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CHAPTER 1

Introduction

Consider a typical point-to-point digital communication system as shown in

Fig. 1.1. At the transmitter, information from the source is encoded for transmission

over the channel. More specifically, the source data is first compressed by the source

encoder to remove redundancy and then encoded by the channel encoder for error

correction. Subsequently, the modulator generates appropriate waveforms that are

transmitted through a noisy channel, and then decoded at the receiver. The main

goal for the communication engineer is to design the encoder and decoder so that

the system can transmit data reliably at the highest possible transmission rate.

To achieve this goal, channel coding, which is the focus of this thesis, strategically

adds redundancy to the transmitted data. With this redundancy, the receiver can

more accurately decode the data it receives. C. E. Shannon established in his seminal

papers [1, 2] the maximum amount of information that can be transmitted over the

channel called the capacity of the channel. Since then, coding theory has provided

specific transmission schemes that approach the capacity for point-to-point links.

Historically, most of the aforementioned schemes are designed for the case of

memoryless channels. For this class of channels, a multitude of remarkable results

have been established relatively recently with the discovery of turbo codes in 1993 [3]
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Figure 1.1: Digital communication system

and the subsequent rediscovery of low-density, parity-check (LDPC) codes [4–7]. For

channels with memory, however, few results exist on capacity-achieving codes. This

is the first direction we follow in this thesis, i.e. finding capacity-achieving scheme

for channels with memory.

One of the greatest advantages that the aforementioned turbo codes have is low

decoding complexity. While maximum-likelihood (ML) decoding (which is the opti-

mal decoding algorithm) requires exponential complexity (with respect to the code

length), iterative decoding with message passing, utilized with turbo codes, has much

less decoding complexity. This fact has been shown to hold experimentally, although

no definitive theoretical study of the overall complexity-performance tradeoff exists

for iterative message passive decoding in noisy channels (other than the binary era-

sure channel (BEC)).

In our quest to find simple encoding and decoding strategies for channels with

memory we turn our attention to channels with feedback. Communication in the
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presence of feedback has been a long studied problem which dates back to Shan-

non’s early work [8]. Shannon showed that feedback cannot increase the capacity

of memoryless channels, but can improve the error performance and/or simplify the

transmission scheme. There have been several remarkable results on designing trans-

mission schemes with feedback, but again, most of these results are for the case

of memoryless channels. The second direction in this thesis, therefore, is to design

simple transmission schemes for channels with memory in the presence of feedback.

1.1 Background

1.1.1 Capacity-achieving codes for channels without feed-

back

The capacity and the capacity-achieving input distribution of memoryless, binary-

input, output-symmetric (MBIOS) channels, is well known [9, p. 94]. It is also well

known that linear codes can achieve the capacity of MBIOS channels [10]. However,

capacity achieving codes with low complexity were not known until the remarkable

discovery of turbo codes in 1993 [3] and the subsequent rediscovery of LDPC codes [4–

7] as mentioned above. Since then, codes defined on sparse graphs, collectively

referred to as “turbo-like” or “LDPC-like” codes have attracted a large amount of

attention in the quest to achieve channel capacity with small complexity.

For the special case of the BEC, it is known that capacity can be achieved with

bounded decoding complexity per information bit. In particular, based on the density

evolution (DE) technique, it was shown in [11–13] that LDPC-like codes achieve the

BEC capacity with iterative decoding, while [14] showed that this can be done with

bounded (and small) decoding complexity per information bit.

For general MBIOS channels, however, there is no conclusive answer regarding
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capacity achievability of turbo-like codes with iterative decoding. This is so due to

the fact that DE is not amenable to theoretical analysis for MBIOS channels, since

code performance can only be evaluated through an uncountably-infinite-dimensional

non-linear recursive equation (there is a line of research studying iterative decoding

performance [15–17] based on results from statistical physics). Thus, only numerical

results exist that show how turbo-like codes can approach capacity using iterative

decoding [18]. On the other hand, when ML decoding is assumed, the performance

of turbo-like codes can be analyzed. For instance, it was shown that LDPC-like

codes achieve the capacity of MBIOS channels with ML decoding in [19–22]. More-

over, it was shown in [23] that a family of turbo-like codes consisting of a serial

concatenation of an outer LDPC code and an inner rate-one low-density, generator

matrix (LDGM) code, can achieve the capacity of MBIOS channels with bounded

graphical complexity (i.e., number of edges in the graph representing the code) per

information bit when ML decoding is performed.

The aforementioned results were developed for memoryless channels. For chan-

nels with memory, few results exist on their capacity and the corresponding capacity-

achieving input distribution, and even fewer on capacity-achieving codes. Regard-

ing the former, the capacity of Gilbert-Elliott (GE) channels was studied in [24]

and the capacity of more general finite-state Markov channel (FSMC)s was stud-

ied in [25, 26]. An efficient method for computing the information rate of a finite-

state channel (FSC) whose input is a Markov process was proposed independently

in [27–29] and extended in [30]. In [31] an optimization algorithm was proposed to nu-

merically compute tight lower bounds on the capacity of FSCs, and the techniques

were generalized in [32]. Upper bounds on the capacity of FSCs were developed

in [33, 34]. The above results, demonstrated that a Markov input sequence provides

larger information rate than the information rate achievable with independent and
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uniformly distributed (i.u.d.) input sequences, also called the symmetric information

rate (SIR) of the channel. Furthermore, it was recently shown in [35] that a sequence

of Markov sources asymptotically achieves the capacity of FSCs as the Markov order

approaches infinity.

Regarding capacity-achieving codes for channels with memory, methods of con-

structing codes which induce Markov distribution on the transmitted sequence were

proposed in [36–39], and their performance on partial response channels was evalu-

ated using simulation. Pfister and Siegel [40] introduced a generalized erasure chan-

nel (GEC) as a simple model of a channel with memory and proved that LDPC-like

codes achieve its SIR. Several authors have investigated the performance of LDPC-

like codes with iterative decoding using numerical tools based on DE for some specific

channels with memory. In particular, LDPC-like codes were analyzed using numer-

ical tools based on DE for binary inter-symbol interference (ISI) channels in [41],

for the GE channel in [42], and for FSMCs in [43]. Finally, the results derived for

MBIOS channels in [20], were extended to establish an upper bound on the rate of

LDPC codes for GE channels [44] and FSMCs [45].

1.1.2 Capacity-achieving schemes for channels with feedback

As mentioned above, communication in the presence of feedback has been a long

studied problem which dates back to Shannon’s early work [8]. Horstein [46] proposed

a simple sequential transmission scheme which is capacity-achieving and provides

larger error exponents than traditional fixed-length block-coding. Similarly, Schalk-

wijk and Kailath [47] showed that capacity and a double exponentially decreasing

error probability can be achieved by a simple sequential transmission scheme for the

additive white Gaussian noise channel (AWGNC) with average power constraint. Re-

cently, Shayevitz and Feder [48–50] identified an underlying principle shared by the
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aforementioned Horstein and Schalkwijk-Kailath schemes and introduced a simple

encoding scheme, namely the posterior matching scheme (PMS) for general memo-

ryless channels. Furthermore, they showed that the PMS achieves the capacity of

general discrete memoryless channel (DMC)s. Subsequently, Coleman [51] revisited

the PMS and provided a proof of capacity achievability by reformulating the problem

in a stochastic control framework.

The starting point of our investigation of simple transmission scheme for channels

with memory is the derivation of a single-letter capacity expression for this channel.

One of the first capacity results for FSCs was by Viswanathan [52], who found the

capacity of a FSC with receiver channel state information (CSI) and delayed feedback

where there is no ISI. Later, Chen and Berger [53] found the capacity of a FSC with

ISI where current CSI is available at the transmitter and the receiver. Yang et.

al. [34] used a stochastic control method to find the capacity of the ISI channel.

Recently, Tatikonda and Mitter [54] provided a general stochastic control framework

for evaluating the capacity of the FSC with feedback. In that paper, the capacity

was characterized as the solution of a dynamic programming average cost optimality

equation (ACOE). Como et. al. [55] used an approach similar to that in [54] to find

the capacity of the FSC when current CSI is available at the transmitter and the

receiver. An upper bound on the capacity of the FSC without ISI and CSI was found

using dynamic programming by Huang et. al. [56].

1.2 Thesis contributions and outline

The general philosophy of this thesis and its main contribution on the conceptual

level, is that a number of problems relating to information theory can be solved

effectively if one takes the viewpoint of stochastic control. We identify and solve two

such problems.
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The first problem is that of evaluating the capacity of a FSC. We show that this

off-line optimization problem can be formulated as a centralized sequential stochastic

control problem and solved using Markov decision theory. This approach is general

enough and we anticipate that it can be applied to other information theoretic prob-

lems involving the evaluation of the channel capacity (or the channel capacity region

for multi-user scenaria).

The second problem involves the design of on-line transmission schemes for FSCs.

When feedback is not present, a simple modification of the corresponding transmis-

sion schemes utilized for memoryless channels seems to be sufficient for achieving ca-

pacity. The case of channels with feedback is more interesting. In this case one may

attempt to formulate the problem of finding the optimal (in the sense of achieving

capacity) transmission scheme as a stochastic control problem involving the trans-

mitter and the receiver. Such an approach may lead to a implicit characterization of

the optimal transmission scheme (through an optimality equation). However we are

following a different approach: we propose a transmission scheme (which generalizes

previously proposed schemes for memoryless channels) and show that it achieves ca-

pacity. This is done by evaluating the asymptotic properties of this scheme through

the study of an appropriate Markov chain. As in the case of the first problem men-

tioned above, the approach is quite general and it is anticipated that it can be applied

to a larger class of problems.

In the following we detail the individual contributions on a per chapter basis.

In Chapter 2, capacity-achieving codes are constructed for FSCs (with or without

ISI) with ML decoding when there is no feedback. The codes are derived from the

corresponding capacity-achieving codes for MBIOS channels through simple modi-

fications. In particular, it is shown that several LDPC-like coset codes which are

capacity-achieving on MBIOS channels achieve the SIR of FSCs. Next, a family
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of quantized coset codes is constructed by using block-wise Markov quantization of

LDPC-like codes. This technique generalizes the quantization technique presented

in [57] for memoryless channels and results in a simple encoding and iterative de-

coding algorithm. The constructed quantized codes induce a k-th order Markov

distribution on the channel input sequence and are shown to achieve the correspond-

ing information rate. The basic analytical tool used to prove these results is an

upper bound on the ensemble average of the corresponding modified LDPC-like en-

sembles. This bound is a non-trivial generalization of the “union plus Shulman and

Feder” bound [19, 57, 58] which relates the average code error probability with the

asymptotic growth rate of the average code weight enumerator, the random coding

exponent for channels with memory and an appropriately defined Battacharrya-like

parameter. The results of this chapter have been published in [59,60].

In case when there is feedback, we generalize the PMS for FSCs where the channel

state is affected both by nature and by the input sequence (thus introducing ISI), the

CSI and output are available at the receiver, and the CSI and output are available at

the transmitter with some finite delay through noiseless feedback. In Chapter 3, we

derive a single-letter capacity expression for FSCs with ISI as the starting point of our

investigation of simple transmission schemes. We point out that although the channel

considered in this thesis is indeed a special case of the one considered in [54], our

approach in deriving a single-letter capacity expression provides more intuition, and

the resulting capacity expression is significantly simpler. We also consider a special no

ISI case and obtain the result presented in [52] using considerably simpler approach.

The results of this chapter have been published in [61]. Based on this simplified

capacity, we propose generalized PMS for FSCs. In Chapter 4, we consider the case

when there is no ISI. The PMS is a rather straightforward generalization of PMS for

DMCs. We show that the proposed PMS achieves the capacity of FSCs with feedback
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and no ISI. In Chapter 5, we turn our attention to FSCs with feedback and ISI.

Because of the ISI, the resulting PMS scheme becomes considerably different from its

DMC counterpart, and construction of this scheme requires careful consideration of

necessary conditions of capacity achievability. We also show that the proposed PMS

achieves the capacity of FSCs with feedback and ISI. In proving capacity achievability

in Chapters 4 and 5, we generalize the tools provided in [50]. Analysis consists of

two parts. First, we prove zero-rate achievability, and based on this we show positive

rate achievability up to capacity. Important steps in the first part are identifying

appropriate Lyapunov functions and contraction mappings. The strong law of large

numbers (SLLN) of Markov chains plays an important role in bridging the first and

the second part. The results of Chapters 4 and 5 are prepared for publication in [62].

The rest of the thesis is organized as follows. In Chapter 2, quantized LDPC-

like codes are constructed and it is shown that they are capacity-achieving for FSCs

without feedback. A single-letter capacity expression for FSCs with feedback is

derived in Chapter 3. The PMS for FSCs with feedback is defined, and its capacity

achievability is proven in Chapter 4 for no ISI case and Chapter 5 for ISI case.

The conclusions of this thesis including future research directions are presented in

Chapter 6.
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CHAPTER 2

Capacity achieving codes for finite-state channels

without feedback

2.1 Channel model and preliminaries

Let {Sn}∞n=1 with sn ∈ S = {1, 2, ..., K} be a sequence representing the channel

states at time n. It is assumed that the state space S corresponds to K different

MBIOS channels. Let {Xn}∞n=1 be the random process representing the channel input

sequence, where xn ∈ X = {0, 1}. Let {Yn}∞n=1 be the random process representing

the channel output sequence, where yn ∈ Y and Y is assumed to be a discrete subset

of the real line (a continuous subset can also be assumed throughout the chapter by

changing summations over Y to integrations) symmetric around zero. Since for each

state the channels are symmetric, it is true that Q(yn|xn, sn) = Q(−yn|xn ⊕ 1, sn),

where ⊕ denotes modulo-2 addition. Let P (xN ,yN) be the joint pmf of XN and YN ,

where xN denotes the length-N vector (x1, . . . , xN). Then,

P (xN , sN ,yN) = Q(yN |xN , sN)P (sN |xN)P (xN) (2.1a)

= P (xN)P (s1)
N∏

n=1

Q(yn|xn, sn)
N−1∏
n=1

P (sn+1|sn, xn). (2.1b)
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Implicit in (2.1), is the fact that the considered channel states are affected by both

nature and ISI. In this chapter, we also consider non-inverting channels, that is,

channels with the property

∀s ∈ S,
∑
y>0

Q(y|1, s) >
∑
y<0

Q(y|1, s). (2.2)

For any sequence of real-valued random variables (Z1, Z2, Z3, ...), define the limit

inferior in probability p− lim infN→∞ ZN as

p− lim inf
N→∞

ZN , sup{α| lim
N→∞

Pr[ZN < α] = 0}. (2.3)

Then, the capacity of the aforementioned FSC when no channel state information

is available at the transmitter and the receiver is defined as [63, sec. 3.2]

C , sup
X

I(X;Y), (2.4)

where

I(X;Y) = p− lim inf
N→∞

1

N
log2

Q(yN |xN)

P (yN)
. (2.5)

Since the focus of this thesis is not in finding this maximizing input distribution,

in the following we will be interested in the maximum achievable rate for a certain

sequence of input pmfs P , {P (xN)}N , defined as

CP , I(X;Y), (2.6)

where I(X;Y) is computed under {P (xN)}N using (2.1). The maximum achievable

rate relative to independent and uniformly distributed (i.u.d.) inputs is also known
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as SIR (for binary input) and will be denoted as

SIR , CIUD. (2.7)

The achievability of CP can be shown by the following coding theorem which is a

modification of channel coding theorem using information spectrum methods [63,

Th. 3.2.1] according to the idea in [58].

Proposition 2.1. Consider an arbitrary discrete channel. Let Q(yN |xN) be the

conditional pmf for sequences of length N ≥ 1 on this channel. Let P (xN) be an

arbitrary input pmf. Consider an ensemble of codes of size M , length N , and rate

R, whose codewords cm, 1 ≤ m ≤ M satisfy the following properties

Pr[ci = xN ] = P (xN) ∀i ∈ {1, . . . ,M}, (2.8)

Pr[ci = xN |cj = x′N ] ≤ αP (xN)

∀i, j ∈ {1, . . . ,M} with i ̸= j and d(ci, cj) ∈ U c, (2.9)

where U ⊆ {1, 2, ..., N}. Note that α = 1 for an ensemble of codes whose codewords

are selected independently with pmf P (xN). Suppose that an arbitrary message m,

1 ≤ m ≤ M enters the encoder and that ML decoding is employed. Then for any

input pmf P = P (xN) and for any ϵ > 0, the average probability of decoding error

over this ensemble of codes, is bounded as

P e|m ≤ P
U

e|m + Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α
N

−ϵ), (2.10a)

where

P
U

e|m =
∑
C

Pr[C]PU
e|m, (2.10b)
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PU
e|m denote the probability that there exists some codeword cm′ such that Q(y|cm′) ≥

Q(y|cm) and d(cm, cm′) ∈ U,

TN =

{
(xN ,yN) ∈ XN × YN | 1

N
log2

Q(yN |xN)

P (yN)
> CP − ϵ

}
. (2.10c)

Proof. See 2.4.

Note that the presence of the factor α in (2.9) allows one to deal with structured

ensembles for which strict independence of the codeword selection cannot be guar-

anteed, as long as one shows that the rate loss due to α as manifested in (2.10a)

approaches zero asymptotically for long codes. In the following section we give spe-

cific expressions for α for several structured ensembles of interest.

We now summarize the bounding techniques developed in the literature for show-

ing that certain turbo-like ensembles are capacity achieving for MBIOS channels. As

it will become evident in the following sections, the bounds derived for the FSCs

are similar in structure to their MBIOS counterparts. An upper-bound on the error

probability of linear codes transmitted over MBIOS channels was derived in [19].

The bound involves two terms; the first term is based on the Shulman and Feder

bound [58] for MBIOS channels and the second term is based on a union bound which

involves the Battacharrya parameter for MBIOS channels. For a given ensemble C

of codes with length N , we denote the average weight enumerator of the ensemble

by by Al, l = 0, 1, . . . , N . The error probability bound is presented in the following

fact.

Fact 2.2. Consider an ensemble C of linear codes with average weight enumerator

Al, where each code is comprised of M codewords of length N . Let Q(y|x) be an

MBIOS channel, and let

D0 ,
∑
y

√
Q(y|0)Q(y|1) (2.11)
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be the Battacharrya channel parameter. Denote the ensemble averaged ML decoding

error probability by Pe. Let U ⊆ {1, 2, ..., N}. Then

P e ≤
∑
l∈U

AlD
l
0 + 2−NEr(R+

log2 α
N

), (2.12)

where

α , max
l∈Uc

Al

M − 1

2N(
N
l

) , (2.13)

and whereEr(·) is the random coding error exponent

Er(R) , max
P

max
0≤s≤1

{−sR + E0(s, P )} , (2.14a)

E0(s, P ) , − log2

∑
y

{∑
x

P (x)Q(y|x)
1

1+s

}1+s
 . (2.14b)

As discussed in [19], the second part of (2.12) approaches 2−NEr(R) provided that

the asymptotic growth rate of Al approaches the asymptotic growth rate, H(l/N) +

R−1, of the random ensemble for l ∈ U c. Therefore, in order to prove that a specific

sequence of ensembles approaches capacity, we have to choose U such that the above

statement is true and the first part of (2.12) approaches zero. Consider the following

three ensembles with increasing degree of sophistication.

Ensemble A is the regular Gallager (N, dv, dc) LDPC ensemble [64] with column

and row degrees dv and dc, respectively (we also assume an even dc).

Ensemble B is the punctured LDPC ensemble introduced in [22] resulting from

puncturing a sufficiently low-rate (N, dv, dc) Gallager ensemble to achieve the speci-

fied rate.

Ensemble C is the LDPC-GM ensemble introduced in [23] consisting of a a serial

concatenation of an outer (N, dv, dc) Gallager LDPC code and an inner rate-one

regular LDGM code with row and column degrees equal to dc.
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For all these three ensembles, we can find an appropriate set U and prove capacity

achievability of MBIOS channels [22,23] as can be seen in the following fact.

Fact 2.3. For any ϵ > 0, the sequence of the aforementioned ensembles A, B, and

C, have vanishing average block error probability under ML decoding on MBIOS

channels, and limiting (with respect to N) rate (1 − ϵ)C, where C is the channel

capacity, when the following conditions are satisfied.

Ensemble A: dc ≥ dc(ϵ).

Ensemble B: dc > dv ≥ 5, dc even, and R0 ≤ R0(ϵ), where R0 is the rate of the

original code before puncturing.

Ensemble C: dc ≥ dc,min, dc even, and dv ≥ 4, where dc,min is independent of ϵ and

bounded.

Proof. The dependence of the upper bound in Fact 2.2 on the code ensemble is only

through Al and in particular only through the corresponding asymptotic growth rate.

In [22, 23] upper bounds on these asymptotic growth rates have been developed for

the ensembles A, B, and C. Combining Fact 2.2 with these upper bounds, and with

an appropriate choice of U as in [19, 22, 23], proves the fact under the conditions

mentioned above.

We present the choice of U , for ensemble A as an example. The choices for

ensembles B and C are similar to that of the ensemble A. It was shown in [22] that

Al of the ensemble A satisfies

w0(a) ≤ (1−R) log2[1 + (1− 2a)dc ]

+ [H(a)− (1−R)], 0 ≤ a ≤ 1, (2.15)

where w0(a) , limN→∞
1
N
log2 A⌈Na⌉, and R = 1 − dv/dc. Furthermore, there exists
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a δ0 ∈ (0, 1/2) such that ∑
l∈(0,Nδ0)

Al = O(N−dv+2). (2.16)

Finally, when dc is even, Al = AN−l, for all l ∈ {0, 1, 2, ..., N}.

Let

U ,
{
l :

l

N
∈ (0, δ0) ∪ (1− δ0, 1]

}
. (2.17)

With this choice of U , the union bound term becomes

∑
l∈U

AlD
l
0 =

∑
l∈U\{N}

AlD
l
0 + AND

N
0 (2.18a)

≤
∑

l∈U\{N}

Al + 1×DN
0 = O(N−dv+2), (2.18b)

and the rate loss in the error exponent is bounded above by log2[1 + (1 − 2δ0)
dc ].

As a result, for dv ≥ 3 and log2[1 + (1− 2δ0)
dc ] ≤ ϵC, vanishing error probability is

ensured for all rates up to (1− ϵ)C. The last inequality is guaranteed by selecting a

large enough dc ≥ dc(ϵ)
def
= log2(2

ϵC − 1)/ log2(1− 2δ0).

2.2 SIR-achieving codes for FSCs

In order to analyze the performance of code ensembles on FSCs, we first derive an

upper-bound on the error probability of linear coset codes transmitted over FSCs,

which is similar to the bound in Fact 2.2. Since we are interested in turbo-like

ensembles that achieve the SIR of FSCs, and since linear codes do not necessarily

induce an i.u.d. input, we need to enlarge linear code ensembles in a way similar

to [41]. This motivates the following definition.

Definition 2.4. Consider a code ensemble C. The coset ensemble C ′ generated by C

is defined as the ensemble generated from C by including, for each code C ∈ C, codes
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of the form C ′ = {c⊕ v|c ∈ C} for all possible vectors v. The measure on C ′ is the

product of the uniform measure over all vectors v and the measure of the original

ensemble C.

In the following lemma, we establish an upper-bound for the pairwise error prob-

ability between two sequences. This will be needed for the union-bound term of

the aforementioned bounding technique. We denote by Pe|xN ,x′N the pairwise error

probability of decoding the sequence x′N with ML decoding on a FSC conditioned

on xN being transmitted.

Lemma 2.5. The pairwise error probability Pe|xN ,x′N is upper-bounded as

Pe|xN ,x′N ≤ Dd(xN ,x′N ), (2.19)

where d(xN ,x′N) denotes the Hamming distance between xN and x′N , and

D , min
s0

max
s

[
Q+

s

√
Q−

s0

Q+
s0

+Q−
s

√
Q+

s0

Q−
s0

]
, (2.20)

where

Q+
s =

1

2
Q(0|1, s) +

∑
y>0

Q(y|1, s), (2.21a)

Q−
s =

1

2
Q(0|1, s) +

∑
y<0

Q(y|1, s). (2.21b)

Furthermore, D < 1.

Proof. See 2.5.

In order to utilize the techniques in [58] and [19] for bounding the error proba-

bility, a special kind of linear code ensemble is considered. Let ΠN denote the set of
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all permutations of N numbers. We define a permutation-invariant code ensemble

as follows.

