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Problems in the intersection of Communications and

Control

A) Viewing point-to-point communications as a Control problem

Transmitter/Controller

Communication
Channel

Feedback
Communication

Channel

>

Receiver

The act of transmitting a signal (partially) controls the overall communication
system, with the hope of bringing it to a “desirable” state
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B) Viewing multi-agent communications as a Control problem

Receiver

Transmitter/Controller

Communication
Channel

Transmitter/Controller

Multiple agents (partially) control a communication network to bring it to a state
beneficial for all (cooperatively/competitively)
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C) More subtle: Viewing off-line optimization problems relevant to Information
theory as control problems, e.g., Shannon capacity

-

1 t—1

C = ; 7supi 72/(Xt/\yt\y )
{ X¢ | Xt 1yt 1( e)}f t=1

No clear connection to Control:

Where is the controller?

where is the plant?

what is the observation/control action?

A. Anastasopoulos (U of Michigan) Variable-length codes April 6, 2017 5/ 41




Overview

@ Discrete memoryless channels (DMCs)
@ DMC without feedback
@ DMC with feedback and fixed-length (FL) codes
@ DMC with feedback and variable-length (VL) codes

© Channels with memory and feedback
@ Known capacity results
@ Recent results for error exponents of VL codes
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Discrete memoryless channels (DMCs)

Overview

@ Discrete memoryless channels (DMCs)
@ DMC without feedback
@ DMC with feedback and fixed-length (FL) codes
@ DMC with feedback and variable-length (VL) codes
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Discrete memoryless channels (DMCs)

DMC without feedback

Discrete memoryless channels without feedback

X eXx

Y,e)y

o Discrete memoryless channel (DMC) (X, ), Q) without feedback

P(Y: Xt YT = Q(YelXe)
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Discrete memoryless channels (DMCs) DMC without feedback

Discrete memoryless channels without feedback

w xn DMC yr W
——= Encoder Decoder ——=

o Discrete memoryless channel (DMC) (X, ), Q) without feedback
P(Ye X5, Y = Q(YelXe)

o Fixed-length (FL) code C with length n (channel uses) and size M = 2k
(messages)

encoder: e: {1,2,..., M} — X" with e(W) = X" 2 (Xy,..., Xn)
decoder: d : V" — {1,2,..., M} with d(Y") = W
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Discrete memoryless channels (DMCs) DMC without feedback

Discrete memoryless channels without feedback

w xn DMC yr W
——= Encoder Decoder ——=

o Discrete memoryless channel (DMC) (X, ), Q) without feedback
P(Ye X5, Y = Q(YelXe)

o Fixed-length (FL) code C with length n (channel uses) and size M = 2k
(messages)

encoder: e: {1,2,..., M} — X" with e(W) = X" 2 (Xy,..., Xn)
decoder: d : V" — {1,2,..., M} with d(Y") = W

o Rate R 2 @ = % (info bits/channel use).

Error probability Pe £ P(W # W)
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Discrete memoryless channels (DMCs) DMC without feedback

DMCs without feedback: basic results

o Capacity [Shannon, 1948]: The maximum transmission rate with arbitrarily
low error probability is

Qylx)
Py(y)

A
C = max I(X;Y) = n;ixz Q(y|x)Px(x) log
X,y
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Discrete memoryless channels (DMCs) DMC without feedback

DMCs without feedback: basic results

o Capacity [Shannon, 1948]: The maximum transmission rate with arbitrarily
low error probability is

Qylx)
Py(y)

A
C = max/(X;Y) = n;ixxzy: Q(y|x)Px(x) log
o Error exponent [Fano, 1961, Gallager, 1965, Shannon et al., 1967]:
The error probability of the optimal codes decays exponentially with code
length, n
Pe ~ 2~ "E"(R)

where E*(R) is the (rate dependent) error exponent (a.k.a., channel
reliability function).
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Discrete memoryless channels (DMCs) DMC without feedback

Bounds on the reliability function

@ What do we know about E*(R) for DMCs without feedback (after ~50 years

of research)?

E(R)
@ Upper Bounds:
o Ey(R)

o E4(R)
o End(R)

@ Lower Bounds:
e E(R)

o Eo(R)
o E7r(R)

R
R crit C

@ Above R the channel reliability function is known (matching bounds).

