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Introduction
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Figure 1.1: Digital communication system

Consider the point-to-point digital communication system as shown in Fig 1.1(a),

where the information from a source is encoded, transmitted through a discrete-time

noisy channel, and then decoded for an information sink. One of the most important

tasks for communication engineers is to design the encoder and decoder for a high-

est possible transmission rate and a smallest possible distortion. In 1948, Shannon

initiated the development and established in [1] the mathematical foundation of in-

formation theory, which shows that reliable communication with an arbitrarily small

distortion is possible for a positive information transmission rate, highest of which

is called the capacity of the channel. Moreover, in Shannon’s source-channel separa-
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tion theorem, it is shown that the optimal coding functionality can be accomplished

separately by a source coder and a channel coder as shown in Fig. 1.1(b). The main

objective of the source coder is to describe the source information by a sequence of

symbols as efficiently as possible while preserving a high fidelity. On the other hand,

the channel coder aims at guarding the symbols against the noise of the channel by

properly and economically adding redundant symbols.

In this thesis, we focus on the channel coding problem, assuming as a common

practice that every input symbol is statistically independent with each other and is

chosen equiprobably among all possible symbols from the alphabet. This statisti-

cal assumption is practically well approximated when the source coder achieves a

nearly optimal coding rate for any given tolerable distortion. Although Shannon’s

channel coding theorem (for memoryless channels) asserts that it is very easy to

find capacity-achieving codes – just randomly construct it, then with asymptotically

high probability as the codeword length N goes to infinity, we will find it – it does

not take into account the encoding and decoding complexity of the code, which is

indeed a limited resource in practical applications. Randomly constructed codes

without structure can only employ a table-lookup algorithm for encoding and decod-

ing, which soon becomes infeasible due to the exponential explosion of the cardinality

of the codes as N increases. For this reason, we look at codes with structure. In

particular, we restrict our attention to linear codes since linear codes admit a simple

description by its generator matrix (or parity-check matrix) and can still achieve the

channel capacity at least for the well-studied and commonly considered memoryless

binary-input output-symmetric (MBIOS) channels1.

The encoding complexity for linear codes is at most quadratic in N , whereas

1It is an easy exercise to show that the code ensemble specified by the parity-check matrix with
entries being independently identically distributed (i.i.d.) Bernoulli random variables is capacity-
achieving on any MBIOS channel using the Shulman-Feder bound given in [2].
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the decoding complexity can vary depending on the decoding algorithm. To achieve

capacity of a channel, conceivably a good decoding algorithm is required. Unfortu-

nately, the optimal such algorithm, known as the maximum a-posteriori probability

(MAP) decoding or equivalently the maximum-likelihood (ML) decoding under our

statistical assumption on input symbols, turns out to be NP-complete2 in its full gen-

erality, and NP-complete problems can only be solved with exponential complexity

so far. This complexity demand is due to the memory imposed by the code structure

and the channel, which prevents the problem of finding the most likely transmitted

sequence from being solved by any efficient approaches but an exhaustive search in

the whole codebook. Even in the case where the channel is memoryless, the general

ML decoding problem for linear codes is still NP-complete [3]. Alternatively, when

we consider uncoded transmission over channels with memory (e.g., fading channels

with unknown channel state information at the transmitter and receiver), the prob-

lem of ML sequence detection (which in the above mentioned example is equivalent

to an integer least squares problem) in general is NP-complete [4, 5] as well.

Despite the aforementioned negative facts for the channel coding problem, there is

still hope of finding good coding schemes with a tractable complexity. For one, Shan-

non’s channel coding theorem does not require an optimal decoder for a capacity-

achieving code. A sub-optimal decoding algorithm might serve as well for a code to

be capacity-achieving. Moreover, it is possible that for some specific channels with

memory and code structures, the task of ML decoding is not as hard as in the gen-

eral case. In the remaining of the thesis, we will concentrate on these two research

directions under the following two scenarios.