Definition 2.6. Let C be an ensemble of length-N block codes. We say that C is

a permutation-invariant ensemble if for all permutations π ∈ ΠN and for all codes

C ∈ C, it is true that π(C) ∈ C and the codes π(C) are selected with the same

probability. Here π(C) denotes the codebook constructed by permuting the order of

the symbols in all the codewords of C according to π.

We are now ready to establish an upper bound on the average error probability

of permutation-invariant coset ensembles on FSCs.

Proposition 2.7. Consider a permutation-invariant ensemble C of binary linear

codes with M codewords of length N , rate R, and average weight enumerator Al.

Consider the coset ensemble C ′ generated by C. Let U ⊆ {1, 2, ..., N}. Then, for

any ϵ > 0, the average (over C ′) error probability with ML decoding given the mth

message is transmitted is upper-bounded as

P e|m ≤
∑
l∈U

AlD
l + Pr[XNYN /∈ TN ] + 2−N(CIUD−R− log2 α

N
−ϵ), (2.22)

where D is as defined in Lemma 2.5 and TN is as defined in Theorem 2.1,

α , max
l∈Uc

Al

M − 1

2N(
N
l

) , (2.23)

Proof. The proof of this theorem is omitted. This is a simplified version of the proof

of Theorem 2.13 that follows.

Since the aforementioned ensembles A, B and C are permutation-invariant, The-

orem 2.7 can be applied for those ensembles to prove the SIR-achievability which is

stated as the following corollary.
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Corollary 2.8. For any ϵ > 0, there exists a sequence of the coset ensembles gener-

ated by the ensembles A, B, and C, have limiting (with respect to N) rate (1−ϵ)CIUD

and vanishing average block error probability under ML decoding on FSCs when the

conditions stated in Fact 2.3 are satisfied.

Proof. From the definition of TN , we have Pr[XNYN /∈ TN ] → 0 as N → ∞. Since

the bound in Fact 2.2 and the first and the third term of the bound in Theorem 2.7

have a similar form, the same technique used in Fact 2.3 can also be used to prove

SIR-achievability for the sequence of ensembles A, B, and C satisfying Theorem 2.7.

Some observations regarding the complexity of the aforementioned SIR-achieving

ensembles are in order. Regarding ensemble A, the quantity dc(ϵ) is diverging to ∞

as log(1/ϵ) when ϵ approaches zero. Therefore, the density of the parity check matrix,

and thus the number of edges in the graph per information bit approaches ∞, which

implies an infinite complexity per information bit per iteration even when iterative

decoding is applied. A similar conclusion can be reached for ensemble B, as detailed

in [22]. The advantage of B over A is the universality of the former, i.e., a single

mother code of low rate can be used to approach a wide range of channel SIRs for

different FSCs. Finally, ensemble C achieves the SIR with bounded number of edges

per information bit in the graph representing the code and thus it can be decoded

with finite complexity per information bit per iteration when iterative decoding is

performed. It should be noted however, that SIR-achievability is only guaranteed for

ML decoding of these ensembles.

We also note that if we concentrate only on ensemble C, neither the symmetric

channel assumption nor the non-inverting channel assumption is required for the

proof of SIR achievability. This is so because these two assumptions only enter our

arguments through Lemma 2.5. However, the first term of (2.22) can always be
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substituted by
∑

l∈U Āl, which makes the overall upper bound independent of the

Battacharrya parameter. Moreover, for ensemble C, for all l ∈ U the asymptotic

growth rate of the number of codewords with weight l is negative [23], and thus the

above sum is converging to zero.

We finally point out that the three examples mentioned above are only examples

of possible SIR-achieving ensembles. Other ensembles may also possess this property

and may also possess additional properties that make themmore desirable in practical

applications.

2.3 Capacity-achieving codes on FSCs

In section 2.2, we proposed several LDPC-like coset code ensembles that achieve

the SIR of FSCs. For general FSCs, however, the capacity could be greater than

the SIR. Motivated by the need to achieve rates above the SIR, in this section we

propose a simple quantization technique that induces a Markov distribution on the

transmitted sequence and analyze its performance.

2.3.1 Construction of quantized coset code ensembles

Bennatan and Burshtein [57] presented a method of constructing codes for trans-

mission over arbitrary memoryless channels by using a linear code followed by a

simple memoryless quantization technique. Since memoryless quantization can only

induce an i.i.d. (not necessarily uniform) on the input sequence, and since the capac-

ity achieving input might not be i.i.d. for FSCs, we present a modified quantization

technique that can induce a k-th order (stationary) Markov distribution on the input

sequence. The block diagram of the proposed scheme is shown in Fig. 2.1. Other

methods of constructing codes which induce Markov distribution on the transmitted
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v
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c c'

Figure 2.1: Capacity achieving transmission scheme with coset codes and Markov
quantization.

sequence can be found in [37,38].

Definition 2.9. Consider a sequence xNT and some arbitrary function f : {0, 1}T ×

{0, 1}k → {0, 1}. An order-k Markov quantizer (denoted by MQ-k) is a mapping

δ : {0, 1}NT → {0, 1}N with δ(xNT ) = wN , with the following structure1

wn = f(xnT
(n−1)T+1,w

n−1
n−k), n = 1, 2, . . . , N. (2.24)

Consider now a pmf of a k-th order stationary Markov process P (wN) =∏N
n=1 P (wn|wn−1

n−k) for a binary sequence of length N . An order-k Markov quan-

tizer with respect to P (denoted by MQ-k-P ) is an MQ-k satisfying

|{xnT
(n−1)T+1|f(xnT

(n−1)T+1,w
n−1
n−k) = 0}|

2T
= P

(
0 | wn−1

n−k

)
,

∀wn−1
n−k and n = 1, 2, . . . , N (2.25)

More descriptively, an MQ−k partitions a length-NT binary sequence into N

blocks of length T each, and then quantizes each block into a bit using a mapping

that depends also on the k previously produced bits, thus producing a length-N

binary sequence. This is shown in Fig. 2.2. Furthermore, if the input sequence to

1For notational simplicity we do not specify precisely the quantizer for the first k symbols. These
edge effects will be negligible for large N . In the following we use xj

i to denote the subsequence
(xi, xi+1 . . . , xj).
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Figure 2.2: An example of Markov quantization (k = 1).
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an MQ-k-P is i.u.d., then the quantizer performs quantization in a way that induces

the pmf P on the transmitted sequence. Note that MQ-k-P does not exist for some

pmfs, since there is a granularity of 2−T in the quantization process.

In the following lemma we establish that if a codeword drawn from a coset ensem-

ble is the input to an MQ-k-P , then the induced pmf on the transmitted sequence

w is indeed P .

Lemma 2.10. Consider a length-NT coset ensemble C ′. A code C ′ is picked from

the ensemble and a codeword c′ ∈ C ′ is picked uniformly from this code. Let P be a

pmf of an arbitrary kth order Markov process for a binary sequence of length N for

which an MQ-k-P exists. The codeword c′ is quantized into wN = δ(c′) where δ(·)

is an MQ-k-P . Let P̂ be the induced pmf on the transmitted sequence wN . Then,

P = P̂ .

Proof. Since C ′ is generated by adding a uniformly selected random vector to all

codewords of all codes of C (the original ensemble from which C ′ is generated), we

have

Pr[c′ = aNT ] = 2−NT for all aNT (2.26a)

Pr[c′iT(i−1)T+1 = aT |wi−1
i−j = bT ] = 2−T

for all aT ,bT , and 1 ≤ j ≤ i ≤ N. (2.26b)
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Therefore,

P̂ (wN) =
N∏
i=1

P̂ (wi|wi−1) (2.27a)

=
N∏
i=1

∑
aT

Pr[wi, c
′iT
(i−1)T+1 = aT |wi−1] (2.27b)

=
N∏
i=1

∑
aT

Pr[wi|c′iT(i−1)T+1 = aT ,wi−1]Pr[c′iT(i−1)T+1 = aT |wi−1] (2.27c)

=
N∏
i=1

∑
aT

Pr[wi|c′iT(i−1)T+1 = aT ,wi−1]2−T (2.27d)

=
N∏
i=1

∑
aT

Pr[wi|c′iT(i−1)T+1 = aT ,wi−1
i−k]2

−T (2.27e)

=
N∏
i=1

∑
aT

I
{
f(aT ,wi−1

i−k) = wi

}
2−T (2.27f)

=
N∏
i=1

P (wi|wi−1
i−k) (2.27g)

= P (wN), (2.27h)

where (2.27d) is due to (2.26b), (2.27e) and (2.27f) is due to the definition of a quan-

tizer (Definition 2.9), and (2.27g) is due to (2.25). Here I {·} denotes the indicator

function of its argument.

2.3.2 Analysis of Markov-quantized coset code ensembles

In this section, we derive an upper-bound on the error probability of quantized

linear coset codes over FSCs. First, we establish an upper-bound on the pairwise

error probability between two sequences which is similar to Lemma 2.5.

Definition 2.11. An MQ-k is called “robust” if the all-zeros block of length T , 0T ,

and the all-ones block of length T , 1T , are quantized to different values regardless of
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the quantizer memory, i.e.,

∀wk ∈ {0, 1}k : f(0T ,wk) ̸= f(1T ,wk). (2.28)

This property will be used below to establish a pairwise error probability upper

bound between two codewords having Hamming distance NT before quantization.

Lemma 2.12. Consider a code C. Let C ′ be an ensemble which consists of codes

of the form C ′ = {c ⊕ v|c ∈ C} for all uniformly selected vectors v ∈ {0, 1}NT .

A code C ′ ∈ C ′ is quantized using a “robust” MQ-k-P before transmission. Then,

the ensemble-averaged pairwise ML decoding error probability P e|m,m′ of decoding

message m′ when m is transmitted on FSC when d(cm, cm′) = NT is upper-bounded

as

P e|m,m′ ≤ DN
1 , (2.29)

with

D1 ,
2T − 1 +D

2T
, (2.30)

and D as defined in Lemma 2.5.

Furthermore, D1 < 1.

Proof. See 2.6.

It is noted that the above Lemma is more specialized than Lemma 2.5 in that

it only establishes a bound for a pair of maximally separated codewords. As shown

below, this is sufficient for our purpose of establishing capacity-achievability for the

quantized ensembles A, B, C defined earlier. However, it might not be sufficient

to prove capacity achievability for other quantized ensembles. As it turns out, this

bound can be generalized to non-maximally separated codewords. However, due to

space limitations we do not present this more general result.
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We now state an error probability upper bound for Markov-quantized ensembles.

Proposition 2.13. Consider a permutation-invariant ensemble C of binary linear

codes with M codewords of length NT , rate R/T , and average weight enumerator

Al. Let C ′ be the coset ensemble generated by C. A code from C ′ is quantized using a

“robust” MQ-k-P , and transmitted over an FSC. Let U ⊆ {1, 2, ..., NT} and NT ∈

U . Then, for any ϵ > 0, the average error probability with ML decoding given the

mthe message is transmitted, is upper-bounded as

P e|m ≤
∑

l∈U\{NT}

Al + ANTD
N
1 + Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α

N
−ϵ), (2.31)

where

α = max
l∈Uc

Al

M − 1

2NT(
NT
l

) (2.32)

Proof. See 2.7.

The following corollary proves that the coset ensembles generated by the ensem-

bles A, B and C mentioned in Section 2.2 in conjunction with an MQ-k-P achieves

CP by using Theorem 2.13.

Corollary 2.14. Consider a sequence of coset ensembles generated by the ensembles

A, B, and C mentioned in Section 2.2 with length NT. For a given pmf P of a

stationary ergodic Markov process, a “robust” MQ-k-P is used to quantize these

ensembles before transmission. Then, for any ϵ > 0, there exists a sequence of

quantized coset ensembles generated by A, B, and C, have limiting (with respect to

N) rate (1− ϵ)CP and vanishing average block error probability under ML decoding

on FSCs when conditions stated in Fact 2.3 are satisfied.

Proof. The form of the bound in Theorem 2.13 is slightly different from that of the

bound in Theorem 2.7. The union bound part with Battacharrya-like parameter in
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Theorem 2.13 is established only for l = NT instead of being established for the

whole set U as in Theorem 2.7. However, this is not problematic, since
∑

l∈U\{NT}Al

approaches 0 as N → ∞ for all three ensembles. Hence we can proceed again as in

the proof of Fact 2.3.

Since a sequence of stationary ergodic Markov sources asymptotically achieves the

capacity of FSCs as the order k goes to infinity as in [35], a sequence of quantized

coset code ensembles asymptotically achieves the capacity of FSCs for a large enough

T . We note however, that [35] does not provide any useful bounds on how fast (with

respect to k) a k-th order Markov process approaches the capacity of a FSC, and

thus, we cannot make more accurate predictions about the requited order of the

MQ-k-P .

As mentioned in the previous Section, if we concentrate on ensemble C, neither

the symmetric assumption nor the non-inverting assumption about the channel is

required to prove capacity achievability, since these two assumptions only enter our

arguments through Lemma 2.12 which is not needed when proving capacity achiev-

ability for ensemble C. Thus, for a large enough k and T , the quantized coset ensemble

generated by ensemble C can achieve the capacity of any binary-input FSC.

2.4 Proof of Theorem 2.1

For a specific code, let PUc

e|m denote the probability that there exists some code-

word cm′ such that Q(y|cm′) ≥ Q(y|cm) and d(cm, cm′) ∈ U c. Let P
Uc

e|m denote the

corresponding ensemble averaged probabilities. Then,

P e|m = P
U

e|m + P
Uc

e|m. (2.33)

Consider now a new ensemble of codes generated by removing all codewords which
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satisfy d(cm, cm′) ∈ U . Let P
′
e|m be the average error probability of the new ensemble

when the mth codeword of the original ensemble is transmitted. Then, P
Uc

e|m ≤ P
′
e|m.

From now on, we will upper-bound P
′
e|m. Consider a decoder which declares that

the ith message is transmitted if there exists a unique ci satisfying

(ci,y
N) ∈ TN . (2.34)

Otherwise, it declares an error. Then, the probability of error of the ML decoder is

upper-bounded by the probability of error of this decoder. Let

Ei =
{
(ci,y

N) ∈ TN

}
. (2.35)

Then,

P ′
e|m ≤ Pr

[
EC

m ∪ (∪m′ ̸=mEm′)
]

(2.36a)

≤ Pr
[
EC

m

]
+

∑
m′ ̸=m:d(cm,cm′ )∈Uc

Pr [Em′ ] . (2.36b)

where yN is interpreted as an output corresponding to cm. We have

Pr[EC
m] =

∑
yN

Pr[(cm,y
N) /∈ TN ], (2.37)

and for m′ ̸= m,

Pr[Em′ ] =
∑
yN

Pr[(cm′ ,yN) ∈ TN ]. (2.38)

Note that

P
′
e|m ≤

∑
C

Pr[C]Pr
[
EC

m

]
+
∑
C

Pr[C]
∑

m′ ̸=m:d(cm,cm′ )∈Uc

Pr [Em′ ] . (2.39)
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We have

∑
C

Pr[C]Pr
[
EC

m

]
=

∑
yN

∑
xN

Pr[cm = xN ]Pr[(xN ,yN) /∈ TN ] (2.40a)

=
∑
yN

∑
xN

P (xN)Pr[(xN ,yN) /∈ TN ] (2.40b)

= Pr[XNYN /∈ TN ], (2.40c)

and

∑
C

Pr[C]
∑

m′ ̸=m:d(cm,cm′ )∈Uc

Pr [Em′ ] (2.41a)

=
∑
m′ ̸=m

∑
xN ,x′N :d(xN ,x′N )∈Uc

Pr[cm = xN ]Pr[cm′ = x′N |cm = xN ] (2.41b)

×
∑
yN

Pr[(x′N ,yN) ∈ TN)]

≤
∑
m′ ̸=m

∑
yN

∑
xN ,x′N :d(xN ,x′N )∈Uc

P (xN)αP (x′N)Pr[(x′N ,yN) ∈ TN)] (2.41c)

≤ α
∑
m′ ̸=m

∑
yN

∑
xN ,x′N

P (xN)P (x′N)Pr[(x′N ,yN) ∈ TN)] (2.41d)

≤ α
∑
m′ ̸=m

∑
xN ,(x′N ,yN )∈TN

P (xN)P (x′N)Q(yN |xN) (2.41e)

= α
∑
m′ ̸=m

∑
xN ,(x′N ,yN )∈TN

P (xN ,yN)P (x′N) (2.41f)

= α
∑
m′ ̸=m

∑
(x′N ,yN )∈TN

P (x′N)P (yN), (2.41g)

Note that we have, for (x′N ,yN) ∈ TN ,

P (yN) ≤ Q(yN |x′N)2−N(CP−ϵ). (2.42)
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Hence,

∑
C

Pr[C]
∑

m′ ̸=m:d(cm,cm′ )∈Uc

Pr [Em′ ]

≤ α
∑
m′ ̸=m

∑
(x′N ,yN )∈TN

P (x′N)Q(yN |x′N)2−N(CP−ϵ) (2.43a)

≤ α
∑
m′ ̸=m

2−N(CP−ϵ). (2.43b)

Consequently,

P
′
e|m ≤ Pr[XNYN /∈ TN ] + (M − 1)α2−N(CP−ϵ) (2.44a)

≤ Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α
N

−ϵ). (2.44b)

Finally,

P e|m ≤ P
U

e|m + Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α
N

−ϵ). (2.45)

2.5 Proof of Lemma 2.5

Consider a decoder with the following properties. First, the decoder assumes that

the FSC stays at the state s0 for the whole transmission of x. Second, it quantizes

every received value y to z in the following way

z =


1, when y > 0

−1, when y < 0

±1 w.p. 1/2, when y = 0.

(2.46)

Third, it decides that xN is transmitted instead of x′N if and only if P (zN |xN , sN0 ) ≥

P (zN |x′N , sN0 ), where sN0 = (s0, s0, . . . , s0). Then, the pairwise error probability

between xN and x′N with ML decoding is no greater than that with this decoder.
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Therefore,

Pe|xN ,x′N ≤
∑
zN

P (zN |xN)I
{
P (zN |xN , sN0 ) < P (zN |x′N , sN0 )

}
(2.47a)

≤
∑
zN

P (zN |xN)

√
P (zN |x′N , sN0 )

P (zN |xN , sN0 )
(2.47b)

=
∑
zN

∑
sN

P (sN |xN)
N∏
i=1

P (zi|xi, si)

√
P (zi|x′

i, s0)

P (zi|xi, s0)
(2.47c)

=
∑
sN

P (sN |xN)
N∏
i=1

{∑
z

P (z|xi, si)

√
P (z|x′

i, s0)

P (z|xi, s0)

}
(2.47d)

=
∑
sN

P (sN |xN)
∏

i:xi ̸=x′
i

{∑
z

P (z|xi, si)

√
P (z|x′

i, s0)

P (z|xi, s0)

}
(2.47e)

=
∑
sN

P (sN |xN)×
∏

i:xi=1

{∑
z

P (z|1, si)

√
P (z|0, s0)
P (z|1, s0)

}
(2.47f)

×
∏

i:xi=0

{∑
z

P (z|0, si)

√
P (z|1, s0)
P (z|0, s0)

}
(a)
=

∑
sN

P (sN |xN)
∏

i:xi ̸=x′
i

{∑
z

P (z|1, si)

√
P (z|0, s0)
P (z|1, s0)

}
(2.47g)

≤
∑
sN

P (sN |xN)
∏

i:xi ̸=x′
i

max
s

{∑
z

P (z|1, s)

√
P (z|0, s0)
P (z|1, s0)

}
(2.47h)

=

[
max

s

{∑
z

P (z|1, s)

√
P (z|0, s0)
P (z|1, s0)

}]d(xN ,x′N )

, (2.47i)

where I {·} denotes the indicator function of its argument, and the equality in (a) is

due to the fact that the channel at each state is symmetric. Since the above is true
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for any choice of the hypothesized state s0, we have

Pe|xN ,x′N

≤

[
min
s0

max
s

{∑
z

P (z|1, s)

√
P (z|0, s0)
P (z|1, s0)

}]d(xN ,x′N )

(2.48a)

= Dd(xN ,x′N ). (2.48b)

In order to show that D < 1 we argue as follows. Since the channel at each state

is non-inverting, we have √
Q+

s0

Q−
s0

> 1 >

√
Q−

s0

Q+
s0

. (2.49)

Hence, for any s0 we have

s∗ , argmax
s

[
Q+

s

√
Q−

s0

Q+
s0

+Q−
s

√
Q+

s0

Q−
s0

]
(2.50a)

= argmax
s

Q−
s , (2.50b)

which means that the maximizer of (2.50) is independent of s0. Thus choosing

s0 = s∗ we have

D ≤ Q+
s∗

√
Q−

s∗

Q+
s∗

+Q−
s∗

√
Q+

s∗

Q−
s∗

= 2
√
Q+

s∗Q
−
s∗ < 1. (2.51a)

2.6 Proof of Lemma 2.12

Consider a decoder with the following properties. First, the decoder assumes that

the FSC stays at the state s0 for the whole codeword transmission. Second, it quan-

tizes every received value y to z according to (2.46). Third, it decides that message

m is transmitted instead of m′ if and only if P (zN |δ(c′m), sN0 ) ≥ P (zN |δ(c′m′), sN0 ),
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where c′m, c
′
m′ ∈ C ′, δ(·) is the Markov quantizer mapping, and sN0 = (s0, s0, . . . , s0).

Then, the pairwise error probability between m and m′ with ML decoding is no

greater than that with this decoder. For a binary sequence xNT , let

δ(xNT ) ,
(
δ(xNT )1, δ(x

NT )2, ..., δ(x
NT )N

)
. (2.52)

Then,

Pe|m,m′ ≤
∑
zN

P (zN |δ(c′m))I
{
P (zN |δ(c′m), sN0 ) < P (zN |δ(c′m′), sN0 )

}
(2.53a)

≤
∑
zN

P (zN |δ(c′m))

√
P (zN |δ(c′m′), sN0 )

P (zN |δ(c′m), sN0 )
(2.53b)

=
∑
zN

∑
sN

P (sN |δ(c′m))
N∏
i=1

{
P (zi|δ(c′m)i, si)

√
P (zi|δ(c′m′)i, s0)

P (zi|δ(c′m)i, s0)

}
(2.53c)

≤
N∏
i=1

max
s

{∑
z

P (z|δ(c′m)i, s)

√
P (z|δ(c′m′)i, s0)

P (z|δ(c′m)i, s0)

}
. (2.53d)

We can now average over the ensemble C ′, which is equivalent to averaging over

all possible translation vectors, as follows
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P e|m,m′

≤ Ev

[
N∏
i=1

max
s

{∑
z

P (z|δ(cm ⊕ v)i, s)

√
P (z|δ(cm′ ⊕ v)i, s0)

P (z|δ(cm ⊕ v)i, s0)

}]
(2.54a)

=
∑
v

1

2NT
(2.54b)

×
N∏
i=1

max
s

{∑
z

P (z|δ(cm′ ⊕ cm ⊕ v)i, s)

√
P (z|δ(v)i, s0)

P (z|δ(cm′ ⊕ cm ⊕ v)i, s0)

}

≤
∑
v

1

2NT

N∏
i=1

max
s

{∑
z

P (z|δ(1NT ⊕ v)i, s)

√
P (z|δ(v)i, s0)

P (z|δ(1NT ⊕ v)i, s0)

}
(2.54c)

≤
∑
v

1

2NT
(2.54d)

×
N∏

i=1,δ(v)i ̸=δ(1NT⊕v)i

max
s

{∑
z

P (z|δ(1NT ⊕ v)i, s)

√
P (z|δ(v)i, s0)

P (z|δ(1NT ⊕ v)i, s0)

}

≤
∑
v

1

2NT

N∏
i=1,δ(v)i ̸=δ(1NT⊕v)i

max
s

{∑
z

P (z|0, s)

√
P (z|1, s0)
P (z|0, s0)

}
(2.54e)

where (2.54b) is due to a change of variables in the summation over v, (2.54c) is due

to the fact that the two codewords in consideration are distance NT apart, (2.54e)

is due to the state conditioned channel symmetry. Since the above is true for any

choice of the hypothesized state s0. we have

P e|m,m′ ≤
∑
v

1

2NT

N∏
i=1,δ(v)i ̸=δ(1NT⊕v)i

min
s0

max
s

{∑
z

P (z|0, s)

√
P (z|1, s0)
P (z|0, s0)

}
(2.55a)

≤
∑
v

1

2NT

N∏
i=1,δ(v)i ̸=δ(1NT⊕v)i

D (2.55b)
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≤
∑
v

1

2NT


N∏

i=1,δ(v)i ̸=δ(1NT⊕v)i
viT
(i−1)T+1

=0T

D




N∏
i=1,δ(v)i ̸=δ(1NT⊕v)i,

viT
(i−1)T+1

̸=0T

D

 . (2.55c)

Since D < 1 (due to Lemma 2.5), the last factor is upper bounded by one. Further-

more, since the quantizer is “robust”, for every i for which viT
(i−1)T+1 = 0T , it is also

true that δ(1NT ⊕ v)i ̸= δ(v)i. Thus we can write

P e|m,m′ ≤
∑
v

1

2NT

N∏
i=1

DI{viT
(i−1)T+1

=0T } (2.56a)

=
(
E{DI{viT

(i−1)T+1
=0T }}

)N

(2.56b)

=

(
2T − 1

2T
+

1

2T
D

)N

(2.56c)

= DN
1 , (2.56d)

where E{·} denotes expectation. Again, since D < 1, we deduce that D1 < 1.