Below R+ we have bounds (not matching).
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Discrete memor: V DMC with feedback and fixed-length (FL) codes

DMC with feedback

X, ex DMC Y,e)y

_— =
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Discrete memoryless channels (DMCs) DMC with feedback and fixed-length (FL) codes

DMC with feedback

w X, DMC Y, W
——= Encoder Decoder ——

Yia unit
delay

o Fixed-length (FL) code C with length n (channel uses) and size M = 2k
(messages)

encoder: e = (€¢)¢=1,....n
e {1,2,... .M} x Y"1 = X with X, = e,(W, Y1)
decoder: d : V" — {1,2,..., M} with W = d(Y")
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Discrete memoryless cha MCs DMC with feedback and fixed-length (FL) codes

DMC with feedback

w X, DMC Y, W
——= Encoder Decoder ——

Yia unit
delay

o Fixed-length (FL) code C with length n (channel uses) and size M = 2k
(messages)

encoder: e = (€¢)¢=1,....n
e {1,2,... .M} x Y"1 = X with X, = e,(W, Y1)
decoder: d : V" — {1,2,..., M} with W = d(Y")
@ Can also consider randomized encoders, e.g.,
X~ e(-|W, Y1) & X, = e(W, Y1 V)

(with V; some RV that induces the required randomness (possibly common
information between Tx/Rx))
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Discrete memoryless channels (DMCs) DMC with feedback and fixed-length (FL) codes

DMC with feedback: basic results

o Capacity: Capacity cannot be improved by feedback for DMCs!

Feedback __ ,~NoFeedback
C =C
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Discrete memoryless cha MCs DMC with feedback and fixed-length (FL) codes

DMC with feedback: basic results

o Capacity: Capacity cannot be improved by feedback for DMCs!

Feedback __ ,~NoFeedback
C =C

o Error exponent for FL codes: The error exponent with FL codes cannot be
improved by feedback (at least for symmetric DMCs) above the critical
rate! [Haroutunian, 1977]

E»«,Feedback(R) < EFeedback (R) _ EgoFeedback(R)

Haroutunian .
symmetric
DMCs
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Discrete memoryless cha MCs DMC with feedback and fixed-length (FL) codes

DMC with feedback: basic results

o Capacity: Capacity cannot be improved by feedback for DMCs!

CFeedback _ CNoFeedback

o Error exponent for FL codes: The error exponent with FL codes cannot be
improved by feedback (at least for symmetric DMCs) above the critical
rate! [Haroutunian, 1977]

E*,Feedback(R) < EFeedback (R) —_ ENoFeedback(R)

Haroutunian X sp
symmetric
DMCs

@ We can only hope for possible improvements in:

@ non-symmetric DMCs (e.g., Z-channel)

@ continuous-alphabet memoryless channels (e.g., Gaussian
channels [Schalkwijk and Kailath, 1966])

© ‘third-order” performance improvements and/or simpler encoding/decoding
schemes

© Vvariable-length codes ?!?7

@ channels with memory
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

DMC with feedback and variable-length codes

e Variable-length (VL) code C with size M = 2k (messages)

encoder: e = (&t)i=12,...
e {1,2,...,M} x Y"1 = X with X, = e,(W, Y'™ 1)
decoder: d = (d;)i=1,,...
de: V' —{1,2,..., M} with W, = d,(Y?)
stopping time: T with W = Wy = dr(Y7)
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

DMC with feedback and variable-length codes

e Variable-length (VL) code C with size M = 2k (messages)

encoder: e = (&t)i=12,...
e {1,2,...,M} x Y"1 = X with X, = e,(W, Y'™ 1)
decoder: d = (d;)i=1,,...
de: V' —{1,2,..., M} with W, = d,(Y?)
stopping time: T with W = Wy = dr(Y7)

@ Transmission time (code length), T, is a RV = “Variable-length codes”.

log M k

E(T ~ E7
Error probability Pe 2 P(W # Wy U T = o)

= A
Average rate R =
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

DMC with feedback and VL codes: basic results

@ The reliability function is known exactly [Burnashev, 1976]

Al X

E-YY(R)=G(1- =)

where C; is a channel-dependent constant (max divergence)

Qylx)
Qylx")

