Variable-length codes for channels with memory and feedback: fundamental limits and practical transmission schemes

Achilleas Anastasopoulos anastas@umich.edu

> EECS Department University of Michigan

> > April 6, 2017

<ロト <四ト <至ト <至ト = 至

• Joint work with Jui Wu

メロト メロト メヨト メヨト

Problems in the intersection of Communications and Control

A) Viewing point-to-point communications as a Control problem

The act of transmitting a signal (partially) controls the overall communication system, with the hope of bringing it to a "desirable" state

イロト イヨト イヨト イヨト

B) Viewing multi-agent communications as a Control problem

Multiple agents (partially) control a communication network to bring it to a state beneficial for all (cooperatively/competitively)

・ロト ・回ト ・ヨト ・ヨト

C) More subtle: Viewing off-line optimization problems relevant to Information theory as control problems, e.g., Shannon capacity

$$C = \sup_{\{P_{X_t|X^{t-1},Y^{t-1}}(\cdot|\cdot,\cdot)\}_t} \frac{1}{T} \sum_{t=1}^{t} I(X_t \wedge Y_t|Y^{t-1})$$

No clear connection to Control: Where is the controller? where is the plant? what is the observation/control action?

・ロト ・回ト ・ヨト ・ヨト

Discrete memoryless channels (DMCs)

- DMC without feedback
- DMC with feedback and fixed-length (FL) codes
- DMC with feedback and variable-length (VL) codes

2 Channels with memory and feedback

- Known capacity results
- Recent results for error exponents of VL codes

(日) (同) (三) (三)

Overview

Discrete memoryless channels (DMCs)

- DMC without feedback
- DMC with feedback and fixed-length (FL) codes
- DMC with feedback and variable-length (VL) codes

Channels with memory and feedback

- Known capacity results
- Recent results for error exponents of VL codes

(日) (同) (三) (三)

Discrete memoryless channels without feedback

• Discrete memoryless channel (DMC) $(\mathcal{X}, \mathcal{Y}, Q)$ without feedback

 $P(Y_t|X^t, Y^{t-1}) = Q(Y_t|X_t)$

・ロト ・回ト ・ヨト ・ヨト

Discrete memoryless channels without feedback

• Discrete memoryless channel (DMC) $(\mathcal{X}, \mathcal{Y}, Q)$ without feedback

$$P(Y_t|X^t, Y^{t-1}) = Q(Y_t|X_t)$$

• Fixed-length (FL) code C with length n (channel uses) and size $M = 2^k$ (messages)

encoder:
$$e: \{1, 2, ..., M\} \to \mathcal{X}^n$$
 with $e(W) = X^n \stackrel{\triangle}{=} (X_1, ..., X_n)$
decoder: $d: \mathcal{Y}^n \to \{1, 2, ..., M\}$ with $d(Y^n) = \hat{W}$

(日) (同) (三) (三)

Discrete memoryless channels without feedback

• Discrete memoryless channel (DMC) $(\mathcal{X}, \mathcal{Y}, Q)$ without feedback

$$P(Y_t|X^t, Y^{t-1}) = Q(Y_t|X_t)$$

 Fixed-length (FL) code C with length n (channel uses) and size M = 2^k (messages)

> encoder: $e : \{1, 2, ..., M\} \to \mathcal{X}^n$ with $e(W) = X^n \stackrel{\triangle}{=} (X_1, ..., X_n)$ decoder: $d : \mathcal{Y}^n \to \{1, 2, ..., M\}$ with $d(Y^n) = \hat{W}$

• Rate $R \stackrel{\triangle}{=} \frac{\log M}{n} = \frac{k}{n}$ (info bits/channel use). Error probability $Pe \stackrel{\triangle}{=} P(W \neq \hat{W})$

DMCs without feedback: basic results

• Capacity [Shannon, 1948]: The maximum transmission rate with arbitrarily low error probability is

$$C \stackrel{\triangle}{=} \max_{P_X} I(X;Y) = \max_{P_X} \sum_{x,y} Q(y|x) P_X(x) \log \frac{Q(y|x)}{P_Y(y)}$$

・ロト ・回ト ・ヨト ・ヨト

DMC without feedback

DMCs without feedback: basic results

• Capacity [Shannon, 1948]: The maximum transmission rate with arbitrarily low error probability is

$$C \stackrel{\triangle}{=} \max_{P_X} I(X; Y) = \max_{P_X} \sum_{x,y} Q(y|x) P_X(x) \log \frac{Q(y|x)}{P_Y(y)}$$

• Error exponent [Fano, 1961, Gallager, 1965, Shannon et al., 1967]: The error probability of the optimal codes decays exponentially with code length, *n*

$$Pe \approx 2^{-nE^*(R)}$$

where $E^*(R)$ is the (rate dependent) error exponent (a.k.a., channel reliability function).

イロト イポト イヨト イヨト

Bounds on the reliability function

• What do we know about $E^*(R)$ for DMCs without feedback (after \sim 50 years of research)?