2.7 Proof of Theorem 2.13

We will use the bound in Theorem 2.1 which is stated as follows.

P e|m ≤ P
U

e|m + Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α
N

−ϵ), (2.57)

First, we will bound P
U

e|m by using the union bound. Consider a code in C ′ which

results from a code C in C having weight distribution Al by adding a constant vector

to all codewords. Let Pe|m,m′ be the pairwise error probability between messages m
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and m′. Then,

PU
e|m ≤

∑
m′ ̸=m:d(c′m,c′

m′ )∈U

Pe|m,m′ (2.58a)

=
∑

m′ ̸=m:d(c′m,c′
m′ )∈U\{NT}

Pe|m,m′ +
∑

m′ ̸=m:d(c′m,c′
m′ )=NT

Pe|m,m′ (2.58b)

≤
∑

m′ ̸=m:d(c′m,c′
m′ )∈U\{NT}

1 +
∑

m′ ̸=m:d(c′m,c′
m′ )=NT

Pe|m,m′ (2.58c)

=
∑

l∈U\{NT}

Al + ANTPe|m,m′ . (2.58d)

Let P̃U
e|m,C be the average of PU

e|m over the coset ensemble generated by C. Then,

from Lemma 2.12,

P̃U
e|m,C ≤

∑
l∈U\{NT}

Al + ANTD
N
1 . (2.59)

Then, the average error probability (over the ensemble C ′) is

P
U

e|m =
∑
C∈C

Pr(C)P̃U
e|m,C (2.60a)

≤
∑

l∈U\{NT}

Al + ANTD
N
1 . (2.60b)

To apply Theorem 2.1, the code ensemble must satisfy (2.8) and (2.9). In [58], a

code ensemble which satisfy (2.8) and (2.9) is generated from a certain linear code

for MBIOS channel. In the following we point out how the derivation is different

from the one in [58]. In [58, Lemma 1 and Th. 1], starting from an original code

C, three ensembles are generated with increasing degree and randomness. The first

ensemble C1 is generated by including σ(C) in C1, for all σ ∈ SM , where σ(C) denotes

the code resulting by permuting the order of codewords of C according to σ. The

second ensemble C2 is generated by including π(C1) in C2, for all π ∈ SN , and for
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C0

π
C’’C C’

Al

v σ MQ-k-P

MQ-k-P
W’

W’’
_

Figure 2.3: Relation between different code ensembles used in the proof of Theo-
rem 2.13.

all C1 ∈ C1, where π(C1) denotes the code resulting by permuting the order of the

symbols of all codewords in C1 according to π. The third ensemble C3 is generated

by including codes of the form {c2 ⊕ v|c2 ∈ C2} in C3, for all v ∈ {0, 1}N , and for

all C2 ∈ C2. Although in [58], C3 is generated starting from a specific code C, it

is straightforward to see that the conclusions drawn in that paper still hold if C3 is

generated starting from an ensemble of codes, with the only difference being that the

average weight distribution over the original ensemble is used in place of the weight

distribution of the original code. Furthermore, it is true that the order of the three

operations which generate C1, C2, C3 is irrelevant. Therefore, if we apply σ to the

coset permutation-invariant ensemble C ′ to generate a new ensemble C ′′, then C ′′ also

satisfies

Pr[c′′i = xNT ] = 2−NT ∀i ∈ {1, . . . ,M} (2.61a)

Pr[c′′i = xNT |c′′j = x′NT ] ≤ αPr[c′′i = xNT ]

∀i, j ∈ {1, . . . ,M} with i ̸= j and d(c′′i , c
′′
j ) ∈ U c, (2.61b)

with α = maxl∈Uc
Al

M−1
2NT

(NT
l )

(recall that C ′ already includes all symbol-permuted and

vector-translated codes. In other words, C ′′ can be thought as generated from C0 by

applying symbol permutation, vector translation, codeword permutation as depicted

in Figure 2.3).
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Now consider quantization of the ensemble C ′′ that produces the Markov quan-

tized ensemble W ′′. We have,

Pr[δ(c′′i ) = w] =
∑

x:δ(x)=w

Pr[c′′i = x] (2.62a)

(a)
=

∑
x:δ(x)=w

2−NT (2.62b)

= P (w), (2.62c)

where the equality in (a) is due to (2.61a). Furthermore, for c′′i , c
′′
j such that

d(c′′i , c
′′
j ) ∈ U c,

Pr[δ(c′′i ) = w|δ(c′′j ) = w′]

=
Pr[δ(c′′i ) = w, δ(c′′j ) = w′]

Pr[δ(c′′j ) = w′]
(2.63a)

=

∑
x:δ(x)=w

∑
x′:δ(x′)=w′ Pr[c′′i = x, c′′j = x′]∑

x′:δ(x′)=w′ Pr[c′′j = x′]
(2.63b)

(a)

≤
∑

x:δ(x)=w

∑
x′:δ(x′)=w′ α2−NTPr[c′′j = x′]∑

x′:δ(x′)=w′ Pr[c′′j = x′]
(2.63c)

=
∑

x:δ(x)=w

α2−NT (2.63d)

= αP (w), (2.63e)

where the inequality in (a) is due to (2.61b). Note that the average error probability

of the quantized ensemble W ′′ of C ′′ is the same as the average error probability of

the quantized ensemble W ′ of the original coset permutation-invariant ensemble C ′

(see Fig. 2.3).

Even though (2.62) has a slightly different form than that of (2.9), we can still
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apply Theorem 2.1 for this quantized ensemble. Then, for any ϵ > 0,

P e|m ≤
∑

l∈U\{NT}

Al + ANTD
N
1 + Pr[XNYN /∈ TN ] + 2−N(CP−R− log2 α

N
−ϵ). (2.64)
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CHAPTER 3

A single-letter capacity expression for finite-state

channels with feedback

3.1 Channel model and preliminaries

We consider channels with input Xt ∈ X , output Yt ∈ Y and state St ∈ S at

time t. The corresponding input, output and state random processes are denoted by

(Xt)
∞
t=1, (Yt)

∞
t=1, (St)

∞
t=1, respectively. Input, output and state alphabets are finite

and of size |X | = Kx, |Y| = Ky, |S| = Ks, respectively. At time t the receiver has

access to the current channel output yt and state st. The state st and output yt are

fed back to the transmitter with delay d. The state transition and the channel output

stochastic kernel at time t are given as Q(st+1|st, xt) and Q′(yt|xt, st), respectively.

Note that channel state evolution is affected by both nature and ISI.

Definition 3.1. A sequence of joint measures {P (xT , sT , yT )}∞T=1 where vT denotes

the length-T vector (v1, . . . , vT ) is directed information stable if

lim
T→∞

P (|
−→
i (XT ;ST , Y T )

I(XT → ST , Y T )
− 1| > ϵ) = 0, ∀ϵ > 0, (3.1)

where
−→
i (XT ;ST , Y T ) = log P (xT |sT ,yT )∏T

t=1 P (xt|st−1,yt−1)
and I(XT → ST , Y T ) =

40



∑T
t=1 I(X

t;St, Yt|St−1, Y t−1).

Throughout the chapter we assume directed information stability.

In [54] the authors have developed a capacity expression for the general class of

such channels with unit feedback delay (which includes the case in which only the

channel output is fed back to the transmitter) in the form of

C = sup
{{P (xt|xt−1,st−1,yt−1)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(X t;St, Yt|St−1, Y t−1). (3.2)

This expression was further simplified in [54] to

C = sup
{{P (xt|πt,γt,st−1)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(Xt,Πt;St, Yt|St−1,Γt) (3.3a)

= sup
{P (X|Π,Γ,S′)}Π,Γ,S′

I(X,Π;S, Y |S ′,Γ) (3.3b)

where Πt ∈ P(S) defined as Πt(st)
def
= P (st|X t−1, St−1, Y t−1), and Γt ∈ P(P(S))

defined as Γt(πt)
def
= P (πt|St−1, Y t−1). In the above, P(S) is used to denote the set of

probability measures on the set S.

Definition 3.2. Consider a Markov decision process specified by (S,A, P, c), where

S is the state space, A is the action space, P is a stochastic kernel on S given S×A,

c : S ×A → R is the instantaneous cost. An ACOE of this process is given by

ρ+ h(i) = min
a∈A

{
c(i, a) +

∑
j∈S

P (j|i, a)h(j)
}
, (3.4)

where ρ is a scalar, h : S → R. If a bounded solution (ρ, h) exists ρ is the minimum

average cost.

It was further shown in [54] that the above capacity expression can in principle

be evaluated as the solution of an appropriate ACOE [65, Th. 6.2., Th. 6.3.].
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Clearly, the presence of the quantity Γ in (3.3a) renders this expression practically

useless since a measure on the measures over a finite set needs to be considered. This

complication is not surprising, since the above expressions were developed for general

feedback patterns. Since in this work we are only interested in the special case where

both state and output are fed back to the transmitter, it may be possible to get

a significantly simpler capacity expression for such channels. We will pursue this

direction in the following section, and we will show that a simpler capacity expression

is possible even in the case of arbitrary finite feedback delay d.

3.2 A single-letter capacity expression for the

FSC with arbitrary feedback delay

The expression given in (3.2) is valid when d = 1. In the following, we first derive

a similar capacity expression for the FSC where the both channel output and state

are fed back to the transmitter with arbitrary delay. This expression will serve as

the starting point for the derivation of a simplified single-letter expression.

3.2.1 Capacity in the case of arbitrary feedback delay

Definition 3.3. A channel code-function is a sequence of T deterministic measurable

maps {ft}Tt=1 such that ft : St−d × Y t−d → X which maps (st−d, yt−d) → xt.

Suppose that code-functions {ft}Tt=1 are generated according to the measure
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P (fT ). Then, the induced joint measure on all relevant random variables is

P (fT , xT , sT , yT )

=
T∏
t=1

P (xt|ft, st−d, yt−d)P (st, yt|f t, st−1, yt−1)P (ft|f t−1, st−1, yt−1) (3.5a)

=
T∏
t=1

δft(st−d,yt−d)(xt)Q
′(yt|ft(st−d, yt−d), st)

×Q(st|st−1, ft−1(s
t−d−1, yt−d−1))P (ft|f t−1). (3.5b)

Lemma 3.4. Given P (fT ) and the induced joint measure P (fT , xT , sT , yT ) by

P (fT ),

I(F T ;ST , Y T ) = I(XT → ST , Y T ). (3.6)

Proof. For xt = f t(st−d, yt−d)

P (sT , yT |fT )

P (sT , yT )
=

∏T
t=1 P (st, yt|st−1, yt−1, f t)

P (sT , yT )
(3.7a)

=

∏T
t=1 P (st, yt|xt, st−1, yt−1)

P (sT , yT )
(3.7b)

=

∏T
t=1 P (st, yt|xt, st−1, yt−1)∏T
t=1 P (st, yt|st−1, yt−1)

(3.7c)

=
T∏
t=1

P (st, yt|xt, st−1, yt−1)

P (st, yt|st−1, yt−1)
. (3.7d)

After taking expectations on the logarithms of the above, we obtain the final result.

Following [54], we define the following quantities.

Definition 3.5. Let graph(ft)
def
= {(st−d, yt−d, xt) : ft(s

t−d, yt−d) = xt}.

Definition 3.6. Let σ(st−d, yt−d, xt)
def
= {ft : (st−d, yt−d, xt) ∈ graph(ft)}. We also

denote σt(st−d, yt−d, xt)
def
= {f t : (st

′−d, yt
′−d, xt′) ∈ graph(ft′), for all t′ = 1, 2, . . . , t}.
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Lemma 3.7. Given P (fT ) and the induced joint measure P (fT , xT , sT , yT ), we have

P (xt|xt−1, st−d, yt−d) = Pft|f t−1(σt(s
t−d, yt−d, xt)|σt−1(st−d−1, yt−d−1, xt−1)).

Proof. We have

P (xt|xt−1, st−d, yt−d)

= P (xt|σt−1(st−d−1, yt−d−1, xt−1), st−d, yt−d) (3.8a)

= P (σt(s
t−d, yt−d, xt)|σt−1(st−d−1, yt−d−1, xt−1), st−d, yt−d) (3.8b)

= P (σt(s
t−d, yt−d, xt)|σt−1(st−d−1, yt−d−1, xt−1)). (3.8c)

Proposition 3.8. The capacity of the FSC with arbitrary feedback delay is

Cd = sup
{{P (xt|xt−1,st−d,yt−d)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(X t;St, Yt|St−1, Y t−1). (3.9)

Proof. What we want to show is

sup
{{P (xt|xt−1,st−d,yt−d)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(X t;St, Yt|St−1, Y t−1)

= sup
{{P (ft|f t−1)}Tt=1}∞T=1

lim inf
T→∞

1

T
I(F T ;ST , Y T ). (3.10)

For a given {P (xt|xt−1, st−d, yt−d)}Tt=1, we construct P (fT ) as follows. For every t

P (ft|f t−1) =
∏

(st−d,yt−d,xt)∈graph(ft)

P (xt|f t−1(st−d−1, yt−d−1), st−d, yt−d). (3.11)

Since we have Lemma 3.4, to show that (3.10) is true it only remains to show that the

induced channel input distribution by P (fT ) equals to {P (xt|xt−1, st−d, yt−d)}Tt=1.

44



We have for every t

Pft|f t−1(σt(s
t−d, yt−d, xt)|f t−1) = P (xt|f t−1(st−d−1, yt−d−1), st−d, yt−d). (3.12)

Consider now the induced channel input distribution {Q(xt|xt−1, st−d, yt−d)}Tt=1 by

P (fT ). We have

Q(xt|xt−1, st−d, yt−d) = P (σt(s
t−d, yt−d, xt)|σt−1(st−d−1, yt−d−1, xt−1)) (3.13a)

= P (xt|xt−1, st−d, yt−d), (3.13b)

where the first equality follows from Lemma 3.7, and the second equality due

to (3.12).

Hence (3.10) is true. Furthermore, by Lemmas 5.5, 5.6 and Theorems 5.2,5.3

in [54], the right-hand side of (3.10) is the capacity of this channel.

We have found the capacity expression of the FSC with arbitrary feedback delay.

In the next section, we will simplify this expression.

3.2.2 A simplified capacity expression

Consider the term I(X t;St, Yt|St−1, Y t−1) with the channel input distribution

P (xt|xt−1, st−d, yt−d) in (3.9). The following theorem proves that the form of the

optimal channel input distribution can be simplified.

Lemma 3.9. For every T ,

sup
{P (xt|xt−1,st−d,yt−d)}Tt=1

1

T

T∑
t=1

I(X t;St, Yt|St−1, Y t−1)

= sup
{P (xt|xt−1

t−d,s
t−d,yt−d)}Tt=1

1

T

T∑
t=1

I(X t
t−1;St, Yt|St−1, Y t−1). (3.14)
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Proof. See 3.4.

The above lemma shows that in order to achieve capacity it is sufficient to restrict

the channel input distributions to be of the form of P (xt|xt−1
t−d, s

t−d, yt−d), i.e., the

capacity expression becomes

C = sup
{{P (xt|xt−1

t−d,s
t−d,yt−d)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(X t
t−1;St, Yt|St−1, Y t−1). (3.15)

To further simplify the capacity expression, we will formulate a control problem

which is equivalent to the problem of computing capacity.

Problem 3.10. Let (X t−1
t−d , St−d, Yt−d) be the system state at time t, and (St−d, Yt−d)

be the controller observation at time t. Let the control action at time t be Ut :

X d → P(X ) defined as Ut(xt; x
t−1
t−d)

def
= P (xt|xt−1

t−d, S
t−d, Y t−d). Further, define the

instantaneous reward at time t to be Rt = log
P (St,Yt|St−1,Y t−1,Xt

t−1)

P (St,Yt|St−1,Y t−1)
. The control

problem is to determine the optimal policy g = {gt}∞t=1 (such that ut = gt(s
t−d, yt−d))

that maximizes the average expected reward lim infT→∞
1
T

∑T
t=1E

g[Rt].

First we need to prove that the above control problem is equivalent to the problem

of computing capacity as stated in (3.15). All that is required is to show that the

sequence of measures {P (xt
t−d, s

t, yt)}∞t=1 induced by the channel input distributions

{P (xt|xt−1
t−d, s

t
t−d, y

t−d)}∞t=1 is equal to the sequence of measures {P g(xt
t−d, s

t, yt)}∞t=1

induced by the control policy g. This equivalence is established in the following

lemma.

Lemma 3.11. For every sequence of channel input distributions

{P (xt|xt−1
t−d, s

t−d, yt−d)}∞t=1 with resulting sequence of joint measures

{P (xt
t−d, s

t, yt)}∞t=1 there exists a policy g with resulting sequence of joint mea-

sures {P g(xt
t−d, s

t, yt)}∞t=1 such that for each t: P g(xt
t−d, s

t, yt) = P (xt
t−d, s

t, yt).
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Conversely, for every policy g with resulting sequence of joint measures

{P g(xt
t−d, s

t, yt)}∞t=1 there exists a sequence of channel input distribu-

tions {P (xt|xt−1
t−d, s

t−d, yt−d)}∞t=1 with resulting sequence of joint measures

{P (xt
t−d, s

t, yt)}∞t=1 such that for each t: P (xt
t−d, s

t, yt) = P g(xt
t−d, s

t, yt).

Proof. See 3.5.

We are now ready to state and prove the main result of this chapter.

Proposition 3.12. The capacity of the finite-state channel with output and state

feedback with arbitrary delay is

Cd = sup
{P (X|X′d,S′

1,Θ)}
X′d,S′

1,Θ

I(X,X ′
d;S, Y |S ′d, Y ′d−1,Θ) (3.16)

where Θ ∈ P(X d), and the mutual information is evaluated using the joint measure

P (Y, S,X,X ′
d, S

′d, Y ′d−1, dΘ)

=
∑
X′d−1

Q′(Y |S,X)Q(S|S ′
d, X

′
d)

( d∏
i=2

Q′(Y ′
i−1|S ′

i, X
′
i)Q(S ′

i|S ′
i−1, X

′
i−1)

)
× P (X|X ′d, S ′

1,Θ)Θ(X ′d)P (S ′
1, dΘ). (3.17)

The distribution P (S, dΘ) is the solution of the equation

P (S, dΘ′)

=

∫
S′,Θ

P (S ′, dΘ)
∑

Y,X,X′d

δω(Θ,P (X|X′d,S′,Θ),Y,S,S′)(Θ
′)

×Q′(Y |X,S)Q(S|S ′, X ′
1)P (X|X ′d, S ′,Θ)Θ(X ′d), (3.18)

where the function ω(·) is defined in the following proof.
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Proof. See 3.6.

To find the capacity using (3.16), we need to identify the stationary distribution

of S and Θ for each choice of P (X|X ′d, S ′
1,Θ) using (3.18), and evaluate the mutual

information by using the joint measure specified in (3.17). Alternatively, we may

use dynamic programming to find the capacity. In other words, the optimal value

in (3.16) can be obtained by the solution of the following ACOE with some bounded

function η : S ×Θ → R [65, Th. 6.2., Th. 6.3.]

Cd + η(s, θ) = sup
u

J(s, θ, u), (3.19)

where

J(s, θ, u)

= r(s, θ, u)

+

(∑
y′,s′

η(s′, ω(θ, u, y′, s′, s))
∑
x′

Q′(y′|s′, x′)
∑
xd

Q(s′|s, x1)u(x
′;xd)θ(xd)

)
,

(3.20)

and r(s, θ, u) = E[Rt|St−d = s,Θt−1 = θ, Ut = u].

3.3 Special case: No ISI

So far we have considered the situation when there is ISI. Now let’s consider the

special case with no ISI. In this case, the state transition stochastic kernel at time

t is given as Q(st+1|st). Viswanathan found the capacity in this case in [52]. In the

following we provide an alternative approach to showing this result using stochastic

control.
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Consider the term I(X t;St, Yt|St−1, Y t−1) with the channel input distribution

P (xt|xt−1, st−d, yt−d) in (3.9). We can simplify the form of the optimal channel input

distribution in similar ways to (3.14).

Lemma 3.13. For every T ,

sup
{P (xt|xt−1,st−d,yt−d)}Tt=1

1

T

T∑
t=1

I(X t;St, Yt|St−1, Y t−1)

= sup
{P (xt|st−d,yt−d)}Tt=1

1

T

T∑
t=1

I(Xt;Yt|St, Y t−1). (3.21)

Proof. See 3.7.

The above lemma shows that in order to achieve capacity it is sufficient to restrict

the channel input distributions to be the form of P (xt|st−d, yt−d), i.e., the capacity

expression becomes

C = sup
{{P (xt|st−d,yt−d)}Tt=1}∞T=1

lim inf
T→∞

1

T

T∑
t=1

I(Xt;Yt|St, Y t−1). (3.22)

To further simplify the capacity expression, we will formulate a control problem

which is equivalent to the problem of computing capacity.

Problem 3.14. Let (St−d, Yt−d) be the system state at time t, and (St−d, Yt−d) be

the controller observation at time t. Let the control action at time t be Ut ∈ P(X )

defined as Ut(xt)
def
= P (xt;S

t−d, Y t−d). Further, define the instantaneous reward at

time t to be Rt = log P (Yt|St,Y t−1,Xt)
P (Yt|St,Y t−1)

. The control problem is to determine the optimal

policy g = {gt}∞t=1 (such that ut = gt(s
t−d, yt−d)) that maximizes the average expected

reward lim infT→∞
1
T

∑T
t=1E

g[Rt].

In similar ways to Lemma 3.11, we can see that the above control problem is

equivalent to the problem of computing capacity as stated in (3.22).
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We are now ready to state and prove the main result which confirms the results

in [52].

Proposition 3.15. The capacity of the finite-state channel with output and state

feedback with arbitrary delay is

Cd = sup
{P (X|S′)}S′

I(X;Y |S, S ′) (3.23)

where the mutual information is evaluated using the joint measure

P (Y, S, S ′, X)

= Q′(Y |S,X)
∑
Sd−1

Q(S|Sd−1)
d−1∏
t=2

Q(St|St−1)Q(S1|S ′)P (X|S ′)P (S ′). (3.24a)

The distribution P (S) is the solution of the equation

P (S) =
∑
S′

Q(S|S ′)P (S ′). (3.24b)

Proof. See 3.8.

3.4 Proof of Lemma 3.9

First, note that we have for every t

I(X t;St, Yt|St−1, Y t−1)

= I(X t
t−1;St, Yt|St−1, Y t−1) + I(X t−2;St, Yt|St−1, Y t−1, X t

t−1) (3.25a)

(a)
= I(X t

t−1;St, Yt|St−1, Y t−1), (3.25b)
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where (a) is from the fact that St, Yt is independent of X t−2 given St−1, X
t
t−1.

Each of the terms I(X t
t−1;St, Yt|St−1, Y t−1) in the summation is evaluated based

on the joint distribution P (xt
t−1, s

t, yt). We now proceed by induction to prove

that the sequence of measures {P (xt
t−d, s

t, yt)}Tt=1 induced by the sequence of chan-

nel input distributions {P (xt|xt−1, st−d, yt−d)}Tt=1 equals to the sequence of measures

{P1(x
t
t−d, s

t, yt)}Tt=1 induced by an appropriately defined sequence of channel input

distributions of the form {P1(xt|xt−1
t−d, s

t−d, yt−d)}Tt=1.