G 2 max Y- Qlylx)log — D(Q(x0)]|Q( 1))
yYEeY

@ Transmission schemes achieving this bound are known:

@ The Burnashev scheme [Burnashev, 1976]
@ The Yamamoto-Itoh scheme [Yamamoto and Itoh, 1979]
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Discrete mem channels (D DMC with feedback and variable-length (VL) codes

Error exponent for VL codes: BSC

BSC(0.1)
C=0.531
C,=254

Burnashev's
e bound
BSC(p) 3
0 1—p 0 E— o8l
A y =S .
P e Sphere-Packing
1 1 § bound
1-p o
0.4
Example
n=38 E[T]
02
o . . . .
0 04 02 03 04 05 06

Average Rate, R
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Upper bound derivation: basic concepts

2

Define the entropy of the posterior message distribution M:(i) = P(W = i|Y")

H, £ ZI‘I ) log M (i)

e Fano’s inequality: connection between Pe = P(W # W,) and H,
@ Study the rate of decay of H; (drift analysis)

E[H:y1 — He Y] > —C (from converse)

@ When H,; becomes very small above result is useless.
Instead study exponential bounds

E [log(Hey1) — log(H:)| Y] > -G, H; = small
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Discrete memoryless channels (DMCs)

DMC with feedback and variable-length (VL) codes

Upper bound derivation: basic concepts (cont.)

H;

o

sope=—C

linear scale

time

logarithmic scale

log Pe

A. Anastasopoulos (U of Michigan)

@ Define a submartingale =; based on
H; for the two different regimes.

@ Technical difficulty: stitch together
the two regimes in one random
process, =;, and perform drift
analysis

@ Intuition: total transmission time

k  —logPe
[ ]_t1—|-t2 C—|— @
— log Pe k/E|[T]
2 < _ _f * -
"TE[T] =G c )

_ R
=E~YY(R) < G(1 - E)
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Upper bound derivation: the constant (;

@ The constant C; is intimately related to binary hypothesis testing

@ When H; a2 small, one of the messages (say, W = i) has very high (= 1)
posterior probability

E [log(Hey1) — log(H:)ly']

2= PlrealW =iy")log 5

Ye+1

P(yes1|W =1, )’)
(Yer1|W # i, y?)

Q err1(iy*
> — max ZQ yirileer1(i,y")) log (Ver1ler+1(i, ¥")) —

yhhes >zt Qyesaleea(y)) =

Qly[x)
> — gg%: Q(y!x)log

Q(ylx)
= — Er;g()/( D(Q(-)IQ(:Ix"))
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes
Yamamoto-ltoh transmission scheme

ny n(l—7)

Data Transmission Confirmation

time

@ Transmit in blocks of length n

@ Two stages in each packet: (1) data transmission; (2) confirmation

o Data transmission: use a capacity-achieving non-feedback code (not
specified).

@ At end of data transmission both Tx/Rx know if message error occured

@ Confirmation: Send 1 bit information whether decoded message was correct
or not (xg if correct; x if error)

@ Repeat until correct confirmation is received (may take several blocks)

e Optimize v € (0,1) for largest error exponent of Pe®? x P(e — c).

NF i=c R
E(R) = max vyE™(R/v)+ (1 —~)G 0+(1-=)G
v€(0,1) C
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev transmission scheme

Example: BSC(p). Capacity-achieving input distribution Px(0) = Px(1) = 0.5

Keep track of the posterior distribution (pmf) of the message

()2 P(W=iY") i=1..M

Randomized encoding (Y*~! is summarized in M;_1)
X = et(W; M1, Vt)

with V; common randomness between Tx/Rx

Two distinct transmission stages...
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DMC with feedback and variable-length (VL) codes

M=16

016 B

014 B

012 4

Posterior message pmf IIH(-)
T
.