2NP-complete problems are the computational problems which can be solved by a non-
deterministic polynomial time algorithm. A non-deterministic algorithm is one which, when con-
fronted with a choice between two alternatives, can create two copies of itself and simultaneously
verify the correctness of these two copies. This repeated splitting may lead to an exponential growth
of the number of copies.
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1. When the channel is MBIOS, we design and analyze capacity-achieving codes

defined on graphs, which admit a simple but powerful linear-complexity itera-

tive message passing decoding.

2. When the channel has memory, we show that the ML decoding can be accom-

plished with polynomial complexity for some channels, both for the uncoded

and simple trellis-coded transmissions.

1.1 Capacity-Achieving Codes Defined on Graphs

1.1.1 Background

In 1993, the remarkable discovery of turbo codes [6] with their associated itera-

tive decoding phenomenally brought the best performance of known codes so close

to the Shannon limit that probably no one could have expected. Since then, itera-

tive decoding algorithms have attracted a large amount of attention, and been well

understood as message passing algorithms defined on factor graphs [7]. In a factor

graph, the transmitted bits of a code are represented as the visible variable nodes

(or code nodes), the non-transmitted bits as hidden variable nodes (or state nodes),

and the parity-check equations as check nodes. A code or state node is connected

to a check node if the corresponding variable is involved in the corresponding parity

check equation. An iterative message passing algorithm for a graph is one in which

each node passes reliability messages to another node based on local observations,

local code structure, and incoming messages in each iteration. If the graphical rep-

resentation of a code is tree-like (or loop-free), then the sum-product algorithm [8],

or equivalently the belief propagation (BP) algorithm, is guaranteed to find the op-

timal MAP decoding solution for each variable node. However, practical codes are

generally loopy, in which case it is hard to analyze the BP decoding performance of
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a code and to prove whether a code is capacity-achieving under BP decoding.

In [9], the irregular low-density parity-check (LDPC) codes are considered. Each

irregular LDPC code ensemble is represented by a bipartite graph with code nodes

and check nodes, and associated with a degree distribution pair (λ, ρ), where

λ(x) ,
∞∑
i=1

λix
i−1 (1.1a)

ρ(x) ,
∞∑
i=1

ρix
i−1 (1.1b)

specify the code and check node degree distributions, respectively. More precisely, λi

(ρi, respectively) denotes the fraction of edges that are connected to a code (check)

node with i check (code) node neighbors, assuming random permutation of edges

between code and check nodes. The authors then proved the following two results

for the irregular LDPC code ensembles on the binary erasure channel (BEC), which

laid the foundation of and initiated the asymptotic performance analysis of codes

under BP decoding.

Fact 1.1 (Concentration Around Ensemble Average) Let G denote a partic-

ular code in the LDPC ensemble C(n, λ, ρ) with block length n and degree distribution

pair (λ, ρ), and P IT
b (G, p, l) be the associated bit erasure probability if G is used to

transmit over a BEC with erasure probability p and decoded by a BP decoder after l

iterations. Then for any given δ > 0, there exists an α(δ) > 0 such that

Pr{|P IT
b (G, p, l)− EC(n,λ,ρ)[P

IT
b (G, p, l)]| > δ} ≤ e−α(δ)n (1.2)

Fact 1.2 (Convergence of Ensemble Average to Loop-Free Case) Under

5



the same definitions as above, there exists a constant β such that

∣∣EC(n,λ,ρ)[P
IT
b (G, p, l)]− EC(∞,λ,ρ)[P

IT
b (G, p, l)]

∣∣ ≤ β

n
(1.3)

The first fact enables us to look at the average ensemble performance rather than

the perforamance of some specific code in the ensemble, which greatly simplifies the

analysis due to the randomness inherent in the construction of the ensemble. In ad-

dition, the second fact says that we can as well consider the case where the codeword

length is so close to infinity that we would not see any loops within any finite num-

ber of iterations. Armed with these two results, several irregular LDPC ensembles

have been proved to be capacity-achieving on the BEC using BP decoding [10–13].