For t = 1 we set P1(x1) = P (x) and have

P1(x1, s1, y1) = Q′(y1|s1, x1)Q(s1)P1(x1) (3.26a)

= Q′(y1|s1, x1)Q(s1)P (x1) = P (x1, s1, y1). (3.26b)

Now for t + 1 we set P1(xt+1|xt
t−d+1, s

t−d+1, yt−d+1) = P (xt+1|xt
t−d+1, s

t−d+1, yt−d+1)

and have

P1(x
t+1
t−d+1, s

t+1, yt+1)

=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
P1(xt+1|xt

t−d+1, s
t−d+1, yt−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P1(x
t
t−d, s

t, yt) (3.27a)

(a)
=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
P (xt+1|xt

t−d+1, s
t−d+1, yt−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P (xt
t−d, s

t, yt) (3.27b)

= P (xt+1
t−d+1, s

t+1, yt+1), (3.27c)

where (a) is due to the construction of P1(xt+1|xt
t−d+1, s

t−d+1, yt−d+1), and the induc-

tion hypothesis. The above equality implies that the equality in (3.14).
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3.5 Proof of Lemma 3.11

We will use the notation ut = gt(s
t−d, yt−d) and for convenience, we will write

ut(xt;x
t−1
t−d) = gt[s

t−d, yt−d](xt; x
t−1
t−d).

For the direct part, for each t we choose a policy gt as

gt[s
t−d, yt−d](xt;x

t−1
t−d) = P (xt|xt−1

t−d, s
t−d, yt−d), (3.28)

and proceed by induction.

For t = 1 we have

P g(x1, s1, y1) = Q′(y1|s1, x1)Q(s1)g1(x1) (3.29a)

= Q′(y1|s1, x1)Q(s1)P (x1) = P (x1, s1, y1). (3.29b)

Now for t+ 1 we have

P g(xt+1
t−d+1, s

t+1, yt+1)

=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
× gt+1[s

t−d+1, yt−d+1](xt+1;x
t
t−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P g(xt
t−d, s

t, yt) (3.30a)

(a)
=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
× P (xt+1|xt

t−d+1, s
t−d+1, yt−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P (xt
t−d, s

t, yt) (3.30b)

= P (xt+1
t−d+1, s

t+1, yt+1), (3.30c)
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where (a) is due to the choice of the policy gt+1 and the induction hypothesis.

For the converse, for each t we choose a channel input distribution as

P (xt|xt−1
t−d, s

t−d, yt−d) = P g(xt|xt−1
t−d, s

t−d, yt−d) (3.31a)

= gt[s
t−d, yt−d](xt;x

t−1
t−d). (3.31b)

Then, for t = 1 we have

P (x1, s1, y1) = Q′(y1|s1, x1)Q(s1)P (x1) (3.32a)

= Q′(y1|s1, x1)Q(s1)g1(x1) = P g(x1, s1, y1). (3.32b)

Now for t+ 1 we have

P (xt+1
t−d+1, s

t+1, yt+1)

=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
× P (xt+1|xt

t−d+1, s
t−d+1, yt−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P (xt
t−d, s

t, yt) (3.33a)

(a)
=

( t+1∏
i=t−d+2

Q′(yi|si, xi)Q(si|si−1, xi−1)

)
× gt+1[s

t−d+1, yt−d+1](xt+1;x
t
t−d+1)

×
∑

xt−d,s
t
t−d+2,y

t
t−d+2

P g(xt
t−d, s

t, yt) (3.33b)

= P g(xt+1
t−d+1, s

t+1, yt+1), (3.33c)

where (a) is due to the construction of the channel input distributions and the in-

duction hypothesis.
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3.6 Proof of Proposition 3.12

Define the information state Θt ∈ P(X d)

with Θt(x
t
t−d+1)

def
= P (xt

t−d+1|St−d+1, Y t−d+1).

θt(x
t
t−d+1)

= P (xt
t−d+1|St−d+1, Y t−d+1) (3.34a)

=
P (xt

t−d+1, st−d+1, yt−d+1|st−d, yt−d)

P (st−d+1, yt−d+1|st−d, yt−d)
(3.34b)

=

(∑
xt−d

ut(xt; x
t−1
t−d)Q

′(yt−d+1|xt−d+1, st−d+1)Q(st−d+1|st−d, xt−d)

× P (xt−1
t−d|s

t−d, yt−d)

)
/

(
P (st−d+1, yt−d+1|st−d, yt−d)

)
(3.34c)

=

(∑
xt−d

ut(xt; x
t−1
t−d)Q

′(yt−d+1|xt−d+1, st−d+1)Q(st−d+1|st−d, xt−d)

× θt−1(x
t−1
t−d)

)
/

(
P (st−d+1, yt−d+1|st−d, yt−d)

)
, (3.34d)

which implies that θt can be recursively updated as

θt = ω(θt−1, ut, yt−d+1, st−d+1, st−d). (3.35)

We now show that {(St−d,Θt−1)}t is a controlled Markov chain with control Ut.

Indeed,

P (st−d+1, dθt|st−d, θt−1, ut)

=
∑

yt−d+1,x
t−d+1
t−d

δω(θt−1,ut,yt−d+1,st−d+1,st−d)Q
′(yt−d+1|xt−d+1, st−d+1)

×Q(st−d+1|st−d, xt−d)θt−1(x
t−d+1
t−d ) (3.36a)

= P (st−d+1, dθt|st−d, θt−1, ut). (3.36b)
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Furthermore, the instantaneous reward rt can be written as

rt

= log
P (yt, st|st−1, yt−1, xt

t−1)

P (yt, st|st−1, yt−1)
(3.37a)

= log
Q′(yt|xt, st)Q(st|st−1, xt−1)P (yt−1

t−d+1, s
t−1
t−d+1|st−d, yt−d)

P (ytt−d+1, s
t
t−d+1|st−d, yt−d)

(3.37b)

= log
Q′(yt|xt, st)Q(st|st−1, xt−1)P (yt−1

t−d+1, s
t−1
t−d+1|st−d, yt−d)∑

xt
t−d

(∏t
i=t−d+1 Q

′(yi|xi, si)Q(si|si−1, xi−1)
)
ut(xt;x

t−1
t−d)θt−1(x

t−1
t−d)

(3.37c)

=log

{(
Q′(yt|xt, st)Q(st|st−1, xt−1)

∑
xt−1
t−d

( t−1∏
i=t−d+1

Q′(yi|xi, si)Q(si|si−1, xi−1)
)

× θt−1(x
t−1
t−d)

)
/

(∑
xt
t−d

( t∏
i=t−d+1

Q′(yi|xi, si)Q(si|si−1, xi−1)
)

× ut(xt;x
t−1
t−d)θt−1(x

t−1
t−d)

)}
. (3.37d)

The expected reward at time t conditioned on the states and control actions up to

time t is

E
[
Rt|st−d, θt−1, ut

]
= E

[
log

{(
Q′(Yt|Xt, St)Q(St|St−1, Xt−1)

×
∑
xt−1
t−d

( t−1∏
i=t−d+2

Q′(Yi|xi, Si)Q(Si|Si−1, xi−1)
)

×Q′(Yt−d+1|xt−d+1, St−d+1)Q(St−d+1|st−d, xt−d)θt−1(x
t−1
t−d)

)
/

(∑
xt
t−d

( t∏
i=t−d+2

Q′(Yi|xi, Si)Q(Si|Si−1, xi−1)
)

×Q′(Yt−d+1|xt−d+1, St−d+1)

×Q(St−d+1|st−d, xt−d)ut(xt;x
t−1
t−d)θt−1(x

t−1
t−d)

)}
| st−d, θt−1, ut

]
(3.38a)
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=
∑

ytt−d+1,x
t
t−d,s

t
t−d+1

t∏
i=t−d+1

Q′(yi|xi, si)Q(si|si−1, xi−1)ut(xt;x
t−1
t−d)θt−1(x

t−1
t−d)

× log

{(
Q′(yt|xt, st)Q(st|st−1, xt−1)

∑
xt−1
t−d

( t−1∏
i=t−d+1

Q′(yi|xi, si)Q(si|si−1, xi−1)
)

× θt−1(x
t−1
t−d)

)
/

(∑
xt
t−d

( t∏
i=t−d+1

Q′(yi|xi, si)Q(si|si−1, xi−1)
)

(3.38b)

× ut(xt;x
t−1
t−d)θt−1(x

t−1
t−d)

)}
= rt(st−d, θt−1, ut), (3.38c)

which is only a function of the observed part of the state st−d, the belief on the

unobserved part of the state θt−1, and the action ut.

Note that the conditional expected reward at time t is does not depend on yt−d.

Furthermore, yt−d does not affect the future evolution of the information state as seen

in (3.34). Therefore, it can be shown that the optimal policy is a function of only

st−d, θt−1 (this can be shown for instance using the graphical modeling approach

presented in [66]). Then, the optimal channel input distributions take the form

P (xt|xt−1
t−d, st−d, θt−1), and the capacity expression becomes

Cd = sup
{P (xt|xt−1

t−d,st−d,θt−1)}t
lim inf
T→∞

1

T

T∑
t=1

I(X t
t−1;St, Yt|St−1

t−d , Y
t−1
t−d+1,Θt−1). (3.39)

Note that above described controlled Markov chain is time-homogenous, and hence

the optimal channel input distribution is time-invariant, and consequently the ca-

pacity expression reduces to the one in (3.16).
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3.7 Proof of Lemma 3.13

First, note that we have for every t

I(X t;St, Yt|St−1, Y t−1)

= I(Xt;St, Yt|St−1, Y t−1) + I(X t−1;St, Yt|St−1, Y t−1, Xt) (3.40a)

(a)
= I(Xt;St, Yt|St−1, Y t−1) (3.40b)

= I(Xt;Yt|St, Y t−1) + I(Xt;St|St−1, Y t−1) (3.40c)

(b)
= I(Xt;Yt|St, Y t−1), (3.40d)

where (a) is from the fact that St, Yt is independent of X t−1 given St−1, Xt, and

(b) is from the fact that St is independent of Xt given St−1. Each of the terms

I(Xt;Yt|St, Y t−1) in the summation is evaluated based on the joint distribution

P (xt, s
t, yt). We now proceed by induction to prove that the sequence of measures

{P (xt, s
t, yt)}Tt=1 induced by the sequence of channel input distributions

{P (xt|xt−1, st−d, yt−d)}Tt=1 equals to the sequence of measures {P1(x
t, st, yt)}Tt=1 in-

duced by an appropriately defined sequence of channel input distributions of the

form {P1(xt|st−d, yt−d)}Tt=1.

For t = 1 we set P1(x1) = P (x) and have

P1(x1, s1, y1) = Q′(y1|s1, x1)Q(s1)P1(x1) (3.41a)

= Q′(y1|s1, x1)Q(s1)P (x1) = P (x1, s1, y1). (3.41b)
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Now for t+ 1 we set P1(xt+1|st−d+1, yt−d+1) = P (xt+1|st−d+1, yt−d+1) and have

P1(xt+1, s
t+1, yt+1)

= Q′(yt+1|xt+1, st+1)Q(st+1|st)P1(xt+1|st−d+1, yt−d+1)
∑
xt

P1(xt, s
t, yt) (3.42a)

(a)
= Q′(yt+1|xt+1, st+1)Q(st+1|st)P (xt+1|st−d+1, yt−d+1)

∑
xt

P (xt, s
t, yt) (3.42b)

= P (xt+1, s
t+1, yt+1), (3.42c)

where (a) is due to the construction of P1(xt+1|, st, yt), and the induction hypothesis.

The above equality implies that the equality in (3.21).

3.8 Proof of Proposition 3.15

First, note that {St−d}t is a controlled Markov chain with control Ut.

Furthermore, the instantaneous reward rt can be written as

rt = log
P (yt|st, yt−1, xt)

P (yt|st, yt−1)
(3.43a)

= log
Q′(yt|xt, st)∑

xt
Q′(yt|xt, st)ut(xt)

. (3.43b)

The expected reward at time t conditioned on the states and control actions up to
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time t is

E
[
Rt|st−dut

]
= E

[
log

Q′(Yt|Xt, St)∑
xt
Q′(Yt|xt, St)ut(xt)

| st−d, ut

]
(3.44a)

=
∑

yt,xt,stt−d+1

Q′(yt|xt, st)

×
t∏

t′=t−d+1

Q(st′|st′−1)ut(xt) log
Q′(yt|xt, st)∑

xt
Q′(yt|xt, st)ut(xt)

, (3.44b)

= rt(st−d, ut), (3.44c)

which is only a function of st−d and the action ut.

Note that the conditional expected reward at time t is does not depend on yt−1.

Furthermore, yt−1 does not affect the future evolution of {St−d}t. Therefore, it can

be shown that the optimal policy is the function of only st−d (this can be shown for

instance using the graphical modeling approach presented in [66]). Then, the optimal

channel input distributions take the form P (xt|st−d), and the capacity expression

becomes

C = sup
{P (xt|st−d)}t

lim inf
T→∞

1

T

T∑
t=1

I(Xt;Yt|St
t−1). (3.45)

Note that above described controlled Markov chain is time-homogenous, and hence

the optimal channel input distribution is time-invariant, and consequently the ca-

pacity expression reduces to the one in (3.23).
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CHAPTER 4

A capacity-achieving posterior matching scheme:

No inter-symbol interference (ISI) case

In this chapter we describe a transmission scheme which achieves the capacity of

the finite-state channel with unit feedback delay when there is no ISI. This case can

be thought of as the special case of general FSC with ISI. In order to appreciate the

difficulties involved in proving capacity achievability for the channels with memory

we present in Appendix A the corresponding scheme for the discrete memoryless

channel (DMC). In [49, 50] a proof of capacity achievability was established using

Lyapunov function, contraction mapping and the strong law of large numbers (SLLN)

of Markov chains. Our goal is to provide a extended version of this proof for the case

of channels with memory. As will be seen in Chapter 5, overall situation changes

significantly from the DMC case when there is ISI. Before going into that let’s look

at the no ISI case as a rather simple generalization of the DMC case.
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4.1 A posterior matching scheme for channels

with memory

In this section we describe a transmission scheme which achieves the capacity of

the finite-state channel with unit feedback delay. The scheme which achieves the

capacity of the finite-state channel with arbitrary feedback delay can be thought as

a slight generalization of the scheme presented here. With unit feedback delay, the

capacity expression in (3.23) becomes

C = sup
{P (X|S′)}S′

I(X;Y |S, S ′) (4.1)

where the mutual information is evaluated using the joint measure

P (Y, S,X, S ′) = Q′(Y |S,X)Q(S|S ′)P (X|S ′)P (S ′). (4.2a)

The distribution P (S) is the solution of the equation

P (S) =
∑
S′

P (S ′)Q(S|S ′). (4.2b)

We assume that the capacity achieving distributions {P̂ (X|S ′)}S′ have been found for

all values of (S ′) and the corresponding steady-state distribution on X, P̂ (X|S ′) and

on Yt conditioned on St, St−1, P̂ (y|s, s′) =
∑

x Q
′(y|x, s)P̂ (x|s′) have been evaluated.

Define the random variable Ft ∈ F as Ft(w)
def
= F (w|Y t, St), where F (·|Y t, St) is the

a-posteriori cdf of W conditioned on Y t, St, and F is the set of all valid cdfs over

[0, 1).
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The channel input Xt is generated as

Xt = F−1

P̂ (·|St−1)
(Ft−1(W )) (4.3a)

= x,
x−1∑
i=0

P̂ (i|St−1) < Ft−1(W ) ≤
x∑

i=0

P̂ (i|St−1)

x = 0, . . . , KX − 1 (4.3b)

def
= e(Ft−1(W ), P̂ (·|St−1)). (4.3c)

where the inverse cdf F−1(y)
def
= inf{x : F (x) ≥ y}.

At the receiver, the message estimate is obtained as

Ŵt = d(Ft, 2
−Rt/2), (4.4)

where the message estimate function d(F, ϵ) is defined as

d(F, ϵ) = argmax
w

{F (w + ϵ)− F (w − ϵ)}. (4.5)

Lemma 4.1. For the PMS scheme we have

P (Xt|Y t−1, St−1) = P̂ (Xt|St−1) (4.6a)

P (Yt|Y t−1, St) = P̂ (Yt|St, St−1) (4.6b)

Ft = ϕ(Ft−1, Yt, St, St−1). (4.6c)

where F0 = Uniform[0, 1).
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Proof.

P (Xt|Y t−1, St−1)

= P (Xt|Y t−1, St−1, Ft−1) (4.7a)

=

∫
w

P (Xt|Y t−1, St−1, Ft−1,W = w)P (dw|Y t−1, St−1, Ft−1) (4.7b)

=

∫
w

δe(Ft−1(w),St−1)(Xt)dFt−1(w) (4.7c)

=
∑
x

δx(Xt)P̂ (x|St−1) (4.7d)

= P̂ (Xt|St−1), (4.7e)

and similarly

P (Yt|Y t−1, St)

=
∑
x

P (Yt|Y t−1, St, Xt = x)P (Xt = x|Y t−1, St−1) (4.8a)

=
∑
x

Q′(Yt|St, x)P̂ (x|St−1) (4.8b)

= P̂ (Yt|St, St−1). (4.8c)

Then, Ft is updated as

Ft = ϕ(Ft−1, Yt, St, St−1). (4.9)
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where ϕ is given implicitly through the corresponding pdf update

dft(a)

=
P (yt, st|a)da
P (yt, st)

(4.10a)

=
Q′(yt|st, e(ft−1(a), s−1))Q(st|st−1)P (yt−1, st−1|a)da

P (yt, st|yt−1, st−1)P (yt−1, st−1)
(4.10b)

=
Q′(yt|st, e(ft−1(a), st−1))Q(st|st−1)dft−1(a)

P (yt, st|yt−1, st−1)
(4.10c)

(a)
=

Q′(yt|st, e(ft−1(a), st−1))Q(st|st−1)dft−1(a)

Q(st|st−1)P̂ (yt|st, st−1)
(4.10d)

=
Q′(yt|st, e(ft−1(a), st−1))dft−1(a)

P̂ (yt|st, st−1)
, (4.10e)

where (a) is from (4.6b), and explicitly through

ft(a) =

∑x−1
i=0Q

′(yt|st, i)P̂ (i|st−1)+Q
′(yt|st, x)[ft−1(a)−

∑x−1
i=0 P̂ (i|st−1)]

P̂ (yt|st, st−1)
,

x−1∑
i=0

P̂ (i|st−1) < ft−1(a) ≤
x∑

i=0

P̂ (i|st−1), x = 0, . . . , KX − 1. (4.11)

Observe that ft(a) is a function of ft−1 only through ft−1(a). In the following

we will also use the notation ft(a) = ϕ(ft−1, yt, st, st−1)(w) = ϕ(ft−1(a), yt, st, st−1).

Observe also from (4.3) that the transmitted symbol Xt is a function of W and Ft−1

only through the quantity Ft−1(W ). This has important implications for the analysis

of the PMS scheme.

Assuming that the channel and state transition probabilities Q′(y|x, s) and

Q(s′|s) are non-zero for all x, y, s, s′, the recursion (4.11) guarantees that for ev-

ery realization of the random variables of interest, Ft will always have a pdf; in

addition the pdf will be non-zero everywhere in (0, 1].
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4.2 Achievability Result

Let Ŵt be the message point estimate at the receiver at time t. Then, a trans-

mission scheme achieves rate R if

lim
t→∞

P (|W − Ŵt| > 2−tR) = 0. (4.12)

In particular, we say that a transmission schemes achieves zero rate if

∀ϵ > 0 lim
t→∞

P (|W − Ŵt| > ϵ) = 0. (4.13)

4.2.1 Zero Rate Result

For a cdf h : [0, 1] → [0, 1] define a Lyapunov function Vλ as follows.

Vλ(h) =

∫ 1

0

λ(h(w))dw, (4.14)

where λ : [0, 1] → [0, 1] is onto, strictly concave and symmetric about 0.5. This

definition implies that λ(x) is 0 at x = 0, 1 and 1 at x = 1/2. Furthermore, for

a cdf F ∈ F , Vλ(F ) is small if F resembles a step function (it is exactly 0 for a

step function). A function ξ : [0, 1] → [0, 1] is called contraction if it is nonnegative,

concave, and ξ(x) < x for x ∈ (0, 1).

Definition 4.2. A channel is called fixed-point free if for any ft(w), st

P
(
ϕ(ft(w), Yt+1, St+1, st) = ft(w)

)
< 1. (4.15)
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Lemma 4.3. If the channel is fixed-point free, then for ϵ > 0 and for all f ∈ F ,

lim
t→∞

P (Vλ(Ft) > ϵ|F0 = f) = 0. (4.16)

Proof. See 4.3.

The intuitive interpretation of the above lemma is that the probability of having

an Ft that does not resemble a step function is zero at the limit of large t.

For any t2 > t1 > 0 we can write Ft2 as a function of Ft1−1 and the quantities

Y t2
t1 , S

t2
t1−1 through a repeated application of the ϕ recursion, i.e.,

Ft2
def
= ϕt2−t1(Ft1−1, Y

t2
t1 , S

t2
t1−1). Let F f

t1,t2 be the random variable defined as F f
t1,t2

def
=

ϕt2−t1(f, Y
t2
t1 , S

t2
t1−1). Clearly Ft = F u

1,t, where u denotes the uniform distribution over

(0, 1). In addition, due to the recursion implied by the PMS, we will denote Ft2(a)
def
=

ϕt2−t1(Ft1−1, Y
t2
t1 , S

t2
t1−1)(a)

def
= ϕt2−t1(Ft1−1(a), Y

t2
t1 , S

t2
t1−1) with some notational abuse.

With the above notation, the function ϕt2−t1(·, Y t2

t1
, St2

t1−1) is monotonically increasing.

We now prove the following lemma which is a stronger version of Lemma 4.3.

Lemma 4.4. If the channel is fixed-point free, then for ϵ > 0,

lim
t→∞

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ϵ) = 0. (4.17)

Proof. Let V ∗
λ,t1,t2

= supf Vλ(F
f
t1,t2). Note that V ∗

t1,t2
is a deterministic function of
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Y t2
t1 , S

t2
t1−1, hence there exists a sequence of cdfs {f

k,Y
t2
t1

,S
t2
t1−1

}∞k=1 such that

V ∗
λ,t1,t2

= lim
k→∞

Vλ(F
f
k,Y

t2
t1

,S
t2
t1−1

t1,t2 ) (4.18a)

= lim
k→∞

Vλ(F
ϕ(f

k,Y
t2
t1

,S
t2
t1−1

,Yt1 ,St1 ,St1−1)

t1+1,t2
) (4.18b)

≤ sup
f

Vλ(F
f
t1+1,t2

) (4.18c)

= V ∗
λ,t1+1,t2

. (4.18d)

Note that there exists a sequence of cdfs {fk,Y αt
1 ,Sαt

0
}∞k=1 such that

V ∗
λ,1,αt ≥ Vλ(F

f
k,Y αt

1 ,Sαt
0

1,αt ) > V ∗
λ,1,αt − 1/k. Therefore,

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t > ϵ) ≤ P ( max

1≤t′≤t
V ∗
λ,t′+1,(1+α)t > ϵ) (4.19a)

= P (V ∗
λ,t+1,(1+α)t > ϵ) (4.19b)

= P (sup
f

Vλ(F
f
t+1,(1+α)t) > ϵ) (4.19c)

(a)
= P (sup

f
Vλ(F

f
1,αt) > ϵ) (4.19d)

= P ( lim
k→∞

Vλ(F
f
k,Y αt

1 ,Sαt
0

1,αt ) > ϵ) (4.19e)

(b)

≤ P (Vλ(F
f
k′,Y αt

1 ,Sαt
0

1,αt ) > ϵ) (4.19f)

(c)→ 0, (4.19g)

where (a) is due to the fact that F f
t+1,(1+α)t = ϕαt−1(f, Y

(1+α)t
t+1 , S

(1+α)t
t ), F f

1,αt =

ϕαt−1(f, Y
αt
1 , Sαt

0 ), and (Y
(1+α)t
t+1 , S

(1+α)t
t ) , (Y αt

1 , Sαt
0 ) have the same statistics; (b) is

true for k′ > 1/(V ∗
λ,1,αt − ϵ) ; and (c) is due to the fact that Lemma 4.3 holds for any

F0.

Observe that indeed this lemma is stronger than Lemma 4.3, since P (Vλ(Ft) >

ϵ) = P (Vλ(F
u
1,t) > ϵ) = P (Vλ(F

u
1+t,t+t) > ϵ) ≤ P (max1≤t′≤t Vλ(F

u
t′+1,2t) > ϵ).
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Proposition 4.5. If the channel is fixed-point free, then for ϵ, δ > 0

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
= 0, (4.20a)

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W ) + δ

)
< 1− ϵ

)
= 0. (4.20b)

Proof. See 4.4.