T

0 2 4 6 8 10 12 14 16
Message index
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Burnashev scheme: stage 1

0.2

0.18

o IS) =)
e o o =
= N = >

Posterior message pmf, 111_1(-)
o
&

0.06

0.04

A. Anastasopoulos (U of

DMC with feedback and variable-length (VL) codes

Find index m, such that:

F 121 i (i) > Px(0)

r S (6) < Py(0) (e—

flichigan)

8 10
Message index

Variable-length codes

m

12

April 6, 2017
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Posterior message pmf, 111_1(-)

DMC with feedback and variable-length (VL) codes

If W one of these, then X‘ =0

- >

If W one of these,

then X‘ =1

8 10
Message index

Variable-length codes

m

12

April 6, 2017
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DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

02 T T T T T T
If W=m,
otsk then X, =0,1 1
(randomization

016 |- using common 4
— randomness)
:f" 014 B
€
a
o o1 2F 1
2 If W one §f these,
2 If W one of these, then X|=0 thenfX. =|1
& ol t ]
£
s
D oos 4
|7}
o
a

0.06 - 7

004 - 7

8 10 m 12 14 16

Message index
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

o Let's call this scheme TNGTNE (The noisy “guess the number” encoding)!
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

o Let's call this scheme TNGTNE (The noisy “guess the number” encoding)!
well...maybe not...

o Discrete randomized posterior matching (DRPM)
X = DRPM(N¢_1(-), Px(:), W, V¢)

where

Me—1() € P({1,2,...,M})

Px(-) € P(X)

We{l2,... M

V; ~ u([0,1]) (independent of all W, Xt~1 yt=1 yt-1)
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

We expect that after a number of steps doing DRPM we get something like

06 T T T T T T T

predefined threshold ¢

€
a
o
=
©
Qo
@
o
£
s
g
D
o
o

TTT T?TTTTQ?IoT

o 2 4 6 ® 0 2 " m

Message index

o Continue in stage 1 with DRPM until max; M, (i) > q
@ Provisional message estimate W, = arg max; Mg, (/)
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 2

Stage 2:
o If W = W,, (hypothesis h0) keep sending the predefined symbol X; = xo
o If W # W,, (hypothesis h1) keep sending the predefined symbol X; = x;

@ Continue in stage 2 until
either )
max; M:(i) > 1 — Pe (say at time T) and declare Wy = arg max; M+(/)
or
max; [1;(7) drops below threshold g, and go back to stage 1
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 2

Stage 2:

o If W = W,, (hypothesis h0) keep sending the predefined symbol X; = xo
o If W # W,, (hypothesis h1) keep sending the predefined symbol X; = x;
@ Continue in stage 2 until

either )

max; M:(i) > 1 — Pe (say at time T) and declare Wy = arg max; M+(/)

or

max; [1;(7) drops below threshold g, and go back to stage 1

@ No codebook to store at Tx/Rx; simple decoding at Rx
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: Analysis

[Burnashev, 1976]:
@ Would like to analyze how fast log %nn(’z)

message posterior probability) grows towards the threshold Iog

(log-likelihood ratio of best
Pe

@ Instead, analyze the process Lt log 1” (‘EV)) (log-likelihood ratio of true
message posterior probability)

E[Li1— LY >C

EfLer — Le|YT] = G > C (if L > log 12, for appropriately defined q)
Create a submartingale Z; from L; and apply optional stopping theorem

Intuition: geometric picture
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[DIESETERNENIVECERC ERREEN(DIVIEMN DMC with feedback and variable-length (VL) codes

Burnashev scheme: Analysis, Intuition

—log Pe

log 1%41 ~0

@ Intuition: total transmission time

k  —logP
E[T]Sfl-l-l‘zzf—i-%
1
— log Pe > G- k/EC[T])

=E~YL(R)> (1 - g)

- time. TTE[T <
slope=C' i E

k " log Pe
b=k ty = —loaPe
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BSC(0.1)
C=0.531
1} Pe=10"12 C=2.54
Burnashev's
bound
k=10
Y
2
m
08
f=
5 k=20
s}
(=9
>
W e Sphere Packing
e bound
i
04
02 k=30
N | . . )
0 01 02 03 04 05 06

Average Rate, R
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Discrete mem: channels (D

DMC with feedback and variable-length (VL) codes

Error exponent for VL codes: BSC simulation

BSC(0.1)
C=0.531
12 C1=2.54
Burnashev's
bound
k=10
p
z
]
o8
f=
i
f=
s}
(=9
>
W e Sphere-Packing
e bound
] -
e=10"
hal- Example
E[T]=25.5
vs.
n=339
02
o | . . |
0 01 02 03 04

05 08

Average Rate, R
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Channels with memory and feedback

Overview

© Channels with memory and feedback
@ Known capacity results
@ Recent results for error exponents of VL codes
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback

S
v Xi g(0) Y W
——=| Encoder Q) Decoder ——

dela

Information message W € {1,2,..., M}

Transmitted symbols X; € X, t =1,2,...

