerator exponent can be easily calculated with a simple algebraic

expression. The maximization function for determining w∗ in Theorem 3.3 is no

longer needed. Thus, the enumerator approximation is now easier to analyze.

3.7.2 Evaluating Exponents with Linear/Integer

Programming

To find the dominating enumerator exponent for a given code ensemble, one

needs to search for the largest exponent in the polynomial described by (3.53) where

the search is completed over the set Sd defined in (3.54). The set Sd depends on

the protograph structure and thus, the dominant exponent is, in general, difficult

to compute explicitly. However, a tight upper bound can be found using integer

programming.
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By removing the ceiling functions, we obtain an upper bound on the exponent:

v −
J∑

j=1

⌈ej

2

⌉
≤ v −

⌈e

2

⌉
= v −

⌈
vdv,avg

2

⌉
(3.55)

where dv,avg is the average variable-node degree in the stopping set. Using (3.55)

to produce an objective function and describing Sd as a set of linear constraints,

integer programming can produce the maximum enumerator exponent over n ∈ Sd.

To develop the integer program, first observe that the criteria

2 max
1≤i≤M

niνi,j ≤
M∑
i=1

niνi,j ∀j ∈ {1, . . . , J} (3.56)

can be written as MJ linear/integer programming constraints:

2niνi,j ≤
M∑
i=1

niνi,j ∀i ∈ {1, . . . , M}, ∀j ∈ {1, . . . , J}. (3.57)

Thus, the integer program can be specified as follows.

The Integer Program

The objective function to be minimized is

e =

M∑
i=1

dv,ini (3.58)

subject to the following constraints:

• 2niνi,j ≤
∑M

i=1 niνi,j ∀i, j

• ni is an integer ≥ 0 ∀i

• ∑M
i=1 ni = v
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By making a simple modification to the optimization function and the last con-

straint, the integer program can analyze protographs with punctured nodes. First, let

Ii(punc) = 1 if the ith variable-node type is punctured and Ii(punc) = 0 otherwise.

Then, the modified integer program can be specified as follows.

The Integer Program with Punctured Nodes

The objective function to be minimized is

eeff =

M∑
i=1

dv,i − 2Ii(punc)ni (3.59)

subject to the following constraints:

• 2niνi,j ≤
∑M

i=1 niνi,j ∀i, j

• ni is an integer ≥ 0 ∀i

• ∑M
i=1 ni(1 − Ii(punc)) = v

The minimum objective value, eeff,min, found by the integer program provides

the following upper bound on the enumerator exponent:

v −
J∑

j=1

⌈ej

2

⌉
≤ v −

⌈eeff,min

2

⌉
, (3.60)

and this upper bound is achievable if ej is even for all j. Further, since the solution

vector nsoln found by the integer program can form a valid stopping set, evaluating

the enumerator exponent in Theorem 3.6 for n = nsoln provides a lower bound on

the worst-case enumerator exponent.

Using the integer program, we analyze several rate-1/2 code ensembles: the regu-

lar (3,6) LDPC ensemble, the precoded (3,6) ensemble [2], and JPL’s R4JA, AR4JA,
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(a) (b)

(e)

(d)(c)

Figure 3.6: Compact representation of the protographs for the rate-1/2 LDPC en-
sembles analyzed in Section 3.7.2: (a) the regular (3,6) ensemble, (b) the precoded
(3,6) ensemble [2], (c) the R4JA ensemble [2], (d) the AR4JA ensemble [2], and (e)
the AR4A ensemble [3]. The black circles represent transmitted variable nodes while
the white circles represent punctured variable nodes.

and AR4A code ensembles [2,3]. The protographs for these code ensembles are pre-

sented in Fig. 3.6 in compact form. Since Theorem 3.5 and the subsequent analysis

require protographs to have no edge multiplicities, i.e., each variable-node type can

only be connected at most once to each check-node type in the protograph, the com-

pact protographs in Fig. 3.6 are expanded to the protographs in Fig. 3.7 for analysis.

Using the integer program results, Fig. 3.8 plots bounds on the worst-case expo-

nent versus stopping-set size v for the regular (3,6), AR4A, and AR4JA ensembles,

whose protographs are given in Fig. 3.7. The solid lines correspond to the minimum

objective values from the integer program and hence, provide an upper bound on the

enumerator exponent. The dashed lines correspond to the exponent calculated for

the integer program solution nsoln and hence, provide a lower bound on the worst-case
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Figure 3.7: The protographs for the rate-1/2 LDPC ensembles analyzed in Sec-
tion 3.7.2: (a) the regular (3,6) ensemble, (b) the precoded (3,6) ensemble [2], (c)
the R4JA ensemble [2], (d) the AR4JA ensemble [2], and (e) the AR4A ensemble [3].
The black circles represent transmitted variable nodes while the white circles repre-
sent punctured variable nodes.
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Figure 3.8: Upper (solid) and lower (dashed) bounds on the enumerator exponent
determined through the integer program for the regular (3,6), AR4A, and AR4JA
ensembles.

enumerator exponent.

From Fig. 3.8, observe that the upper and lower bounds only differ by a small

number. Thus, the upper bound provided by the integer program is fairly tight. It

may be possible to find tighter lower bounds by finding different n vectors which also

produce the optimal objective value from the integer program.

The AR4A code ensemble has poor enumerator exponents, as shown in Fig. 3.8,

indicating poor error-floor performance, which is consistent with the fact that ARA-

type code ensembles have sublinear stopping number and minimum distance [18,50].
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Fig. 3.8 shows that the worst-case enumerator exponents generally follow a linear

trend with stopping-set size v. Slight deviations from this linear trend occur due

to the discretization of the exponent arising from the presence of ceiling functions

in the exponent expression. The slope of this enumerator to stopping-set size rela-

tionship can be evaluated by modifying the integer program to a linear program, by

normalizing the expressions in the integer program by v.

First, let δi = ni/v where δi does not need to be an integer. Then, divide

the objective function and linear constraints by v. The resulting linear program is

specified as follows.

The Linear Program

The objective function to be minimized is

dv,avg =

M∑
i=1

(dv,i − 2Ii(punc))δi (3.61)

subject to the following constraints:

• 2δiνi,j ≤
∑M

i=1 δiνi,j ∀i, j

• 0 ≤ δi ≤ 1 ∀i

• ∑M
i=1 δi(1 − Ii(punc)) = 1.

Based on the optimal objective value min{dv,avg}, i.e., the smallest possible aver-

age variable-node degree in a stopping set, the worst-case enumerator exponent can

be approximated by

E(v) ≈ v(1 − min
n∈Sd

dv,avg/2) = αv (3.62)

where

α = 1 − min
n∈Sd

dv,avg/2. (3.63)
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Table 3.2: Enumerator Exponent Factors Calculated Using Linear Programming

Code Ensemble min
n∈Sd

dv,avg α

Regular (3,6) 3 -1/2

Precoded (3,6) 2.5 -1/4

R4JA 2.5 -1/4

AR4JA 2.4̄ -2/9

AR4A 2 0

Table 3.3: Optimizing Variable-Node Distributions from the Linear Program

Code Ensemble δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15

Regular (3,6) 1
2

1
2 0 0 0 0

Precoded (3,6) 0 0 0 1
4

1
4 0 1

4
1
4

1
2

R4JA 0 0 0 0 1
4

1
4 0 0 0 0 1

4
1
4

AR4JA 1
9

1
9 0 0 1

9 0 1
18

1
9

1
18 0 0 0 1

6
2
9

1
6

AR4A 0 0 0 0 0 0 0 0 0 1
6

1
6

1
6

1
6

1
6

1
6

For a given stopping-set size v, the output of the linear program agrees exactly with

the output of the integer program when the solution of the linear program has δi

values such that δiv is an integer for all i. This analysis shows that the dominating

enumerator exponent can be roughly characterized by a single parameter α. Thus,

α is a single metric that captures the sublinear stopping-set behavior in the error-

floor region and can be used to easily compare different protograph-based LDPC

ensembles.

Table 3.2 provides α values for the LDPC ensembles whose protographs are de-

picted in Fig. 3.7. The corresponding optimizing variable-node distributions δ from

the linear program output are given in Table 3.3, where the numbering of the variable-

node types follows the numbering in Fig. 3.7.

The values provided in Table 3.2 agree with the enumerator behavior shown in
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Fig. 3.8. For a few of the smallest values of stopping-set size v, the linear program

cannot accurately predict the exponent value since its solution requires non-integer

δiv values that are close to zero. Since v is small, the v variable nodes in the stop-

ping set cannot be distributed to the variable-node types in such a way to closely

approximate the δiv values from the linear program solution. This reflects the pro-

tograph structure’s ability to eliminate or reduce the number of very small stopping

sets. For larger v values, the linear program is able to closely predict the exponent

value since the δiv values in its solution can be closely approximated with nonzero

integer values, i.e., the v variable nodes in the stopping set can be distributed to the

variable-node types closely following the distribution provided by the δiv values.

Since α represents the slope of the enumerator exponent, the code ensembles with

smaller, i.e., more negative, values of α have better sublinear stopping-set behavior

in the error-floor region. The regular (3,6) ensemble has the best α value while the

AR4A code has α = 0, indicating that the enumerator exponent is not decreasing

with stopping-set size.

Table 3.4 compares the α values from Table 3.4 to the infinite-length threshold

values, which characterize the waterfall/threshold region of performance, obtained

through density evolution. The threshold values in Table 3.4 are given for the AWGN

channel since these values were already available from [2,3]. From Table 3.4, observe

that as α increases, the threshold decreases. Thus, the code ensembles analyzed

here follow the conjecture that there is a tradeoff between threshold and error-floor

performance. However, since Table 3.4 only provides a few examples, no conclusive

statement can be made regarding this conjecture.

Although α provides a useful metric for characterizing sublinear stopping-set be-

havior, α does not capture all of the factors affecting error-floor performance. For

example, the stopping number cannot be determined by α. Recall from Section 3.1

118



Table 3.4: Enumerator Exponent Factors vs. Threshold

Code Ensemble α Threshold (dB)

Regular (3,6) -1/2 1.1

R4JA -1/4 1.0

Precoded (3,6) -1/4 0.87

AR4JA -2/9 0.63

AR4A 0 0.56

that the stopping number is the smallest nonzero stopping-set size in the code en-

semble and is an important factor affecting error-floor performance. Another issue

that the parameter α cannot address is whether or not one can easily expurgate an

ensemble such that all stopping sets with size up to v are eliminated, for some integer

v. Some code ensembles may be easier to expurgate than others. Basically, for good

error-floor performance, a code needs to have a large stopping number and a small

α, and α does not provide information on the stopping number of a code ensemble,

an expurgated code ensemble, or a particular code in the ensemble. Thus, while

α is a useful metric that can summarize sublinear stopping-set behavior in a single

parameter, other factors such as stopping number are also important in determining

the overall error-floor performance.

3.8 Precoding

Precoding [2] is a technique used in code design to improve threshold performance.

This technique utilizes punctured nodes, i.e., variable nodes in the LDPC graph

that are not transmitted. Punctured nodes typically arise from two main sources:

puncturing existing nodes in a graph or adding state nodes to a graph. Puncturing

can have many advantages including increased flexibility in how a code is represented

on a graph which can result in improved iterative-decoding performance; the ability
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(a) (b)

Figure 3.9: (a) Protograph P for a regular (3,6) LDPC ensemble. (b) Protograph P ′

which is derived from protograph P by precoding one of the variable nodes.

to build a family of rate-compatible codes; and the ability to build capacity-achieving

sequences with bounded complexity per information bit, e.g., [56]. Precoding, which

involves the addition of low-degree variable nodes while puncturing existing (typically

high-degree) variable nodes, uses puncturing to allow low-degree variable nodes in

the graph to improve the threshold performance while maintaining the same code

rate and limiting the degradation to error-floor performance, as will be shown in this

section.