• Above *R_{crit}* the channel reliability function is known (matching bounds). Below *R_{crit}* we have bounds (not matching).

<ロト < 回 > < 回 > < 回 > < 回 >

DMC with feedback

・ロト ・回ト ・ヨト ・ヨ

DMC with feedback

Fixed-length (FL) code C with length n (channel uses) and size M = 2^k (messages)

encoder:
$$e = (e_t)_{t=1,...,n}$$

 $e_t : \{1, 2, ..., M\} \times \mathcal{Y}^{t-1} \to \mathcal{X} \text{ with } X_t = e_t(W, Y^{t-1})$
decoder: $d : \mathcal{Y}^n \to \{1, 2, ..., M\}$ with $\hat{W} = d(Y^n)$

DMC with feedback

• Fixed-length (FL) code C with length n (channel uses) and size $M = 2^k$ (messages)

encoder: $e = (e_t)_{t=1,...,n}$ $e_t : \{1, 2, ..., M\} \times \mathcal{Y}^{t-1} \to \mathcal{X} \text{ with } X_t = e_t(W, Y^{t-1})$ decoder: $d : \mathcal{Y}^n \to \{1, 2, ..., M\}$ with $\hat{W} = d(Y^n)$

• Can also consider randomized encoders, e.g.,

$$X_t \sim e_t(\cdot | W, Y^{t-1}) \Leftrightarrow X_t = e_t(W, Y^{t-1}, V_t)$$

(with V_t some RV that induces the required randomness (possibly common information between Tx/Rx))

DMC with feedback: basic results

• Capacity: Capacity cannot be improved by feedback for DMCs!

 $C^{Feedback} = C^{NoFeedback}$

・ロト ・回ト ・ヨト ・ヨト

DMC with feedback: basic results

• Capacity: Capacity cannot be improved by feedback for DMCs!

 $C^{Feedback} = C^{NoFeedback}$

• Error exponent for FL codes: The error exponent with FL codes cannot be improved by feedback (at least for symmetric DMCs) above the critical rate! [Haroutunian, 1977]

$$E^{*,Feedback}(R) \leq E^{Feedback}_{Haroutunian}(R) \Big|_{\substack{\text{symmetric} \\ DMCs}} = E^{NoFeedback}_{sp}(R)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

DMC with feedback: basic results

• Capacity: Capacity cannot be improved by feedback for DMCs!

 $C^{Feedback} = C^{NoFeedback}$

• Error exponent for FL codes: The error exponent with FL codes cannot be improved by feedback (at least for symmetric DMCs) above the critical rate! [Haroutunian, 1977]

$$E^{*,Feedback}(R) \leq E^{Feedback}_{Haroutunian}(R) \Big|_{\substack{\text{symmetric} \\ DMCs}} = E^{NoFeedback}_{sp}(R)$$

- We can only hope for possible improvements in:
 - Inon-symmetric DMCs (e.g., Z-channel)
 - continuous-alphabet memoryless channels (e.g., Gaussian channels [Schalkwijk and Kailath, 1966])
 - third-order" performance improvements and/or simpler encoding/decoding schemes
 - variable-length codes ?!?
 - S channels with memory

DMC with feedback and variable-length codes

• Variable-length (VL) code C with size $M = 2^k$ (messages)

encoder: $e = (e_t)_{t=1,2,...}$ $e_t : \{1, 2, ..., M\} \times \mathcal{Y}^{t-1} \to \mathcal{X} \text{ with } X_t = e_t(W, Y^{t-1})$ decoder: $d = (d_t)_{t=1,2,...}$ $d_t : \mathcal{Y}^t \to \{1, 2, ..., M\} \text{ with } \hat{W}_t = d_t(Y^t)$ stopping time: T with $\hat{W} = \hat{W}_T = d_T(Y^T)$

イロト イヨト イヨト イヨト

DMC with feedback and variable-length codes

• Variable-length (VL) code C with size $M = 2^k$ (messages)

encoder:
$$e = (e_t)_{t=1,2,...}$$

 $e_t : \{1, 2, ..., M\} \times \mathcal{Y}^{t-1} \to \mathcal{X} \text{ with } X_t = e_t(W, Y^{t-1})$
decoder: $d = (d_t)_{t=1,2,...}$
 $d_t : \mathcal{Y}^t \to \{1, 2, ..., M\} \text{ with } \hat{W}_t = d_t(Y^t)$
stopping time: T with $\hat{W} = \hat{W}_T = d_T(Y^T)$

• Transmission time (code length), T, is a RV \implies "Variable-length codes". **Average** rate $\bar{R} \stackrel{\triangle}{=} \frac{\log M}{E[T]} = \frac{k}{E[T]}$ Error probability $Pe \stackrel{\triangle}{=} P(W \neq \hat{W}_T \cup T = \infty)$

