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Problems in the intersection of Communications and
Control

A) Viewing point-to-point communications as a Control problem

Communication

Communication

Channel

Feedback

Channel

Transmitter/Controller

Receiver

Hub

The act of transmitting a signal (partially) controls the overall communication
system, with the hope of bringing it to a “desirable” state
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B) Viewing multi-agent communications as a Control problem

Communication

Channel

Transmitter/Controller

Transmitter/Controller

Receiver

Hub

Multiple agents (partially) control a communication network to bring it to a state
beneficial for all (cooperatively/competitively)
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C) More subtle: Viewing off-line optimization problems relevant to Information
theory as control problems, e.g., Shannon capacity

C = sup
{PXt |Xt−1,Y t−1 (·|·,·)}t

1

T

T∑
t=1

I (Xt ∧ Yt |Y t−1)

No clear connection to Control:
Where is the controller?
where is the plant?
what is the observation/control action?
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Overview

1 Discrete memoryless channels (DMCs)
DMC without feedback
DMC with feedback and fixed-length (FL) codes
DMC with feedback and variable-length (VL) codes

2 Channels with memory and feedback
Known capacity results
Recent results for error exponents of VL codes
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Discrete memoryless channels (DMCs) DMC without feedback

Discrete memoryless channels without feedback

DMCreplacements Xt ∈ X Yt ∈ Y

Q(·|·)

Discrete memoryless channel (DMC) (X ,Y,Q) without feedback

P(Yt |X t ,Y t−1) = Q(Yt |Xt)

Fixed-length (FL) code C with length n (channel uses) and size M = 2k

(messages)

encoder: e : {1, 2, . . . ,M} → X n with e(W ) = X n 4= (X1, . . . ,Xn)

decoder: d : Yn → {1, 2, . . . ,M} with d(Y n) = Ŵ

Rate R
4
= log M

n = k
n (info bits/channel use).

Error probability Pe
4
= P(W 6= Ŵ )
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Rate R
4
= log M

n = k
n (info bits/channel use).

Error probability Pe
4
= P(W 6= Ŵ )
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Discrete memoryless channels (DMCs) DMC without feedback

DMCs without feedback: basic results

Capacity [Shannon, 1948]: The maximum transmission rate with arbitrarily
low error probability is

C
4
= max

PX

I (X ;Y ) = max
PX

∑
x,y

Q(y |x)PX (x) log
Q(y |x)

PY (y)

Error exponent [Fano, 1961, Gallager, 1965, Shannon et al., 1967]:
The error probability of the optimal codes decays exponentially with code
length, n

Pe ≈ 2−nE
∗(R)

where E∗(R) is the (rate dependent) error exponent (a.k.a., channel
reliability function).
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Discrete memoryless channels (DMCs) DMC without feedback

Bounds on the reliability function

What do we know about E∗(R) for DMCs without feedback (after ∼50 years
of research)?

Upper Bounds:

Esp(R)
Est(R)
Emd(R)

Lower Bounds:

Er (R)
Eex(R)
ET (R)

Above Rcrit the channel reliability function is known (matching bounds).
Below Rcrit we have bounds (not matching).
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Discrete memoryless channels (DMCs) DMC with feedback and fixed-length (FL) codes

DMC with feedback

DMCreplacements Xt ∈ X Yt ∈ Y

Q(·|·)

Fixed-length (FL) code C with length n (channel uses) and size M = 2k

(messages)

encoder: e = (et)t=1,...,n

et : {1, 2, . . . ,M} × Y t−1 → X with Xt = et(W ,Y t−1)

decoder: d : Yn → {1, 2, . . . ,M} with Ŵ = d(Y n)

Can also consider randomized encoders, e.g.,

Xt ∼ et(·|W ,Y t−1)⇔ Xt = et(W ,Y t−1,Vt)

(with Vt some RV that induces the required randomness (possibly common
information between Tx/Rx))
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Discrete memoryless channels (DMCs) DMC with feedback and fixed-length (FL) codes

DMC with feedback: basic results

Capacity: Capacity cannot be improved by feedback for DMCs!