We define precoding as follows:

Definition 3.1. Let P be a protograph with M variable nodes and J check nodes.

To precode [2] a variable node vi for some i ∈ {1, . . . , M}, first add a check node

cJ+1 which is connected to vi via two edges. Then, add a variable node vM+1 which

is connected to cJ+1 via one edge. Finally, puncture vi. The resulting protograph P ′

has M + 1 variable nodes (one of which is punctured), J + 1 check nodes, and E + 3

edges.

For example, Fig. 3.9 shows how a regular (3,6) protograph can be precoded.

The technique of precoding has been shown experimentally and numerically to

improve error-floor performance, in terms of weight and stopping-set enumerator be-

havior for codewords and stopping sets which grow linearly with codelength [2]. Di-

vsalar provides specific examples where precoding increases the δmin metric for weight

enumerators and the δs,min metric for stopping-set enumerators (see Section 3.1 for

a discussion on the δs,min metric). For example, precoding a regular (3,6) LDPC
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ensemble increases δmin from 0.023 to 0.033 [2] and precoding the R4JA ensemble

to the AR4JA ensemble increases δs,min from 0.011 to 0.012 [50]. Further, Divsalar

has partially proven the benefits of precoding by comparing weight-enumerator ex-

ponents, for codewords that grow linearly with codelength [2], and similar results

apply for the stopping-set-enumerator exponents, for stopping sets that grow lin-

early with codelength, as well. However, the partial proof is unable to show when

and if precoding improves error-floor performance of the ensemble as a whole.

The sublinear stopping-set enumerator analysis presented earlier in this chapter

is used here to gain additional insight into precoding. First, using the analysis in Sec-

tion 3.7, we compare the stopping-set enumerator exponents for precoded ensembles

to the exponents for the corresponding original, un-precoded ensembles. Fig. 3.10

plots the enumerator exponents versus stopping-set size v for (a) the regular (3,6)

ensemble and its precoded version, the precoded (3,6) ensemble and (b) the R4JA

ensemble and its precoded version, the AR4JA ensemble. As in Fig. 3.8, the solid

lines are the upper bounds on the enumerator exponent obtained from the minimum

objective values from the integer program. The dashed lines are the lower bounds

on the worst-case enumerator exponent obtained from the integer program solution

nsoln.

As predicted by Table 3.2, which shows that the precoded ensembles have larger α

values than the corresponding original ensembles, Fig. 3.10 shows that the precoded

ensembles have larger exponents than the corresponding original ensembles for the

same effective stopping-set size v, although the difference is fairly small for the R4JA

and AR4JA ensembles. Thus, given a certain number of erasures v, the precoded

ensemble has more stopping sets on which iterative decoding will fail. Hence, one

expects that the precoded ensemble has worse error-floor performance, in terms of

sublinear stopping-set behavior. However, one must also consider the stopping num-
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Figure 3.10: Upper (solid) and lower (dashed) bounds on the enumerator exponent
for (a) the regular (3,6) ensemble and its precoded version, the precoded (3,6) en-
semble and (b) the R4JA ensemble (red with o markers) and its precoded version,
the AR4JA ensemble (blue with x markers).
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ber, i.e., the smallest nonzero stopping-set size in the code ensemble. Particularly

after expurgation, it may be possible that one ensemble has a significantly larger

stopping number than the other ensemble, and this may have a larger impact on the

error-floor performance than the differences in α values between the two ensembles.

We will prove in Theorem 3.7 that the dominant exponent of Z for the precoded

ensemble is no worse than one plus the dominant exponent for the original ensemble,

even after expurgation of small stopping sets in both ensembles.

Before introducing Theorem 3.7, first recall that for a BEC with erasure prob-

ability ε, the average block-error probability of an LDPC ensemble can be upper

bounded by

EG[P IT
B (n, ε)] ≤ P ub

e =
n∑

v=1

εvs(n, v) (3.64)

where the bound is tight in the error-floor region (see Section 1.1.6). From Theo-

rem 3.1, a single term in the summation in the upper bound given by (3.64) can be

expressed as

P ub
e (v) = εv

∑
n∈Sp

⎡
⎣ M∏

i=1

(
Z

ni

)1−dv,i

×

J∏
j=1

coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭
⎤
⎦ . (3.65)

For category-P stopping sets, this expression can be approximated by applying The-

orems 3.3 and 3.4 to obtain

P ub
e (v) ≈ P ub′

e (v) = εv
∑
n∈Sp

Zv−e+w∗∏M
i=1 ni!1−dv,i

∏J
j=1

∏|β|−1
h=1 mh!

(3.66)

where m ∈ Sm is chosen to maximize w∗
j for each check-node type j. It can easily be

shown that for a code ensemble with punctured nodes, a single term in the summation
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over v in (3.64) is

P ub
e,punc(v) =

∑
n∈Sp

εveff

⎡
⎣ M∏

i=1

(
Z

ni

)1−dv,i

×

J∏
j=1

coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭
⎤
⎦ (3.67)

where v is the stopping-set size including punctured nodes and veff is the number of

variable nodes in the stopping set excluding punctured nodes. When nodes are punc-

tured, they are automatically erased and hence, the channel only needs to erase veff

variable nodes. If stopping sets of size v follow category-P behavior, then P ub
e,punc(v)

can be approximated by applying Theorems 3.3 and 3.4 to obtain

P ub
e,punc(v) ≈ P ub′

e,punc(v) =
∑
n∈Sp

εveff Zv−e+w∗∏M
i=1 ni!1−dv,i

∏J
j=1

∏|β|−1
h=1 mh!

(3.68)

where m ∈ Sm is chosen to maximize w∗
j for each check-node type j.

Each stopping set V ′ in the precoded ensemble consists of a stopping set V from

the original ensemble plus some number of type-(M + 1) variable nodes. For the

precoded ensemble, the number of erasures the channel must introduce in order to

generate a decoding failure on V ′ is increased by the presence of npre type-(M + 1)

variable nodes but is decreased by the presence of npunc type-i punctured nodes.

Depending on the balance of these two contributions, the resulting error-floor per-

formance may be better or worse than that of the original ensemble. The following

theorem provides a bound on the worst-case error-floor performance with precoding.

Theorem 3.7. Consider a protograph P whose type-i variable node is precoded to

generate the protograph P ′. Let VP and VP ′ be the sets of stopping-set sizes which

dominate the performance of the ensemble based on protograph P and P ′, respectively,
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and let VU = {VP ∪ VP ′}. Assume that for all v ∈ VU , stopping sets of size v follow

category-P behavior for both protograph-based ensembles. Let Z be large enough such

that Theorem 3.4 holds and Z ≥ 1/ε. Then,

P ub
e,P ′ ≈

∑
v∈VU

P ub′
e,P ′(v) ≤ (Z + 1)

∑
v∈VU

P ub′
e,P (v) ≈ Z · P ub

e,P . (3.69)

Thus, the largest exponent of Z in the error-probability approximation for protograph-

P ′ ensembles is at most one greater than the largest exponent for protograph-P en-

sembles, in the error-floor region.

Proof. A sketch of the proof is provided here. (See Appendix G for a full proof.)

Consider a finite stopping set V ′ from the ensemble generated from protograph P ′,

with v′ variable nodes connected to w∗′ check nodes via e′ edges. The set V =

{x ∈ V ′ : x is a variable node of type i 	= (M + 1)} is a stopping set in the ensemble

generated from protograph P . The stopping-set characteristics of V ′ and V are

related by the following expression where primed and unprimed variables correspond

to characteristics of V ′ and V, respectively:

(v′ − e′ + w∗′) = (v − e + w∗) − (npunc − nM+1/2) (3.70)

where npunc is the number of punctured, type-i variable nodes. By upper bounding∑
v∈VU

P ub′
e,P ′(v) and observing that nM+1 ≤ 2npunc in order for a stopping set to be

formed, the result in (3.69) can be obtained.

The requirement that the dominating stopping sets must follow category-P be-

havior may not be restrictive. This is still under investigation, but the example in

Section 3.6 showed that at least for the regular (3,6) LDPC ensembles analyzed, this

requirement is usually satisfied.
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Theorem 3.7 also applies to expurgated ensembles. Specifically, if the protograph

P ensemble is expurgated to remove small stopping sets, then the precoded pro-

tograph P ′ ensemble can be similarly expurgated on the portion of its graph that

coincides with the original, protograph P ensemble. Then, Theorem 3.7 can be

applied to compare the two expurgated ensembles.

Since Theorem 3.7 only provides a worst-case bound, the precoded ensemble may,

in fact, have improved error-floor performance over the original ensemble.

Section 3.3 showed that ensembles with all variable-node degrees greater than or

equal to three have good error-floor performance since (v − e + w∗) < 0 for all stop-

ping sets. However, current literature, e.g., [11, 18], indicates that variable nodes of

degree strictly less than three are useful for achieving good threshold performance.

The technique of precoding allows one to include degree-1 variable nodes to im-

prove threshold performance while either improving or, in the worst case, limiting

the degradation of the error-floor performance, in terms of sublinear stopping-set

behavior.
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CHAPTER 4

Conclusion

In this chapter, our main research results are summarized, and possible areas of

future work are discussed.

4.1 Research Summary

In this dissertation, we investigated two main topics: time-selective complex-

fading channels and finite-length analysis for the BEC. Using LDPC codes along

with pilot symbols and iterative joint estimation and detection, we were able to

provide practical solutions for channel coding for the time-selective complex-fading

channel. Further, we were able to unify the analysis and code design for certain

iterative decoding algorithms. Next, finite-length analysis of LDPC codes for the

BEC was completed through investigation of sublinearly-sized stopping sets. This

analysis provided insights into factors influencing error-floor performance including

sublinear stopping-set behavior, advantages of protograph structure, and effects of

precoding. Results for both of these main topics will be summarized in the following

subsections.
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4.1.1 Time-Selective Complex-Fading Channels

In Chapter 2, we analyzed and designed pilot-symbol-assisted (PSA) LDPC codes

for time-selective, frequency-non-selective complex-fading channels where the fading

affects both the amplitude and phase of the transmitted symbols, and the chan-

nel dynamics are taken explicitly into account. Several PSA receivers—the perfect

channel-state information (CSI) receiver, the pilot-only (PO) receiver, the pilot and

data correct decision feedback (PDCDF) receiver, and the quantized decision feed-

back (QDF) receiver—were investigated and analyzed using density evolution. The

PO and QDF receivers are practical, implementable receivers while the perfect-CSI

and PDCDF receivers provide bounds on the performance of practical receivers.

The performance of the perfect-CSI, PO, and PDCDF receivers were shown to be

dependent only on a single parameter, b. This result led to several important conse-

quences simplifying and unifying the analysis and code design for these receivers and

for all system and channel parameters. First, only one set of analyses based on b is

necessary to characterize the performance of all three receiver types for any channel

coherence time and for any energy allocation. Second, optimizing the energy distri-

bution between pilot and code symbols only requires a simple closed-form calculation

from b. Third, an optimal code for one of these receivers will also be optimal for the

other receivers and for any system parameters.

Finally, density evolution and simulation results were presented for regular and

irregular LDPC codes in a PSA scheme. The allocation of power to the pilot and

the code symbols was optimized, resulting in 1 to 2 dB improvement in performance.

By utilizing the iterative joint decoding/estimation provided by the QDF algorithm,

the performance improves over the best PO receiver by 0.9 dB with BPSK modula-

tion and 0.2 dB with QPSK modulation. Thus, optimized PO schemes with QPSK

modulation present an excellent performance/complexity tradeoff. We note however,
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that a 2.4 dB gap still exists between the performance of the best proposed scheme

(the optimized QDF receiver) and capacity.