Note that, LDPC codes, originally introduced by Gallager in 1963 [14], are the first

provable capacity-achieving codes with linear decoding complexity.

The aforementioned two elementary facts were further generalized to MBIOS

channels in [15], where the influential density evolution (DE) method was also in-

troduced. The DE method tracks the probability density function (pdf) of messages

exchanged between nodes for each iteration in a DE equation, and characterizes the

successful decoding event for a bit as the event where the reliability message about the

considered bit is true with perfect certainty. Consequently, the DE equation can be

evaluated numerically to give the decoding capability of any LDPC codes on MBIOS

channels. However, since the functional space of all pdf’s is an infinite-dimensional

space, the evaluation of the DE equation is generally an infinite-dimensional prob-

lem except on the BEC, which renders the DE method hardly applicable to the

performance analysis of codes on channels other than the BEC. Hence, even though

Fact 1.1, Fact 1.2 and the DE method were extended in [16] for the multi-edge

type LDPC codes, which include almost all known codes defined on graphs, codes

with BP decoding still can only be proved to be capacity-achieving on the BEC.
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Successful examples other than the LDPC codes include the systematic irregular

repeat-accumulate (IRA) codes [17] and the nonsystematic IRA codes [18]. Note

that, there do exist provable capacity-achieving codes using other linear complexity

decoding algorithms than BP on the binary symmetric channel (BSC), known as the

expander codes [19]. However, their decoding complexity increases exponentially in

1
ε
, where ε is the multiplicative gap to capacity3, while that of the LDPC and IRA

codes with BP decoding is conjectured [20,21] to increase only like 1
ε
ln 1

ε
.

1.1.2 Contributions of this Thesis

In this thesis, we devote Chapter 2 and Chapter 3 to the design and analysis of

capacity-achieving codes defined on graphs under ML decoding on MBIOS channels,

and also under BP decoding on the BEC. The motivation for looking at ML decoding

is twofold. First, achieving capacity with ML decoding provides a necessary condition

for achieving capacity with suboptimal message-passing decoding algorithms without

resorting to the DE method, which, as mentioned earlier, is the main difficulty in

extending the results from the BEC to MBIOS channels. Furthermore, it was shown

in [22–25] that there are efficient methods to approach the ML decoding performance

by improved iterative decoding algorithms. Thus, it is reasonable to treat the ML

performance as a good indication of the real performance of codes even if an iterative

decoding algorithm is used. As an ambitious attack to the performance analysis

problem for codes with iterative decoding on MBIOS channels, we give tight iterative

min-sum (MS) [8] and BP decoding performance bounds on MBIOS channels in

Chapter 4, which also reveal some links between the iterative decoding performance

of codes on MBIOS channels and that on the BEC. In the following three sections,

we give brief introductions to the topics discussed in these three chapters.

3For a code operating reliably over a channel with capacity C, and having rate R = (1 − ε)C,
its multiplicative gap to capacity is ε.
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Capacity-Achieving Punctured LDPC Codes

For communication on time-varying channels (e.g., wireless channels), it is de-

sirable to have one code whose rate and performance can be adapted according to

the channel condition. This goal can be achieved by using punctured codes defined

on graphs, where the code rate is changed by puncturing a subset of code bits. An

advantage of using punctured codes defined on graphs is that it permits the use of

a single encoder and (iterative) decoder for all punctured codes, in which case, rate-

adaptability comes with no additional cost on encoding and decoding complexity. It

is thus important to know how the performance of a code is affected by puncturing.

Another motivation for considering punctured codes is design-oriented. Since

the capacity-achieving nonsystematic IRA codes can be viewed as punctured repeat-

accumulate (RA) codes introduced in [26], which are non-capacity-achieving, we

would like to ask the following question: “Can capacity-achieving codes be

more easily constructed, if we start from a code with lower rate, and then

puncture it to the desired rate close to capacity?”