CFeedback = CNoFeedback

Error exponent for FL codes: The error exponent with FL codes cannot be
improved by feedback (at least for symmetric DMCs) above the critical
rate! [Haroutunian, 1977]

E∗,Feedback(R) ≤ EFeedback
Haroutunian(R)

∣∣∣∣symmetric
DMCs

= ENoFeedback
sp (R)

We can only hope for possible improvements in:
1 non-symmetric DMCs (e.g., Z-channel)
2 continuous-alphabet memoryless channels (e.g., Gaussian

channels [Schalkwijk and Kailath, 1966])
3 “third-order” performance improvements and/or simpler encoding/decoding

schemes
4 variable-length codes ?!?
5 channels with memory
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

DMC with feedback and variable-length codes

Variable-length (VL) code C with size M = 2k (messages)

encoder: e = (et)t=1,2,...

et : {1, 2, . . . ,M} × Y t−1 → X with Xt = et(W ,Y t−1)

decoder: d = (dt)t=1,2,...

dt : Y t → {1, 2, . . . ,M} with Ŵt = dt(Y
t)

stopping time:T with Ŵ = ŴT = dT (Y T )

Transmission time (code length), T , is a RV =⇒ “Variable-length codes”.

Average rate R̄
4
= log M

E [T ] = k
E [T ]

Error probability Pe
4
= P(W 6= ŴT ∪ T =∞)
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

DMC with feedback and VL codes: basic results

The reliability function is known exactly [Burnashev, 1976]

E∗,VL(R̄) = C1(1− R̄

C
)

where C1 is a channel-dependent constant (max divergence)

C1
4
= max

x 6=x′

∑
y∈Y

Q(y |x)log
Q(y |x)

Q(y |x ′)
= D(Q(·|x0)||Q(·|x1))

Transmission schemes achieving this bound are known:
1 The Burnashev scheme [Burnashev, 1976]
2 The Yamamoto-Itoh scheme [Yamamoto and Itoh, 1979]
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Error exponent for VL codes: BSC

BSC (p)
0

1

0

1

X Y

p

p

1− p

1− p
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Upper bound derivation: basic concepts

Define the entropy of the posterior message distribution Πt(i)
4
= P(W = i |Y t)

Ht
4
= H(Πt) = −

M∑
i=1

Πt(i) log Πt(i)

Fano’s inequality: connection between Pe = P(W 6= Ŵt) and Ht

Study the rate of decay of Ht (drift analysis)

EI [Ht+1 − Ht |Y t ] ≥ −C (from converse)

When Ht becomes very small above result is useless.
Instead study exponential bounds

EI [log(Ht+1)− log(Ht)|Y t ] ≥ −C1, Ht ≈ small
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Upper bound derivation: basic concepts (cont.)
lin

ea
r 

sc
al

e
lo

ga
ri

th
m

ic
 s

ca
le

time

Ht

k

slope=−C

slope=−C1

logPe

t1 = k

C
t2 =

− logPe

C1

Define a submartingale Ξt based on
Ht for the two different regimes.

Technical difficulty: stitch together
the two regimes in one random
process, Ξt , and perform drift
analysis

Intuition: total transmission time

EI [T ] ≥ t1 + t2 =
k

C
+
− logPe

C1

⇒− logPe

EI [T ]
≤ C1(1− k/EI [T ]

C
)

⇒E∗,VL(R̄) ≤ C1(1− R̄

C
)
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Upper bound derivation: the constant C1

The constant C1 is intimately related to binary hypothesis testing

When Ht ≈ small, one of the messages (say, W = i) has very high (≈ 1)
posterior probability

EI [ log(Ht+1)− log(Ht)|y t ]

' −
∑
yt+1

P(yt+1|W = i , y t) log
P(yt+1|W = i , y t)

P(yt+1|W 6= i , y t)

≥ − max
y t ,i,et+1

∑
yt+1

Q(yt+1|et+1(i , y t)) log
Q(yt+1|et+1(i , y t))∑

j 6=i Q(yt+1|et+1(j , y t)) πt(j)
1−πt(i)

≥ −max
x 6=x′

∑
y

Q(y |x) log
Q(y |x)

Q(y |x ′)

= −max
x 6=x′

D(Q(·|x)||Q(·|x ′))
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Yamamoto-Itoh transmission scheme

Confirmation ......

time

Data Transmission

n

nγ n(1− γ)

Transmit in blocks of length n

Two stages in each packet: (1) data transmission; (2) confirmation

Data transmission: use a capacity-achieving non-feedback code (not
specified).