4.1.2 Finite-Length Analysis for the BEC

In Chapter 3, we analyzed finite-length LDPC codes over the BEC to better

understand the factors affecting the error-floor performance, which limits the error

rates achievable by practical, finite-length codes. For both standard and protograph-

based LDPC code ensembles, we analyzed the error-floor performance by studying

stopping-set enumerators for stopping sets that grow at most sublinearly with code-

length. Approximations to the enumerators were developed, yielding several inter-

esting results.

First, for stopping sets that grow at most logarithmically with codelength n, the

stopping-set enumerator follows a polynomial relationship with n. This category-P

behavior differs from the category-E behavior, exhibited by stopping sets growing

linearly with codelength, where the enumerator follows an exponential relationship

with n. Thus, category-P is able to capture finite-length behavior not observed in

category-E analysis. By developing a bound on the region where our enumerator

approximations are valid, we began to address to question, “Given a finite stopping-

set size v and a finite codelength n, which category of behavior does the stopping set

follow?” For practical, finite-length codes, this question is important to determine

what type of behavior the dominating stopping sets follow and hence, to determine

how to design codes with lower error floors.

Using linear and integer programming, we developed a simple method for closely

approximating category-P enumerator exponents. Since the exponent can be approx-

imated by αv for some constant α, which can be found through the linear program,

α provides a single metric for comparing code performance in terms of sublinear
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stopping-set behavior.

Further, we have shown that protograph-based LDPC codes always perform at

least as well as standard ensembles, in terms of category-P behavior, and can in fact

perform strictly better. Thus, the protograph structure provides benefits in terms of

category-P error-floor performance.

An illustrative example with regular (3,6) LDPC ensembles demonstrated the

concepts introduced. The polynomial behavior with codelength for category-P stop-

ping sets was verified by exact enumerator calculations, at least for small stopping-set

sizes. Further, the ability of the protograph structure to improve enumerator expo-

nents over the standard-ensemble exponents was demonstrated.

In addition, the technique of precoding was analyzed in terms of category-P

behavior. The technique of precoding can improve threshold performance by in-

troducing low-degree variable nodes but can either improve or degrade error-floor

performance. By bounding the worst-case degradation of error-floor performance,

we showed that the worst-case exponent for precoded ensembles is no worse than

one plus the exponent for the original ensemble (before precoding).

4.2 Future Work

Several interesting problems still remain for the time-selective complex-fading

channel. Although the PSA LDPC codes and iterative joint estimation and decoding

algorithms developed in Chapter 2 performed well on the complex-fading channel,

there is still a 2.4 dB gap to capacity. Thus, there is still room for improvement.

Closing the gap to capacity may require better receiver algorithms, other methods

for channel estimation besides the pilot-symbol-assisted scheme used in Chapter 2,

other modulation schemes, and/or other strategies.

Further, all analyses completed in Chapter 2 were based on infinite-length analy-
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sis. The performance of practical, finite-length codes over the complex-fading chan-

nel needs to be studied to gain insight into finite-length effects and how these effects

impact real-world performance. Different code design criteria may arise in this case.

In the area of finite-length analysis, there are still many remaining questions of

interest, and we present some of these issues below.

First, the question “Given a finite stopping-set size v and a finite codelength n,

do the stopping sets follow category-P or category-E behavior?” is still not fully

answered. Theorem 3.5 is only able to provide a partial answer by providing a

bound on when the approximations in Theorem 3.1 are valid. If this bound can

be further tightened, then one can prove that category-P analysis extends to more

stopping sets. Additional future research work to help address the question of interest

includes (1) determining when category-E analysis is valid, i.e., finding an N0 such

that category-E analysis applies for all n > N0, (2) determining when category-

E analysis is not valid, i.e., finding an N1 such that category-E analysis does not

apply for all n < N1, and (3) determining when category-P analysis is not valid.

If tight bounds can be found, then we can much more accurately determine under

which category of behavior the dominating stopping sets fall and hence, better design

codes for improved error-floor performance.

The work presented in Chapter 3 provides some insight into how protograph

structure influences error-floor performance. However, there are still many questions

that could be answered by further research. For example, another aspect to be exam-

ined is the different behavior of even and odd stopping sets in some protograph-based

codes and how this influences the overall error-floor performance. Other protograph-

related issues are presented below.

Precoding is a useful technique for improving threshold performance, but its

effect on error-floor performance is still uncertain. Divsalar [2] showed a partial
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proof of the advantage of precoding for category-E stopping sets. However, for the

examples in Section 3.8, precoding degraded category-P stopping-set performance.

Theorem 3.7 in Section 3.8 showed that the worst-case scenario only increments the

category-P enumerator exponent by one, but the result is only a bound and cannot

show whether precoding helps or hurts the error-floor performance. Future research

of interest would include determining if and when precoding degrades error-floor

performance. Is it possible that precoding can simultaneously improve threshold

and error-floor performance?

Another ad-hoc method for designing codes is a double-expansion method for

creating an LDPC code from a protograph structure. In the first expansion, the

protograph is copied only a few times (e.g., four) and then the edges are permuted

to form a larger, intermediate protograph. In the second expansion, this intermediate

protograph is then replicated multiple times (as many times as necessary to obtain

the desired codelength) and the edges are permuted to create the final LDPC code.

Typically, the first expansion is a small expansion while the second one is much

larger. This method has empirically produced better codes. The intuition behind this

method is that the two expansions help to spread the edge connections throughout the

graph, i.e., the nodes are more interconnected and thus stopping sets will hopefully

be larger. It would be interesting to see if this double-expansion method can be

proven to be superior to a single expansion. Further, is there an optimal expansion

factor for the first expansion? Are there certain conditions necessary for this method

to result in better codes? Is further expurgation necessary, i.e., are more restrictions

needed to ensure the generation of a good code?

Another area of future research is extending the work here to more realistic

channels, e.g., the AWGN channel. Analysis into trapping sets, a generalization

of stopping sets, has been completed in other works, e.g., [35, 57]. However, the
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analysis is cumbersome. Is it possible to extend the enumerator approximations here

to trapping sets and to gain insight into error-floor performance for AWGN channels?

Although LDPC codes along with iterative-decoding algorithms have assisted

communication systems in lowering error rates and approaching capacity on a variety

of channels, there is still much interesting research to be done.
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APPENDIX A

Proof of Monotonicity for Fading Channels

The proof of monotonicity of receiver performance for the perfect-CSI, PO, and

PDCDF receivers with the unifying parameter b, discussed in Section 2.3.1, is given

in this appendix. We will show that if b1 < b2, then the performance of the receiver

characterized by b = b2, through the initial density given in (2.15), is degraded from

the performance of the receiver characterized by b = b1.

Proof. For each value of b (regardless of receiver type), there exists an equivalent

fading channel with a perfect-CSI receiver. This equivalent channel is described by

the following expression:

z = c(−1)a + n (A.1)

where z is the channel output, (−1)a is the channel input where a ∈ {0, 1}, c is a

zero-mean, unit-energy complex normal fading coefficient (known at the receiver),

and n is a zero-mean complex normal additive noise with energy N0 where N0 satisfies

the equation b = (
√

1 + N0 − 1)/2. It can be shown that the log-likelihood ratio for

a given by

x = log
f(z|a = 0, c)

f(z|a = 1, c)
=

4

N0

�{zc∗} (A.2)

is a sufficient statistic for detection in this channel, and that the conditional distri-

135



bution of x is given by

f(x|a = 0) = f(−x|a = 1) = h(x) (A.3)

where h(x) has the form of (2.15) with b = (
√

1 + N0 − 1)/2.

For b = b1, choose N0 such that b1 = (
√

1 + N0 − 1)/2. Since b2 > b1, we can

find N ′
0 = N0 + Q > N0 such that b2 = (

√
1 + Q + N0 − 1)/2. Based on the above

equivalence, b2 corresponds to a fading channel with a perfect-CSI receiver where

now more additive noise is injected, i.e.,

z′ = c(−1)a + n′ = c(−1)a + n + q = z + q (A.4)

where the noise component n′ has energy N ′
0 = Q + N0 > N0 and the log-likelihood

sufficient statistic is given by y = 4/N ′
0�{z′c∗}. The above expression (A.4) shows

that this latter channel is a degraded version of the former channel, i.e., the output

z is further degraded by an additional noise q with variance Q. Thus, according

to [10, Theorem 1], the performance of any receiver characterized by b2 is worse than

the performance of any receiver characterized by b1.
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APPENDIX B

Derivation of the Stopping-Set Enumerator for

Protograph-Based Ensembles

This appendix provides a proof of Theorem 3.1, which is restated here:

Theorem 3.1. For a protograph-based LDPC ensemble generated from Z copies of a

protograph with M variable-node types and J check-node types connected via E edge

types, the expected number of stopping sets of size v is

s(n, v) =
∑
n∈Sp

⎡
⎣ M∏

i=1

(
Z

ni

)1−dv,i

×

J∏
j=1

coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭
⎤
⎦ (B.1)

where the codelength n = ZM and

Sp =

{
n ∈ Z

M : 0 ≤ ni ≤ Z, ∀i ∈ {1, . . .M};
M∑
i=1

ni = v

}
. (B.2)

Proof. The expression for s(n, v) will first be broken down based on n, the distri-

bution of variable-node types in the stopping set. Let V be the set of all n variable
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nodes in the graph and fix a set Vv ⊆ V such that Vv has exactly v variable nodes.

For more compact notation, s.s. will denote stopping set(s). Applying the definition

of s(n, v),

s(n, v) := E [# of s.s. of size v in G]

= E

⎡
⎣∑

n∈Sp

(# of s.s. with distribution n in G)

⎤
⎦

= E

⎡
⎢⎣∑

n∈Sp

∑
Vv⊆V :

Vv has distribution n

I(Vv is a s.s. in G)

⎤
⎥⎦ (B.3)

where the expectation is taken over all graphs G in the protograph-based LDPC

ensemble and I(·) is the indicator function. Taking the expectation inside the sum-

mations results in

s(n, v) =
∑
n∈Sp

∑
Vv⊆V :

Vv has distribution n

E [I(Vv is a s.s. in G)]

=
∑
n∈Sp

∑
Vv⊆V :

Vv has distribution n

P (Vv is a s.s.) . (B.4)

Since the probability in this expression is only dependent on the distribution n of

variable-node types in Vv and not on the specific Vv, the expression simplifies to

s(n, v) =
∑
n∈Sp

NnPn (B.5)

where Nn denotes the number of sets Vv that are distributed according to n and Pn

denotes the probability that a set Vv following the distribution in n forms a stopping

set.

To compute Nn, recall that each variable-node type in the protograph is replicated
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to create Z copies. Thus, the total number of ways to choose v variable nodes out

of the code of length n such that there are ni nodes of type i for i = 1, . . . , M is

Nn =

M∏
i=1

(
Z

ni

)
∀n ∈ Sp. (B.6)

To compute Pn, we calculate the fraction of subgraphs induced by a fixed subset

Vv distributed according to n such that Vv forms a stopping set. Specifically,

Pn =
Css

Ctot
(B.7)

where Ctot is the total number of subgraphs that can be induced by Vv and Css is

the number of subgraphs induced by Vv such that the following property holds: each

of the ZJ check nodes is connected to Vv at least twice or not at all.

First, the total number of possible subgraphs Ctot is calculated. For each variable-

node type i, consider each of the dv,i edge types emanating from it and the corre-

sponding check-node type j to which the edge type is connected. For each of these

edge types, the ni type-i variable nodes in Vv will be connected to ni check nodes

out of the Z possible choices of type-j check nodes, resulting in a combinatorial

problem without replacement with solution
(

Z
ni

)
. Thus, the total number of possible

subgraphs is

Ctot =

M∏
i=1

(
Z

ni

)dv,i

. (B.8)

Next, we calculate Css, the number of subgraphs induced by Vv which form a

stopping set. Observe that the structure of the protograph keeps edge permutations

on one edge type independent of permutations on all other edge types. Thus, the

event that check nodes of type j satisfy the condition for forming stopping sets is

independent of the same event for all other check-node types. This observation leads
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to the following relation:

Css =

J∏
j=1

Cj (B.9)

where Cj is the number of ways to connect the Z type-j check nodes to Vv such that

each check node is connected to Vv at least twice or not at all.