In Chapter 2, we give a positive answer to the above question by proving that

punctured LDPC codes can achieve capacity on MBIOS channels using ML decoding

if they are punctured from some simple Gallager’s LDPC codes [14] with low enough

rate. Moreover, we prove that the multiplicative gap to capacity of all punctured

codes can be the same as that of the original codes with low enough rate. These

results are obtained by deriving and analyzing the average weight distribution (AWD)

and its asymptotic growth rate of the punctured LDPC codes. Conditions under

which puncturing results in only a negligible cardinality reduction of the original

codebook with asymptotically high probability are also given in the process.
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Capacity-Achieving Codes with Bounded Complexity

The complexity of iterative decoding, though linear in the codeword length, de-

pends considerably on the complexity of the graphical representation of the codes.

In particular, the iterative decoding complexity per iteration is directly proportional

to the number of edges in the graph. Hence, the following question arises: “How

simple can the graphs be as a function of their performance?”

In [27], the authors proved from an information theoretical perspective that if

there are no state nodes in the graph, then the graphical complexity, i.e., the number

of edges per information bit in the graph, should grow indefinitely as the multiplica-

tive gap to capacity of the code decreases to zero on any MBIOS channel even when

ML decoding is used. This rather discouraging result in terms of the performance-

complexity tradeoff applies to the capacity-achieving LDPC and systematic IRA

codes. On the other hand, by allowing state nodes in the graph, the authors in [18]

were able to give two nonsystematic IRA ensembles that achieve capacity on the BEC

using BP decoding with bounded graphical complexity. These results were ob-

tained by analyzing the code performance using the DE method. However, partially

due to the limitation of the DE method, whether graphs with state nodes can achieve

capacity with bounded graphical complexity on more general channels other than the

BEC still remains unknown.

Motivated by the above results, we first investigate the ML performance of non-

systematic IRA codes on MBIOS channels via deriving their AWD and its associate

asymptotic growth rate. Numerical evaluation of these two metrics together with the

use of Divsaler’s ML performance bound [28] reveals that nonsystematic IRA codes

have very good performance on the binary input additive white Gaussian noise (BI-

AWGN) channel with a moderate graphical complexity. However, we were unable to

analytically prove whether these codes can actually achieve capacity with bounded
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graphical complexity. Motivated by the difficulty of analyzing nonsystematic IRA

codes, we propose a new family of codes, called low-density parity-check and gener-

ator matrix (LDPC-GM) codes, that can achieve capacity on any MBIOS channel

using ML decoding and also achieve capacity on the BEC using BP decoding, both

with bounded graphical complexity. Properties of the LDPC-GM codes, which are

constructed as serially concatenated codes with an outer LDPC code and an inner

low-density generate matrix (LDGM) code [29], are also studied. In particular, we

show that the proposed codes have linearly increasing minimum distances achiev-

ing the Gilbert-Varshamov bound for all code rates. In the process, the LDGM

codes, which appear as an essential construction component in both the IRA and

LDPC-GM codes, are also studied in detail.

Iterative Decoding Performance Bounds for LDPC Codes

As mentioned earlier, although the DE method can be used to numerically eval-

uate the exact asymptotic performance of codes with iterative decoding on MBIOS

channels, the fact that the evolved densities in general require an infinite-dimensional

description makes it unsuitable for the derivation of analytical performance bounds.

In Chapter 4, we embark on solving this problem for LDPC codes with MS and BP

decoding via two different approaches.

Due to Fact 1.2, the asymptotic probability of bit error can be interpreted as

the probability of the root bit being in error of some tree code. When MS decoding

is considered, we are able to bound this probability of error for the root bit by the

sequence error probability of a subcode of the tree code assuming the transmission

of the all-zero codeword. Further invoking the union bound on the sequence error

probability, we obtain a recursive upper bound on the asymptotic bit error probability

of LDPC codes after each iteration. This derived upper bound also holds for BP
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decoding since the BP algorithm is optimal in minimizing the bit error probability

of tree codes.