At end of data transmission both Tx/Rx know if message error occured

Confirmation: Send 1 bit information whether decoded message was correct
or not (x0 if correct; x1 if error)

Repeat until correct confirmation is received (may take several blocks)

Optimize γ ∈ (0, 1) for largest error exponent of Pedata × P(e → c).

E (R) = max
γ∈(0,1)

γENF (R/γ) + (1− γ)C1

R
γ=C
= 0 + (1− R

C
)C1
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev transmission scheme

Example: BSC(p). Capacity-achieving input distribution PX (0) = PX (1) = 0.5

0

1

0

1

X Y

p

p

1− p

1− p

Keep track of the posterior distribution (pmf) of the message

Πt(i)
4
= P(W = i |Y t) i = 1, . . . ,M

Randomized encoding (Y t−1 is summarized in Πt−1)

Xt = et(W ,Πt−1,Vt)

with Vt common randomness between Tx/Rx

Two distinct transmission stages...
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

Let’s call this scheme TNGTNE (The noisy “guess the number” encoding)!

well...maybe not...

Discrete randomized posterior matching (DRPM)

Xt = DRPM(Πt−1(·),PX (·),W ,Vt)

where
Πt−1(·) ∈ P({1, 2, . . . ,M})
PX (·) ∈ P(X )
W ∈ {1, 2, . . . ,M}
Vt ∼ u([0, 1]) (independent of all W ,X t−1,Y t−1,V t−1)
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 1

We expect that after a number of steps doing DRPM we get something like

Continue in stage 1 with DRPM until maxi Πt0 (i) > q
Provisional message estimate Ŵt0 = arg maxi Πt0 (i)
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: stage 2

Stage 2:

If W = Ŵt0 (hypothesis h0) keep sending the predefined symbol Xt = x0

If W 6= Ŵt0 (hypothesis h1) keep sending the predefined symbol Xt = x1

Continue in stage 2 until
either
maxi Πt(i) > 1− Pe (say at time T ) and declare ŴT = arg maxi ΠT (i)
or
maxi Πt(i) drops below threshold q, and go back to stage 1

No codebook to store at Tx/Rx; simple decoding at Rx
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: Analysis

[Burnashev, 1976]:

Would like to analyze how fast log maxi Πt(i)
1−maxi Πt(i)

(log-likelihood ratio of best

message posterior probability) grows towards the threshold log 1−Pe
Pe

Instead, analyze the process Lt
4
= log Πt(W )

1−Πt(W ) (log-likelihood ratio of true

message posterior probability)

EI [Lt+1 − Lt |Y t ] ≥ C

EI [Lt+1 − Lt |Y t ] ≥ C1 > C (if Lt > log q
1−q , for appropriately defined q)

Create a submartingale Zt from Lt and apply optional stopping theorem

Intuition: geometric picture
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Burnashev scheme: Analysis, Intuition

time

t
Lt

−k

− logPe

log
q

1−q
≈ 0

slope=C

slope=C1

t1 = k
C t2 =

− logPe

C1

Intuition: total transmission time

EI [T ] ≤ t1 + t2 =
k

C
+
− logPe

C1

⇒− logPe

EI [T ]
≥ C1(1− k/EI [T ]

C
)

⇒E∗,VL(R̄) ≥ C1(1− R̄

C
)
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Discrete memoryless channels (DMCs) DMC with feedback and variable-length (VL) codes

Error exponent for VL codes: BSC simulation
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Channels with memory and feedback

Overview

1 Discrete memoryless channels (DMCs)
DMC without feedback
DMC with feedback and fixed-length (FL) codes
DMC with feedback and variable-length (VL) codes

2 Channels with memory and feedback
Known capacity results
Recent results for error exponents of VL codes
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback

Encoder Decoder

unit
delay

Q(·|·, ·)

g(·, ·, ·)

St

W ŴXt
Yt

Yt−1

Information message W ∈ {1, 2, . . . ,M}
Transmitted symbols Xt ∈ X , t = 1, 2, . . .