Consider a check-node type j. Let the exponent of xk denote the number of

connections from check nodes of type j to variable nodes of type νj,k on the kth edge

type emanating from check-node type j in the protograph. For each check node cj

of type j, the coefficient of the
∏dc,j

k=1 xbk
k term in the polynomial

p(x) =

dc,j∏
k=1

(1 + xk) −
dc,j∑
k=1

xk (B.10)

represents the number of possibilities for connecting cj to bk variable nodes of type νj,k

such that cj has a total of zero or at least two connections. There are Z check nodes

of type j, so the polynomial is raised to the Zth power. Also, to form a complete

subgraph induced by Vv, the set of Z type-j check nodes must be connected to nνj,k

variable nodes via type-k edges for every k from 1 to dc,j. Thus,

Cj = coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭ (B.11)

and combining this expression with (B.7)-(B.9) results in the following expression

for Pn:

Pn =

∏J
j=1 coef

{[∏dc,j

k=1 (1 + xk) −
∑dc,j

k=1 xk

]Z
,
∏dc,j

k=1 x
nνj,k

k

}
∏M

i=1

(
Z
ni

)dv,i
. (B.12)

Combining (B.5), (B.6), and (B.12) yields the result presented in the theorem.
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APPENDIX C

Derivation of the Approximation to the

Stopping-Set Enumerator for Standard Ensembles

This appendix provides a proof of Theorem 3.2, which is restated here:

Theorem 3.2. For a standard LDPC ensemble with dc > 2, codelength n, and

stopping-set size v such that

v ≤ xn min
1≤i≤dv:li �=0
1≤j≤dc:rj �=0

{
li,

2

dv
(1 − R)rj

}
, (C.1)

for any constant x ∈ [0, 1/dv), the expected number of stopping sets of size v is

approximated by

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2±O(v log v)
log n . (C.2)

Before proving Theorem 3.2, we will first need several lemmas.

Lemma C.1. Let 0 ≤ m ≤ xn for any constant x ∈ [0, 1]. Then,

(1 − x)mnm ≤ n!

(n − m)!
≤ nm (C.3)
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and

(1 − x)mnm

m!
≤
(

n

m

)
≤ nm

m!
(C.4)

Proof. First, consider

n!

(n − m)!
= n(n − 1)(n − 2) . . . (n − m + 1).

Each of the m terms is upper bounded by n, resulting in

n!

(n − m)!
≤ nm (C.5)

Also, each of the m terms is lower bounded by n − m, resulting in

n!

(n − m)!
≥ (n − m)m ≥ (n − xn)m = (1 − x)mnm (C.6)

where the second inequality follows from the condition m ≤ xn. Combining (C.5)

and (C.6) proves the result in (C.3).

To prove the second part of the lemma, observe that the binomial coefficient can

be evaluated by the following expression:

(
n

m

)
=

n!

(n − m)!m!
(C.7)

Applying (C.3) directly to this expression proves the result in (C.4).

Note that when x = 1, the lemma yields a lower bound of zero which does not

provide a useful lower bound since it is already known that
(

n
m

)
must be at least one.

However, when x < 1, the lemma provides a more useful lower bound which grows

polynomially with n.
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Lemma C.2. Let ki ≥ 0 for i = 1, . . . , M be integers such that
∑M

i=1 ki = v for some

positive integer v. Then,
M∏
i=1

ki! ≤ v!. (C.8)

Proof. Let j = arg max1≤i≤M ki. Then, for all i = 1, . . . , M , ki satisfies ki ≤ kj ≤ v.

Thus,

v! = v(v − 1) · · · (kj + 1)kj(kj − 1) · · ·1

≥ (kj + 1)v−kjkj!

= kj!(kj + 1)
∑M

i=1,i�=j ki = kj!

M∏
i=1,i�=j

(kj + 1)ki

≥ kj!
M∏

i=1,i�=j

kki
i ≥ kj !

M∏
i=1,i�=j

ki! =
M∏
i=1

ki! (C.9)

where the second inequality follows from ki ≤ kj.

Lemma C.3. Let ki ≥ 0 be integers such that ki ≤ xvnli for 1 ≤ i ≤ dv for any

constant xv ∈ [0, 1]. For |Sv| ≥ 1, the quantity Av given in (3.5) is upper and lower

bounded as follows:

nv[(1 − xv) min
1≤i≤dv:li �=0

li]
vv−v ≤ Av ≤ nv(v + 1)dv . (C.10)

Proof. Recall from (3.5) that the quantity Av, the first term in the numerator of the

standard-ensemble stopping-set enumerator, is given by

Av = coef

{
dv∏
i=1

(1 + yxi)Li, yvxe

}
=
∑
k∈Sv

dv∏
i=1

(
nli
ki

)
. (C.11)
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Applying Lemma C.1 provides an upper bound on Av:

Av ≤
∑
k∈Sv

dv∏
i=1

(nli)
ki

ki!
= nv

{∑
k∈Sv

dv∏
i=1

lki
i

ki!

}

≤ nv

{∑
k∈Sv

dv∏
i=1

lki
i

}
≤ nv|Sv| ≤ nv(v + 1)dv . (C.12)

The second inequality follows from ki! ≥ 1 and the third inequality follows from

li ≤ 1. The last inequality follows since the number of possible k vectors in Sv is

limited by the number of possible values for each ki, and for each i ∈ {1, . . . , dv}, ki

can take on at most v + 1 values from 0 to v.

Next, Av is lower bounded using Lemma C.1 as follows:

Av ≥
∑
k∈Sv

dv∏
i=1

[(1 − xv)nli]
ki

ki!
= nv(1 − xv)

v

{∑
k∈Sv

∏dv

i=1 lki
i∏dv

i=1 ki!

}

≥ nv(1 − xv)
v

{∑
k∈Sv

∏dv

i=1,li �=0 [min1≤i≤dv:li �=0 li]
ki∏dv

i=1 ki!

}

= nv[(1 − xv) min
1≤i≤dv:li �=0

li]
v

{∑
k∈Sv

1∏dv

i=1 ki!

}
. (C.13)

The denominator can be upper bounded with Lemma C.2:

dv∏
i=1

ki! ≤ v! ≤ vv. (C.14)

Thus, we can further lower bound Av.

Av ≥ nv[(1 − xv) min
1≤i≤dv:li �=0

li]
v

{∑
k∈Sv

1

vv

}
= nv[(1 − xv) min

1≤i≤dv:li �=0
li]

vv−v|Sv|

≥ nv[(1 − xv) min
1≤i≤dv:li �=0

li]
vv−v (C.15)

where the last inequality makes use of the assumption that |Sv| ≥ 1.
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Lemma C.4. Let ni,j be the number of degree-i check nodes which are connected to

the stopping set via j edges, and let wi =
∑i

j=2 ni,j be the number of check nodes of

degree i connected to the stopping set. Let wi ≤ xcn(1−R)ri for 2 ≤ i ≤ dc and any

constant xc ∈ [0, 1]; 0 ≤ v ≤ 2n(1 − R)(1 − r1)/dv; and dc > 2. For |Sc| ≥ 1, the

quantity Ac given in (3.7) is upper and lower bounded as follows:

[n(1 − R)(1 − xc) min2≤i≤dc:ri �=0 ri]
�e/2�

(e/2)!
≤ Ac ≤ [n(1 − R)]�e/2�2d3

ce(e + 1)d2
c

(e/d3
c)!

. (C.16)

Proof. First, the total number of check nodes connected to the stopping set is

w =
dc∑

i=2

wi =
dc∑

i=2

i∑
j=2

ni,j. (C.17)

These equalities hold since both i, the check-node degree, and j, the number of

connections to the stopping set, must be greater than or equal to two in order for

the connected check nodes to have at least two connections to the stopping set. We

can bound w as follows:

w =

dc∑
i=2

i∑
j=2

ni,j =

dc∑
i=2

i∑
j=2

jni,j

j
≤ 1

2

dc∑
i=2

i∑
j=2

jni,j =
e

2
. (C.18)

Since w is an integer,

w ≤
⌊e

2

⌋
. (C.19)

Recall from (3.7) that the quantity Ac, the second term in the numerator of the

standard-ensemble stopping-set enumerator, is given by

Ac = coef

{
dc∏

i=1

[(1 + x)i − ix]Ri , xe

}
=
∑
n∈Sc

dc∏
i=1

⎧⎪⎪⎨
⎪⎪⎩

(n(1 − R)ri)!∏i
j=0,j �=1 ni,j !

i∏
j=0
j �=1

(
i

j

)ni,j

⎫⎪⎪⎬
⎪⎪⎭.

(C.20)
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Ac can be rewritten as

Ac =
∑
n∈Sc

dc∏
i=1

{
(n(1 − R)ri)!

ni,0!
∏i

j=1 ni,j !

i∏
j=2

(
i

j

)ni,j
}

=
∑
n∈Sc

dc∏
i=2

{
(n(1 − R)ri)!

ni,0!
∏i

j=2 ni,j !

i∏
j=2

(
i

j

)ni,j
}

(C.21)

where the second equality holds since ni,1 = 0 for all i and the term in brackets is

1 when i = 1. An upper bound on Ac can be found by applying Lemma C.1 (with

m = wi) to (C.21) and noting that ni,0 = n(1 − R)ri − wi:

Ac ≤
∑
n∈Sc

dc∏
i=2

{
(n(1 − R)ri)

wi∏i
j=2 ni,j!

i∏
j=2

(
i

j

)ni,j

}

=
∑
n∈Sc

{
(n(1 − R))w

∏dc

i=2 rwi
i∏dc

i=2

∏i
j=2 ni,j!

dc∏
i=2

i∏
j=2

(
i

j

)ni,j

}

≤
∑
n∈Sc

{
(n(1 − R))w 1∏dc

i=2

∏i
j=2 ni,j !

dc∏
i=2

i∏
j=2

(
i

j

)ni,j

}
(C.22)

where the last inequality follows from ri ≤ 1. The denominator can be lower bounded

by
dc∏

i=2

i∏
j=2

ni,j! ≥ max
2≤j≤i≤dc

ni,j! ≥
(

e

d3
c

)
! (C.23)

where the last inequality follows from the following relation:

e =
dc∑

i=2

i∑
j=2

jni,j ≤
dc∑

i=2

i∑
j=2

{
dc max

2≤j≤i≤dc

ni,j

}
≤ d3

c max
2≤j≤i≤dc

ni,j. (C.24)

Thus,

Ac ≤
∑
n∈Sc

{
(n(1 − R))w

(e/d3
c)!

dc∏
i=2

i∏
j=2

(
i

j

)ni,j

}
. (C.25)
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Observing that
(

n
m

) ≤∑n
m=0

(
n
m

)
= 2n and ni,j ≤ e for i ≥ j ≥ 2, Ac can be further

upper bounded by

Ac ≤
∑
n∈Sc

{
(n(1 − R))w

(e/d3
c)!

dc∏
i=2

i∏
j=2

2dce

}

≤
∑
n∈Sc

{
(n(1 − R))w

(e/d3
c)!

2d3
ce

}
=

2d3
ce

(e/d3
c)!

∑
n∈Sc

{[n(1 − R)]w}

≤ 2d3
ce

(e/d3
c)!