イロト イヨト イヨト イヨト

DMC with feedback and VL codes: basic results

• The reliability function is known exactly [Burnashev, 1976]

$$E^{*,VL}(ar{R})=C_1(1-rac{ar{R}}{C})$$

where C_1 is a channel-dependent constant (max divergence)

$$C_1 \stackrel{ riangle}{=} \max_{x
eq x'} \sum_{y \in \mathcal{Y}} Q(y|x) log rac{Q(y|x)}{Q(y|x')} = D(Q(\cdot|x_0)||Q(\cdot|x_1))$$

• Transmission schemes achieving this bound are known:

- The Burnashev scheme [Burnashev, 1976]
- Provide the second s

イロト 不得下 イヨト イヨト

Error exponent for VL codes: BSC

Upper bound derivation: basic concepts

Define the entropy of the posterior message distribution $\Pi_t(i) \stackrel{\triangle}{=} P(W = i | Y^t)$

$$H_t \stackrel{ riangle}{=} H(\Pi_t) = -\sum_{i=1}^M \Pi_t(i) \log \Pi_t(i)$$

- Fano's inequality: connection between $Pe = P(W \neq \hat{W}_t)$ and H_t
- Study the rate of decay of H_t (drift analysis)

$$E\left[H_{t+1} - H_t | Y^t\right] \ge -C$$
 (from converse)

• When *H_t* becomes very small above result is useless. Instead study exponential bounds

$$E\left[\log(H_{t+1}) - \log(H_t)|Y^t\right] \ge -C_1, \qquad H_t \approx \text{small}$$

イロト イポト イヨト イヨ

Upper bound derivation: basic concepts (cont.)

- Define a submartingale Ξ_t based on H_t for the two different regimes.
- Technical difficulty: stitch together the two regimes in one random process, Ξ_t, and perform drift analysis
- Intuition: total transmission time

$$E[T] \ge t_1 + t_2 = \frac{k}{C} + \frac{-\log Pe}{C_1}$$
$$\Rightarrow \frac{-\log Pe}{E[T]} \le C_1(1 - \frac{k/E[T]}{C})$$
$$\Rightarrow E^{*,VL}(\bar{R}) \le C_1(1 - \frac{\bar{R}}{C})$$

Image: A math a math

s) DMC with feedback and variable-length (VL) codes

Upper bound derivation: the constant C_1

- The constant C₁ is intimately related to binary hypothesis testing
- When $H_t \approx$ small, one of the messages (say, W = i) has very high (≈ 1) posterior probability

$$E\left[\log(H_{t+1}) - \log(H_t)|y^t\right]$$

$$\gtrsim -\sum_{y_{t+1}} P(y_{t+1}|W = i, y^t) \log \frac{P(y_{t+1}|W = i, y^t)}{P(y_{t+1}|W \neq i, y^t)}$$

$$\begin{split} &\geq -\max_{y^{t},i,e_{t+1}} \sum_{y_{t+1}} Q(y_{t+1}|e_{t+1}(i,y^{t})) \log \frac{Q(y_{t+1}|e_{t+1}(i,y^{t}))}{\sum_{j\neq i} Q(y_{t+1}|e_{t+1}(j,y^{t})) \frac{\pi_{t}(j)}{1-\pi_{t}(i)}} \\ &\geq -\max_{x\neq x'} \sum_{y} Q(y|x) \log \frac{Q(y|x)}{Q(y|x')} \\ &= -\max_{x\neq x'} D(Q(\cdot|x)||Q(\cdot|x')) \end{split}$$

・ロト ・回ト ・ヨト ・ヨ

Yamamoto-Itoh transmission scheme

- Transmit in blocks of length n
- Two stages in each packet: (1) data transmission; (2) confirmation
- Data transmission: use a capacity-achieving **non-feedback** code (not specified).
- $\bullet\,$ At end of data transmission both Tx/Rx know if message error occured
- Confirmation: Send 1 bit information whether decoded message was correct or not (x₀ if correct; x₁ if error)
- Repeat until correct confirmation is received (may take several blocks)
- Optimize $\gamma \in (0,1)$ for largest error exponent of $Pe^{data} \times P(e \rightarrow c)$.

$$E(R) = \max_{\gamma \in (0,1)} \gamma E^{NF}(R/\gamma) + (1-\gamma)C_1 \stackrel{\frac{R}{\gamma} = C}{=} 0 + (1-\frac{R}{C})C_1$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Burnashev transmission scheme

Example: BSC(p). Capacity-achieving input distribution $P_X(0) = P_X(1) = 0.5$

Keep track of the posterior distribution (pmf) of the message

$$\Pi_t(i) \stackrel{\triangle}{=} P(W = i | Y^t) \qquad i = 1, \dots, M$$

Randomized encoding (Y^{t-1} is summarized in Π_{t-1})

$$X_t = e_t(W, \Pi_{t-1}, V_t)$$

with V_t common randomness between Tx/Rx

Two distinct transmission stages...