The intuition behind the above proof is that for an error to occur, either the cdf

Ft does not behave as a step function (first, third and fourth terms in (4.42d)) or

the step does not occur at the transmitted message W (second term in (4.42d)).

4.2.2 Rate R < C achievability

So far we have established zero-rate result. We now prove the rate R achievability.

Lemma 4.6. (Ft(W ), St+1
t , Yt+1)t is a Markov chain.

Proof. Let Θt
def
= Ft(W ). We have

P (θt, s
t+1
t , yt+1|θt−1, s′t, yt)

= Q′(yt+1|e(θt, st), st+1)Q(st+1|st)P (θt, st|θt−1, s
′t, yt) (4.21a)

= Q′(yt+1|e(θt, st), st+1)Q(st+1|st)δϕ(θt−1,yt,st,s′t−1)
(θt)δs′t(st) (4.21b)

= P (θt, s
t+1
t , yt+1|θt−1, s

′t
t−1, yt). (4.21c)

Lemma 4.7. E{log dFt+1(W )
dFt(W )

|} = C if the PMS is used as a transmission scheme.

Proof. See 4.5.

Definition 4.8. An invariant distribution PΨ of a Markov chain {Ψt}t is called

ergodic if for every invariant set A either PΨ(A) = 0 or PΨ(A) = 1.
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Lemma 4.9. If a Markov chain (Ft(W ), St+1
t , Yt+1)t has ergodic invariant distribu-

tion, then

lim
t→∞

1

t
log dFt(W ) = C a.s. (4.22)

Proof.

1

t
log dFt(W ) =

1

t

t∑
s=1

log
dFs(W )

dFs−1(W )
. (4.23)

If (Ft(W ), St+1
t , Yt+1)t is ergodic, then by the strong law of large numbers for Markov

chains [67]

lim
t→∞

1

t
log dFt(W ) = E[log

dFt(W )

dFt−1(W )
]
(a)
= C a.s. (4.24)

where (a) is from Lemma 4.7.

Lemma 4.10. If a Markov chain (Ft(W ), St+1
t , Yt+1)t has ergodic invariant distri-

bution, then for any δ > 0 and rate R < C − δ there exists ϵ′ > 0 so that for all

ϵ ≤ ϵ′

lim
t→∞

P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

= 0 (4.25a)

lim
t→∞

P

( t−1∩
s=0

{Fs(W + 2−tR)− Fs(W ) < ϵ}
)

= 0. (4.25b)

Proof. See 4.6.

The above lemma guarantees that at some time before t there will be a jump of

at least ϵ in the posterior message cdf in the interval of 2−tR around W . Using this

lemma we show the main result.
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Proposition 4.11. If a Markov chain (Ft(W ), St+1
t , Yt+1)t has ergodic invariant dis-

tribution, then for δ, α > 0

lim
t→∞

P (F(1+α)t(W − 2−tR) > δ) = 0, (4.26a)

lim
t→∞

P (F(1+α)t(W + 2−tR) < 1− δ) = 0. (4.26b)

Proof. See 4.7.

4.3 Proof of Lemma 4.3

E[Ft|st−1, yt−1] = E[ϕ(ft−1, Yt, St, st−1|st−1, yt−1)] (4.27a)

= E[ϕ(ft−1, Yt, St, st−1)|st−1]. (4.27b)

Then,

E[dFt(w)|st−1, yt−1]

= E[ϕ(dft−1(w), Yt, St, st−1)|st−1] (4.28a)

=
∑

yt,st,xt

Q′(yt|st, xt)Q(st|st−1)P̂ (xt|st−1)

× Q′(yt|st, e(ft−1(w), st−1))dft−1(w)

P̂ (yt|st, st−1)
(4.28b)

= dft−1(w). (4.28c)
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Similarly, we get

E[Ft(w)|st−1, yt−1] = E[ϕ(ft−1(w), Yt, St, st−1)|st−1] (4.29a)

= ft−1(w). (4.29b)

We would like to find a contraction mapping ξ such that for every w and ft−1 we

have E[λ(ϕ(ft−1(w), Yt, St, st−1|st−1))] ≤ ξ(λ(ft−1(w))). Let us assume for now that

such a contraction mapping exists. We have

E[Vλ(ϕ(ft−1, Yt, St, st−1))|st−1]

= E
[ ∫ 1

0

λ(ϕ(ft−1(w), Yt, St, st−1))|st−1

]
(4.30a)

<

∫ 1

0

ξ(λ(ft−1(w)))dw (4.30b)

≤ ξ(Vλ(ft−1)), (4.30c)

where the first inequality is due to the assumption for the property of ξ and the

second inequality is due to the concavity of ξ. Then

P (Vλ(Ft) > ϵ) ≤ E[Vλ(Ft)]

ϵ
(4.31a)

=
E[E[Vλ(Ft)|St−1, Y t−1]]

ϵ
(4.31b)

=
E[E[Vλ(ϕ(ft−1, Yt, St, St−1))|St−1]]

ϵ
(4.31c)

≤ E[ξ(Vλ(Ft−1))]

ϵ
(4.31d)

≤ ξ(E[Vλ(Ft−1)])

ϵ
· ·· ≤ ξt(E[Vλ(F0)])

ϵ

(a)→ 0, (4.31e)

where the first inequality is the Markov inequality, the second inequality is due

to (4.30), the third inequality is due to the concavity of ξ, the fourth inequality is
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due to repeated application of the above inequalities and the convergence to 0 is due

to the property of the contraction [50, Lemma8]. Observe that the convergence is

true for any initial distribution F0, which implies that the convergence is uniform in

the initial distribution.

It remains to find the contraction ξ with the property

E[λ(ϕ(ft−1(w), Yt, St, st−1|st−1))] ≤ ξ(λ(ft−1(w))). To this end let λ′ : [0, 0.5] → [0, 1]

be a restriction of λ on [0, 0.5]. Then, λ′ becomes one-to-one and onto hence it has

inverse. Let ξ̃ : [0, 1] → [0, 1] be ξ̃(a) = maxst−1 E[λ(ϕ(a, Yt, St, st−1))|st−1]. Consider

now a following function.

ξ∗(a) = max

{
ξ̃(λ′−1(a)), ξ̃(1− λ′−1(a))

}
. (4.32)

Clearly, ξ∗(x) ≥ 0. We will now show that ξ∗ satisfies the aforementioned property.

Indeed, let a
def
= ft−1(w). If a ∈ [0, 1/2] then λ′−1(λ(a)) = a and the first term in

the maximization on the r.h.s. of (4.32) equals maxst−1 E[λ(ϕ(a, Yt, St, st−1|st−1))].

If a ∈ [1/2, 1] then 1 − λ′−1(λ(a)) = a and the second term in the maximization of

the r.h.s. of (4.32) equals maxst−1 E[λ(ϕ(a, Yt, St, st−1|st−1))]. Thus the property

holds. We now need to show that ξ∗(x) < x for all x ∈ (0, 1). This is equivalent to

showing that for every x ∈ (0, 1),E[λ(ϕ(λ′−1(x), Yt, St, st−1|st−1))] < x and E[λ(ϕ(1−

λ′−1(x), Yt, St, st−1|st−1))] < x, which is equivalent to showing that for all a ∈ (0, 1/2)

we have E[λ(ϕ(a, Yt, St, st−1|st−1))] < λ′(a) and E[λ(ϕ(1 − a, Yt, St, st−1|st−1))] <

λ′(a). This in turn is equivalent to showing that E[λ(ϕ(λ′−1(x), Yt, St, st−1|st−1))] <

λ(a) for all a ∈ (0, 1). To show this, since the channel is fixed-point free, Ft(w) is
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not a.s. constant. Hence, using Jensen’s inequality we get

E[λ(ϕ(ft−1(w), Yt, St, st−1))|st−1]

< λ(E[ϕ(ft−1(w), Yt, St, st−1)|st−1]) (4.33a)

= λ(ft−1(w)). (4.33b)

Hence,

ξ∗(a) < a. (4.34)

Finally, we need to establish the concavity of ξ. Since this property does not hold for

ξ∗ we define ξ as the supremum of the convex hull of ξ∗. Let ξ be the upper convex

envelope of ξ∗, i.e.,

ξ(a) = sup{b : (a, b) ∈ L}, (4.35a)

L = conv{(a, b) : a ∈ [0, 1], b ∈ (0, ξ∗(a))}. (4.35b)

Then ξ is concave and from the definition of ξ

E[λ(ϕ(ft−1(w), Yt, St, st−1))|st−1] ≤ ξ(λ(ft−1(w))). (4.36)

For any a ∈ (0, 1], there must exist some constant α ∈ [0, 1] such that a = αa0 +

(1− α)a1

ξ(a) ≤ αξ∗(a0) + (1− α)ξ∗(a1) < αa0 + (1− α)a1 = a, (4.37)

where we used the definition of he upper convex envelope in the first inequality. Since
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ξ is nonnegative, it is contraction.

4.4 Proof of Proposition 4.5

Using the symmetry of λ, we can write

Vλ(F
u
t′+1,(1+α)t)

=

∫ W ∗
t′,t

0

λ(F u
t′+1,(1+α)t(w))dw +

∫ 1

W ∗
t′,t

λ(1− F u
t′+1,(1+α)t(w))dw, (4.38)

max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)

= max
1≤t′≤t

[ ∫ W ∗
t′,t

0

λ(F u
t′+1,(1+α)t(w))dw +

∫ 1

W ∗
t′,t

λ(1− F u
t′+1,(1+α)t(w))dw

]
, (4.39)

where W ∗
t′,t is the unique solution of F u

t′+1,(1+α)t(w) = 0.5. Then, we have

P ( max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − δ) > ν)

≤ P ( max
1≤t′≤t

λ(F u
t′+1,(1+α)t(W

∗
t′,t − δ)) > ν) (4.40a)

≤ P ( max
1≤t′≤t

∫ W ∗
t′,t

W ∗
t′,t−δ

λ(F u
t′+1,(1+α)t(w))dw > νδ) (4.40b)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νδ). (4.40c)

Similarly,

P ( max
1≤t′≤t

[
1− F u

t′+1,(1+α)t(W
∗
t′,t + δ)

]
< 1− ν)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νδ). (4.41)
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For any η ∈ (0, 0.5)

P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> ν

)
(4.42a)

≤ P

(
max
1≤t′≤t

[ ∫ W ∗
t′,t

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

W ∗
t′,t

(1− F u
t′+1,(1+α)t(w))dw

]
> ν/2

)
+ P

(
max
1≤t′≤t

|Ft′(W )−W ∗
t′,t| > ν/2

)
(4.42b)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

({
F(1+α)t(W ) < max

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t − ν/2)

}
∪
{
F(1+α)t(W ) > min

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)

})
(4.42c)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

(
F(1+α)t(W ) /∈ (η, 1− η)

)
+ P

(
max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − ν/2) > η

)
+ P

(
max
1≤t′≤t

[1− F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)] < 1− η

)
(4.42d)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > ν/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νη/2). (4.42e)
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Thus,

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

Ft′ (W )−δ

F u
t′+1,(1+α)t(w)dw > δϵ

)
(4.43a)

≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw > δϵ

)
(4.43b)

≤ P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> δϵ

)
(4.43c)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > δϵ/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > δϵη/2). (4.43d)

From Lemma 4.3, we have for any ν > 0

lim
t→∞

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > ν) = 0. (4.44)

Setting η =
√

supa∈[0,1] ξ
t(a)/(δϵ), together with Lemma 4.4 completes the proof of

the first assertion of the proposition. The proof of the second assertion is similar.
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4.5 Proof of Lemma 4.7

First we show that I(W ;Yt+1, St+1|Y t, St) = E{log dFt+1(W )
dFt(W )

|}.

I(W ;Yt+1, St+1|Y t, St)

= H(Yt+1, St+1|Y t, St)−H(Yt+1, St+1|W,Y t, St) (4.45a)

= E

[
log

1

P (Yt+1, St+1|Y t, St)

]
+ E

[
log

{
Q′(Yt+1|St+1, e(Ft(W ), St))Q(St+1|St)

}]
(4.45b)

= E

[
log

{(
Q′(Yt+1|St+1, e(Ft(W ), St))Q(St+1|St)

)
(
P (Yt+1, St+1|Y t, St)

) }]
(4.45c)

= E

[
log

{
Q′(Yt+1|St+1, e(Ft(W ), St))

P̂ (Yt+1|St+1, St)

}]
(4.45d)

= E

[
log

dFt+1(W )

dFt(W )

]
, (4.45e)

where the last equality is due to (4.10c).

Now we show that I(W ;Yt, St|Y t−1, St−1) = C. Note that for a given Y t−1, St−1,

Xt = F−1

P̂ (·|St−1)
(Ft−1(W )) is P̂ (·|St−1) distributed and hence is independent of Y t−1,

St−2. Then,

I(W ;Yt, St|Y t−1, St−1)

= H(Yt, St|Y t−1, St−1)−H(Yt, St|Y t−1, St−1,W ) (4.46a)

(a)
= H(Yt, St|Y t−1, St−1)−H(Yt, St|Y t−1, St−1,W,Xt) (4.46b)

(b)
= H(Yt, St|St−1)−H(Yt, St|St−1, Xt) (4.46c)

= I(Xt;St, Yt|St−1) (4.46d)

= I(Xt;Yt|St
t−1) (4.46e)

= C, (4.46f)
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where (a) is due to the fact that Xt is a function of Y t−1, St−1,W ; (b) is due to the

channel characteristics and (4.6b); and the last equation is due to the fact that the

channel input sequence for the PMS has distribution which is capacity-achieving.

4.6 Proof of Lemma 4.10

Let Θt
def
= Ft(W ) and PYt+1|Θt,S

t+1
t

= Q′
Yt+1|St+1,e(Θt,St)

. For any ϵ > 0, define

−P ϵ
Yt+1|Θt,S

t+1
t

to be

−P ϵ
Yt+1|Θt,S

t+1
t

(y, |θ, s, s′) = inf
θ−ϵ<θ′<θ

PYt+1|Θt,S
t+1
t

(y|θ′, s, s′). (4.47)

Similarly, define +P ϵ
Yt+1|Θt,S

t+1
t

to be

+P ϵ
Yt+1|Θt,S

t+1
t

(y|θ, s, s′) = inf
θ<θ′<θ+ϵ

PYt+1|Θt,S
t+1
t

(y|θ, s, s′). (4.48)

From now on we prove the first assertion of lemma, the second assertion follows in a

similar way. Define

C−
ϵ = E

[
log

{−P ϵ(Yt+1|Θt, S
t+1
t )

P (Yt+1|St+1
t )

}]
(4.49a)

=

∫
θt

∑
yt+1,s

t+1
t

P (yt+1|θt, st+1
t )P (θt, s

t+1
t ) log

{−P ϵ(yt+1|θt, st+1
t )

P (yt+1|st+1
t )

}
. (4.49b)

Note that

C = E

[
log

{
P (Yt+1|Θt, S

t+1
t )

P (Yt+1|St+1
t )

}]
(4.50a)

=

∫
θt

∑
yt+1,s

t+1
t

P (yt+1|θt, st+1
t )P (θt, s

t+1
t ) log

{
P (yt+1|θt, st+1

t )

P (yt+1|st+1
t )

}
. (4.50b)
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Then we have,

C − C−
ϵ = D(PYt+1|Θt,S

t+1
t

||−P ϵ
Yt+1|Θt,S

t+1
t

|PΘt,S
t+1
t

) ≥ 0. (4.51)

Assume that

inf
ϵ>0

D(PYt+1|Θt,S
t+1
t

||−P ϵ
Yt+1|Θt,S

t+1
t

|PΘt,S
t+1
t

) < ∞. (4.52)

Then,−∞ < C−
ϵ ≤ C. Therefore, PYt+1,St+1Θt,St log

{−P ϵ

Yt+1|Θt,S
t+1
t

P
Yt+1|S

t+1
t

}
is finitely in-

tegrable and converges to PYt+1,St+1,Θt,St log

{
P
Yt+1|Θt,S

t+1
t

P
Yt+1|S

t+1
t

}
a.e. in a monotonically

nondecreasing fashion as ϵ → 0. Hence, by the monotone convergence theorem,

lim
ϵ→0

Cϵ = C, (4.53)

and there exists ϵ′δ such that for all ϵ ≤ ϵ′δ

C−
ϵ > C − δ/2. (4.54)

Furthermore, we can apply the strong law of large numbers for Markov chains to get

lim
t→∞

1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs, S
s+1
s )

P (Ys+1|Ss+1
s )

}
= C−

ϵ a.s. (4.55)

Note that if Fs(W )− Fs(W − 2−tR) < ϵ for 0 ≤ s ≤ t− 1

inf
W−2−tR<w<W

1

t
log dFt(w) ≥

1

t

t−1∑
s=0

log inf
Fs(W−2−tR)<θs<Fs(W )

P (Ys+1|θs, Ss+1
s )

P (Ys+1|Ss+1
s )

(4.56a)

≥ 1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs, S
s+1
s )

P (Ys+1|Ss+1
s )

}
. (4.56b)
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Therefore,

P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

≤ P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}

∩
{1
t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs, S
s+1
s )

P (Ys+1|Ss+1
s )

}
≥ C − δ/2}

)

+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs, S
s+1
s )

P (Ys+1|Ss+1
s )

}
< C − δ/2

)
(4.57a)

(a)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs, S
s+1
s )

P (Ys+1|Ss+1
s )

}
< C − δ/2

)
(4.57b)

(b)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ o(1) (4.57c)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2t(C−R−δ/2)

)
+ o(1) (4.57d)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2tδ/2
)
+ o(1) (4.57e)

(c)→ 0, (4.57f)

where where (a) is due to (4.56), (b) is due to (4.55), and (c) is from the fact that∫W

W−2−tR dFt(w) ≤ 1.
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4.7 Proof of Proposition 4.11

For every ϵ > 0 we have

P (F(1+α)t(W − 2−tR) > δ)

≤ P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
+ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
. (4.58)

Regarding the first quantity we have

P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
(a)→ 0, (4.59)

where (a) is from Lemma 4.10.

Consider an event
∪t

t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

}
. This event is equivalent

to
∪t

t′=1{W − 2−tR ≤ W ′} where W ′ = F−1
t′ (Ft′(W )− ϵ). Then by the monotonicity

of cdf it is equivalent to
∪t

t′=1{Ft(W − 2−tR) ≤ Ft(W
′)} which again is equivalent to{

Ft(W − 2−tR) ≤ max1≤t′≤t Ft

(
W ′

))}
.

Therefore, regarding the second quantity we have

P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
= P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
Ft(W − 2−tR) ≤ max

1≤t′≤t
Ft

(
F−1
t′

(
Ft′(W )− ϵ

))})
(4.60a)
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(a)

≤ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
F(1+α)t(W − 2−tR) ≤ max

1≤t′≤t
F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))})
(4.60b)

= P

(
max
1≤t′≤t

F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))
> δ

)
(4.60c)

(b)
= P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− ϵ

)
> δ

)
(c)→ 0. (4.60d)

where (a) is from the monotonicity of cdf, (b) is due to the PMS update, and (c)

is from Proposition 4.5. P (F(1+α)t(W + 2−tR) < 1 − δ) can also be evaluated in

a similar way. Note that the fixed-point free nature of the channel is required for

zero-rate result, but it can be easily verified that ergodicity of invariant distribution

of (Ft(W ), St+1
t , Yt+1)t implies fixed-point free channel as in Lemma 14 of [50].
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CHAPTER 5

A capacity-achieving posterior matching scheme:

ISI case

In this chapter we describe a transmission scheme which achieves the capacity

of the finite-state channel with unit feedback delay. The scheme which achieves the

capacity of the finite-state channel with arbitrary feedback delay can be thought of

as a slight generalization of the scheme presented here. With unit feedback delay,

the capacity expression in (3.16) becomes

C = sup
{P (X|X′,S′,Θ)}X′,S′,Θ

I(X,X ′;S, Y |S ′,Θ) (5.1)

where Θ ∈ P(X ), and the mutual information is evaluated using the joint measure

P (Y, S,X,X ′, S ′, dΘ)

= Q′(Y |S,X)Q(S|S ′, X ′)P (X|X ′, S ′,Θ)Θ(X ′)P (S ′, dΘ). (5.2a)
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The distribution P (S, dΘ) is the solution of the equation

P (S, dΘ′)

=

∫
S′,Θ

P (S ′, dΘ)
∑
Y

δω(Θ,P (X|X′,S′,Θ),Y,S,S′)(Θ
′)

×
∑
X

Q′(Y |X,S)
∑
X′

Q(S|S ′, X ′)P (X|X ′, S ′,Θ)Θ(X ′). (5.2b)

Let W be a random message point uniformly distributed over the unit interval. A

transmission scheme is a sequence of functions {ẽt : [0, 1) × Y t−1 × St−1 → X}∞t=1

such that

Xt = ẽt(W,Y t−1, St−1). (5.3)

We now describe a simple sequential transmission scheme. We assume that

the capacity achieving distributions {P̂ (X ′|X,S,Θ)}X,S,Θ in (5.1) have been found

for all values of (X,S,Θ) and the corresponding steady-state distribution on X,

P̂ (X|X,S,Θ) and on Yt, St conditioned on St−1,Θt−1,

P̂ (y, s|s′, θ) =
∑

x,x′ Q′(y|x, s)Q(s|s′, x′)(P̂ (x|x′, s′, θ)θ(x′) have been evaluated.

Define the random variable Ft ∈ F as Ft(w)
def
= F (w|Y t, St), where F (·|Y t, St) is

the a-posteriori cdf of W conditioned on Y t, St, and F is the set of all valid cdfs over

[0, 1). Also define Θt ∈ P(X ) with Θt(xt)
def
= P (xt|St, Y t). At time t = 1 the channel

input X1 is generated as

X1 = F−1

P̂ (·|S0)
(F0(W )) (5.4a)

= e(F0(W ), S0) (5.4b)

where the inverse cdf F−1(y)
def
= inf{x : F (x) ≥ y}, F0 = Uniform[0, 1) and S0 ∼

P (S0).

Define F ′
x,t(w) = P (W ≤ w|Xt = x, St, Y t). Then Ft(w) =

∑
x∈X Θt(x)F

′
x,t(w).
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Let F ′
t (w) = (F ′

0,t(w), ..., F
′
KX−1,t(w)). Note that F

′
1(w) can be found from F0(w) and

S0.

Assuming that the channel and state transition probabilities Q′(y|x, s) and

Q(s′|s, x) are non-zero for all x, y, s, s′, the recursion (5.40) guarantees that for every

realization of the random variables of interest, Ft will always have a pdf; in addition

the pdf will be non-zero everywhere in (0, 1].

The channel input Xt for t ≥ 2 is generated as

Xt = F−1

P̂ (·|Xt−1,St−1,Θt−1)
(F ′

Xt−1,t−1(W )) (5.5a)

= x,
x−1∑
i=0

P̂ (i|Xt−1, St−1,Θt−1)

< F ′
Xt−1,t−1(W ) ≤

x∑
i=0

P̂ (i|Xt−1, St−1,Θt−1)

x = 0, . . . , KX − 1 (5.5b)

def
= e(F ′

Xt−1,t−1(W ), P̂ (·|Xt−1, St−1,Θt−1)), (5.5c)

For t ≥ 2, Θt are updated as

Θt = ω(Θt−1, P̂ (·|·, St−1,Θt−1), Yt, St, St−1) (5.6)

where ω is given in (3.34).

At the receiver, the message estimate is obtained as

Ŵt = d(Ft, 2
−Rt/2), (5.7)

where the message estimate function d(F, ϵ) is defined as

d(F, ϵ) = argmax
w

{F (w + ϵ)− F (w − ϵ)}. (5.8)
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Lemma 5.1. Under the PMS the following is true for θt−1 corresponding to st−1, yt−1.

P (Xt|Xt−1, Y
t−1, St−1) = P̂ (Xt|Xt−1, St−1,Θt−1) (5.9)

P (Yt, St|Y t−1, St−1) = P̂ (Yt, St|St−1,Θt−1) (5.10)

F ′
t = ϕ(F ′

t−1, Yt, St, St−1,Θt−1). (5.11)

Proof. See 5.2.

With slight abuse of notation we also say that Ft is updated as

Ft = ϕ(F ′
t−1, Yt, St, St−1,Θt−1) (5.12)

because Ft is determined by F ′
t and Θt.