(n(1 − R))�e/2�|Sc| (C.26)

where the last inequality follows since w ≤ �e/2�.
To upper bound |Sc|, we only need to consider how many possible values ni,j takes

for i ≥ j ≥ 2. Once these values are determined, then all other values of ni,j can

be determined uniquely. Specifically, ni,1 = 0 for all i and thus, ni,0 = n(1 − R)ri −∑i
j=2 ni,j for all i. Furthermore, for i ≥ j ≥ 2, we have that 0 ≤ ni,j ≤ w ≤ e/2 < e,

so ni,j can take at most e values. The number of terms with i ≥ j ≥ 2 is less than d2
c

since i ≤ dc. Combining these last two results yields |Sc| ≤ ed2
c which further upper

bounds Ac as follows:

Ac ≤ 2d3
ceed2

c

(e/d3
c)!

(n(1 − R))�e/2� (C.27)

A lower bound on Ac can be found by applying Lemma C.1 (with m = wi)

to (C.21):

Ac ≥
∑
n∈Sc

dc∏
i=2

{
[(1 − xc)n(1 − R)ri]

wi∏i
j=2 ni,j!

i∏
j=2

(
i

j

)ni,j

}

≥
∑
n∈Sc

{
[(1 − xc)n(1 − R)]w

∏dc

i=2 rwi
i∏dc

i=2

∏i
j=2 ni,j !

}
(C.28)

where the last inequality follows from
(

i
j

) ≥ 1. By further manipulating the right-
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hand side of the inequality, we obtain

Ac ≥
∑
n∈Sc

{
[(1 − xc)n(1 − R)]w

∏dc

i=2,ri �=0 min2≤i≤dc:ri �=0 ri
wi∏dc

i=2

∏i
j=2 ni,j !

}

=
∑
n∈Sc

{
[n(1 − R)(1 − xc) min

2≤i≤dc:ri �=0
ri]

w 1∏dc

i=2

∏i
j=2 ni,j!

}
. (C.29)

Observing that
∑dc

i=2

∑i
j=2 ni,j = w and applying Lemma C.2, we upper bound the

denominator by
dc∏

i=2

i∏
j=2

ni,j! ≤ w! ≤
(e

2

)
! (C.30)

where the last inequality follows from (C.18). Thus, combining this result with (C.29)

results in

Ac ≥
∑
n∈Sc

{
[n(1 − R)(1 − xc) min

2≤i≤dc:ri �=0
ri]

w 1

(e/2)!

}

=
1

(e/2)!

∑
n∈Sc

[
n(1 − R)(1 − xc) min

2≤i≤dc:ri �=0
ri

]w

. (C.31)

The summation in (C.31) is a polynomial in n with degree max{w : n ∈ Sc} and

with non-negative coefficients. From (C.19), max{w : n ∈ Sc} ≤ �e/2�. In fact, we

will show that max{w : n ∈ Sc} = �e/2�, i.e., there exists �e/2� check nodes which

can be connected to the stopping set via e edges with each check node connected at

least twice and thus, forming a valid stopping set with e edges.

First, we will show that �e/2� ≤ n(1−R)(1− r1), i.e., the number of check nodes

in the stopping set does not exceed the total number of check nodes with degree at

least two. Check nodes of degree one are not considered since they cannot be part
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of a stopping set. The quantity �e/2� is upper bounded by

⌊e

2

⌋
≤ e

2
≤ dvv

2
≤ dv

2

2n(1 − R)(1 − r1)

dv

= n(1 − R)(1 − r1) (C.32)

where the second inequality follows since the number of edges in the stopping set

is at most the number of variable nodes in the stopping set times the maximum

variable-node degree. The third inequality follows from the assumption that v ≤
2n(1 − R)(1 − r1)/dv. Thus, we can indeed find �e/2� check nodes in the code with

degree at least two.

Next, we will show that these �e/2� check nodes can be connected to the stopping

set such that each check node is connected at least twice. First, suppose e is even.

Then, we can connect each of the �e/2� check nodes to the stopping set via exactly

two edges. Thus, there exists a valid stopping set which is connected to w = �e/2�
check nodes via e edges.

Now, suppose e is odd. Note that e 	= 1 since a valid stopping set cannot be

formed with only one edge. From the previous result, there exists a stopping set

which is connected to w = (e− 1)/2 check nodes, and each of these w check nodes is

connected to the stopping set via exactly two edges. There remains only one more

edge to connect to the check nodes. Out of the w check nodes, choose a check node

c1 with degree greater than two. If no such check node can be found, then choose a

check node c1 with degree greater than two from the other n(1−R)−w check nodes.

This can be done since dc > 2. Now, choose any check node c2 from the w check

nodes. Disconnect the two edges connected to c2, and connect these two edges to c1.

Finally, connect the last eth edge to c1 so that c1 is now connected to the stopping

set via three edges.
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We have demonstrated the existence of a valid stopping set, with variable-node

distribution n ∈ Sc, connected to w = �e/2� check nodes via e edges. Thus,

maxn∈Sc w = �e/2�.
Using this result with (C.31), we obtain

Ac ≥ [n(1 − R)(1 − xc) min2≤i≤dc:ri �=0 ri]
�e/2�

(e/2)!
(C.33)

since all other terms in the summation are non-negative.

Note that Lemmas C.3 and C.4 only apply when |Sv| ≥ 1 and |Sc| ≥ 1, respec-

tively. If |Sv| = 0 or |Sc| = 0, then the corresponding term in the summation in (3.4)

is zero, so these cases are not of interest.

Next, recall from (3.9) that the quantity Ad, the denominator of the standard-

ensemble stopping-set enumerator, is given by

Ad =

(
L′(1)

e

)
=

(
n
∑dv

i=1 ili
e

)
. (C.34)

To bound Ad, Lemma C.1 can be directly applied for v ≤ xdn/dv for any constant

xd ∈ [0, 1) since e ≤ dvv ≤ xdn ≤ xdn
∑dv

i=1 ili = xdL
′(1). Thus,

[n(1 − xd)
∑dv

i=1 ili]
e

e!
≤
(

L′(1)

e

)
≤ [n

∑dv

i=1 ili]
e

e!
. (C.35)

We can now prove Theorem 3.2.

Proof of Theorem 3.2. We only consider terms in the summation of (3.4) with |Sv| ≥
1 and |Sc| ≥ 1 since all other terms will be zero. Also, since valid stopping sets must

have v ≤ e ≤ dvv, we only need to sum terms from e = v to e = min{dvv, L′(1)}.
Let x = xv = xc = xd/dv be any constant x ∈ [0, 1/dv). Then, xv, xc, and xd

are all in [0, 1). Using the assumption in (C.1), Lemma C.3 applies since for all
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i ∈ {1, . . . , dv},
ki ≤ v ≤ xn

{
min

1≤j≤dv:lj �=0
lj

}
≤ x(nli).

Also, Lemma C.4 applies since for all i ∈ {2, . . . , dc},

wi ≤ w ≤ e

2
≤ dvv

2
≤ dv

2
xn

{
2(1 − R)

dv
min

2≤j≤dc:rj �=0
rj

}
≤ xn(1 − R)ri

and

v ≤ xn

{
2(1 − R)

dv
min

2≤j≤dc:rj �=0
rj

}
≤ 2n(1 − R)

dv

dc∑
j=2

rj =
2n(1 − R)(1 − r1)

dv
.

First, Lemma C.3, Lemma C.4, and (C.35) are used to find an upper bound on

the standard-ensemble stopping-set enumerator s(n, v).

s(n, v) =

min{dvv,L′(1)}∑
e=v

AvAc

Ad
≤

min{dvv,L′(1)}∑
e=v

nv(v + 1)dv [n(1−R)]�e/2�2d3
ceed2

c

(e/d3
c)!

[n(1−dvx)
∑dv

i=1 ili]e

e!

=

min{dvv,L′(1)}∑
e=v

nv−�e/2 (v + 1)dv [(1 − R)]�e/2�2d3
ceed2

c[
(1 − dvx)

∑dv

i=1 ili

]e e!

(e/d3
c)!

(C.36)

The last term can be upper bounded with Lemma C.1:

e!

(e/d3
c)!

≤ ee−e/d3
c = ee(1−1/d3

c) ≤ (dvv)dvv(1−1/d3
c ) (C.37)

where the last inequality follows from e ≤ dvv (the number of edges is at most the

number of variable nodes times the maximum variable-node degree) and (1−1/d3
c) ≥

0. Thus,

s(n, v) ≤
min{dvv,L′(1)}∑

e=v

nv−�e/2 (v + 1)dv [(1 − R)]�e/2�2d3
ceed2

c[
(1 − dvx)

∑dv

i=1 ili

]e (dvv)dvv(1−1/d3
c). (C.38)
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By further upper bounding the right-hand side of the inequality, we obtain

s(n, v) ≤
min{dvv,L′(1)}∑

e=v

nv−�e/2 (v + 1)dv2d3
cdvv[dv(v + 1)]d

2
c[

(1 − dvx)
∑dv

i=1 ili

]v (dvv)dvv(1−1/d3
c )

=

min{dvv,L′(1)}∑
e=v

nv−�e/2α1α
v
2(v + 1)α3vdv(1−1/d3

c)v (C.39)

where α1, α2, and α3 are positive constants. The second inequality follows from

v ≤ e ≤ dvv ≤ dv(v + 1) and R ≥ 0. Comparing the growth of the terms with n,

s(n, v) ≤
min{dvv,L′(1)}∑

e=v

nv−�e/2n[log α1+v log α2+α3 log (v+1)+dv(1−1/d3
c )v log v]/ log n

=

min{dvv,L′(1)}∑
e=v

nv−�e/2nO(v log v)/ log n =

min{dvv,L′(1)}∑
e=v

nv−� e
2�+

O(v log v)
log n (C.40)

Next, a lower bound on s(n, v) is found using Lemma C.3, Lemma C.4, and (C.35).

s(n, v) =

min{dvv,L′(1)}∑
e=v

AvAc

Ad

≥
min{dvv,L′(1)}∑

e=v

nv

⎡
⎣(1 − x) min

1≤i≤dv :
li �=0

li

⎤
⎦

v

v−v

⎡
⎣n(1 − R)(1 − x) min

2≤i≤dc:
ri �=0

ri

⎤
⎦

�e/2�

2e!

(e/2)!
[
n
∑dv

i=1 ili

]e

=

min{dvv,L′(1)}∑
e=v

nv−� e
2�

(1 − x)v+�e/2�

⎡
⎣ min

1≤i≤dv:
li �=0

li

⎤
⎦

v ⎡
⎣(1 − R) min

2≤i≤dc:
ri �=0

ri

⎤
⎦

�e/2�

e!

vv
[∑dv

i=1 ili

]e
(e/2)!

.

(C.41)
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Since e ≤ dvv, we can further lower bound s(n, v) by

s(n, v) ≥
min{dvv,L′(1)}∑

e=v

nv−� e
2�

(1 − x)v+dvv/2

⎡
⎣ min

1≤i≤dv:
li �=0

li

⎤
⎦

v ⎡
⎣(1 − R) min

2≤i≤dc:
ri �=0

ri

⎤
⎦

dvv/2

e!

vv
[∑dv

i=1 ili

]dvv

(e/2)!

≥
min{dvv,L′(1)}∑

e=v

nv−�e/2α′
1α

′v
2 v−v e!

(e/2)!
(C.42)

where α′
1 and α′

2 are positive constants. The last term can be bounded with Lemma C.1:

e!