<ロ> (四)、(四)、(日)、(日)、

A. Anastasopoulos (U of Michigan)

Variable-length codes

• Let's call this scheme TNGTNE (The noisy "guess the number" encoding)!

イロト イヨト イヨト イヨト

- Let's call this scheme TNGTNE (The noisy "guess the number" encoding)! well...maybe not...
- Discrete randomized posterior matching (DRPM)

 $X_t = DRPM(\Pi_{t-1}(\cdot), P_X(\cdot), W, V_t)$

where

$$\begin{aligned} &\Pi_{t-1}(\cdot) \in \mathcal{P}(\{1,2,\ldots,M\}) \\ &P_X(\cdot) \in \mathcal{P}(\mathcal{X}) \\ &W \in \{1,2,\ldots,M\} \\ &V_t \sim u([0,1]) \text{ (independent of all } W, X^{t-1}, Y^{t-1}, V^{t-1}) \end{aligned}$$

.

・ロト ・回ト ・ヨト ・ヨト

We expect that after a number of steps doing DRPM we get something like

• Continue in stage 1 with DRPM until $\max_i \prod_{t_0}(i) > q$ • Provisional message estimate $\hat{W}_{t_0} = \arg \max_i \prod_{t_0}(i)$

Stage 2:

- If $W = \hat{W}_{t_0}$ (hypothesis h0) keep sending the predefined symbol $X_t = x_0$
- If $W
 eq \hat{W}_{t_0}$ (hypothesis h1) keep sending the predefined symbol $X_t = x_1$
- Continue in stage 2 until either $\max_i \Pi_t(i) > 1 - Pe$ (say at time T) and declare $\hat{W}_T = \arg \max_i \Pi_T(i)$ or

 $\max_i \prod_t (i)$ drops below threshold q, and go back to stage 1

イロト イヨト イヨト イヨト

Stage 2:

- If $W = \hat{W}_{t_0}$ (hypothesis h0) keep sending the predefined symbol $X_t = x_0$
- If $W
 eq \hat{W}_{t_0}$ (hypothesis h1) keep sending the predefined symbol $X_t = x_1$
- Continue in stage 2 until either max_i Π_t(i) > 1 − Pe (say at time T) and declare Ŵ_T = arg max_i Π_T(i) or max_i Π_t(i) drops below threshold q, and go back to stage 1

 $\bullet\,$ No codebook to store at Tx/Rx; simple decoding at Rx

イロト イヨト イヨト イヨト

Burnashev scheme: Analysis

[Burnashev, 1976]:

- Would like to analyze how fast log max_i Π_t(i) (log-likelihood ratio of best message posterior probability) grows towards the threshold log 1-Pe/Pe
- Instead, analyze the process L_t [△] = log Π_t(W) (log-likelihood ratio of true message posterior probability)
- $E[L_{t+1} L_t|Y^t] \ge C$
- $E[L_{t+1} L_t|Y^t] \ge C_1 > C$ (if $L_t > \log \frac{q}{1-q}$, for appropriately defined q)
- Create a submartingale Z_t from L_t and apply optional stopping theorem
- Intuition: geometric picture

Burnashev scheme: Analysis, Intuition

• Intuition: total transmission time

$$E[T] \le t_1 + t_2 = \frac{k}{C} + \frac{-\log Pe}{C_1}$$
$$\Rightarrow \frac{-\log Pe}{E[T]} \ge C_1(1 - \frac{k/E[T]}{C})$$
$$\Rightarrow E^{*,VL}(\bar{R}) \ge C_1(1 - \frac{\bar{R}}{C})$$

イロト イヨト イヨト イヨ

Error exponent for VL codes: BSC simulation

Error exponent for VL codes: BSC simulation

A. Anastasopoulos (U of Michigan)

Variable-length codes

April 6, 2017 27 / 41

Overview

Discrete memoryless channels (DMCs)

- DMC without feedback
- DMC with feedback and fixed-length (FL) codes
- DMC with feedback and variable-length (VL) codes

2 Channels with memory and feedback

- Known capacity results
- Recent results for error exponents of VL codes

イロト イ団ト イヨト イヨト

Unifilar channel with feedback

- Information message $W \in \{1, 2, \dots, M\}$
- Transmitted symbols $X_t \in \mathcal{X}$, $t = 1, 2, \dots$
- Channel state $S_t \in \mathcal{S}$, $t = 1, 2, \dots$
- Received symbols $Y_t \in \mathcal{Y}$, $t = 1, 2, \dots$
- Input/output conditional distribution $Q(Y_t|X_t, S_t)$
- Deterministic state update $S_{t+1} = g(S_t, X_t, Y_t)$
- Encoding functions $X_t = e_t(W, Y^{t-1}, S_1, V_t), t = 1, 2, ...$
- Decoding function $\hat{W}_t = d_t(Y^t)$ (together with a stopping time T)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Unifilar channel with feedback

- Information message $W \in \{1, 2, \dots, M\}$
- Transmitted symbols $X_t \in \mathcal{X}$, $t = 1, 2, \dots$
- Channel state $S_t \in \mathcal{S}$, $t=1,2,\ldots$
- Received symbols $Y_t \in \mathcal{Y}$, $t = 1, 2, \dots$
- Input/output conditional distribution $Q(Y_t|X_t, S_t)$
- Deterministic state update $S_{t+1} = g(S_t, X_t, Y_t)$
- Encoding functions $X_t = e_t(W, Y^{t-1}, S_1, V_t), t = 1, 2, ...$
- Decoding function $\hat{W}_t = d_t(Y^t)$ (together with a stopping time T)

• State known to Tx but not to Rx (Tx knows $S_1, X^{t-1}, Y^{t-1} \Rightarrow S^t$)!