Channel state S, € S, t=1,2,...

Received symbols Y; € Y, t =1,2,...

Input/output conditional distribution Q(Y;|Xt, S¢)

Deterministic state update S;11 = g(S;:, X;, i)

Encoding functions X; = e,(W, Yt1, S5, V), t=1,2,...
Decoding function W, = d,(Y*) (together with a stopping time T)
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback

S
v Xi g(0) Y W
——=| Encoder Q) Decoder ——

dela

Information message W € {1,2,..., M}

Transmitted symbols X; € X, t =1,2,...

Channel state S, € S, t=1,2,...

Received symbols Y; € Y, t =1,2,...

Input/output conditional distribution Q(Y;|Xt, S¢)

Deterministic state update S;11 = g(S;:, X;, i)

Encoding functions X; = e,(W, Yt1, S5, V), t=1,2,...
Decoding function W, = d,(Y*) (together with a stopping time T)

@ State known to Tx but not to Rx (Tx knows S;, Xt~1, Yi=1 = St)l
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback: capacity

Capacity is the result of the off-line optimization problem [Permuter et al., 2008]
over infinitely many conditional distributions on X’

N

1

C= lim sup =N U(Xe, S Y YEY.
N=00 £P(X,|S:, Y= 1) }is1 N; (Xe, 5e: Ve

@ Observe: Py s yi-1 € S x Y71 — P(X), so its domain increases with t
t|5t7
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback: capacity

Capacity is the result of the off-line optimization problem [Permuter et al., 2008]
over infinitely many conditional distributions on X’

N

1

C= lim sup =N U(Xe, S Y YEY.
N=00 £P(X,|S:, Y= 1) }is1 N; (Xe, 5e: Ve

@ Observe: Py s yi-1 € S x Y71 — P(X), so its domain increases with t
t|5t7

@ How can we utilize Control theory to solve this problem?
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[IETE ERVIT NS RS NVl Known capacity results

Unifilar channel with feedback: capacity

Capacity is the result of the off-line optimization problem [Permuter et al., 2008]
over infinitely many conditional distributions on X’

N

1

C= lim sup =N U(Xe, S Y YEY.
N=00 £P(X,|S:, Y= 1) }is1 N; (Xe, 5e: Ve

Observe: Py s yi-1 € S x Y'=1 — P(X), so its domain increases with t
t|5t7

Define posterior belief of the state (Tx/Rx can evaluate it)

A

B:(s) = P(Sey1 = s|Y")
{B:}: forms a (controlled) Markov process, which can be (partially)
controlled by P(X;|S;, Y1)
Utilize theory of Markov Decision Processes (MDPs) to derive a single-letter
expression [Permuter et al., 2008]

C= sup I(tht; Yt|Bt71)
P(X¢|St,Be-1)
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: upper bound

@ How can we generalize Burnashev’s analysis to channels with memory?
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: upper bound

@ How can we generalize Burnashev’s analysis to channels with memory?

o Basic idea #1: analyze multi-step drift (to capture memory effects)
For any € > 0 there exists a large enough step N, s.t.

1
NE[Ht+N — Ht|Yt = yt,S]_ = S]_]

Lt

Z = I(Xir1s Skt Yierr | Y1, YE = y', 51 = s1)
k=t

> —(C+e), (from ergodicity of {B;}+)

and similarly (for the case of small H;)

1
NE[Iog(HHN) —log(H)| Y5, S1] = —(Ci+€)  as.
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: the C; constant

@ What is C; in this case?