Channel state St ∈ S, t = 1, 2, . . .

Received symbols Yt ∈ Y, t = 1, 2, . . .

Input/output conditional distribution Q(Yt |Xt ,St)

Deterministic state update St+1 = g(St ,Xt ,Yt)

Encoding functions Xt = et(W ,Y t−1,S1,Vt), t = 1, 2, . . .

Decoding function Ŵt = dt(Y
t) (together with a stopping time T )

State known to Tx but not to Rx (Tx knows S1, X t−1, Y t−1 ⇒ S t)!
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Decoding function Ŵt = dt(Y
t) (together with a stopping time T )

State known to Tx but not to Rx (Tx knows S1, X t−1, Y t−1 ⇒ S t)!
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Channels with memory and feedback Known capacity results

Unifilar channel with feedback: capacity

Capacity is the result of the off-line optimization problem [Permuter et al., 2008]
over infinitely many conditional distributions on X

C = lim
N→∞

sup
{P(Xt |St ,Y t−1)}t>1

1

N

N∑
i=1

I (Xt ,St ;Yt |Y t−1).

Observe: PXt |St ,Y t−1 ∈ S × Y t−1 → P(X ), so its domain increases with t

How can we utilize Control theory to solve this problem?
Define posterior belief of the state (Tx/Rx can evaluate it)

Bt(s)
4
= P(St+1 = s|Y t)

{Bt}t forms a (controlled) Markov process, which can be (partially)
controlled by P(Xt |St ,Y t−1)
Utilize theory of Markov Decision Processes (MDPs) to derive a single-letter
expression [Permuter et al., 2008]

C = sup
P(Xt |St ,Bt−1)

I (Xt ,St ;Yt |Bt−1)
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: upper bound

How can we generalize Burnashev’s analysis to channels with memory?

Basic idea #1: analyze multi-step drift (to capture memory effects)
For any ε > 0 there exists a large enough step N, s.t.

1

N
E [Ht+N − Ht |Y t = y t ,S1 = s1]

≥ − 1

N

t+N−1∑
k=t

I (Xk+1,Sk+1;Yk+1|Y k
t+1,Y

t = y t ,S1 = s1)

≥ −(C + ε), (from ergodicity of {Bt}t)

and similarly (for the case of small Ht)

1

N
E [log(Ht+N)− log(Ht)|Y t ,S1] > −(C1 + ε) a.s.
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: the C1 constant

What is C1 in this case?

C1 = max
s1,y t ,i

lim sup
N→∞

max
{eτ}t+N

τ=t+1

1

N

∑
Y t+N
t+1

P(Y t+N
t+1 |W = i , y t , s1) log

P(Y t+N
t+1 |W = i , y t , s1)

P(Y t+N
t+1 |W 6= i , y t , s1)

.

It relates to a binary hypothesis testing problem with
h0: W = i
h1: W 6= i
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: the C1 constant

Basic idea #2: Define X i
t = et(i ,Y

t−1,S1) and S i
t = gt(i ,Y

t−1,S1) which
are the input and the state at time t, conditioned on W = i . Then,

P(Y t+N
t+1 |W = i , y t , s1) =

t+N∏
τ=t+1

Q(Yτ |S i
τ ,X

i
τ )

Define X i
t (x |s), as the induced input distribution at time t, conditioned on

St = s and W 6= i

Define B1
t−1(s)

4
= P(St = s|W 6= i ,Y t−1,S1) as the posterior state belief at

time t, conditioned on W 6= i . Then,

P(Y t+N
t+1 |y

t , s1,W 6= i) =
t+N∏
τ=t+1

[∑
x,s

Q(Yτ |x , s)X i
τ (x |s)B1

τ−1(s)

]
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: the C1 constant

C1 relates to the average reward per unit time of an MDP with:
state: (S0

t ,B
1
t−1) ∈ S × P(S),

action: (X 0
t ,X

1
t ) ∈ X × (S → P(X )),

instantaneous reward: R(S0
t ,B

1
t−1;X 0

t ,X
1
t ),

transition kernel:

P(S0
t+1,B

1
t |S0

t ,B
1
t−1,X

0
t ,X

1
t )

=
∑
y

δg(S0
t ,X

0
t ,y)(S

0
t+1)δφ(B1

t−1,X
1
t ,y)(B

1
t )Q(y |X 0

t ,S
0
t ).