Unifilar channel with feedback: capacity

Capacity is the result of the **off-line** optimization problem [Permuter et al., 2008] over infinitely many conditional distributions on \mathcal{X}

$$C = \lim_{N \to \infty} \sup_{\{P(X_t | S_t, Y^{t-1})\}_{t \ge 1}} \frac{1}{N} \sum_{i=1}^N I(X_t, S_t; Y_t | Y^{t-1}).$$

• Observe: $P_{X_t|S_t, Y^{t-1}} \in S \times \mathcal{Y}^{t-1} \to \mathcal{P}(\mathcal{X})$, so its domain increases with t

・ロト ・回ト ・ヨト ・ヨト

Unifilar channel with feedback: capacity

Capacity is the result of the **off-line** optimization problem [Permuter et al., 2008] over infinitely many conditional distributions on \mathcal{X}

$$C = \lim_{N \to \infty} \sup_{\{P(X_t | S_t, Y^{t-1})\}_{t \ge 1}} \frac{1}{N} \sum_{i=1}^N I(X_t, S_t; Y_t | Y^{t-1}).$$

• Observe: $P_{X_t|S_t,Y^{t-1}} \in S imes \mathcal{Y}^{t-1} o \mathcal{P}(\mathcal{X})$, so its domain increases with t

• How can we utilize Control theory to solve this problem?

・ロト ・回ト ・ヨト ・ヨト

Unifilar channel with feedback: capacity

Capacity is the result of the **off-line** optimization problem [Permuter et al., 2008] over infinitely many conditional distributions on \mathcal{X}

$$C = \lim_{N \to \infty} \sup_{\{P(X_t | S_t, Y^{t-1})\}_{t \ge 1}} \frac{1}{N} \sum_{i=1}^N I(X_t, S_t; Y_t | Y^{t-1}).$$

• Observe: $P_{X_t|S_t,Y^{t-1}} \in \mathcal{S} imes \mathcal{Y}^{t-1} o \mathcal{P}(\mathcal{X})$, so its domain increases with t

• Define posterior belief of the state (Tx/Rx can evaluate it)

$$B_t(s) \stackrel{\triangle}{=} P(S_{t+1} = s | Y^t)$$

- $\{B_t\}_t$ forms a (controlled) Markov process, which can be (partially) controlled by $P(X_t|S_t, Y^{t-1})$
- Utilize theory of Markov Decision Processes (MDPs) to derive a single-letter expression [Permuter et al., 2008]

$$C = \sup_{P(X_t|S_t,B_{t-1})} I(X_t,S_t;Y_t|B_{t-1})$$

A B A A B A

Error exponents for VL coding: upper bound

• How can we generalize Burnashev's analysis to channels with memory?

・ロト ・回ト ・ヨト ・ヨ

Error exponents for VL coding: upper bound

- How can we generalize Burnashev's analysis to channels with memory?
- Basic idea #1: analyze multi-step drift (to capture memory effects) For any ε > 0 there exists a large enough step N, s.t.

$$\begin{split} &\frac{1}{N} \mathcal{E}[H_{t+N} - H_t | Y^t = y^t, S_1 = s_1] \\ &\geq -\frac{1}{N} \sum_{k=t}^{t+N-1} I(X_{k+1}, S_{k+1}; Y_{k+1} | Y_{t+1}^k, Y^t = y^t, S_1 = s_1) \\ &\geq -(C+\epsilon), \quad \text{(from ergodicity of } \{B_t\}_t) \end{split}$$

and similarly (for the case of small H_t)

$$\frac{1}{N}E[\log(H_{t+N}) - \log(H_t)|Y^t, S_1] \ge -(C_1 + \epsilon) \qquad a.s.$$

イロト イヨト イヨト イヨト

• What is C_1 in this case?

$$C_{1} = \max_{s_{1}, y^{t}, i} \limsup_{N \to \infty} \max_{\{e_{\tau}\}_{\tau=t+1}^{t+N}} \frac{1}{N} \sum_{\substack{Y_{t+1}^{t+N} \\ Y_{t+1}^{t+N} }} P(Y_{t+1}^{t+N} | W = i, y^{t}, s_{1}) \log \frac{P(Y_{t+1}^{t+N} | W = i, y^{t}, s_{1})}{P(Y_{t+1}^{t+N} | W \neq i, y^{t}, s_{1})}.$$