When we turn our attention to the BP decoding, we project the evolved densi-

ties to the probability of ML decoded bit errors and Bhattacharyya parameters, and

track their evolutions. As a result, we obtain a recursive lower bound on the bit error

probability and a recursive upper bound on the Bhattacharyya parameter, which is

also an upper bound on the probability of bit error, after each iteration. More sig-

nificantly, both recursions recover the one-dimensional DE equation for LDPC codes

on the BEC with all inequalities satisfied by exact equalities. This further implies

that the performance of LDPC codes under BP decoding on the BEC is the worst

among all MBIOS channels with the same Bhattacharryya parameter, and is the best

among all MBIOS channels with the same uncoded bit error probability. This link

between the asymptotic BP decoding performance of LDPC codes on BEC and that

on MBIOS channels also holds for the more general multi-edge type LDPC codes,

including the IRA and LDPC-GM codes, since all our results stem from Fact 1.1

and Fact 1.2. Note that the recursive upper bound on the evolved Bhattacharyya

parameters is also found in parallel in [30].

1.2 Polynomial-Complexity Optimal Receivers

1.2.1 Background

A variety of realistic wireless and wired channels have memory, i.e., the distortion

caused by the channel on the transmitted signal is generally correlated from time to

time. In this case, the optimal detection rule should take advantage of the memory

of the channel, and thus can not be performed in a symbol-by-symbol manner. More

specifically, if the channel state information (CSI) is unknown to the receiver, then
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the optimal detection should be carried out based on the observation of the whole

sequence, and is traditionally believed to require a computational complexity growing

exponentially in the sequence length. This is equivalent to an exhaustive search in

the set of all possible sequences.

1.2.2 Contributions of this Thesis

In Chapter 5 and Chapter 6, we challenge this traditional belief by showing that

optimal detection can be performed in polynomial time on some channels for uncoded

and simple trellis-coded sequences. The basic idea behind these results is to think

of decision regions on the parameter space, whose dimension remains fixed, rather

than the observation space, whose dimension grows with the sequence length, and

is primarily motivated by the work in [31]. As a compromise between analytical

simplicity and modelling accuracy, we consider block-independent channel models

(originally introduced in [32]), where the channel parameters are considered to be

fixed, but random, over a block of N symbols, and are independent from block to

block. This assumption simplifies analysis by capturing the channel dynamics with a

single parameter N and yet remains accurate for frequency-hopping and time-division

multiple-access schemes. In the following, we give brief introductions to these two

chapters.

Low Complexity Algorithms for Joint Data Detection and Fre-

quency/Phase Estimation

We consider communication through a channel where the transmitted signal is

first rotated by an unknown linear phase process and further corrupted by additive

white Gaussian noise (AWGN). This model is intended to characterize the deteri-

orating effect of an unknown phase shift and frequency jitter, which are present in
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wireless communication systems, especially the ones with mobile transmitting and

receiving ends. The detection is assumed to invoke the generalized-likelihood ratio

test (GLRT) [33] criterion, which is normally used in situations where the statisti-

cal model of the channel parameters does not exist or is unknown to the receiver.

Note that, the GLRT solutions can coincide with the optimal maximum-likelihood

sequence detection (MLSD) solutions under some statistical conditions, and still ap-

pear to demand an exponential computational complexity in the sequence length.

In Chapter 5, we give an algorithm that finds the exact GLRT solution with

O(N4) worst-case complexity regardless of the operating signal-to-noise ratio (SNR).

The concepts used in the proof of the polynomial complexity result are also utilized

to evaluate tight performance bounds on the exact and a family of approximate

algorithms. These analytical results are then verified by various simulations.