Note that f ′
t(a) is a function of f ′

t−1 only through f ′
t−1(a). In the following we will

also use the notation f ′
t(a) = ϕ(f ′

t−1, yt, st, st−1, θt−1)(a) = ϕ(f ′
t−1(a), yt, st, st−1, θt−1).

Observe also from (5.5) that the transmitted symbol Xt is a function of W and F ′
t−1

only through the quantity F ′
t−1(W ). This has important implications for the analysis

of the PMS scheme.

5.1 Achievability Result

Let Ŵt be the message point estimate at the receiver at time t. Then, a trans-

mission scheme achieves rate R if

lim
t→∞

P (|W − Ŵt| > 2−tR) = 0. (5.13)
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In particular, we say that a transmission schemes achieves zero rate if

∀ϵ > 0 lim
t→∞

P (|W − Ŵt| > ϵ) = 0. (5.14)

5.1.1 Zero Rate Result

For a cdf h : [0, 1] → [0, 1] define a Lyapunov function Vλ as follows.

Vλ(h) =

∫ 1

0

λ(h(w))dw, (5.15)

where λ : [0, 1] → [0, 1] is onto, strictly concave and symmetric about 0.5. This

definition implies that λ(x) is 0 at x = 0, 1 and 1 at x = 1/2. Furthermore, for

a cdf F ∈ F , Vλ(F ) is small if F resembles a step function (it is exactly 0 for a

step function). A function ξ : [0, 1] → [0, 1] is called contraction if it is nonnegative,

concave, and ξ(x) < x for x ∈ (0, 1).

Definition 5.2. A channel is called fixed-point free if for any f ′
t(w), st, θt

P
(
ϕ(f ′

t(w), Yt+1, St+1, st, θt) = ft(w)
)
< 1. (5.16)

Lemma 5.3. If the channel is fixed-point free, then for ϵ > 0 and for all f ∈ F ,

lim
t→∞

P (Vλ(Ft) > ϵ|F0 = f) = 0. (5.17)

Proof. See 5.3.

The intuitive interpretation of the above lemma is that the probability of having

an Ft that does not resemble a step function is zero at the limit of large t.

Define the function Ht : [0, 1] → X as follows. Since there is no w and w′ such

that F1(w) = F1(w
′) with w ̸= w′ (that would imply that dF1(w) is zero in an
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interval), we can set H1(F1(w)) = F−1

P̂ (x1|S0)
(F0(w)). For t ≥ 2,

Ht(Ft(w)) = e(F ′
Ht−1(Ft−1(w)),t−1(w), Ht−1(Ft−1(w)), St−1,Θt−1), (5.18a)

which implies that Ht can be recursively updated as

Ht = ϕ′(Ht−1, St−1, F
′
t−1,Θt−1, St, Yt). (5.18b)

With slight abuse of notation, we say Ft is updated as

Ft = ϕ(Ft−1, Yt, St, St−1,Θt−1, Ht−1) (5.19)

because F ′
t−1 is determined by Ft−1 and Ht−1 as shown below.

dFx,t−1(w) = P (dw|Xt−1 = x, Y t−1) (5.20)

= P (Xt−1 = x|W = w, Y t−1)P (dw|Y t−1) (5.21)

= δHt−1(Ft−1(w))(x)dFt−1(w). (5.22)

Furthermore we also say Ht is updated as

Ht = ϕ′(Ht−1, St−1, Ft−1,Θt−1) (5.23)

from the same reason.

For any t2 > t1 > 0 we can write Ft2 as a function of Ft1−1 and the quanti-

ties Y t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 through a repeated application of the ϕ recursion, i.e.,

Ft2
def
= ϕt2−t1(Ft1−1, Y

t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 ). Let F f

t1,t2 be the random variable de-

fined as F f
t1,t2

def
= ϕt2−t1(f, Y

t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 ). Clearly Ft = F u

1,t, where u de-

notes the uniform distribution over (0, 1). In addition, due to the recursion im-

plied by the PMS, we will denote Ft2(a)
def
= ϕt2−t1(Ft1−1, Y

t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 )(a)

def
=
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ϕt2−t1(Ft1−1(a), Y
t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 ) with some notational abuse. With the above

notation, the function ϕt2−t1(·, Y t2

t1
, St2

t1−1,Θ
t2−1
t1−1, H

t2−1
t1−1 ) is monotonically increasing.

We now prove the following lemma which is a stronger version of Lemma 5.3.

Lemma 5.4. If the channel is fixed-point free, then for ϵ > 0,

lim
t→∞

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ϵ) = 0. (5.24)

Proof. Let V ∗
λ,t1,t2

= supf Vλ(F
f
t1,t2). Note that V ∗

λ,t1,t2
is a deterministic function of

Y t2
t1 , S

t2
t1−1,Θ

t2−1
t1−1, H

t2−1
t1−1 , hence there exists a sequence of {f

k,Y
t2
t1

,S
t2
t1−1,Θ

t2−1
t1−1,H

t2−1
t1−1

}∞k=1

such that

V ∗
λ,t1,t2

= lim
k→∞

Vλ(F
f
k,Y

t2
t1

,S
t2
t1−1,Θ

t2−1
t1−1,H

t2−1
t1−1

t1,t2 ) (5.25a)

= lim
k→∞

Vλ

(
F

ϕ

(
f
k,Y

t2
t1

,S
t2
t1−1,Θ

t2−1
t1−1,H

t2−1
t1−1

,Yt1 ,S
t1
t1−1,Θt1−1,Ht1−1

)
t1+1,t2

)
(5.25b)

≤ sup
f

Vλ(F
f
t1+1,t2

) (5.25c)

= V ∗
λ,t1+1,t2

. (5.25d)

Note that there exists a sequence of cdfs {fk,Y αt+1
2 ,Sαt+1

1 Θαt
1 ,Hαt

1
}∞k=1 such that
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V ∗
λ,2,αt+1 ≥ Vλ(F

f
k,Y αt+1

2 ,Sαt+1
1 ,Θαt

1 ,Hαt
1

2,αt+1 ) > V ∗
λ,2,αt+1 − 1/k. Therefore,

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t > ϵ) ≤ P ( max

1≤t′≤t
V ∗
λ,t′+1,(1+α)t > ϵ) (5.26a)

= P (V ∗
λ,t+1,(1+α)t > ϵ) (5.26b)

= P (sup
f

Vλ(F
f
t+1,(1+α)t) > ϵ) (5.26c)

(a)
= P (sup

f
Vλ(F

f
2,αt+1) > ϵ) (5.26d)

= P ( lim
k→∞

Vλ(F
f
k,Y αt+1

2 ,Sαt+1
1 Θαt

1 ,Hαt
1

2,αt+1 ) > ϵ) (5.26e)

(b)

≤ P (Vλ(F
f
k′,Y αt+1

2 ,Sαt+1
1 Θαt

1 ,Hαt
1

2,αt ) > ϵ) (5.26f)

(c)→ 0, (5.26g)

where (a) is due to the fact that

F f
t+1,(1+α)t = ϕαt−1(f, Y

(1+α)t
t+1 , S

(1+α)t
t ,Θ

(1+α)t−1
t , H

(1+α)t−1
t ),

F f
2,αt+1 = ϕαt−1(f, Y

αt+1
2 , Sαt+1

1 ,Θαt
1 , Hαt

1 ), and (Y
(1+α)t
t+1 , S

(1+α)t
t ,Θ

(1+α)t−1
t , H

(1+α)t−1
t )

, (Y αt+1
2 , Sαt+1

1 ,Θαt
1 , Hαt

1 ) have the same statistics; (b) is true for k′ > 1/(V ∗
λ,2,αt+1−ϵ)

; and (c) is due to the fact that Lemma 5.3 holds for any F0.

Proposition 5.5. If the channel is fixed-point free, then for ϵ, δ > 0

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
= 0, (5.27)

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W ) + δ

)
< 1− ϵ

)
= 0. (5.28)

Proof. See 5.4.

The intuition behind the above proof is that for an error to occur, either the cdf

Ft does not behave as a step function (first, third and fourth terms in (5.57c)) or the

step does not occur at the transmitted message W (second term in (5.57c)).
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5.1.2 Rate R < C achievability

Lemma 5.6. E{log dFt+1(W )
dFt(W )

|} = C.

Proof. See 5.5.

Lemma 5.7. (F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t is a Markov chain.

Proof.

P (df ′
t(w), dθt, xt, s

t+1
t , yt+1|f ′t−1(w), θt−1, xt−1, s′t, yt)

= Q′(yt+1|e(f ′
t(w), xt, st, θt), st+1)Q(st+1|st, xt)

× P (df ′
t(w), dθt, xt, st|f ′t−1(w), θt−1, xt−1, s′t, yt) (5.29a)

= Q′(yt+1|e(f ′
t(w), xt, st, θt), st+1)Q(st+1|st, xt)

× δϕ(f ′
t−1(w),yt,st,s′t−1,θt−1)(df

′
t(w))δω(θt−1,P̂ (·|·,s′t−1,θt−1),yt,st,s′t−1)

(dθt)

× δe(f ′
xt−1,t−1(w),xt−1,s′t−1,θt−1)(xt)δs′t(st) (5.29b)

= P (df ′
t(w), dθt, xt, s

t+1
t , yt+1|f ′

t−1(w), θt−1, xt−1, s
′t
t−1, yt). (5.29c)

Lemma 5.8. If a Markov chain (F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t has ergodic invariant

distribution, then

lim
t→∞

1

t
log dFt(W ) = C a.s. (5.30)

Proof.

1

t
log dFt(W ) =

1

t

t∑
s=1

log
dFs(W )

dFs−1(W )
. (5.31)
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If (F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t has ergodic invariant distribution, then by the strong

law of large numbers for Markov chains

lim
t→∞

1

t
log dFt(W ) = E[log

dFt(W )

dFt−1(W )
]
(a)
= C a.s. (5.32)

where (a) is from Lemma 5.6.

Lemma 5.9. (F ′
t ,Θt, Ht, S

t+1
t , Yt+1,W )t is a Markov chain.

Proof.

P (df ′
t , dθt, dht, s

t+1
t , yt+1, dw|f ′t−1, θt−1, ht−1, s′t, yt, w′)

= Q′(yt+1|e(f ′
ht(ft(w′)),t(w

′), ht(ft(w
′)), st, θt), st+1)

×Q(st+1|st, ht(ft(w
′)))

× P (df ′
t , dθt, dht, st, dw|f ′t−1, θt−1, ht−1, s′t, yt, w′) (5.33a)

= Q′(yt+1|e(f ′
ht(ft(w′)),t(w

′), ht(ft(w
′)), st, θt), st+1)

×Q(st+1|st, ht(ft(w
′)))

× δϕ(f ′
t−1,yt,st,s

′
t−1,θt−1)(df

′
t)δω(θt−1,P̂ (·|·,s′t−1,θt−1),yt,st,s′t−1)

(dθt)

× δϕ′(ht−1,s′t−1,f
′
t−1,θt−1)(dht)δs′t(st)δw′(dw) (5.33b)

= P (df ′
t , dθt, dht, s

t+1
t , yt+1, dw|f ′

t−1, θt−1, ht−1, s
′t
t−1, yt, w

′). (5.33c)

Lemma 5.10. If a Markov chain (F ′
t ,Θt, Ht, S

t+1
t , Yt+1,W )t has ergodic invariant

distribution, then for any δ > 0 and rate R < C − δ there exists ϵ′ > 0 so that for
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all ϵ ≤ ϵ′

lim
t→∞

P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

= 0 (5.34a)

lim
t→∞

P

( t−1∩
s=0

{Fs(W + 2−tR)− Fs(W ) < ϵ}
)

= 0. (5.34b)

Proof. See 5.6.

The above lemma guarantees that at some time before t there will be

a jump of at least ϵ in the posterior message cdf in the interval of 2−tR

around W . Note that assumption of ergodicity of invariant distribution of

Markov chain (F ′
t ,Θt, Ht, S

t+1
t , Yt+1,W )t is stronger than the same assumption on

(F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t or the corresponding assumption in no ISI case. Latter

assumptions are related to recurrence of F ′
t(W ) or Ft(W ) which implies fixed point

free nature of the system which is violated only in several pathological cases. Using

this lemma we show the main result.

Proposition 5.11. If a Markov chain (F ′
t ,Θt, Ht, S

t+1
t , Yt+1,W )t has ergodic invari-

ant distribution, then for δ, α > 0

lim
t→∞

P (F(1+α)t(W − 2−tR) > δ) = 0, (5.35a)

lim
t→∞

P (F(1+α)t(W + 2−tR) < 1− δ) = 0. (5.35b)

Proof. See 5.7.
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5.2 Proof of Lemma 5.1

P (Xt|Xt−1, S
t−1, Y t−1)

(a)
=

∫
w

δe(F ′
Xt−1,t−1(w),Xt−1,St−1,Θt−1)(Xt)dF

′
Xt−1,t−1(w) (5.36a)

(b)
=

∫ w∗
0

w=0

δ0(Xt)dF
′
Xt−1,t−1(w) +

∫ w∗
1

w=w∗
0

δ1(Xt)dF
′
Xt−1,t−1(w)

+ ...+

∫ 1

w=w∗
KX−2

δKX−1(Xt)dF
′
Xt−1,t−1(w) (5.36b)

=

KX−1∑
x=0

δx(Xt)P̂ (x|Xt−1, St−1,Θt−1) (5.36c)

= P̂ (Xt|Xt−1, St−1,Θt−1). (5.36d)

where w∗
x is the solution of F ′

Xt−1,t−1(w) =
∑x

x′=0 P̂ (x′|Xt−1, St−1,Θt−1), (a) comes

from the fact that F ′
t−1,Θt−1 are determined by St−1, Y t−1, and (b) comes from (5.5),

and similarly

P (Yt, St|Y t−1, St−1)

=
∑
x,x′

P (Yt|Y t−1, St, Xt = x)P (St|Y t−1, St−1, Xt = x,Xt−1 = x′)

× (Xt = x|Y t−1, St−1, Xt−1 = x′)P (Xt−1 = x′|Y t−1, St−1) (5.37a)

=
∑
x,x′

Q′(Yt|St, x)Q(St|St−1, x
′)P̂ (x|x′, St−1,Θt−1)Θt−1(x

′) (5.37b)

= P̂ (Yt, St|St−1,Θt−1). (5.37c)

In order to define ϕ we need to look at how dF ′
xt,t(w) is updated. Consider the
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following recursive expression for the realization f ′
xt+1,t+1 of F ′

xt+1,t+1

df ′
xt,t(a)

=
P (a, yt, st, xt|yt−1, st−1)

P (yt, st, xt|yt−1, st−1)
(5.38a)

=

(∑
xt−1

Q′(yt|st, xt)Q(st|st−1, xt−1)

× δe(f ′
xt−1,t−1(a),xt−1,st−1,θt−1)(xt)θt−1(xt−1)df

′
xt−1,t−1(a)

)
/

(
P (yt, st, xt|yt−1, st−1)

)
(5.38b)

(a)
=

(∑
xt−1

Q′(yt|st, xt)Q(st|st−1, xt−1)

× δe(f ′
xt−1,t−1(a),xt−1,st−1,θt−1)(xt)θt−1(xt−1)df

′
xt−1,t−1(a)

)
/

(
θt(xt)P̂ (yt, st|st−1, θt−1)

)
, (5.38c)
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where (a) is from (5.10). This implies that f ′
xt,t can be recursively updated as

f ′
xt,t(a)

=

∫ a

a′=0

df ′
xt,t(a

′) (5.39a)

=

(∑
xt−1

Q′(yt|st, xt)Q(st|st−1, xt−1)θt−1(xt−1)

×
∫ a

a′=0

δe(f ′
xt−1,t−1(a

′),xt−1,st−1,θt−1)(xt)df
′
xt−1,t−1(a

′)

)
/

(
θt(xt)P̂ (yt, st|st−1, θt−1)

)
(5.39b)

=
∑
xt−1

Q′(yt|st, xt)Q(st|st−1, xt−1)θt−1(xt−1)

θt(xt)P̂ (yt, st|st−1, θt−1)

×
{
1
(
f ′
xt−1,t−1(a) ≥

xt∑
x=0

P̂ (xt|xt−1, st−1, θt−1)
)(

P̂ (xt|xt−1, st−1, θt−1)
)

+ 1
( xt−1∑

x=0

P̂ (xt|xt−1, st−1, θt−1) ≤ f ′
xt−1,t−1(a)

≤
xt∑
x=0

P̂ (xt|xt−1, st−1, θt−1)
)

×
(
f ′
xt−1,t−1(a)−

xt−1∑
x=0

P̂ (xt|xt−1, st−1, θt−1)
)}

(5.39c)

(a)
= ϕ(f ′

t−1(a), yt, st, st−1, θt−1), (5.39d)

where we used in (a) the fact that θt is determined by yt, st, st−1, θt−1. Then,

f ′
t = ϕ(f ′

t−1, yt, st, st−1, θt−1). (5.40)
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5.3 Proof of Lemma 5.3

E[Ft|st−1, yt−1] = E[ϕ(f ′
t−1, Yt, St, st−1, θt−1)|st−1, yt−1] (5.41a)

= E[ϕ(f ′
t−1, Yt, St, st−1, θt−1)|st−1, θt−1]. (5.41b)

Then,

E[dFt(w)|st−1, yt−1]

=
∑
yt

∑
st

∑
xt
t−1

Q′(yt|st, xt)Q(st|st−1, xt−1)P̂ (xt|xt−1, st−1, θt−1)θt−1(xt−1)

×
(∑

x̂t−1

Q′(yt|st, e(fx̂t−1,t−1(w), x̂t−1, st−1, θt−1))

×Q(st|st−1, x̂t−1)θt−1(x̂t−1)df
′
x̂t−1,t−1(w)

)
/

(∑
x̃t
t−1

Q′(yt|st, x̃t)

×Q(st|st−1, x̃t−1)P̂ (x̃t−1|x̃t−1, st−1, θt−1)θt−1(x̃t−1)

)
(5.42a)

=
∑
x̂t−1

θt−1(x̂t−1)df
′
x̂t−1,t−1(w) (5.42b)

= dft−1(w). (5.42c)

Similarly, we get

E[Ft(w)|st−1, yt−1]

= E[ϕ(f ′
t−1(w), Yt, St, st−1, θt−1)|st−1, θt−1] (5.43a)

= ft−1(w). (5.43b)

We would like to find a contraction mapping ξ such that for every w and ft−1 we
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have E[λ(ϕ(f ′
t−1(w), Yt, St, st−1, θt−1|st−1, θt−1))] ≤ ξ(λ(ft−1(w))). Let us assume for

now that such a contraction mapping exists. We have

E[Vλ(ϕ(f
′
t−1, Yt, St, st−1, θt−1))|st−1, θt−1]

=E
[∫ 1

0

λ(ϕ(f ′
t−1(w), Yt, St, st−1, θt−1))|st−1, θt−1

]
(5.44a)

<

∫ 1

0

ξ(λ(ft−1(w)))dw (5.44b)

(a)

≤ ξ(Vλ(ft−1)), (5.44c)

where the first inequality is due to the assumption for the property of ξ and the

second inequality is due to the concavity of ξ. Then

P (Vλ(Ft) > ϵ) ≤ E[Vλ(Ft)]

ϵ
(5.45a)

=
E[E[Vλ(Ft)|St−1, Y t−1]]

ϵ
(5.45b)

=
E[E[Vλ(ϕ(f

′
t−1, Yt, St, St−1,Θt−1))|St−1,Θt−1]]

ϵ
(5.45c)

≤ E[ξ(Vλ(Ft−1))]

ϵ
(5.45d)

≤ ξ(E[Vλ(Ft−1)])

ϵ
· ·· ≤ ξt(E[Vλ(F0)])

ϵ

(a)→ 0, (5.45e)

where the first inequality is the Markov inequality, the second inequality is due

to (5.44), the third inequality is due to the concavity of ξ, the fourth inequality is

due to repeated application of the above inequalities and the convergence to 0 is due

to the property of the contraction [50, Lemma8]. Observe that the convergence is

true for any initial distribution F0, which implies that the convergence is uniform in

the initial distribution.

It remains to find the contraction ξ with the property

E[λ(ϕ(f ′
t−1(w), Yt, St, st−1, θt−1|st−1, θt−1))] ≤ ξ(λ(ft−1(w))). To this end let λ′ :
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[0, 0.5] → [0, 1] be a restriction of λ on [0, 0.5]. Then, λ′ becomes one-to-one and

onto hence it has inverse. Let ξ̃ : [0, 1] → [0, 1] be

ξ̃(a)

= sup
st−1,θt−1,ai,0≤i≤KX−1
:0≤ai≤1,

∑
i θt−1(i)ai=a

E[λ(ϕ(a0, a1, ..., aKX−1, Yt, St, st−1, θt−1))|st−1, θt−1]. (5.46)

Consider the above supremum. Space of st−1 is finite, and spaces of θt−1 and

(a0, ..., aKX−1) are compact. Since ϕ is continuous with respect to θt−1 and

(a0, ..., aKX−1) given that P̂X|X′,S,Θ(·|·, ·, θ) is continuous with respect to θ. Therefore

the above supremum belongs to space of st−1, θt−1, (a0, ..., aKX−1), and hence ξ̃(a) < a

because of (5.48). Consider now a following function.

ξ∗(a) = max

{
ξ̃(λ′−1(a)), ξ̃(1− λ′−1(a))

}
. (5.47)

Clearly, ξ∗(x) ≥ 0. We will now show that ξ∗ satisfies the aforementioned property.

Indeed, let a
def
= ft−1(w). If a ∈ [0, 1/2] then λ′−1(λ(a)) = a and the first term in the

maximization on the r.h.s. of (5.47) equals ξ̃(a). If a ∈ [1/2, 1] then 1−λ′−1(λ(a)) = a

and the second term in the maximization of the r.h.s. of (4.32) equals ξ̃(a). Thus

the property holds. We now need to show that ξ∗(a) < a for all a ∈ (0, 1). To show

this, since the channel is fixed-point free, Ft(w) is not a.s. constant. Hence, using

Jensen’s inequality we get

E[λ(Ft(w))|st−1, yt−1]

< λ(E[Ft(w)|st−1, yt−1]) (5.48a)

= λ(ft−1(w)). (5.48b)

Therefore, ξ̃(λ′−1(a)) < a from (5.48) and the definition of ξ̃. We also have ξ̃(1 −
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λ′−1(a)) < a. Hence,

ξ∗(a) < a. (5.49)

Finally, we need to establish the concavity of ξ. Since this property does not hold for

ξ∗ we define ξ as the supremum of the convex hull of ξ∗. Let ξ be the upper convex

envelope of ξ∗, i.e.,

ξ(a) = sup{b : (a, b) ∈ L}, (5.50a)

L = conv{(a, b) : a ∈ [0, 1], b ∈ (0, ξ∗(a))}. (5.50b)

Then ξ is concave and from the definition of ξ

E[λ(ϕ(f ′
t−1(w), Yt, St, st−1, θt−1))|st−1, θt−1] (5.51a)

≤ ξ(λ(ft−1(w)))

< λ(ft−1(w)). (5.51b)

For any a ∈ (0, 1], there must exist some constant α ∈ [0, 1] such that a = αa0 +

(1− α)a1

ξ(a) ≤ αξ∗(a0) + (1− α)ξ∗(a1) < αa0 + (1− α)a1 = a, (5.52)

where we used the definition of he upper convex envelope in the first inequality. Since

ξ is nonnegative, it is contraction.
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5.4 Proof of Proposition 5.5

Using the symmetry of λ, we can write

Vλ(F
u
t′+1,(1+α)t)

=

∫ W ∗
t′,t

0

λ(F u
t′+1,(1+α)t(w))dw +

∫ 1

W ∗
t′,t

λ(1− F u
t′+1,(1+α)t(w))dw,

max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) (5.53)

= max
1≤t′≤t

[ ∫ W ∗
t′,t

0

λ(F u
t′+1,(1+α)t(w))dw +

∫ 1

W ∗
t′,t

λ(1− F u
t′+1,(1+α)t(w))dw

]
, (5.54)

where W ∗
t′,t is the unique solution of F u

t′+1,(1+α)t(w) = 0.5. Then, we have

P ( max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − δ) > ν)

≤ P ( max
1≤t′≤t

λ(F u
t′+1,(1+α)t(W

∗
t′,t − δ)) > ν) (5.55a)

≤ P ( max
1≤t′≤t

∫ W ∗
t′,t

W ∗
t′,t−δ

λ(F u
t′+1,(1+α)t(w))dw > νδ) (5.55b)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νδ). (5.55c)

Similarly,

P ( max
1≤t′≤t

[
1− F u

t′+1,(1+α)t(W
∗
t′,t + δ)

]
< 1− ν)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νδ). (5.56)
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For any η ∈ (0, 0.5)

P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> ν

)
≤ P

(
max
1≤t′≤t

[ ∫ W ∗
t′,t

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

W ∗
t′,t

(1− F u
t′+1,(1+α)t(w))dw

]
> ν/2

)
+ P

(
max
1≤t′≤t

|Ft′(W )−W ∗
t′,t| > ν/2

)
(5.57a)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

({
F(1+α)t(W ) < max

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t − ν/2)

}
∪
{
F(1+α)t(W ) > min

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)

})
(5.57b)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

(
F(1+α)t(W ) /∈ (η, 1− η)

)
+ P

(
max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − ν/2) > η

)
+ P

(
max
1≤t′≤t

[1− F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)] < 1− η

)
(5.57c)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > ν/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > νη/2). (5.57d)
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Thus,

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

Ft′ (W )−δ

F u
t′+1,(1+α)t(w)dw > δϵ

)
(5.58a)

≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw > δϵ

)
(5.58b)

≤ P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> ν

)
(5.58c)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > δϵ/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)) > δϵη/2). (5.58d)

Setting η =
√

supa∈[0,1] ξ
t(a)/(δϵ), together with Lemma 5.4 completes the proof of

the first assertion of the proposition. The proof of the second assertion is similar.