It relates to a binary hypothesis testing problem with h0: W = i
 h1: W ≠ i

イロン イロン イヨン イヨン

• Basic idea #2: Define $X_t^i = e_t(i, Y^{t-1}, S_1)$ and $S_t^i = g_t(i, Y^{t-1}, S_1)$ which are the input and the state at time t, conditioned on W = i. Then,

$$P(Y_{t+1}^{t+N}|W = i, y^t, s_1) = \prod_{\tau=t+1}^{t+N} Q(Y_{\tau}|S_{\tau}^i, X_{\tau}^i)$$

- Define $X_t^{\overline{i}}(x|s)$, as the induced input distribution at time t, conditioned on $S_t = s$ and $W \neq i$
- Define B¹_{t-1}(s) [△]= P(S_t = s|W ≠ i, Y^{t-1}, S₁) as the posterior state belief at time t, conditioned on W ≠ i. Then,

$$P(Y_{t+1}^{t+N}|y^{t}, s_{1}, W \neq i) = \prod_{\tau=t+1}^{t+N} \left[\sum_{x,s} Q(Y_{\tau}|x, s) X_{\tau}^{\bar{i}}(x|s) B_{\tau-1}^{1}(s) \right]$$

• C_1 relates to the average reward per unit time of an MDP with: state: $(S_t^0, B_{t-1}^1) \in S \times \mathcal{P}(S)$, action: $(X_t^0, X_t^1) \in \mathcal{X} \times (S \to \mathcal{P}(\mathcal{X}))$, instantaneous reward: $R(S_t^0, B_{t-1}^1; X_t^0, X_t^1)$, transition kernel:

$$P(S_{t+1}^{0}, B_{t}^{1}|S_{t}^{0}, B_{t-1}^{1}, X_{t}^{0}, X_{t}^{1}) \\ = \sum_{y} \delta_{g(S_{t}^{0}, X_{t}^{0}, y)}(S_{t+1}^{0}) \delta_{\phi(B_{t-1}^{1}, X_{t}^{1}, y)}(B_{t}^{1}) Q(y|X_{t}^{0}, S_{t}^{0}).$$

• C_1 relates to the average reward per unit time of an MDP with: state: $(S_t^0, B_{t-1}^1) \in S \times \mathcal{P}(S)$, action: $(X_t^0, X_t^1) \in \mathcal{X} \times (S \to \mathcal{P}(\mathcal{X}))$, instantaneous reward: $R(S_t^0, B_{t-1}^1; X_t^0, X_t^1)$, transition kernel:

$$P(S_{t+1}^{0}, B_{t}^{1} | S_{t}^{0}, B_{t-1}^{1}, X_{t}^{0}, X_{t}^{1}) \\ = \sum_{y} \delta_{g(S_{t}^{0}, X_{t}^{0}, y)}(S_{t+1}^{0}) \delta_{\phi(B_{t-1}^{1}, X_{t}^{1}, y)}(B_{t}^{1}) Q(y | X_{t}^{0}, S_{t}^{0}).$$

• From MDP theory: optimal action only function of current state: $X^0[S^0_t, B^1_{t-1}]$ and $X^1[S^0_t, B^1_{t-1}](\cdot|\cdot)$

- Intuition gained: C_1 relates to a binary hypothesis test over a channel with memory, with a weird twist!
 - Under h0, input is a deterministic symbol (function of current state S_t^0 and belief B_{t-1}^1)

$$X_t = X^0[S_t^0, B_{t-1}^1]$$

 Under h1, input is a random symbol (function of hypothesized state under h0, S⁰_t, belief B¹_{t-1}, and state S_t ~ B¹_{t-1}(·)) X_t ~ X¹[S⁰_t, B¹_{t-1}](·|S_t)

- Intuition gained: C_1 relates to a binary hypothesis test over a channel with memory, with a weird twist!
 - Under h0, input is a deterministic symbol (function of current state S_t^0 and belief B_{t-1}^1)

$$X_t = X^0[S_t^0, B_{t-1}^1]$$

- Under h1, input is a random symbol (function of hypothesized state under h0, S_t^0 , belief B_{t-1}^1 , and state $S_t \sim B_{t-1}^1(\cdot)$) $X_t \sim X^1[S_t^0, B_{t-1}^1](\cdot|S_t)$
- Why so complicated? dual objective

 $\left(1\right)$ resolving the hypothesis by transmitting the most distinguishable symbols and

(2) partially controlling the channel state evolution

- Intuition gained: C_1 relates to a binary hypothesis test over a channel with memory, with a weird twist!
 - Under h0, input is a deterministic symbol (function of current state S_t^0 and belief B_{t-1}^1)

$$X_t = X^0[S_t^0, B_{t-1}^1]$$

- Under h1, input is a random symbol (function of hypothesized state under h0, S_t^0 , belief B_{t-1}^1 , and state $S_t \sim B_{t-1}^1(\cdot)$) $X_t \sim X^1[S_t^0, B_{t-1}^1](\cdot|S_t)$
- Why so complicated? dual objective

 $\left(1\right)$ resolving the hypothesis by transmitting the most distinguishable symbols and

(2) partially controlling the channel state evolution

• Challenge: turn this into an actual transmission scheme! Last part of this talk...