Polynomial-Complexity Optimal Decoding of Trellis Codes Transmitted

through Fading Channels

Although we show in Chapter 5 that the parameter-space-partitioning method-

ology introduced in [31] is also applicable to the frequency/phase-jitter channel for

uncoded sequences, it is not clear whether this methodology is also feasible for coded

sequences.

In Chapter 6, we consider the problem of optimal decoding for trellis-coded se-

quences transmitted over a frequency non-selective, time-selective fading channel. In

particular, we propose an algorithm, which is proved to find the optimal maximum a

posteriori probability sequence detection (MAPSqD) solution, at least for two-state

trellis codes, with worst-case polynomial complexity in N for any SNR. Important

applications of two-state trellis codes include the differentially encoded binary phase

shift keying (BPSK) system and the IRA codes, which can be decomposed as a serial
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concatenation of an outer LDGM code and an inner accumulator code as shown in

Chapter 3.

1.3 Dissertation Outline

The rest of the thesis is organized as follows. In Chapter 2, properties of punc-

tured LDPC codes are derived and it is shown that they are capacity-achieving on

MBIOS channels. We design and analyze capacity-achieving codes with bounded

complexity on MBIOS channels in Chapter 3. The asymptotic iterative decoding

performance of LDPC codes on MBIOS channels is analyzed in Chapter 4, where

lower and upper performance bounds for MS and BP decoding are derived. We

turn our attention to channels with memory and optimal detection for uncoded se-

quences in Chapter 5. After that, optimal detection of coded sequences on channels

with memory is studied in Chapter 6. Finally, we conclude this thesis and discuss

future research directions in Chapter 7. Appendix A, Appendix B, Appendix C,

Appendix D, and Appendix E consist of proofs for results in Chapter 2, Chapter 3,

Chapter 5, Chapter 6, and Chapter 7, respectively. The contents of this thesis have

appeared in part in [34–41].
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CHAPTER 2

Capacity-Achieving Punctured LDPC Codes

2.1 Introduction

Low-density parity-check (LDPC) codes were shown in [11–13] to achieve the

capacity of the binary erasure channel (BEC) using iterative decoding, and also

in [27] to achieve the capacity of any memoryless binary-input output-symmetric

(MBIOS) channel using maximum-likelihood (ML) decoding. A necessary condition

for these LDPC codes to be capacity-achieving as proved in [27] is that their av-

erage check node degrees should go to infinity as capacity is approached, i.e., the

graphical representation of these LDPC codes becomes very complicated when we

are close to capacity. In this chapter, we would like to explore another strategy for

designing capacity-achieving codes without large check node degrees by consider-

ing punctured codes. More precisely, a potentially successful strategy for designing

capacity-achieving codes is the following: given any desired rate close to ca-

pacity, first construct a code with lower rate, and then puncture it to the

desired rate.

The fact that punctured codes can be good candidates for achieving capacity

has been recognized by several researchers. In [42], the authors studied the perfor-
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mance of punctured LDPC codes when used over the additive white Gaussian noise

(AWGN) channel and showed numerically (using the Gaussian approximation [43] to

density evolution) that puncturing only results in a small loss of multiplicative gap

to capacity. Some analytical results on punctured LDPC codes can be found in [44],

where the authors showed that any arbitrarily small gap to capacity for the origi-

nal code can be preserved after puncturing on the BEC. Both of these works rely on

the density evolution method [15], which becomes an intractable infinite-dimensional

problem on channels other than the BEC, and thus cannot be used to prove whether

punctured codes are capacity-achieving over more general MBIOS channels. In this

chapter, we prove the feasibility of the aforementioned methodology for construct-

ing capacity-achieving codes by showing that punctured LDPC codes can achieve

the capacity of MBIOS channels using ML decoding when they are punctured from

simple Gallager’s LDPC codes with low enough rate.