(e/2)!
≥
[
1

2
e

]e/2

(C.43)

Thus, we can further lower bound s(n, v) as follows:

s(n, v) ≥
min{dvv,L′(1)}∑

e=v

nv−�e/2α′
1α

′v
2 v−v

[
1

2
e

]e/2

≥
min{dvv,L′(1)}∑

e=v

nv−�e/2α′
1α

′v
2 v−v

[
1

2
v

]v/2

(C.44)

where the second inequality follows from e ≥ v. Comparing the growth of the terms

with n,

s(n, v) ≥
min{dvv,L′(1)}∑

e=v

nv−�e/2n[log α′
1+v log α′

2−v log(v)+(v/2) log (1/2)+(v/2) log v]/ log n

≥
min{dvv,L′(1)}∑

e=v

nv−�e/2n[−O(v log(v))]/ log n

=

min{dvv,L′(1)}∑
e=v

nv−�e/2−O(v log(v))
log n (C.45)
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Combining (C.40) and (C.45),

min{dvv,L′(1)}∑
e=v

nv−�e/2−O(v log(v))
log n ≤ s(n, v) ≤

min{dvv,L′(1)}∑
e=v

nv−�e/2+ O(v log(v))
log n (C.46)

and thus,

s(n, v) =

min{dvv,L′(1)}∑
e=v

nv−�e/2±O(v log(v))
log n (C.47)
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APPENDIX D

Derivation of the Approximation to the

Stopping-Set Enumerator for Protographs

This appendix provides a proof of Theorem 3.3, which is restated here:

Theorem 3.3. For an LDPC ensemble based on Z copies of a protograph with M

variable-node types, J check-node types, E edge types, codelength n = ZM , and

stopping-set size v < n, the expected number of stopping sets of size v is approximated

by

s(n, v) =
∑
n∈Sp

Zv−e+w∗±O(v log v)
log n (D.1)

where e is the number of edges emanating from the set of variable nodes, Vv, which is

distributed according to n, and Sp is defined in (3.11). The quantity w∗ =
∑J

j=1 w∗
j

where w∗
j = maxm∈Sm{wj} and

Sm =

⎧⎨
⎩m ∈ Z

|B| : 0 ≤ mh ≤ Z, ∀h = 0, . . . , |B| − 1;

|B|−1∑
h=0

mh = Z;

|B|−1∑
h=0

βh,kmh = nνj,k
, ∀k = 1, . . . , dc,j

⎫⎬
⎭ (D.2)

for each j ∈ {1, . . . , J}.
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Proof. The equation for the protograph-based ensemble stopping-set enumerator

s(n, v), given in Theorem 3.1, can be expressed as follows:

s(n, v) =
∑
n∈Sp

1

A1

J∏
j=1

A2 (D.3)

where

A1 =
M∏
i=1

(
Z

ni

)dv,i−1

(D.4)

A2 = coef

⎧⎨
⎩
⎡
⎣dc,j∏

k=1

(1 + xk) −
dc,j∑
k=1

xk

⎤
⎦

Z

,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭ . (D.5)

First, A1 will be upper bounded by applying Lemma C.1.

A1 ≤
M∏
i=1

[
Zni

ni!

]dv,i−1

=
Z
∑M

i=1 (nidv,i−ni)∏M
i=1 (ni!)dv,i−1

=
Ze−v∏M

i=1 (ni!)dv,i−1
≤ Ze−v. (D.6)

A1 is also lower bounded using Lemma C.1:

A1 ≥
M∏
i=1

[
[(1 − x)Z]ni

ni!

]dv,i−1

=
[(1 − x)Z]

∑M
i=1 (nidv,i−ni)∏M

i=1 (ni!)dv,i−1

=
[(1 − x)Z]e−v∏M

i=1 (ni!)dv,i−1
≥ [(1 − x)Z]e−v∏M

i=1 (ni!)dv−1
≥ [(1 − x)Z]e−v

(v!)dv−1
(D.7)

where the second inequality follows since dv,i ≤ dv for all i and the last inequality

follows from Lemma (C.2).

Next, A2 will be evaluated and bounded for each check-node type j. Let the

exponent of xk denote the number of connections from check nodes of type j to

variable nodes of type νj,k on the kth edge type emanating from check node type j in
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the protograph. Then, for each of the check nodes of type j, the following polynomial

represents connections from it to the stopping set Vv:

p(x) =

dc,j∏
k=1

(1 + xk) −
dc,j∑
k=1

xk. (D.8)

Let b
(z)
k ∈ {0, 1} denote the exponent of the xk term for the zth check node of type

j and let b(z) = (b
(z)
1 , b

(z)
2 , . . . , b

(z)
dc,j

) be the vector of all such coefficients. Then,

p(x) =
∑
b∈B

⎡
⎣dc,j∏

k=1

x
b
(z)
k

k

⎤
⎦ (D.9)

where B is defined in (3.29). The set B excludes all vectors containing exactly one 1

since these unit vectors correspond to the case when a check node is only connected

once to Vv and hence a stopping set cannot be formed. Using these notations, A2

can be expressed as

A2 = coef

⎧⎨
⎩pZ(x),

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭

= coef

⎧⎨
⎩
∑

b(1)∈B
· · ·

∑
b(Z)∈B

⎡
⎣dc,j∏

k=1

x
b
(1)
k

k · · ·
dc,j∏
k=1

x
b
(Z)
k

k

⎤
⎦ ,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭

= coef

⎧⎨
⎩
∑

b(1)∈B
· · ·

∑
b(Z)∈B

⎡
⎣dc,j∏

k=1

x
∑Z

z=1 b
(z)
k

k

⎤
⎦ ,

dc,j∏
k=1

x
nνj,k

k

⎫⎬
⎭ . (D.10)

The exponent of xk in pZ(x) is only dependent on the distribution of the values that

the vectors b(1), . . . ,b(Z) take in B and is not dependent on z. Thus, utilizing the

enumeration of elements in B = {β0, β1, . . . , β|B|−1} and the distribution of check

157



node connections given by m, A2 can be expressed as follows:

A2 = coef

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
m∈Z|B|:
0≤mh≤Z∑|B|−1
h=0 mh=Z

(
Z

m0, · · · , m|B|−1

) dc,j∏
k=1

x
∑|B|−1

h=0 βh,kmh

k ,

dc,j∏
k=1

x
nνj,k

k

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
∑

m∈Sm

(
Z

m0, · · · , m|B|−1

)
=
∑

m∈Sm

Z!

m0!
∏|B|−1

h=1 mh!
. (D.11)

With this expression for A2, we can now find bounds on A2. First, note that the

sum of elements in m must be Z since there are Z check nodes of type j. Also, m0

denotes the number of check nodes not connected to Vv. Since wj is the number

of check nodes of type j connected to Vv, we have that wj = Z − m0. Applying

Lemma C.1, we obtain the following upper bound on A2:

A2 ≤
∑

m∈Sm

Zwj∏|B|−1
h=1 mh!

≤
∑

m∈Sm

Zwj

max1≤h≤|B|−1 mh!
. (D.12)

To bound the denominator, observe that the number of edges from Vv that connect

to check nodes of type j is

ej =

|B|−1∑
h=1

dc,j∑
k=1

βh,kmh ≥
|B|−1∑
h=1

2mh ≥ 2 max
1≤h≤|B|−1

mh ≥ 2mh (D.13)

for all h = 1, . . . , |B| − 1. The second inequality follows from the fact that for each

β ∈ B\β0, the vector β must contain at least two 1’s. With this result, A2 can be

further upper bounded by

A2 ≤
∑

m∈Sm

Zwj

(ej/2)!
≤ |Sm| Zw∗

j

(ej/2)!
(D.14)

where w∗
j = maxm∈Sm{wj}. By (D.13), each mh can take at most (ej/2 + 1) values
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and thus, |Sm| can be bounded as follows:

|Sm| ≤
(ej

2
+ 1
)|B|

=
(ej

2
+ 1
)2(dc,j)−dc,j ≤ (e + 1)2dc,j

. (D.15)

Combining these results, yields the upper bound

A2 ≤ Zw∗
j
(e + 1)2dc,j

(ej/2)!
. (D.16)

To obtain a lower bound on A2, Lemma C.1 is applied to (D.11).

A2 ≥
∑

m∈Sm

[(1 − x)Z]wj∏|B|−1
h=1 mh!

≥
∑

m∈Sm

[(1 − x)Z]wj

wj !
(D.17)

where the second inequality follows from Lemma C.2 since
∑|B|−1

h=1 mh = wj . Finally,

the summation can be lower bounded by a single term:

A2 ≥ [(1 − x)Z]w
∗
j

w∗
j !

. (D.18)

Now that upper and lower bounds have been obtained for A1 and A2, we can

now bound s(n, v). First, let w∗ =
∑J

j=1 w∗
j be the largest possible number of check

nodes connected to stopping set Vv. Applying (D.7) and (D.16) to (D.3) gives an

upper bound on s(n, v):

s(n, v) ≤
∑
n∈Sp

∏J
j=1

[
Zw∗

j (e + 1)2dc,j
/(ej/2)!

]
[(1 − x)Z]e−v(v!)1−dv

=
∑
n∈Sp

Zv−e+
∑J

j=1 w∗
j
(1 − x)v−e(e + 1)

∑J
j=1 2dc,j

(v!)dv−1∏J
j=1(ej/2)!

≤
∑
n∈Sp

Zv−e+w∗
(1 − x)v−dvv(dvv + 1)

∑J
j=1 2dc,j

vv(dv−1). (D.19)
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Thus,

s(n, v) ≤
∑
n∈Sp

Zv−e+w∗
αv

1(dvv + 1)α2vα3v (D.20)

where α1, α2, and α3 are positive constants and the second inequality follows from

e ≤ dvv. Comparing the growth of the terms with Z,

s(n, v) ≤
∑
n∈Sp

Zv−e+w∗
Z [v log α1+α2 log (dvv+1)+α3v log v]/ log Z

=
∑
n∈Sp

Zv−e+w∗
ZO(v log v)/ log Z

=
∑
n∈Sp

Zv−e+w∗+
O(v log v)

log Z =
∑
n∈Sp

nv−e+w∗+
O(v log v)

log n (D.21)

Next, applying (D.6) and (D.18) to (D.3) gives a lower bound on s(n, v):

s(n, v) ≥
∑
n∈Sp

1

Ze−v

J∏
j=1

[(1 − x)Z]w
∗
j

w∗
j !

=
∑
n∈Sp

Zv−e [(1 − x)Z]
∑J

j=1 w∗
j∏J

j=1(w
∗
j !)

≥
∑
n∈Sp

Zv−e+w∗ (1 − x)w∗

w∗!
≥
∑
n∈Sp

Zv−e+w∗ (1 − x)e

e!

≥
∑
n∈Sp

Zv−e+w∗
(1 − x)ee−e

≥
∑
n∈Sp

Zv−e+w∗
(1 − x)dvv(dvv)−dvv

=
∑
n∈Sp

Zv−e+w∗
α′v

1 v−dvv (D.22)

where α′
1 is a positive constant. The second inequality follows from Lemma C.2

and the third inequality follows from the fact that the number of check nodes w∗

connected to the stopping set cannot be larger than the number of edges e emanating
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from the stopping set. Comparing the growth of the terms with Z,

s(n, v) ≥
∑
n∈Sp

Zv−e+w∗
Z [v log α′

1−dvv log v]/ log Z

=
∑
n∈Sp

Zv−e+w∗
Z−O(v log v)/ log Z

=
∑
n∈Sp

Zv−e+w∗−O(v log v)
log Z =

∑
n∈Sp

nv−e+w∗−O(v log v)
log n . (D.23)

Finally, combining (D.21) and (D.23), we obtain

∑
n∈Sp

nv−e+w∗−O(v log v)
log n ≤ s(n, v) ≤

∑
n∈Sp

nv−e+w∗+ O(v log v)
log n (D.24)

and thus,

s(n, v) =
∑
n∈Sp

nv−e+w∗±O(v log v)
log n (D.25)
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APPENDIX E

Proof of Region of Approximation Validity

This appendix provides a proof of Theorem 3.4, which is restated here:

Theorem 3.4. Consider a protograph-based ensemble for which at most one edge

type connects any variable-node type to any check-node type in the protograph. Given

a small fraction γ > 0 and any constant a ∈ (0, 1), let N0 be the solution of n in the

following equation

n lnn =
Mv

γ

(
1 +

a

2(1 − a)2

)(
1 +

1

dv,avg − 2

)
(E.1)

where dv,avg is the smallest average variable-node degree in stopping sets of size v.