- Keep track of the posterior distribution (pmf) of the message

$$\Pi_t(i) \stackrel{\triangle}{=} P(W = i | \mathcal{F}_t) \qquad i = 1, \dots, M$$

and the vector of states

$$\underline{S}_t = (S_t^1, S_t^2, \dots, S_t^M),$$

where S_t^i is the hypothesized state at time *t* conditioned on W = i.

・ロト ・ 日 ト ・ 日 ト ・ 日

- Keep track of the posterior distribution (pmf) of the message

$$\Pi_t(i) \stackrel{\triangle}{=} P(W = i | \mathcal{F}_t) \qquad i = 1, \dots, M$$

and the vector of states

$$\underline{S}_t = (S_t^1, S_t^2, \dots, S_t^M),$$

where S_t^i is the hypothesized state at time *t* conditioned on W = i. - Calculate posterior beliefs

$$\begin{split} \hat{B}_{t-1}(s) &= \sum_{i=1}^{M} \Pi_{t-1}(i) \mathbb{1}_{\{S_{t}^{i}=s\}} = P(S_{t}=s | \mathcal{F}_{t-1}) \\ \Pi_{t-1}^{s}(i) &= \frac{\Pi_{t-1}(i) \mathbb{1}_{\{S_{t}^{i}=s\}}}{\hat{B}_{t-1}(s)} = P(W=i | S_{t}=s, \mathcal{F}_{t-1}), \end{split}$$

Two distinct transmission stages...

イロン イロン イヨン イヨ

Stage 1: $X_t = DRPM(\prod_{t=1}^{S_t}(\cdot), P_{X|SB}(\cdot|S_t, \hat{B}_{t-1}), W, V_t)$

Continue in stage 1 until $\max_i \prod_{t_0}(i) > q$ Provisional message estimate $\hat{W} = \arg \max_i \prod_{t_0}(i)$

A. Anastasopoulos (U of Michigan)

A D > A B > A B >

Stage 2:

• Calculate new posteriors (conditioned on h1: $W \neq \hat{W}_{t_0}$)

$$\hat{B}_{t-1}^{1}(s) = \frac{\sum_{i \neq \hat{W}} \Pi_{t-1}(i) \mathbb{1}_{\{S_{t}^{i} = s\}}}{1 - \Pi_{t-1}(\hat{W})} = P(S_{t} = s | \mathcal{F}_{t-1}, h1)$$
$$\Pi_{t-1}^{1,s}(i) = \frac{\Pi_{t-1}(i) \mathbb{1}_{\{i \neq \hat{W}\}} \mathbb{1}_{\{S_{t}^{i} = s\}}}{\hat{B}_{t-1}^{1}(s)(1 - \Pi_{t-1}(\hat{W}))} = P(W = i | S_{t} = s, \mathcal{F}_{t-1}, h1)$$

イロト イヨト イヨト イヨ

Stage 2:

• Calculate new posteriors (conditioned on h1: $W \neq \hat{W}_{t_0}$)

$$\hat{B}_{t-1}^{1}(s) = \frac{\sum_{i \neq \hat{W}} \Pi_{t-1}(i) \mathbb{1}_{\{S_{t}^{i} = s\}}}{1 - \Pi_{t-1}(\hat{W})} = P(S_{t} = s | \mathcal{F}_{t-1}, h\mathbb{1})$$
$$\Pi_{t-1}^{1,s}(i) = \frac{\Pi_{t-1}(i) \mathbb{1}_{\{i \neq \hat{W}\}} \mathbb{1}_{\{S_{t}^{i} = s\}}}{\hat{B}_{t-1}^{1}(s)(1 - \Pi_{t-1}(\hat{W}))} = P(W = i | S_{t} = s, \mathcal{F}_{t-1}, h\mathbb{1})$$

• If $W = \hat{W}$ (hypothesis h0) transmit $X_t = X^0[S_t^{\hat{W}}, \hat{B}_{t-1}^1]$

・ロト ・回ト ・ヨト ・ヨト

Stage 2:

• Calculate new posteriors (conditioned on h1: $W \neq \hat{W}_{t_0}$)

$$\hat{B}_{t-1}^{1}(s) = \frac{\sum_{i \neq \hat{W}} \Pi_{t-1}(i) \mathbb{1}_{\{S_{t}^{i} = s\}}}{1 - \Pi_{t-1}(\hat{W})} = P(S_{t} = s | \mathcal{F}_{t-1}, h\mathbb{1})$$
$$\Pi_{t-1}^{1,s}(i) = \frac{\Pi_{t-1}(i) \mathbb{1}_{\{i \neq \hat{W}\}} \mathbb{1}_{\{S_{t}^{i} = s\}}}{\hat{B}_{t-1}^{1}(s)(1 - \Pi_{t-1}(\hat{W}))} = P(W = i | S_{t} = s, \mathcal{F}_{t-1}, h\mathbb{1})$$