In addition to the design purposes, puncturing also serves as a useful method

to construct rate-adaptable codes for time-varying channels (e.g., wireless channels),

in which case, the rate of the punctured code is adjusted according to the channel

conditions by puncturing a subset of bits in the original code. If the decoder for

the original code is compatible with the one for the punctured code (e.g., the com-

monly used belief propagation decoder), then the rate adaptability comes with no

additional cost of encoding/decoding complexity. It is thus important to know how

the performance of the punctured code changes with respect to the original code.

In this chapter, we prove that punctured LDPC codes can preserve any arbitrarily

small gap to capacity of the original codes under ML decoding via deriving and an-

alyzing an upper bound on their average weight distributions (AWDs). Moreover,

we derive conditions under which puncturing results in no rate reduction (with re-

spect to the original codeword length) with asymptotically high probability in the
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punctured LDPC ensemble, and prove that any desired rate in (0, 1) can be achieved

via puncturing without rate reduction if the rate of the original code is sufficiently

small.

The remaining of this chapter is organized as follows. In Section 2.2, we review

and prove some fundamental properties of Gallager’s LDPC ensembles. Then, we

introduce the punctured (Gallager’s) LDPC ensembles, derive an upper bound on

their AWD and guaranteed rate in Section 2.3. Detailed analysis of the upper bound

on the AWD and its asymptotic growth rate of the punctured LDPC ensembles, as

well as the main results of this chapter are given in Section 2.4. Finally, we conclude

this chapter in Section 2.5.

2.2 Gallager’s LDPC Ensemble

Consider Gallager’s (n, j, k) LDPC ensemble as introduced in [14] with guaranteed

rate Ro = 1 − j/k. Let No(l) be the average number of codewords of weight l in a

randomly drawn code from the ensemble. The asymptotic growth rate of No(l) is

given in [45] (it appears as an upper bound in [14]) to be

wo(a) , lim
n→∞

1

n
ln No(an) = (1−Ro) inf

x>0

{
ln

(1 + x)k + (1− x)k

2xak

}
− (j − 1)H(a),

(2.1)

where H(a) , −a ln a−(1−a) ln(1−a) is the binary entropy function evaluated with

natural logarithms. Some useful characterizations of No(l) and wo(a) are summarized

below.

Fact 2.1 There exists a δo ∈ (0, 1/2), such that

1.
∑

l∈(0,nδo) No(l) = O(n−j+2).
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2. wo(a) < 0 and has exactly one local minimum, but no local maximum for all

a ∈ (0, δo).

3. wo(a) > 0 for all a ∈ (δ0, 1/2], and wo(δo) = 0.

4. wo(a) has exactly one local maximum at a = 1/2, and wo(1/2) = Ro ln 2.

5. When k is even, No(l) = No(n− l), for all l ∈ {0, 1, . . . , n}.

In Fact 2.1, item 1 to 4 are either proved explicitly in [14, Appendix A] or direct

results from there, and item 5 follows from the linearity of the LDPC codes and the

fact that the all-1 word is always a codeword when k is even. In order to use item

5, and for other mathematical convenience, we will assume throughout this chapter

that k is even. An example of wo(a) for j = 5 and k = 10 is depicted in Fig. 2.1.
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Figure 2.1: The asymptotic growth rate of the AWD of Gallager’s (n, 5, 10) ensemble.
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In the remaining of this section, we would like to prove several results, which

will help our later analysis involving LDPC codes. First, we would like to give a

close-form upper bound on wo(a), which is tight especially when a is around 1/2.

Lemma 2.1 wo(a) ≤ (1−Ro) ln[1 + (1− 2a)k] + [H(a)− (1−Ro) ln 2] , wub
o (a).

Proof: Bounding the infimum term of (2.1) by substituting x = a
1−a

, we have

inf
x>0

{
ln

(1 + x)k + (1− x)k

2xak

}
≤ ln

(1 + x)k + (1− x)k

2xak

∣∣∣∣
x= a

1−a

(2.2a)

= ln[1 + (1− 2a)k]− ln 2 + kH(a), (2.2b)

from which the lemma follows straightforwardly.