From MDP theory: optimal action only function of current state:
X 0[S0

t ,B
1
t−1] and X 1[S0

t ,B
1
t−1](·|·)
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Channels with memory and feedback Recent results for error exponents of VL codes

Error exponents for VL coding: the C1 constant

Intuition gained: C1 relates to a binary hypothesis test over a channel with
memory, with a weird twist!

Under h0, input is a deterministic symbol (function of current state S0
t and

belief B1
t−1)

Xt = X 0[S0
t ,B

1
t−1]

Under h1, input is a random symbol (function of hypothesized state under
h0, S0

t , belief B
1
t−1, and state St ∼ B1

t−1(·))
Xt ∼ X 1[S0

t ,B
1
t−1](·|St)

Why so complicated? dual objective
(1) resolving the hypothesis by transmitting the most distinguishable symbols
and
(2) partially controlling the channel state evolution

Challenge: turn this into an actual transmission scheme!
Last part of this talk...
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Channels with memory and feedback Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme

- Keep track of the posterior distribution (pmf) of the message

Πt(i)
4
= P(W = i |Ft) i = 1, . . . ,M

and the vector of states
S t = (S1

t ,S
2
t , . . . ,S

M
t ),

where S i
t is the hypothesized state at time t conditioned on W = i .

- Calculate posterior beliefs

B̂t−1(s) =
M∑
i=1

Πt−1(i)1{S i
t=s} = P(St = s|Ft−1)

Πs
t−1(i) =

Πt−1(i)1{S i
t=s}

B̂t−1(s)
= P(W = i |St = s,Ft−1),

Two distinct transmission stages...
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Channels with memory and feedback Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme: stage 1

Stage 1: Xt = DRPM(ΠSt
t−1(·),PX |SB(·|St , B̂t−1),W ,Vt)

Continue in stage 1 until maxi Πt0 (i) > q
Provisional message estimate Ŵ = arg maxi Πt0 (i)
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Channels with memory and feedback Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme: stage 2

Stage 2:

Calculate new posteriors (conditioned on h1: W 6= Ŵt0 )

B̂1
t−1(s) =

∑
i 6=Ŵ Πt−1(i)1{S i

t=s}

1− Πt−1(Ŵ )
= P(St = s|Ft−1, h1)

Π1,s
t−1(i) =

Πt−1(i)1{i 6=Ŵ}1{S i
t=s}

B̂1
t−1(s)(1− Πt−1(Ŵ ))

= P(W = i |St = s,Ft−1, h1)

If W = Ŵ (hypothesis h0) transmit Xt = X 0[SŴ
t , B̂1

t−1]

If W 6= Ŵ (hypothesis h1)

Xt = DRPM(Π
1,SW

t
t−1 (·),X 1[SŴ

t , B̂1
t−1](·|St),W ,Vt)

Continue in stage 2 until either
maxi Πt(i) > 1− Pe (say at time T ) and declare ŴT = arg maxi ΠT (i)
or
maxi Πt(i) drops below threshold q, and go back to stage 1
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= P(St = s|Ft−1, h1)

Π1,s
t−1(i) =

Πt−1(i)1{i 6=Ŵ}1{S i
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Channels with memory and feedback Recent results for error exponents of VL codes

A Burnashev-like VL coding scheme: Analysis

Analyze the one-step drift of the process Lt
4
= log Πt(W )

1−Πt(W ) and use ergodicity

to get multi-step results

Unresolved issue: The defined process {B̂t}t does not have the same
statistics as {Bt}t (related to capacity expression)

Bt−1(s) = P(St = s|Y t−1,S1) vs B̂t−1(s) = P(St = s|Y t−1,V t−1,S1)

This is because of the introduction of common randomness (RVs Vt)!

In fact {B̂t}t is not a Markov chain (but B̂t−1 is measurable wrt a “bigger”
Markov chain {(S t ,Πt−1)}t)
Some kind of “concentration” result is at play here. Any ideas?
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Numerical/Simulation results
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Thank you!
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