5.5 Proof of Lemma 5.6

First we show that I(W ;Yt+1, St+1|Y t, St) = E{log dFt+1(W )
dFt(W )

|}.

I(W ;Yt+1, St+1|Y t, St)

= H(Yt+1, St+1|Y t, St)−H(Yt+1, St+1|W,Y t, St) (5.59a)

= E

[
log

1

P (Yt+1, St+1|Y t, St)

]
+E

[
log

{
Q′(Yt+1|St+1, e(F

′
Xt,t(W ), Xt, St,Θt))Q(St+1|St, Xt)

}]
(5.59b)
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= E

[
log

Q′(Yt+1|St+1, e(F
′
Xt,t

(W ), Xt, St,Θt))Q(St+1|St, Xt)

P̂ (Yt+1, St+1|St,Θt)

]
(5.59c)

= E

[
log

dFt+1(W )

dFt(W )

]
. (5.59d)

Now we show that I(W ;Yt, St|Y t−1, St−1) = C. Note that for a given Y t−1, St−1,

Xt is P̂ (·|Xt−1, St−1,Θt) distributed and hence is independent of Y t−1, St−2. Then,

I(W ;Yt, St|Y t−1, St−1)

= H(Yt, St|Y t−1, St−1)−H(Yt, St|Y t−1, St−1,W ) (5.60a)

(a)
= H(Yt, St|Y t−1, St−1, θt−1)−H(Yt, St|Y t−1, St−1,W,X t

t−1,Θt−1) (5.60b)

(b)
= H(Yt, St|St−1,Θt−1)−H(Yt, St|St−1, X

t
t−1,Θt−1) (5.60c)

= I(X t
t−1;St, Yt|St−1,Θt−1) (5.60d)

= C, (5.60e)

where (a) due to the fact that Θt−1 is a function of Y t−1, St−1 and X t
t−1 is a func-

tion of Y t−1, St−1,W ; ((b) is due to the channel characteristics and (5.10); and the

last equation is due to the fact that the channel input sequence for the PMS has

distribution which is capacity-achieving.

5.6 Proof of Lemma 5.10

Consider

PYt+1,St+1|F ′
t ,Ht,St,Θt,W = Q′

Yt+1|St+1,g(F ′
Ht(Ft(W )),t

(W ),Ht(Ft(W )),St,Θt)
QSt+1|St,Ht(Ft(W )). For
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any ϵ > 0, define −P ϵ
Yt+1,St+1|F ′

t ,Ht,St,Θt,W
to be

−P ϵ
Yt+1,St+1|F ′

t ,Ht,St,Θt,W
(y, s|f ′, h, s, θ, w)

= inf
f−1(f(w)−ϵ)<w′<w

PYt+1,St+1|F ′
t ,Ht,St,Θt,W (y, s|f ′, h, s, θ, w′), (5.61)

where f(w) =
∑

x θ(x)f
′
x(w). Similarly, define +P ϵ

Yt+1,St+1|F ′
t ,Ht,St,Θt,W

to be

−P ϵ
Yt+1,St+1|F ′

t ,Ht,St,Θt,W
(y, s|f ′, h, s, θ, w)

= inf
w<w′<f−1(f(w)+ϵ)

PYt+1,St+1|F ′
t ,Ht,St,Θt,W (y, s|f ′, h, s, θ, w′). (5.62)

From now on we prove the first assertion of lemma, the second assertion follows in a

similar way. Define

C−
ϵ = E

[
log

{−P ϵ(Yt+1, St+1|F ′
t , Ht, St,Θt,W )

P (Yt+1, St+1|St,Θt)

}]
(5.63a)

=

∫
f ′
t ,ht,θt,w

∑
yt+1,s

t+1
t

P (yt+1, st+1|f ′
t , ht, st, θt, w)P (f ′

t , ht, st, θt, w)

× log

{−P ϵ(yt+1, st+1|f ′
t , ht, st, θt, w)

P (yt+1, st+1|st, θt)

}
. (5.63b)

Note that

C = E

[
log

{
P (Yt+1, St+1|F ′

t , Ht, St,Θt,W )

P (Yt+1, St+1|St,Θt)

}]
(5.64a)

=

∫
f ′
t ,ht,θt,w

∑
yt+1,s

t+1
t

P (yt+1, st+1|f ′
t , ht, st, θt, w)P (f ′

t , ht, st, θt, w)

× log

{
P (yt+1, st+1|f ′

t , ht, st, θt, w)

P (yt+1, st+1|st, θt)

}
. (5.64b)
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Then we have,

D(PYt+1,St+1|F ′
t ,Ht,St,Θt,W ||−P ϵ

Yt+1,St+1|F ′
t ,Ht,St,Θt,W

|PF ′
t ,Ht,St,Θt,W )

= C − C−
ϵ ≥ 0. (5.65)

Assume that

inf
ϵ>0

D(PYt+1,St+1|F ′
t ,Ht,St,Θt,W ||−P ϵ

Yt+1,St+1|F ′
t ,Ht,St,Θt,W

|PF ′
t ,Ht,St,Θt,W ) < ∞. (5.66)

Then,−∞ < C−
ϵ ≤ C. Therefore, PYt+1,St+1,F ′

t ,Ht,St,Θt,W log

{−P ϵ
Yt+1,St+1|F ′

t ,Ht,St,Θt,W

PYt+1,St+1|St,Θt

}
is finitely integrable and converges to PYt+1,St+1,F ′

t ,Ht,St,Θt,W log

{
PYt+1,St+1|F ′

t ,Ht,St,Θt,W

PYt+1,St+1|St,Θt

}
a.e. in a monotonically nondecreasing fashion as ϵ → 0. Hence, by the monotone

convergence theorem,

lim
ϵ→0

Cϵ = C, (5.67)

and there exists ϵ′δ such that for all ϵ ≤ ϵ′δ

C−
ϵ > C − δ/2. (5.68)

Furthermore, we can apply the strong law of large numbers for Markov chains to get

lim
t→∞

1

t

t−1∑
s=0

log

{−P ϵ(Ys+1, Ss+1|F ′
s, Hs, Ss,Θs,W )

P (Ys+1, Ss+1|Ss,Θs)

}
= C−

ϵ a.s. (5.69)
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Note that if Fs(W )− Fs(W − 2−tR) < ϵ for 0 ≤ s ≤ t− 1

inf
W−2−tR<w<W

1

t
log dFt(w)

≥ 1

t

t−1∑
s=0

log inf
W−2−tR<w<W

P (Ys+1, Ss+1|F ′
s, Hs, Ss,Θs, w)

P (Ys+1, Ss+1|Ss,Θs)
(5.70a)

≥ 1

t

t−1∑
s=0

log

{−P ϵ(Ys+1, Ss+1|F ′
s, Hs, Ss,Θs,W )

P (Ys+1, Ss+1|Ss,Θs)

}
. (5.70b)

Therefore,

P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

≤ P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}

∩
{1
t

t−1∑
s=0

log

{−P ϵ(Ys+1, Ss+1|F ′
s, Hs, Ss,Θs,W )

P (Ys+1, Ss+1|Ss,Θs)

}
≥ C − δ/2}

)

+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1, Ss+1|F ′
s, Hs, Ss,Θs,W )

P (Ys+1, Ss+1|Ss,Θs)

}
< C − δ/2

)
(5.71a)

(a)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1, Ss+1|F ′
s, Hs, Ss,Θs,W )

P (Ys+1, Ss+1|Ss,Θs)

}
< C − δ/2

)
(5.71b)

(b)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ o(1) (5.71c)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2t(C−R−δ/2)

)
+ o(1) (5.71d)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2tδ/2
)
+ o(1) (5.71e)

(c)→ 0, (5.71f)

where (a) is due to (5.70), (b) is due to (5.69), and (c) is from the fact that∫W

W−2−tR dFt(w) ≤ 1.
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5.7 Proof of Proposition 5.11

For every ϵ > 0 we have

P (F(1+α)t(W − 2−tR) > δ)

≤ P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
+ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
. (5.72)

Regarding the first quantity we have

P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
(a)→ 0, (5.73)

where (a) is from Lemma 5.10.

Consider an event
∪t

t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

}
. This event is equivalent

to
∪t

t′=1{W − 2−tR ≤ W ′} where W ′ = F−1
t′ (Ft′(W )− ϵ). Then by the monotonicity

of cdf it is equivalent to
∪t

t′=1{Ft(W − 2−tR) ≤ Ft(W
′)} which again is equivalent to{

Ft(W − 2−tR) ≤ max1≤t′≤t Ft

(
W ′

))}
.

Therefore, regarding the second quantity we have

P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
= P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
Ft(W − 2−tR) ≤ max

1≤t′≤t
Ft

(
F−1
t′

(
Ft′(W )− ϵ

))})
(5.74a)
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(a)

≤ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
F(1+α)t(W − 2−tR) ≤ max

1≤t′≤t
F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))})
(5.74b)

= P

(
max
1≤t′≤t

F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))
> δ

)
(5.74c)

(b)
= P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− ϵ

)
> δ

)
(c)→ 0. (5.74d)

where (a) is from the monotonicity of cdf, (b) is due to the PMS update, and (c)

is from Proposition 5.5. P (F(1+α)t(W + 2−tR) < 1 − δ) can also be evaluated in a

similar way. Note that the fixed-point free nature of the channel is required for zero-

rate result, but it can be easily verified that ergodicity of invariant distribution of

(F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t implies fixed-point free channel as in Lemma 14 of [50],

and ergodicity of invariant distribution of (F ′
t(W ),Θt, Xt, S

t+1
t , Yt+1)t is implied by

that of (F ′
t ,Θt, Ht, S

t+1
t , Yt+1,W )t.
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CHAPTER 6

Conclusion

6.1 Summary of results and comments

In this chapter, a summary of the obtained results is provided, together with

comments and future research directions.

6.1.1 Capacity achieving codes for finite-state channels

without feedback

In Chapter 2, we presented SIR-achieving and capacity-achieving code ensembles

for FSCs. We first established an upper bound on the average block error probability

of coset code ensembles transmitted through FSCs. We used this bound to show

that coset ensembles generated by regular LDPC, punctured LDPC, and LDPC-GM

ensembles which achieve the capacity of MBIOS channels also achieve the SIR of

FSCs. Next, we presented a method of quantization that enables the construction

of code ensembles inducing a Markov distribution. We established an upper bound

on the average block error probability of quantized coset code ensembles transmitted

through FSCs. Using this bound, we showed that the sequences of quantized regular
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LDPC, punctured LDPC, and LDPC-GM coset ensembles can achieve the capacity

of FSCs as the order of the induced Markov distribution approaches infinity.

6.1.2 A single-letter capacity expression for finite-state

channels with feedback

In Chapter 3, a single-letter expression for the capacity of the FSC with delayed

feedback was derived. This study was motivated by the fact that the capacity expres-

sion for the general class of such channels given in (3.3a) and derived in [54] involves

a measure on the space of channel states and a measure on the space of measures

on channel states as well. Our derived expression given in (3.16) only involves a

measure on the previously transmitted channel input. Although this is an infinite

“state space” (even for finite state alphabets), this methodology results in a capacity

expression that does not depend on an ever-expanding sequence of random variables

X t, Y t, St.

The methodology was based on reformulating the capacity problem as a stochastic

control problem. Although this methodology was based on the one proposed in [54],

the key difference was to identify the information state and action directly instead of

considering a stochastic control problem with a state dependent action space, as was

done in [54]. We believe that our approach reflects the basic principles of Markov

decision theory better and hence is more natural. This methodology is quite general

and will likely be useful in finding single-letter expressions for the capacity of other

channels, such as the multiple-access channel with feedback.

We finally applied this methodology to the evaluation of the capacity expression

for the case with no ISI, and the resulting expression agrees with the previous result

given in [52]. It turns out that the corresponding control problem is a simple Markov

decision process problem, and our methodology is considerably simpler than that
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of [52].

6.1.3 A capacity-achieving posterior matching scheme

In Chapters 4 and 5, we proposed a feedback transmission scheme based on the

simplified capacity expression found in Chapter 3. In both cases (i.e., with and

without ISI), the proposed schemes can be thought of as generalization of the PMS

proposed in [50]. We first considered the no ISI case in Chapter 4. As we saw earlier,

the corresponding scheme is a rather straightforward generalization of its DMC coun-

terpart. We followed the same methodology as in [50] to show capacity achievability:

first establishing the zero-rate result and then the rate R < C achievability. The

zero-rate result is based on identifying an appropriate Lyapunov function Vλ whose

convergence implies zero-rate achievability. The intuition can easily be seen from the

definition of the Lyapunov function, i.e., the fact that a small Vλ(f) means that f is

almost a step function. As seen in this thesis, the same Lyapunov function can be

used for channels with memory, and the main difficulty of proving the zero-rate result

comes from identifying an appropriate contraction mapping to show convergence of

the Lyapunov function.

In Chapter 5 we turn our attention to the case with ISI and observe that the

differences from the previous cases are considerable. First, the PMS itself looks a

lot different from its DMC (or no-ISI) counterpart. The reason for that is because

the optimal transmitter must use information of the previous channel input when

it generates the current channel input because information of the previous channel

input is delivered to the receiver through the presence of ISI. The general structure of

the proof of capacity achievability follows the structure of the no ISI case. Regarding

the zero-rate result, the identification of an appropriate contraction mapping is the

main difficulty. Regarding the rate R < C result, however, a number of unique
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difficulties arose that were not present in the no-ISI case. The first is that unlike

the DMC or no-ISI case the transmitted symbol Xt is not only a function of Ft(W ).

This difficulty posed the dilemma of either studying a Markov process related to

the entire cdf Ft, or construct (and study) a Markov chain involving an appropriate

set of sufficient quantities. Another problem arose when considering the quantity

Ht(Ft(W )) relating to the value of this function in the 2−tR neighborhood of the

message point W . We have not resolved this issue conclusively but we strongly

believe this is the case.

6.2 Future research directions

First, consider the case when there is no feedback. Although we showed that

our scheme achieves the capacity of FSC without feedback we have not studied the

corresponding error exponents. Because error exponents give information on how fast

the error probability converges to zero, this study is important in practical situations

where we cannot assume infinitely long transmission time. Therefore, investigating

error exponents for our proposed schemes would be a meaningful future direction. To

follow this direction, one must come up with better upper bounds on error probability

than the one we derived. The main objective and difficulty would be the derivation

of a random coding bound in single letter form, and the corresponding development

of a stronger SF bound.

In the case where there is feedback, we started our investigation by simplifying

the capacity expression. As mentioned in the summary, the methodology used here

is quite general, so it may be useful when trying to simplify the capacity expression

for non point-to-point channels. One may have to combine information theoretical

concepts and concepts from stochastic control in order to come up with a simplified

expression, since both these areas have their own strengths and weaknesses.
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Consider now the derivation of the capacity-achieving scheme for channels with

memory and feedback, especially the analysis of generalized PMS. As discussed

above, the current methodology might have weaknesses for more general channels

with memory. One might follow a different approach to the analysis of the PMS:

recently Coleman provided one example of such an alternative analysis in [51]. It

would be interesting to see if Coleman’s methodology resolves some of the unre-

solved issues at hand. Another direction of research would be investigation of error

exponents of the PMS. This is partially done for the DMC case in [50], however

the authors did not provide closed form expressions for the error exponents and did

not show any kind of optimality of the exponents. One might consider a completely

different PMS-like scheme that aims at optimizing the finite-length performance of

the communication system as opposed to achieving capacity. Other future directions

include applying the PMS-like schemes for non point-to-point channels. One such

example can be found in [68] for broadcast channels.
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Appendix A

The posterior matching scheme (PMS) for the

discrete memoryless channel (DMC)

Consider a DMC with input/output alphabets X = {0, 1, . . . , KX − 1}, Y =

{0, 1, . . . , KY − 1}, transition matrix {Q(y|x)}x∈X ,y∈Y and unit delay noiseless feed-

back. Let W be a random message uniformly distributed over the unit interval. A

transmission scheme over this channel is a sequence of functions {ẽt : [0, 1)×Y t−1 →

X}∞t=1 such that

Xt = ẽt(W,Y t−1). (A.1)

Let Ŵt be the message point estimate at the receiver at time t. We now describe

a simple sequential transmission scheme, namely the posterior matching scheme

(PMS). We assume that the capacity achieving distribution P̂ (X) has been found,

and we denote the corresponding output distribution by P̂Y (y) =
∑

xQ(y|x)P̂ (x).

Define the random variable Ft ∈ F as Ft(w)
def
= F (w|Y t), where F (·|Y t) is the a-

posteriori cdf of W conditioned on Y t, and F is the set of all valid cdfs over [0, 1).
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Then, at time t ≥ 1 the transmitter generates and transmits the channel input Xt as

Xt = F−1

P̂
(Ft−1(W )) (A.2a)

= x,
x−1∑
i=0

P̂ (i) < Ft−1(W ) ≤
x∑

i=0

P̂ (i) x = 0, . . . , KX − 1 (A.2b)

def
= e(Ft−1(W )), (A.2c)

where the inverse cdf F−1(y)
def
= inf{x : F (x) ≥ y}.

Lemma A.1. For the PMS scheme we have

P (Xt|Y t−1) = P̂ (Xt) (A.3)

P (Yt|Y t−1) = P̂Y (Yt) (A.4)

Ft = ϕ(Ft−1, Yt), t = 1, 2, . . . , (A.5)

where F0 = Uniform[0, 1).

Proof.

P (Xt|Y t−1) = P (Xt|Y t−1, Ft−1) (A.6a)

=

∫
w

P (Xt|Y t−1, Ft−1,W = w)P (dw|Y t−1, Ft−1) (A.6b)

=

∫
w

δe(Ft−1(w))(Xt)dFt−1(w) (A.6c)

=
∑
x

δx(Xt)P̂ (x) (A.6d)

= P̂ (Xt), (A.6e)
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and similarly

P (Yt|Y t−1) =
∑
x

P (Yt|Y t−1, Xt = x)P (Xt = x|Y t−1) (A.7a)

=
∑
x

Q(Yt|x)P̂ (x) (A.7b)

= P̂Y (Yt). (A.7c)

The transmitter subsequently updates the quantity Ft−1 according

Ft = ϕ(Ft−1, Yt) (A.8)

where ϕ is given implicitly through the corresponding pdf update

dft(a) =
P (yt|a)da
P (yt)

(A.9a)

=
Q(yt|e(ft−1(a)))P (yt−1|a)da

P (yt|yt−1)P (yt−1)
(A.9b)

=
Q(yt|e(ft−1(a)))dft−1(a)

P (yt|yt−1)
(A.9c)

=
Q(yt|e(ft−1(a)))dft−1(a)∫

a′
Q(yt|e(ft−1(a′)))dft−1(a′)

(A.9d)

=
Q(yt|e(ft−1(a)))dft−1(a)

P̂Y (yt)
, (A.9e)

and explicitly through

ft(a) =

∑x−1
i=0 Q(yt|i)P̂ (i) +Q(yt|x)[ft−1(a)−

∑x−1
i=0 P̂ (i)]

P̂Y (yt)
, (A.10)

x−1∑
i=0

P̂ (i) < ft−1(a) ≤
x∑

i=0

P̂ (i),

x = 0, . . . , KX − 1.
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Observe from the above equation that ft(a) is a function of ft−1 only through

ft−1(a). In the following we will also use the notation ft(a) = ϕ(ft−1, yt)(a) =

ϕ(ft−1(a), yt). Observe also from (A.2a) that the transmitted symbol Xt is a function

of W and Ft−1 only through the quantity Ft−1(W ). This has important implications

for the analysis of the PMS.

Note that from Lemma A.1, Yt’s are i.i.d. random variables, each with distribu-

tion P̂Y .

Assuming that the channel transition probabilities Q(y|x) are non-zero for all

x, y, the recursion described by (A.5) and (A.9) guarantees that for every realization

of the random variables of interest, Ft will always have a pdf; in addition the pdf

will be piecewise constant and non-zero everywhere in (0, 1].

At the receiver, the quantity Ft is updated according to (A.5), and the message

estimate is obtained as

Ŵt = d(Ft, 2
−Rt/2), (A.11)

where the message estimate function d(F, δ) is defined as

d(F, δ) = argmax
w

{F (w + δ)− F (w − δ)}. (A.12)

In the following figure, a directed acyclic graph is shown describing the generation

of all random variables of interest.
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A.0.1 Special Case: BSC

In the special case of BSC the capacity achieving input distribution is P̂ (0) =

P̂ (1) = 1/2, and the encoding function becomes

Xt = F−1

P̂
(Ft−1(W )) (A.13a)

=

 0, Ft−1(W ) ≤ 1/2

1, else
(A.13b)

def
= e(Ft−1(W )). (A.13c)

Also, the update function ϕ(·, ·) simplifies to

Ft(a) =

 2Q(Yt|0)Ft−1(a), Ft−1(a) ≤ 1/2

Q(Yt|0) + 2Q(Yt|1)(Ft−1(a)− 1/2), else
(A.14)

A.1 Capacity achievability of the PMS (according

to [50])

This is a modified version of Shayevitz’s original proof in [50]. The only difference

from the original proof is notation. For simplicity we will consider DMC from now

on. Shayevitz’s original proof is for general memoryless channels.

A transmission scheme achieves rate R if

lim
t→∞

P (|W − Ŵt| > 2−tR) = 0. (A.15)

In particular, we say that a transmission schemes achieves zero rate if

∀ϵ > 0 lim
t→∞

P (|W − Ŵt| > ϵ) = 0. (A.16)
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A.1.1 Zero rate result

Let ϕY (·)
def
= ϕ(·, Y ). Then Ft = ϕYt(ϕYt−1(· · ·ϕY1(F0))). For a non-decreasing

function h : [0, 1] → [0, 1] define a Lyapunov function Vλ as

Vλ(h) =

∫ 1

0

λ(h(w))dw, (A.17)

where λ : [0, 1] → [0, 1] is onto, strictly concave and symmetric about 0.5. This

definition implies that λ(x) is 0 at x = 0, 1 and 1 at x = 1/2. Furthermore, for

a cdf F ∈ F , Vλ(F ) is small if F resembles a step function (it is exactly 0 for a

step function). A function ξ : [0, 1] → [0, 1] is called contraction if it is nonnegative,

concave, and ξ(x) < x for x ∈ (0, 1).