Ci = max limsup max
sLYhi Nooo {eT}HN

T=t+1

1 ) P(YENIW =i, yt, s1)

N > PV W =i,y", s1) log —tL o
Yt+1N P(Yt+1 |W # Iy asl)
t+

@ It relates to a binary hypothesis testing problem with
hO: W=
hl: W # i
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Error exponents for VL coding: the C; constant

o Basic idea #2: Define X/ = e;(i, Y™1,5;) and S! = g:(i, Y*~1, S1) which
are the input and the state at time t, conditioned on W = . Then,

t+N
POYENIW =iyt s1) = J] Q(Y+ISL X))
T=t+1

o Define X/(x|s), as the induced input distribution at time t, conditioned on
St=sand W #£

o Define B! ;(s) = P(S: = s|W # i, Yt 5)) as the posterior state belief at

time t, conditioned on W # i. Then,

t+N
POYEN s W i) = T D0 Q(Yelx, )X (x[s)BE_y(s)
T=t+1 L x,s
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Error exponents for VL coding: the C; constant

@ (; relates to the average reward per unit time of an MDP with:
state: (S?,B}_;) € S x P(S),
action: (X2, X}) € X x (8§ = P(X)),
instantaneous reward: R(S?, B} ;; X2, X}),
transition kernel:

'D(51?+1a Btllsi?a Btl—lvxtpaxtl)
= Z 6g($?,Xt°,y)(5?+1)5¢(B}71,X},y)(8t1)Q(Y|X197 St('))
y
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Error exponents for VL coding: the C; constant

@ (; relates to the average reward per unit time of an MDP with:
state: (S?,B}_;) € S x P(S),
action: (X2, X}) € X x (8§ = P(X)),
instantaneous reward: R(S?, B} ;; X2, X}),
transition kernel:

'D(51?+1a Btllsi?a Btl—lvxtpaxtl)
= Z 6g($?,Xt°,y)(5?+1)5¢(B}71,X},y)(8t1)Q(Y|X197 St('))
y

@ From MDP theory: optimal action only function of current state:
XO[S, Bi 1] and X*[SP, By 4](-]")
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Error exponents for VL coding: the C; constant

@ Intuition gained: C; relates to a binary hypothesis test over a channel with
memory, with a weird twist!

o Under h0, input is a deterministic symbol (function of current state S? and
belief B._;)
X: = X°[S?, B 1]
e Under hl, input is a random symbol (function of hypothesized state under
h0, S?, belief Bf_;, and state S; ~ Bi_1(-))
Xe ~ X[S?, Bia](-|Se)
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Error exponents for VL coding: the C; constant

@ Intuition gained: C; relates to a binary hypothesis test over a channel with
memory, with a weird twist!
o Under h0, input is a deterministic symbol (function of current state S? and
belief B._;)
X: = X°[S], Bi_1]
e Under hl, input is a random symbol (function of hypothesized state under
h0, S?, belief Bf_;, and state S; ~ Bi_1(-))
Xe ~ X[S?, Bia](-|Se)
@ Why so complicated? dual objective
(1) resolving the hypothesis by transmitting the most distinguishable symbols
and
(2) partially controlling the channel state evolution
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Error exponents for VL coding: the C; constant

@ Intuition gained: C; relates to a binary hypothesis test over a channel with
memory, with a weird twist!
o Under h0, input is a deterministic symbol (function of current state S? and
belief B._;)
X: = X°[S], Bi_1]
e Under hl, input is a random symbol (function of hypothesized state under
h0, S?, belief Bf_;, and state S; ~ Bi_1(-))
Xe ~ X[S?, Bia](-|Se)
@ Why so complicated? dual objective
(1) resolving the hypothesis by transmitting the most distinguishable symbols
and
(2) partially controlling the channel state evolution

@ Challenge: turn this into an actual transmission scheme!
Last part of this talk...
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Channels with memory and feedback

Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme

- Keep track of the posterior distribution (pmf) of the message

2

M:(i)

and the vector of states

PW=ilF) i=1,...,M

it:(5t175t27“.751\/1)7

t
where S/ is the hypothesized state at time t conditioned on W = .
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A Burnashev-like VL coding scheme

- Keep track of the posterior distribution (pmf) of the message

M.(i) 2

and the vector of states

PW=ilF) i=1,...,M

PR

S, = (S}, S%,...,SM,

where S/ is the hypothesized state at time t conditioned on W = .
- Calculate posterior beliefs

M
ét—1(5) = M 1(i)lysicsy = P(St = s|Fi-1)
{Si=s}
i=1

Me_1(N1ysi_s _
M) = B()({S)} = P(W =il = 5, Feo),
t—1

Two distinct transmission stages...
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A Burnashev-like VL coding scheme: stage 1

Stage 1: X = DRPM(I3,(+), Pxse(*|Se: Be—1), W, V;)