• If $W = \hat{W}$ (hypothesis h0) transmit $X_t = X^0[S_t^{\hat{W}}, \hat{B}_{t-1}^1]$ • If $W \neq \hat{W}$ (hypothesis h1)

$$X_{t} = DRPM(\Pi_{t-1}^{1,S_{t}^{W}}(\cdot), X^{1}[S_{t}^{\hat{W}}, \hat{B}_{t-1}^{1}](\cdot|S_{t}), W, V_{t})$$

 Continue in stage 2 until either max_i Π_t(i) > 1 − Pe (say at time T) and declare Ŵ_T = arg max_i Π_T(i) or max_i Π_t(i) drops below threshold q, and go back to stage 1

・ロン ・値 と ・ 注 と ・ 注

A Burnashev-like VL coding scheme: Analysis

• Analyze the one-step drift of the process $L_t \stackrel{\triangle}{=} \log \frac{\Pi_t(W)}{1 - \Pi_t(W)}$ and use ergodicity to get multi-step results

イロト イロト イヨト イヨ

A Burnashev-like VL coding scheme: Analysis

• Analyze the one-step drift of the process $L_t \stackrel{\triangle}{=} \log \frac{\Pi_t(W)}{1 - \Pi_t(W)}$ and use ergodicity to get multi-step results

• Unresolved issue: The defined process $\{\hat{B}_t\}_t$ does not have the same statistics as $\{B_t\}_t$ (related to capacity expression)

• $B_{t-1}(s) = P(S_t = s | Y^{t-1}, S_1)$ vs $\hat{B}_{t-1}(s) = P(S_t = s | Y^{t-1}, V^{t-1}, S_1)$

- This is because of the introduction of common randomness (RVs V_t)!
- In fact $\{\hat{B}_t\}_t$ is not a Markov chain (but \hat{B}_{t-1} is measurable wrt a "bigger" Markov chain $\{(\underline{S}_t, \Pi_{t-1})\}_t$)

A Burnashev-like VL coding scheme: Analysis

• Analyze the one-step drift of the process $L_t \stackrel{\triangle}{=} \log \frac{\Pi_t(W)}{1 - \Pi_t(W)}$ and use ergodicity to get multi-step results

• Unresolved issue: The defined process $\{\hat{B}_t\}_t$ does not have the same statistics as $\{B_t\}_t$ (related to capacity expression)

• $B_{t-1}(s) = P(S_t = s | Y^{t-1}, S_1)$ vs $\hat{B}_{t-1}(s) = P(S_t = s | Y^{t-1}, V^{t-1}, S_1)$

- This is because of the introduction of common randomness (RVs V_t)!
- In fact $\{\hat{B}_t\}_t$ is not a Markov chain (but \hat{B}_{t-1} is measurable wrt a "bigger" Markov chain $\{(\underline{S}_t, \Pi_{t-1})\}_t$)
- Some kind of "concentration" result is at play here. Any ideas?

Numerical/Simulation results

・ロト ・回ト ・ヨト ・ヨト

Numerical/Simulation results

・ロト ・回ト ・ヨト ・ヨ

Thank you!

イロト イヨト イヨト イヨ

Burnashev, M. V. (1976).

Data transmission over a discrete channel with feedback. Random transmission time.

Problemy Peredachi Informatsii, 12(4):10–30.

Fano, R. M. (1961).

Transmission of information: A statistical theory of communications. American Journal of Physics, 29(11):793–794.

Gallager, R. G. (1965).

A simple derivation of the coding theorem and some applications. IEEE Trans. Information Theory, 11(1):3–18.

Haroutunian, E. A. (1977).

Lower bound for error probability in channels with feedback. Problemy Peredachi Informatsii, 13:36-44.

Permuter, H., Cuff, P., Roy, B. V., and Weissman, T. (2008). Capacity of the trapdoor channel with feedback. IEEE Trans. Information Theory, 54(7):3150–3165.

A coding scheme for additive noise channels with feedback-I: No bandwidth constraint.

IEEE Trans. Inform. Theory, 12(2):172–182.

Shannon, C. E. (1948).

A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656.

Shannon, C. E., Gallager, R. G., and Berlekamp, E. R. (1967). Lower bounds to error probability for coding on discrete memoryless channels. Inform. and Control, 10:65–103 (Part I), 522–552 (Part II).

Yamamoto, H. and Itoh, K. (1979).

Asymptotic performance of a modified schalkwijk-barron scheme for channels with noiseless feedback (corresp.).

IEEE Transactions on Information Theory, 25(6):729–733.