Definition A.2. A channel is called fixed-point free if for any ft(w)

P
(
ϕYt+1(ft(w)) = ft(w)

)
< 1. (A.18)

Lemma A.3. If the channel is fixed-point free, then for ϵ > 0, and for all f ∈ F

lim
t→∞

P (Vλ(Ft) > ϵ|F0 = f) = 0. (A.19)

Proof. We would like to find a contraction mapping ξ such that for every w and ft−1

we have E[λ(Ft(w))|ft−1(w)] ≤ ξ(λ(ft−1(w))). Let us assume for now that such a
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contraction mapping exists. We have

E[Vλ(Ft)|ft−1] = E[

∫ 1

0

λ(Ft(w))dw|ft−1] (A.20a)

=

∫ 1

0

E[λ(Ft(w))|ft−1(w)]dw (A.20b)

≤
∫ 1

0

ξ(λ(ft−1(w)))dw (A.20c)

≤ ξ(

∫ 1

0

λ(ft−1(w))dw) (A.20d)

= ξ(Vλ(ft−1)), (A.20e)

where the first inequality is due to the assumption for the property of ξ and the

second inequality is due to the concavity of ξ. Then,

P (Vλ(Ft) > ϵ) ≤ E[Vλ(Ft)]

ϵ
(A.21a)

=
E[E[Vλ(ϕYt(Ft−1))|Y t−1]]

ϵ
(A.21b)

=
EFt−1 [EYt [Vλ(ϕYt(Ft−1))|Ft−1]]

ϵ
(A.21c)

≤ E[ξ(Vλ(Ft−1))]

ϵ
(A.21d)

≤ ξ(E[Vλ(Ft−1)])

ϵ
(A.21e)

≤ · · · ≤ ξt(E[Vλ(F0)])

ϵ
→ 0, (A.21f)

where the first inequality is the Markov inequality, the second inequality is due

to (A.20), the third inequality is due to the concavity of ξ, the fourth inequality

is due to repeated application of the above inequalities and the convergence to 0 is

due to the property of the contraction. Observe that the convergence is true for any

initial distribution F0, which implies that the convergence is uniform in the initial

distribution.
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It remains to find the contraction ξ with the property E[λ(ϕYt(ft−1(w)))] ≤

ξ(λ(ft−1(w))). To this end let λ′ : [0, 0.5] → [0, 1] be a restriction of λ on [0, 0.5].

Then, λ′ becomes one-to-one and onto hence it has inverse. We define ξ∗ as

ξ∗(x) = max{E[λ(ϕYt(λ
′−1(x)))], E[λ(ϕYt(1− λ′−1(x)))]}. (A.22)

Clearly, ξ∗(x) ≥ 0. We will now show that ξ∗ satisfies the aforementioned property.

Indeed, let θ
def
= ft−1(w). If θ ∈ [0, 1/2] then λ′−1(λ(θ)) = θ and the first term

in the maximization on the r.h.s. of (A.22) equals E[λ(ϕYt(θ))]. If θ ∈ [1/2, 1]

then 1 − λ′−1(λ(θ)) = θ and the second term in the maximization of the r.h.s. of

(A.22) equals E[λ(ϕYt(θ))]. Thus the property holds. We now need to show that

ξ∗(x) < x for all x ∈ (0, 1). This is equivalent to showing that for every x ∈ (0, 1),

E[λ(ϕYt(λ
′−1(x)))] < x and E[λ(ϕYt(1−λ′−1(x)))] < x, which is equivalent to showing

that for all θ ∈ (0, 1/2) we have E[λ(ϕYt(θ))] < λ′(θ) and E[λ(ϕYt(1 − θ))] < λ′(θ).

This in turn is equivalent to showing that E[λ(ϕYt(θ))] < λ(θ) for all θ ∈ (0, 1). To

show this, since the channel is fixed-point free, Ft(w) is not a.s. constant. Hence,

using Jensen’s inequality we get

E[λ(ϕYt(θ))] < λ(E[ϕYt(θ)]) (A.23a)

= λ(
∑
y

P̂Y (y)ϕy(θ)) (A.23b)

= λ(θ), (A.23c)

where the last equality is due to (A.10). Thus, ξ∗ satisfies all requirements for a

contraction mapping except concavity. To this end we define ξ to be the upper
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convex envelope of ξ∗, i.e.,

ξ(a) = sup{b : (a, b) ∈ L}, (A.24a)

L = conv{(a, b) : a ∈ [0, 1], b ∈ (0, ξ∗(a))}. (A.24b)

Then, ξ is non-negative and concave. In addition, since ξ∗(a) ≤ ξ(a), it is clear that

E[λ(ϕYt(ft−1(w)))] ≤ ξ(λ(ft−1(w))). To show that ξ(θ) < θ, we observe that for any

θ ∈ (0, 1], there must exist some constant α ∈ [0, 1] such that θ = αθ0 + (1 − α)θ1.

Then

ξ(θ) ≤ αξ∗(θ0) + (1− α)ξ∗(θ1) < αθ0 + (1− α)θ1 = θ, (A.25)

where we used the definition of the upper convex envelope in the first inequality.

The intuitive interpretation of the above lemma is that the probability of having

an Ft that does not resemble a step function is zero at the limit of large t.

We now state the zero rate result.

Proposition A.4. If the channel is fixed-point free, then for ϵ, δ > 0

lim
t→∞

P (Ft(W − δ) > ϵ) = 0, lim
t→∞

P (Ft(W + δ) < 1− ϵ) = 0. (A.26)

Proof. Using the symmetry of λ, we can write

Vλ(Ft) =

∫ W ∗
t

0

λ(Ft(w))dw +

∫ 1

W ∗
t

λ(1− Ft(w))dw, (A.27)

124



where W ∗
t is the unique solution of Ft(w) = 0.5. Then, for any ν > 0 we have

P (Ft(W
∗
t − δ) > ν) ≤ P (λ(Ft(W

∗
t − δ)) > ν) (A.28a)

≤ P (

∫ W ∗
t

W ∗
t −δ

λ(Ft(w))dw > νδ) (A.28b)

≤ P (Vλ(Ft) > νδ), (A.28c)

and similarly,

P (Ft(W
∗
t + δ) < 1− ν) ≤ P (Vλ(Ft) > νδ). (A.29)

For any η ∈ (0, 0.5) we have

P

(∫ W

0

Ft(w)dw +

∫ 1

W

(1− Ft(w))dw > ν

)
≤ P

(∫ W ∗
t

0

Ft(w)dw +

∫ 1

W ∗
t

(1− Ft(w))dw > ν/2

)
+ P (|W −W ∗

t | > ν/2) (A.30a)

≤ P (Vλ(Ft) > ν/2) + P (Ft(W ) /∈ (η, 1− η))

+ P (Ft(W
∗
t − ν/2) > η) + P (Ft(W

∗
t + ν/2) < 1− η) (A.30b)

≤ P (Vλ(Ft) > ν/2) + 2η + 2P (Vλ(Ft) > νη/2). (A.30c)

Thus

P (Ft(W − δ) > ϵ) ≤ P

(∫ W

W−δ

Ft(w)dw > δϵ

)
(A.31a)

≤ P

(∫ W

0

Ft(w)dw > δϵ

)
(A.31b)

≤ P

(∫ W

0

Ft(w)dw +

∫ 1

W

(1− Ft(w))dw > δϵ

)
(A.31c)

≤ P (Vλ(Ft) > δϵ/2) + 2η + 2P (Vλ(Ft) > δϵη/2). (A.31d)
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Setting η =
√
supa∈[0,1] ξ

t(a)/(δϵ), together with Lemma A.3 completes the proof of

the first assertion of the lemma. The proof of the second assertion is similar.

The intuition behind the above proof is that for an error to occur, either the cdf

Ft does not behave as a step function (first, third and fourth terms in (A.30b)) or

the step does not occur at the transmitted message W (second term in (A.30b)).

Although the previous proposition is sufficient to show achievability of R = 0, in

the following we provide a stronger version of it, that will be used in the next section

for the proof of rate R > 0 achievability. For any t2 > t1 > 0 we can write Ft2 as a

function of Ft1−1 and the observations Y t2
t1 through a repeated application of the ϕ

recursion, i.e., Ft2
def
= ϕt2−t1(Ft1−1, Y

t2
t1 ). Let F f

t1,t2 be the random variable defined as

F f
t1,t2

def
= ϕt2−t1(f, Y

t2
t1 ). Clearly Ft = F u

1,t, where u denotes the uniform distribution

over (0, 1). In addition, due to the recursion implied by the PMS, we will denote

Ft2(a)
def
= ϕt2−t1(Ft1−1, Y

t2
t1 )(a)

def
= ϕt2−t1(Ft1−1(a), Y

t2
t1 ) with some notational abuse.

With the above notation, the function ϕt2−t1(·, Y t2

t1
) is monotonically increasing. We

now prove the following lemma which is a stronger version of Lemma A.3.

Lemma A.5. If the channel is fixed-point free, then for ϵ > 0 and for any α > 0,

lim
t→∞

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ϵ) = 0. (A.32)

Proof. Let V ∗
λ,t1,t2

= supf Vλ(F
f
t1,t2). Note that V ∗

t1,t2
is a deterministic function of
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Y t2
t1 , hence there exists a sequence of cdfs {f

k,Y
t2
t1

}∞k=1 such that

V ∗
λ,t1,t2

= lim
k→∞

Vλ(F
f
k,Y

t2
t1

t1,t2 ) (A.33a)

= lim
k→∞

Vλ(F
ϕYt1

(f
k,Y

t2
t1

)

t1+1,t2
) (A.33b)

≤ sup
f

Vλ(F
f
t1+1,t2

) (A.33c)

= V ∗
λ,t1+1,t2

. (A.33d)

Note that there exists a sequence of cdfs {fk,Y αt
1
}∞k=1 such that

V ∗
λ,1,αt ≥ Vλ(F

f
k,Y αt

1
1,αt ) > V ∗

λ,,αt − 1/k. Therefore,

P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t > ϵ) ≤ P ( max

1≤t′≤t
V ∗
λ,t′+1,(1+α)t > ϵ) (A.34a)

= P (V ∗
λ,t+1,(1+α)t > ϵ) (A.34b)

= P (sup
f

Vλ(F
f
t+1,(1+α)t) > ϵ) (A.34c)

(a)
= P (sup

f
Vλ(F

f
1,αt) > ϵ) (A.34d)

= P ( lim
k→∞

Vλ(F
f
k,Y αt

1
1,αt ) > ϵ) (A.34e)

(b)

≤ P (Vλ(F
f
k,Y αt

1
1,αt ) > ϵ) (A.34f)

(c)→ 0, (A.34g)

where (a) is due to the fact that F f
t+1,(1+α)t = ϕαt−1(f, Y

(1+α)t
t+1 ), F f

1,αt = ϕαt−1(f, Y
αt
1 ),

and Y
(1+α)t
t+1 , Y αt

1 have the same statistics; (b) is true for k′ > 1/(V ∗
λ,1,αt − ϵ); and (c)

is due to the fact that Lemma A.3 holds for any F0.

Observe that indeed this lemma is stronger than Lemma A.3, since P (Vλ(Ft) >

ϵ) = P (Vλ(F
u
1,t) > ϵ) = P (Vλ(F

u
1+t,t+t) > ϵ) ≤ P (max1≤t′≤t Vλ(F

u
t′+1,2t) > ϵ).
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Proposition A.6. If the channel is fixed-point free, then for ϵ, δ > 0

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
= 0, (A.35)

lim
t→∞

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W ) + δ

)
< 1− ϵ

)
= 0. (A.36)

Proof. Using the symmetry of λ, we can write

max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t)

= max
1≤t′≤t

[ ∫ W ∗
t′,t

0

λ(F u
t′+1,(1+α)t(w))dw +

∫ 1

W ∗
t′,t

λ(1− F u
t′+1,(1+α)t(w))dw

]
, (A.37)

where W ∗
t′,t is the unique solution of F u

t′+1,(1+α)t(w) = 0.5. Then, we have

P ( max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − δ) > ν)

≤ P ( max
1≤t′≤t

λ(F u
t′+1,(1+α)t(W

∗
t′,t − δ)) > ν) (A.38a)

≤ P ( max
1≤t′≤t

∫ W ∗
t′,t

W ∗
t′,t−δ

λ(F u
t′+1,(1+α)t(w))dw > νδ) (A.38b)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > νδ), (A.38c)

and similarly

P ( max
1≤t′≤t

[
1− F u

t′+1,(1+α)t(W
∗
t′,t + δ)

]
< 1− ν)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > νδ). (A.39)
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For any η ∈ (0, 0.5)

P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> ν

)
≤ P

(
max
1≤t′≤t

[ ∫ W ∗
t′,t

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

W ∗
t′,t

(1− F u
t′+1,(1+α)t(w))dw

]
> ν/2

)
+ P

(
max
1≤t′≤t

|Ft′(W )−W ∗
t′,t| > ν/2

)
(A.40a)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

({
F(1+α)t(W ) < max

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t − ν/2)

}
∪
{
F(1+α)t(W ) > min

1≤t′≤t
F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)

})
(A.40b)

≤ P

(
max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2

)
+ P

(
F(1+α)t(W ) /∈ (η, 1− η)

)
+ P

(
max
1≤t′≤t

F u
t′+1,(1+α)t(W

∗
t′,t − ν/2) > η

)
+ P

(
max
1≤t′≤t

[1− F u
t′+1,(1+α)t(W

∗
t′,t + ν/2)] < 1− η

)
(A.40c)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > ν/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > νη/2). (A.40d)
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Thus,

P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− δ

)
> ϵ

)
≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

Ft′ (W )−δ

F u
t′+1,(1+α)t(w)dw > δϵ

)
(A.41a)

≤ P

(
max
1≤t′≤t

∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw > δϵ

)
(A.41b)

≤ P

(
max
1≤t′≤t

[ ∫ Ft′ (W )

0

F u
t′+1,(1+α)t(w)dw +

∫ 1

Ft′ (W )

(1− F u
t′+1,(1+α)t(w))dw

]
> δϵ

)
(A.41c)

≤ P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > δϵ/2)

+ 2η + 2P ( max
1≤t′≤t

Vλ(F
u
t′+1,(1+α)t) > δϵη/2). (A.41d)

Setting η =
√
supa∈[0,1] ξ

t(a)/(δϵ), together with Lemma A.5 completes the proof of

the first assertion of the proposition. The proof of the second assertion is similar.

A.1.2 Rate R < C achievability

Lemma A.7. (Ft(W ), Yt+1)t is a Markov chain.

Proof. Let Θt
def
= Ft(W ). We have

P (θt, yt+1|θt−1, yt)

= Q(yt+1|e(θt))P (θt|θt−1, y
t) (A.42a)

= Q(yt+1|e(θt))δϕ(θt−1,yt)(θt) (A.42b)

= P (θt, yt+1|θt−1, yt). (A.42c)

Lemma A.8. E{log dFt+1(W )
dFt(W )

|} = C if the PMS is used as the transmission scheme.

130



Proof. First we show that I(W ;Yt+1|Y t) = E
[
log dFt+1(W )

dFt(W )

]
.

I(W ;Yt+1|Y t)

= E

[
log

{
P (Yt+1|Y t,W

P (Yt+1|Y t, )

}]
(A.43a)

= E

[
log

{
Q(Yt+1|e(Ft(W )))

P̂Y (Yt+1)

}]
(A.43b)

= E

[
log

dFt+1(W )

dFt(W )

]
, (A.43c)

where the last equality is due to (5.40).

Now we show that I(W ;Yt|Y t−1) = C. Note that for a given Y t−1, Xt =

F−1

P̂
(Ft−1(W )) is P̂ distributed and hence is independent of Y t−1. Then,

I(W ;Yt|Y t−1)

= H(Yt|Y t−1)−H(Yt|Y t−1,W ) (A.44a)

(a)
= H(Yt|Y t−1)−H(Yt|Y t−1,W,Xt) (A.44b)

(b)
= H(Yt)−H(Yt|Xt) (A.44c)

= I(Xt;Yt) (A.44d)

= C, (A.44e)

where (a) is due to the fact that Xt is a function of Y t−1,W ; (b) is due to the channel

being DMC and (4.6b); and the last equation is due to the fact that the channel input

sequence for the PMS has distribution which is capacity-achieving.

Lemma A.9. If the Markov chain {Ft(W ), Yt+1}∞1 has ergodic invariant distribution,

then

lim
t→∞

1

t
log dFt(W ) = C a.s. (A.45)
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Proof.

1

t
log dFt(W ) =

1

t

t∑
s=1

log
dFs(W )

dFs−1(W )
. (A.46)

If (Ft(W ), Yt+1)t has ergodic invariant distribution, then by the strong law of large

numbers for Markov chains

lim
t→∞

1

t
log dFt(W ) = E[log

dFt(W )

dFt−1(W )
]
(a)
= C a.s. (A.47)

where (a) is from Lemma A.8.

Lemma A.10. If the Markov chain {Ft(W ), Yt+1}∞1 has ergodic invariant distribu-

tion, then for any δ > 0 and rate R < C − δ there exists ϵ′ > 0 so that for all

ϵ ≤ ϵ′

lim
t→∞

P

( t∩
s=1

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

= 0 (A.48)

lim
t→∞

P

( t∩
s=1

{Fs(W + 2−tR)− Fs(W ) < ϵ}
)

= 0. (A.49)

Proof. Let Θt
def
= Ft(W ), and PYt+1|Θt

def
= Q′

Yt+1|e(Θt)
. For any ϵ > 0, define −P ϵ

Yt+1|Θt

to be

−P ϵ
Yt+1|Θ(y|θ)

def
= inf

θ−ϵ<θ′<θ
PYt+1|Θ(y|θ′). (A.50)

Similarly, define +P ϵ
Yt+1|Θt

to be

+P ϵ
Yt+1|Θt

(y|θ) = inf
θ<θ′<θ+ϵ

PYt+1|Θt(y|θ′). (A.51)

From now on we prove the first assertion of the lemma; the second assertion follows
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in a similar way. Define

C−
ϵ = E

[
log

{−P ϵ(Yt+1|Θt)

P (Yt+1)

}]
(A.52a)

=

∫
θt

∑
yt+1

P (yt+1|θt) log
{−P ϵ(yt+1|θt)

P (yt+1)

}
. (A.52b)

Note that

C = E

[
log

{
P (Yt+1|Θt)

P (Yt+1)

}]
(A.53a)

=

∫
θt

∑
yt+1

P (yt+1|θt) log
{
P (yt+1|θt)
P (yt+1)

}
. (A.53b)

Then we have,

C − C−
ϵ = D(PYt+1|Θt ||−P ϵ

Yt+1|Θt
|PΘt) ≥ 0. (A.54)

Assume that

inf
ϵ>0

D(PYt+1|Θt ||−P ϵ
Yt+1|Θt

|PΘt) < ∞. (A.55)

Then,−∞ < C−
ϵ ≤ C. Therefore, PYt+1,Θt log

{
−P ϵ

Yt+1|Θt

PYt+1

}
is finitely integrable and

converges to PYt+1,Θt log

{
PYt+1|Θt

PYt+1

}
a.e. in a monotonically nondecreasing fashion as

ϵ → 0. Hence, by the monotone convergence theorem,

lim
ϵ→0

C−
ϵ = C, (A.56)

and for δ > 0, there exists ϵ′δ such that for all ϵ ≤ ϵ′δ

C−
ϵ > C − δ/2. (A.57)
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Furthermore, we can apply the strong law of large numbers for Markov chains to get

lim
t→∞

1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs)

P (Ys+1)

}
= C−

ϵ a.s. (A.58)

Note that if Fs(W )− Fs(W − 2−tR) < ϵ for 0 ≤ s ≤ t− 1

inf
W−2−tR<w<W

1

t
log dFt(w) ≥

1

t

t−1∑
s=0

log inf
Fs(W−2−tR)<θs<Fs(W )

P (Ys+1|θs)
P (Ys+1)

(A.59a)

≥ 1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs)

P (Ys+1)

}
. (A.59b)

Therefore,

P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}
)

≤ P

( t−1∩
s=0

{Fs(W )− Fs(W − 2−tR) < ϵ}

∩
{1
t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs)

P (Ys+1)

}
≥ C − δ/2}

)

+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs)

P (Ys+1)

}
< C − δ/2

)
(A.60a)
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(a)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ P

(
1

t

t−1∑
s=0

log

{−P ϵ(Ys+1|Θs)

P (Ys+1)

}
< C − δ/2

)
(A.60b)

(b)

≤ P

(
inf

W−2−tR<w<W

1

t
log dFt(w) ≥ C − δ/2

)
+ o(1) (A.60c)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2t(C−R−δ/2)

)
+ o(1) (A.60d)

≤ P

(∫ W

W−2−tR

dFt(w) ≥ 2tδ/2
)
+ o(1) (A.60e)

(c)→ 0, (A.60f)

where (a) is due to (A.59), (b) is due to (A.58), and (c) is from the fact that∫W

W−2−tR dFt(w) ≤ 1.

The above lemma guarantees that at some time before t there will be a jump of

at least ϵ in the posterior message cdf in the interval of 2−tR around W . Using this

lemma we show the main result.

Proposition A.11. If a Markov chain {Ft(W ), Yt+1}∞1 has ergodic invariant distri-

bution, then for δ, α > 0

lim
t→∞

P (F(1+α)t(W − 2−tR) > δ) = 0, (A.61a)

lim
t→∞

P (F(1+α)t(W + 2−tR) < 1− δ) = 0. (A.61b)
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Proof. For every ϵ > 0 we have

P (F(1+α)t(W − 2−tR) > δ)

≤ P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
+ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
. (A.62)

Regarding the first quantity we have

P

( t∩
t′=1

{
Ft′(W − 2−tR) > Ft′(W )− ϵ

})
(a)→ 0, (A.63)

where (a) is from Lemma A.10.

Consider an event
∪t

t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

}
. This event is equivalent

to
∪t

t′=1{W − 2−tR ≤ W ′} where W ′ = F−1
t′ (Ft′(W )− ϵ). Then by the monotonicity

of cdf it is equivalent to
∪t

t′=1{Ft(W − 2−tR) ≤ Ft(W
′)} which again is equivalent to{

Ft(W − 2−tR) ≤ max1≤t′≤t Ft

(
W ′

))}
.
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Therefore, regarding the second quantity we have

P

({
F(1+α)t(W − 2−tR) > δ)

}
∩

t∪
t′=1

{
Ft′(W − 2−tR) ≤ Ft′(W )− ϵ

})
=P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
Ft(W − 2−tR) ≤ max

1≤t′≤t
Ft

(
F−1
t′

(
Ft′(W )− ϵ

))})
(A.64a)

(a)

≤ P

({
F(1+α)t(W − 2−tR) > δ)

}
∩
{
F(1+α)t(W − 2−tR) ≤ max

1≤t′≤t
F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))})
(A.64b)

= P

(
max
1≤t′≤t

F(1+α)t

(
F−1
t′

(
Ft′(W )− ϵ

))
> δ

)
(A.64c)

(b)
= P

(
max
1≤t′≤t

F u
t′+1,(1+α)t

(
Ft′(W )− ϵ

)
> δ

)
(c)→ 0. (A.64d)

where (a) is from the monotonicity of cdf, (b) is due to the PMS update, and (c)

is from Proposition 5.5. P (F(1+α)t(W + 2−tR) < 1 − δ) can also be evaluated in a

similar way.
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ABSTRACT

Capacity-Achieving Schemes for Finite-State Channels

by

Jung Hyun Bae

Chair: Achilleas Anastasopoulos

The main goal for the communication engineer is to design the encoder and

decoder so that the system can transmit data reliably at the highest possible trans-

mission rate. To achieve this goal, channel coding, which is the focus of this thesis,

strategically adds redundancy to the transmitted data, and coding theory has pro-

vided specific transmission schemes that approach the capacity for point-to-point

links.

Historically, most of the aforementioned schemes are designed for the case of

memoryless channels. For channels with memory, however, few results exist on

capacity-achieving codes. This is the first direction explored in this thesis, i.e. find-

ing capacity-achieving scheme for channels with memory. In particular, capacity-

achieving codes are constructed for channels with memory when the receiver em-

ploys maximum likelihood decoding. The codes are derived from the corresponding

capacity-achieving codes for memoryless channels by using block-wise Markov quan-

tization. The constructed quantized codes induce Markov distribution on the channel

1



input sequence and are shown to achieve the corresponding information rate.

It has been well known that feedback can improve the error performance and/or

simplify the transmission scheme, and may increase the capacity. There have been

several remarkable results on designing transmission schemes with feedback, but

again, most of these results are for the case of memoryless channels. The second di-

rection in this thesis, therefore, is to design simple transmission schemes for channels

with memory in the presence of feedback. As the starting point of the investigation, a

single-letter capacity expression is derived for the channel in consideration. Based on

this capacity expression and corresponding capacity-achieving distribution, a feed-

back transmission scheme which achieves the capacity of channels with memory and

feedback is proposed. For the case of channels with no inter-symbol interference (ISI)

it is shown that the proposed transmission scheme is a straightforward generalization

of the one proposed for memoryless channels. For the case where ISI is present a

substantially different scheme is proposed and shown to achieve the channel capacity.
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