Then, for all v and n satisfying the conditions v/n ≤ a/M and n > N0, the error

term is upper bounded by

|A| ≤ γ|(v − e + w∗) lnn| (E.2)

and hence, for small γ, the stopping-set enumerator can be approximated by

ln sn,m(n, v) ≈ ln c + (v − e + w∗) ln n. (E.3)
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Before proving Theorem 3.4, we will first need the following lemmas.

Lemma E.1. For y ∈ [0, a] for any constant a ∈ (0, 1),

−y

(
1 +

a

2(1 − a)2

)
≤ ln(1 − y) ≤ −y. (E.4)

Proof. Consider the Taylor series expansion of lnx around x = 1 with the Lagrange

remainder:

ln x = (x − 1) − (x − 1)2

2x∗2 (E.5)

for some x∗ ∈ [1, x]. Thus, for y = 1 − x around y = 0,

ln(1 − y) = −y − y2

2(1 − y∗)2
= −y

(
1 +

y

2(1 − y∗)2

)
(E.6)

for some y∗ ∈ [0, y]. The second inequality in the lemma follows directly:

ln(1 − y) = −y − y2

2(1 − y∗)2
≤ −y. (E.7)

The first inequality of the lemma follows from the bound on y∗ ∈ [0, y]:

ln(1 − y) ≥ −y

(
1 +

y

2(1 − y)2

)
. (E.8)

Now, suppose y ∈ [0, a] for some constant a ∈ (0, 1). Then,

ln(1 − y) ≥ −y

(
1 +

a

2(1 − a)2

)
. (E.9)
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Lemma E.2. Let a ∈ (0, 1) be a constant and let A be defined as in (3.43):

A =
M∑
i=1

[
(1 − dv,i)

ni−1∑
k=1

ln

(
1 − k

Z

)]
+

J∑
j=1

wj−1∑
k=1

ln

(
1 − k

Z

)
. (E.10)

For v/n ≤ a/M and dv,avg ≥ 4/3, |A| is upper bounded by

|A| ≤ 1

Z

(
1 +

a

2(1 − a)2

)
(dv,avg − 1)

v2

2
. (E.11)

Proof. First, the restriction on v/n allows us to apply Lemma E.1 to (E.10) since for

all k = 1, . . . , ni − 1,

k

Z
≤ ni − 1

Z
≤ v

Z
= M

v

n
≤ a (E.12a)

and for all k = 1, . . . , wj − 1,

k

Z
≤ wj − 1

Z
≤ ej

2Z
≤ v

2Z
=

M

2

v

n
≤ a

2
≤ a (E.12b)

where the third inequality follows from the assumption that at most one edge type

connects any variable-node type to any check-node type. Applying Lemma E.1

to (E.10) results in the following upper bound:

A ≤
M∑
i=1

[
(1 − dv,i)

ni−1∑
k=1

− k

Z

(
1 +

a

2(1 − a)2

)]
+

J∑
j=1

wj−1∑
k=1

− k

Z

=
1

Z

M∑
i=1

[
(dv,i − 1)

ni(ni − 1)

2

(
1 +

a

2(1 − a)2

)]
− 1

Z

J∑
j=1

wj(wj − 1)

2
. (E.13)
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We can further upper bound A as follows:

A ≤ 1

Z

M∑
i=1

[
(dv,i − 1)

ni(ni − 1)

2

(
1 +

a

2(1 − a)2

)]

≤ 1

Z

[
1 +

a

2(1 − a)2

]
1

2

M∑
i=1

(dv,i − 1)n2
i

≤ 1

Z

[
1 +

a

2(1 − a)2

]
v

2

M∑
i=1

(nidv,i − ni)

=
1

Z

[
1 +

a

2(1 − a)2

]
v

2
(e − v)

=
1

Z

[
1 +

a

2(1 − a)2

]
dv,avg − 1

2
v2. (E.14)

A can also be lower bounded using Lemma E.1 as follows:

A ≥
M∑
i=1

[
(1 − dv,i)

ni−1∑
k=1

− k

Z

]
+

J∑
j=1

wj−1∑
k=1

− k

Z

(
1 +

a

2(1 − a)2

)

=
1

Z

M∑
i=1

[
(dv,i − 1)

ni(ni − 1)

2

]
− 1

Z

J∑
j=1

wj(wj − 1)

2

(
1 +

a

2(1 − a)2

)

≥ − 1

Z

J∑
j=1

wj(wj − 1)

2

(
1 +

a

2(1 − a)2

)
. (E.15)

Since wj ≤ ej/2, we can further lower bound A by

A ≥ 1

Z

[
1 +

a

2(1 − a)2

]
1

2

J∑
j=1

−
(ej

2

)2

= − 1

Z

[
1 +

a

2(1 − a)2

]
1

8

J∑
j=1

(
M∑
i=1

niνi,j

)2

= − 1

Z

[
1 +

a

2(1 − a)2

]
1

8

J∑
j=1

M∑
i=1

niνi,j

M∑
k=1

nkνk,j

= − 1

Z

[
1 +

a

2(1 − a)2

]
1

8

M∑
i=1

ni

M∑
k=1

nk

J∑
j=1

νi,jνk,j (E.16)

165



where νi,j ∈ {0, 1} is the number of connections between variable-node type i and

check-node type j in the protograph. Based on the assumption that as most one

edge type connects any variable-node type to any check-node type, we obtain

A ≥ − 1

Z

[
1 +

a

2(1 − a)2

]
1

8

M∑
i=1

ni

M∑
k=1

nkdv,k

= − 1

Z

[
1 +

a

2(1 − a)2

]
1

8
ve

= − 1

Z

[
1 +

a

2(1 − a)2

]
dv,avg

8
v2. (E.17)

This lower bound on A is negative while the upper bound on A in (E.14) is

positive. Thus, combining (E.14) and (E.17), the magnitude of A can be bounded

by

|A| ≤ 1

Z

[
1 +

a

2(1 − a)2

]
max

{
dv,avg

4
, dv,avg − 1

}
v2

2

=
1

Z

[
1 +

a

2(1 − a)2

]
dv,avg − 1

2
v2 (E.18)

where the equality follow from dv,avg ≥ 4/3.

We can now prove Theorem 3.4.

Proof. We wish to find a value of N0 such that for all n > N0,

|A| ≤ γ|(v − e + w∗) ln n|. (E.19)

This is possible since the bound on |A| in Lemma E.2 decreases monotonically

with n = MZ. Equating the right-hand side of (E.19) with the upper bound in

166



Lemma E.2,

γ|(v − e + w∗) ln n| =
1

Z

[
1 +

a

2(1 − a)2

]
dv,avg − 1

2
v2, (E.20)

and solving for n provides a value of N0.

To obtain an expression which is easier to analyze, we assume that |v− e+w∗| =

e−v−w∗ ≥ 0. If not, then the stopping-set enumerator grows polynomially with Z,

which is an undesirable property for a code. Using this assumption, we obtain the

following lower bound:

|v − e + w∗| = e − v − w∗ ≥ e − v − e

2
=

v

2
(dv,avg − 2) (E.21)

where dv,avg is the average variable-node degree in the stopping set. Using this

inequality, another (larger) value for N0 can be obtained by finding n satisfying the

following equality:

γ|v
2
(dv,avg − 2) lnn| =

1

Z

[
1 +

a

2(1 − a)2

]
dv,avg − 1

2
v2. (E.22)

Rearranging the terms in (E.22), we obtain the desired equality:

n lnn =
Mv

γ

[
1 +

a

2(1 − a)2

]
dv,avg − 1

dv,avg − 2

=
Mv

γ

[
1 +

a

2(1 − a)2

](
1 +

1

dv,avg − 2

)
. (E.23)

For n ≥ N0 where N0 is the solution of n in (E.23), the inequality in (E.19) holds.

Thus, the error term A is γ times smaller than the (v − e + w∗) ln n term, and hence

the approximation in (E.3) holds for small γ.
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APPENDIX F

Proof of w∗
j Evaluation for Protograph-Based

Ensemble Enumerator Exponents

This appendix provides a proof of Theorem 3.5, which is restated here:

Theorem 3.5. Consider a set V of variable nodes with distribution n = (n1, . . . , nM)

where ni is the number of type-i variable nodes in the set.

For each check-node type j, if

2 max
1≤i≤M

niνi,j ≤
M∑
i=1

niνi,j, (F.1)

then we can connect type-j check nodes to V such that V is a stopping set. Further,

w∗
j = �ej/2� (F.2)

where ej =
∑M

i=1 niνi,j is the total number of edges connected to type-j check nodes.

If (F.1) is not satisfied for any check-node type j, then V cannot be a stopping

set.

Proof. Since permutations in the protograph expansion are independent for each edge

type in the protograph, the connections from a set of variable nodes to the check
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nodes are independent for each check-node type. Thus, we can consider each check-

node type j separately for j = 1, . . . , J . The set of variable nodes V is connected to

type-j check nodes through niνi,j edges from type-i variable nodes for each i.

First, consider the case when (F.1) is not satisfied. Let i∗ = arg max1≤i≤M niνi,j.

Then, νi∗,j = 1 and the ni∗ type-i∗ variable nodes must be connected to ni∗ unique

type-j check nodes. In order to form a stopping set, the type-j check nodes must

be connected at least twice or not at all. Thus, the remaining variable nodes of

type i 	= i∗ must connect to at least these ni∗ type-j check nodes. However, the

number of connections to type-j check nodes that we can obtain from the remaining

variable-node types is bounded by

M∑
i=1

niνi,j − ni∗ < ni∗ (F.3)

since (F.1) is not satisfied. Thus, the remaining variable nodes cannot provide enough

edges to cover the ni∗ singly-connected type-j check nodes. This result shows that

we cannot form a valid stopping set with this variable-node distribution n.

Next, consider the case when (F.1) is satisfied. Since forming a stopping set

requires either 0 or at least 2 connections to each check node, the maximum number

of type-j check nodes is �ej/2�, where ej is the total number of edges connecting

type-j check nodes to the stopping set. Thus,

w∗
j ≤ �ej/2�. (F.4)

We provide a constructive argument to show that we can indeed form a stopping set

with V connected to exactly �ej/2� check nodes for each j. Hence, w∗
j achieves its

bound, resulting in (F.2).

We connect V to the type-j check nodes using the following recursive procedure.
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Without loss of generality, we assume that the terms niνi,j are ordered from largest

to smallest, i.e., n1ν1,j ≥ n2ν2,j ≥ · · · ≥ nMνM,j. Define ck to be the number of type-j

check nodes which have exactly one connection at iteration k. Define sk =
∑M

i=k niνi,j

to be the number of edges that still need to be connected to the type-j check nodes

at iteration k.

Step 1: Initialize k = 1. Connect the n1ν1,j type-1 variable nodes to n1ν1,j unique

type-j check nodes. Then, set c2 = n1ν1,j.

Step 2: Increment k = k + 1. The next operation depends on the relationship

between sk and ck.

• If sk = ck, proceed to Step 2a.

• If sk = ck + 1, proceed to Step 2b.

• If sk > ck + 1, proceed to Step 2c.

• The case where sk < ck can never occur. For k = 2, the condition in (F.1)

gives

c2 = n1ν1,j = max
1≤i≤M

niνi,j ≤ s2. (F.5)

For k > 2, the choice of xk−1 in Step 2c guarantees that

ck = ck−1 − nk−1νk−1,j + 2xk−1

≤ ck−1 − nk−1νk−1,j + 2

[
sk−1 − ck−1

2

]

= sk−1 − nk−1νk−1,j = sk (F.6)

Step 2a: In this case, sk = ck. Connect the sk variable nodes (of type k to M) to

the ck check nodes. Then, all check nodes of type-j will be connected exactly

twice or not at all. Thus, type-j check nodes satisfy the condition for V to be
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a stopping set. Further, since the total number of edges connecting V to the

type-j check nodes is ej =
∑M

i=1 niνi,j , the total number of type-j check nodes

connected through this process is exactly ej/2. The algorithm is now complete.