02 T T T T T
S () > Px(0[Sy Biy If W=m,
018 then X, =0,1
SR () < Px(0ISk Brt) (randomization
o using common
E randomness)
Sout B
o Tx knows
£
8
5 ol R
?
<3
o
T oo
2
el
S
€ oo B
<3
o
ooi |- 1
If W onelof these,
If W one of these, then X] =0 the Xt 1
02
RN
o 2 s 0 P u ®

o o
Message index

Continue in stage 1 until max; M, (/) > ¢
Provisional message estimate W = arg max; My, (i)
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A Burnashev-like VL coding scheme: stage 2

Stage 2:
o Calculate new posteriors (conditioned on hl: W # W, )

. i et (D1 s
Bl (s)= ZEN S p(s, = 5|7y, h1)
1— Moy (W)
Me 1 ()i disr
M () = iy tsizey P(W = i|S, = 5, Fi_1, h1)

©BL(s)(1 - Me_y (W)
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A Burnashev-like VL coding scheme: stage 2

Stage 2:
o Calculate new posteriors (conditioned on hl: W # W, )

. i et (D1 s
Bl (s)= ZEN S p(s, = 5|7y, h1)
1— Moy (W)
Me 1 ()i disr
M () = iy tsizey P(W = i|S, = 5, Fi_1, h1)

©BL(s)(1 - Me_y (W)

o If W = W (hypothesis h0) transmit X; = XO[StW7 B! ]
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A Burnashev-like VL coding scheme: stage 2

Stage 2:
o Calculate new posteriors (conditioned on hl: W # W, )

. i et (D1 s
Bl (s)= ZEN S p(s, = 5|7y, h1)
1— Moy (W)
Me 1 ()i disr
M () = iy tsizey P(W = i|S, = 5, Fi_1, h1)

©BL(s)(1 - Me_y (W)

o If W = W (hypothesis h0) transmit X; = XO[StW7 Bl ]
o If W # W (hypothesis h1)

w ~ A
Xi = DRPM(ME% (), XM[SY, BL,](|S:), W, V&)

@ Continue in stage 2 until either )
max; M:(i) > 1 — Pe (say at time T) and declare Wy = arg max; M (/)
or
max; [1;(/) drops below threshold g, and go back to stage 1

A. Anastasopoulos (U of Michigan) Variable-length codes April 6, 2017 38 / 41



s with memory and feedback Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme: Analysis

@ Analyze the one-step drift of the process L; = log % and use ergodicity

to get multi-step results
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A Burnashev-like VL coding scheme: Analysis

Analyze the one-step drift of the process L; = log 1T|['|(tlzvv)v) and use ergodicity

to get multi-step results

Unresolved issue: The defined process {ét}t does not have the same
statistics as {B;}: (related to capacity expression)

Be-1(s) = P(Se =s|Y*™1,51) vs  Bia(s)=P(Se=s|Y1, Vil S)
This is because of the introduction of common randomness (RVs V;)!

In fact {ét}t is not a Markov chain (but B,_; is measurable wrt a “bigger”
Markov chain {(S;, M:—1)}+)
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A Burnashev-like VL coding scheme: Analysis

@ Analyze the one-step drift of the process L; = log 1T|['|(tlzvv)v) and use ergodicity

to get multi-step results

@ Unresolved issue: The defined process {ét}t does not have the same
statistics as {B;}: (related to capacity expression)

© Bri(s) =P(Se=s|Y*"1,5) vs  Bia(s)=P(S: =5y VL S)
@ This is because of the introduction of common randomness (RVs V;)!

o In fact {ét}t is not a Markov chain (but B,_1 is measurable wrt a “bigger”
Markov chain {(S,,M;-1)}+)

@ Some kind of “concentration” result is at play here. Any ideas?
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Sim=SoX,0Y,
Upper Bound St DX DY,

Error Exponent
°
T

°
T

02

0 0.05 01 0.15 0.2 025 03 035 04
Average Rate
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Numerical /Simulation results

Trapdoor channel
Sim=SeXeY
25F k=10
$=0
2k .5
c 0.5
Q
S
Sisp S
[}
5 k=20
i
n
k=30
C=0.697
C,=x
osp !
C =
o I I I . . . .
0 01 0.2 03 04 05 06 07

Average Rate
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Thank you!
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