Step 2b: In this case, sk = ck + 1. This situation is similar to the sk = ck scenario

except that in this case, ej is odd and thus, there is an extra edge that must be

connected to a check node which is already connected to two variable nodes,

i.e., there is one check node that will need to be connected to V via exactly

three edges. We have two cases: (1) sk = nkνk,j and (2) sk > nkνk,j.

Case 1: sk = nkνk,j. Note that k 	= 2. If k = 2, then

n2ν2,j = s2 = c2 + 1 = n1ν1,j + 1 > n1ν1,j (F.7)

which contradicts our assumption that n1ν1,j ≥ n2ν2,j. Thus, k > 2. First,

connect ck of the nk type-k variable nodes to the ck singly-connected check

nodes. Since nk = sk and sk = ck + 1, this leaves a single type-k variable

node left to be connected. There exists an l < k with l ≥ 2 such that

xl 	= nlνl,j (see Step 2c). If this were not the case, then xi = niνi,j and

ci+1 = ci − niνi,j + 2niνi,j = ci + niνi,j (F.8)

for all 2 ≤ i < k. Thus,

ck = c2 +
k−1∑
i=2

niνi,j =
k−1∑
i=1

niνi,j . (F.9)

Since, nkνk,j = sk =
∑M

i=k niνi,j, then
∑M

i=k+1 niνi,j = 0. Combining this
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result with (F.9), we obtain

nkνk,j = sk = ck + 1 > ck =

k−1∑
i=1

niνi,j =

M∑
i=1

niνi,j − nkνk,j. (F.10)

Thus, 2nkνk,j >
∑M

i=1 niνi,j which contradicts (F.1). Thus, we can indeed

find an l such that xl 	= nlνl,j.

Since xl 	= nlνl,j, some if not all of the type-l variable nodes were used to

connect to singly-connected check nodes. Thus, there exists a check node

which is connected to a type-l variable node and to a type-m variable node

for some m < l. Connect the last type-k variable node to this check node.

This results in a single check node with 3 connections: one connection to

a type-k variable node, one to a type-l variable node for some l < k, and

one to a type-m variable node for some m < l.

Case 2: sk > nkνk,j. First, connect the nkνk,j type-k variable nodes to nkνk,j

of the ck singly-connected check nodes. Since sk > nkνk,j, there exists

an l such that l > k and nlνl,j > 0. Connect one type-l variable node

to a check node that was just connected to a type-k variable node. This

results in a single check node with 3 connections: one connection to a

type-l variable node, one to a type-k variable node, and one to a type-m

variable node for some m < k. Now, connect the remaining sk − nk − 1

variable nodes to the remaining ck − nk singly-connected check nodes,

noting that sk − nk − 1 = ck − nk.

In both cases, all connected check nodes are now connected exactly twice except

for one check node which is connected to three variable nodes. This results in

a valid stopping set configuration. Further, since the total number of edges

connecting V to the type-j check nodes is ej =
∑M

i=1 niνi,j, the total number
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of type-j check nodes connected through this process is exactly �ej/2�. The

algorithm is now complete.

Step 2c: In this case, sk > ck + 1. Let

xk = min

{⌊
sk − ck

2

⌋
, nkνk,j

}
. (F.11)

Connect nkνk,j −xk of the type-k variable nodes to nkνk,j −xk of the ck singly-

connected check nodes. Connect the remaining xk type-k variable nodes to

previously unconnected type-j check nodes. The resulting number of singly-

connected check nodes is

ck+1 = ck − (nkνk,j − xk) + xk = ck − nkνk,j + 2xk. (F.12)

Step 3: Go to Step 2.

This algorithm always successfully completes at either Step 2a or Step 2b. We will

prove this fact using proof by contradiction. Assume that the algorithm never enters

Step 2a or Step 2b, i.e., the algorithm enters Step 2c at all iterations k = 2, . . . , M .

Then, there are only three possibilities to consider: (1) M = 2, (2) M > 2 and for

all k ∈ {2, . . . , M −1}, xk = nkνk,j, and (3) M > 2 and for some k ∈ {2, . . . , M −1},
xk = �(sk − ck)/2�. Note that M 	= 1 since in that case, (F.1) cannot be satisfied.

Case 1: M = 2. In this case, (F.1) can only be satisfied if n1ν1,j = n2ν2,j. Thus,

c2 = s2 and the algorithm would enter Step 2a at iteration k = 2. This

contradicts the original assumption that the the algorithm never enters Step

2a or Step 2b.
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Case 2: M > 2 and for all k ∈ {2, . . . , M − 1}, xk = nkνk,j. In this case, for each k,

ck+1 = ck − nkνk,j + 2nkνk,j

= ck + nkνk,j. (F.13)

Thus,

cM = c2 +

M−1∑
k=2

nkνk,j =

M−1∑
k=1

nkνk,j > nMνM,j = sM (F.14)

where the strict inequality follows since nkνk,j ≥ nMνM,j for all k < M and

M > 2. This result contradicts the choice of xM which guarantees that cM ≤
sM as shown in (F.6). Thus, this case is not possible.

Case 3: M > 2 and for some k ∈ {2, . . . , M − 1}, xk = �(sk − ck)/2�. For this k,

ck+1 = ck − nkνk,j + 2

⌊
sk − ck

2

⌋

=

⎧⎪⎨
⎪⎩

sk+1, sk − ck even

sk+1 − 1, sk − ck odd
. (F.15)

Thus, the algorithm will stop at either Step 2a or Step 2b at the next (k+1)th

iteration. This contradicts the original assumption that the algorithm never

enters Step 2a or Step 2b.

The proof by contradiction is now complete. This analysis has shown that

when (F.1) is satisfied, the algorithm will always successfully complete at Step 2a or

Step 2b. As shown in Step 2a and Step 2b above, the final result of the algorithm is

a valid stopping set V connected to exactly �ej/2� check nodes. Thus, w∗
j achieves

its bound w∗
j = �ej/2�.
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APPENDIX G

Proof of Precoding Theorem

This appendix provides a proof of Theorem 3.7, which is restated here:

Theorem 3.7. Consider a protograph P whose type-i variable node is precoded to

generate the protograph P ′. Let VP and VP ′ be the sets of stopping-set sizes which

dominate the performance of the ensemble based on protograph P and P ′, respectively,

and let VU = {VP ∪ VP ′}. Assume that for all v ∈ VU , stopping sets of size v follow

category-P behavior for both protograph-based ensembles. Let Z be large enough such

that Theorem 3.4 holds and Z ≥ 1/ε. Then,

P ub
e,P ′ ≈

∑
v∈VU

P ub′
e,P ′(v) ≤ (Z + 1)

∑
v∈VU

P ub′
e,P (v) ≈ Z · P ub

e,P . (G.1)

Thus, the largest exponent of Z in the error-probability approximation for protograph-

P ′ ensembles is at most one greater than the largest exponent for protograph-P en-

sembles, in the error-floor region.

Proof. Let the protograph P, with M variable-node types and J check-node types,

be precoded to generate protograph P’, with M + 1 variable-node types and J + 1

check-node types, as described in Section 3.8.

Consider a finite stopping set V ′, in the ensemble generated from the precoded
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protograph P ′, consisting of v′ variable nodes connected to w∗′ check nodes via e′

edges. Let npunc be the number of type-i variable nodes in V ′, i.e., the number of

punctured nodes in the stopping set, and let npre be the number of type-(M + 1)

variable nodes in V ′.

Now, consider the set V obtained from V ′ by removing all variables of type (M+1),

i.e.,

V = {x ∈ V ′ : x is a variable node of type i 	= (M + 1)}. (G.2)

This set V must be a stopping set in the ensemble generated from protograph P .

To obtain this result, observe that all check nodes of type j = 1, . . . , J must be

connected to V at least twice or not at all in order for V ′ to be a stopping set.

The stopping-set characteristics of V ′ and V are related by the following expres-

sions where primed and unprimed variables correspond to characteristics of V ′ and

V, respectively.

v′ = v + npre (G.3a)

v′
eff = v − npunc + npre (G.3b)

e′ = e + 2npunc + npre (G.3c)

w∗′ = w∗ + npunc + npre/2 (G.3d)

To derive (G.3d), note that w∗′ is equal to w∗ + wJ+1 where wJ+1 is the maximum

number of type-(J + 1) check nodes connected to the stopping set. Since there

are 2npunc + npre edges in the stopping set connected to type-(J + 1) check nodes,

wJ+1 = (2npunc + npre)/2. Combining the results in (G.3), we obtain

(v′ − e′ + w∗′) = (v − e + w∗) − (npunc − npre/2). (G.4)
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Since VU contains all the dominating stopping-set sizes,

P ub
e,P ≈

∑
v∈VU

P ub′
e,P (v) and P ub

e,P ′ ≈
∑
v∈VU

P ub′
e,P ′(v). (G.5)

Let n′ be the codelength including the punctured nodes and let n′ = (n1, . . . , nM+1)

be the vector n concatenated with nM+1 = npre. Combining (3.68), (G.3), and (G.5)

results in an error-probability upper bound

∑
v′∈VU

P ub′
e,P ′(v′) =

∑
v′∈VU

∑
n′∈S′

p

εv−npunc+npre × Z(v−e+w∗)−(npunc− 1
2
npre)

M+1∏
i=1

(ni!)
1−dv,i

J+1∏
j=1

|β|−1∏
h=1

mh,j!

=
∑

v′∈VU

min{v′,Z}∑
npre=0

∑
n:
∑M

i=1 ni=v

⎡
⎢⎢⎢⎢⎢⎣

(εZ)−(npunc− 1
2
npre)ε

1
2
npre

|β|−1∏
h=1

mh,J+1!

εvZv−e+w∗

M∏
i=1

(ni!)
1−dv,i

J∏
j=1

|β|−1∏
h=1

mh,j!

⎤
⎥⎥⎥⎥⎥⎦

(G.6)

where mh,j is the value of mh corresponding to the jth check-node type and the

last equality follows since type-(M + 1) variable nodes have degree 1. In order for

type-(J + 1) check nodes to be connected to V ′ at least twice or not at all,

(npunc − 1

2
npre) ≥ 0. (G.7)

Thus, assuming that Z ≥ 1/ε, then (εZ)−(npunc− 1
2
npre) ≤ 1 and hence, the weighting

term in (G.6) is bounded by

(εZ)−(npunc− 1
2
npre)ε

1
2
npre∏|β|−1

h=1 mh,(J+1)!
≤ 1. (G.8)
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Thus,

∑
v′∈VU

P ub′
e,P ′(v′) ≤

∑
v′∈VU

min(v′,Z)∑
npre=0

P ub′
e,P (v′ − npre)

=
∑

v′∈VU

v′∑
v=v′−min(v′,Z)

P ub′
e,P (v). (G.9)

Assume that VU = {1, . . . , vmax} where vmax = maxv∈VU
v. If this is not the case, then

one can simply expand VU to include all values between 1 and vmax. The resulting

expanded VU still contains all dominating stopping-set sizes, so the approximations

in (G.5) are still valid. Applying this assumption,

∑
v′∈VU

P ub′
e,P ′(v′) ≤

vmax∑
v′=1

v′∑
v=max(0,v′−Z)

P ub′
e,P (v) ≤

vmax∑
v=1

v+Z∑
v′=v

P ub′
e,P (v)

= (Z + 1)
∑
v∈VU

P ub′
e,P (v). (G.10)
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