Since the binary entropy function H(x) appears in wub
o (a) as shown in the previous

lemma, it would facilitate our later analysis if we have a simple inequality on H(x)

as follows.

Lemma 2.2 There exists a δm ∈ [0, 1/2), such that

1− 2a ≤
(

1− H(a)

ln 2

)1/3

, (2.3)

for all a ∈ [δm, 1/2].

Proof: Let f(a) = [1− (1− 2a)3] ln 2. We have

d2f(a)

da2

∣∣∣∣
a=1/2

= 0 > −4 =
d2H(a)

da2

∣∣∣∣
a=1/2

, (2.4)

and

df(a)

da

∣∣∣∣
a=1/2

= 0 =
dH(a)

da

∣∣∣∣
a=1/2

. (2.5)
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But, we also have

f(1/2) = ln 2 = H(1/2). (2.6)

Therefore, there must exist a δm ∈ [0, 1/2), such that

f(a) ≥ H(a),∀a ∈ [δm, 1/2]. (2.7)

Rearranging the above inequality proves the lemma.

In the following two lemmas, we give sufficient conditions for δo to be arbitrarily

close to the normalized Gilbert-Varshamov distance, H−1((1 − Ro) ln 2). The first

way is to have a sufficiently large k as shown in the next lemma, where we denote

by H−1(x) the unique a ∈ [0, 1/2], such that H(a) = x.

Lemma 2.3 Given any δl ∈ (0, H−1((1−Ro) ln 2)), if

k >
ln

[(
1− H(δl)

(1−Ro) ln 2

)
ln 2

]

ln(1− 2δl)
, (2.8)

then δo > δl.

Proof: ¿From Lemma 2.1 we have

wub
o (δl) < 0 (2.9a)

⇔(1−Ro) ln[1 + (1− 2δl)
k] + [H(δl)− (1−Ro) ln 2] < 0 (2.9b)

⇔ ln[1 + (1− 2δl)
k] <

(
1− H(δl)

(1−Ro) ln 2

)
ln 2 (2.9c)

⇐(1− 2δl)
k <

(
1− H(δl)

(1−Ro) ln 2

)
ln 2 (2.9d)

⇔k >
ln

[(
1− H(δl)

(1−Ro) ln 2

)
ln 2

]

ln(1− 2δl)
, (2.9e)
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where we have used the facts that ln(1 + x) < x, ∀x ≥ 0 and 1− 2δl < 1 in the last

two steps. Now, the lemma follows from Lemma 2.1 and Fact 2.1.

Fig. 2.2 illustrates how the normalized Gilbert-Varshamov distance can be ap-

proached by increasing k for a fixed Ro.
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Figure 2.2: The dashed line depicts H(a) − 0.5, and solid lines depict wo(a) with
Ro = 0.5, for k = 8, 10, 12 and 14 (from top to bottom), respectively. Note that the
logarithms are to the base 2.

Alternatively, we can also keep a fixed k ≥ 4, and make Ro sufficiently small

for δo to be arbitrarily close to the normalized Gilbert-Varshamov distance. This is

shown in the following lemma.

Lemma 2.4 Given any η > 1 and k ≥ 4, there exists an S1 > 0, such that δo >

H−1((1− ηRo) ln 2) for all Ro ∈ (0, S1).
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Proof: Fix η > 1 and k ≥ 4. Let δl = H−1((1− ηRo) ln 2) for all Ro ∈ (0, 1/η).

Then, there exists a ξ ∈ (0, 1/η), such that δl ≥ δm for all Ro ≤ ξ, where δm is as

defined in Lemma 2.2. Therefore, for all Ro ≤ ξ, we have from Lemma 2.2,

ln
[(

1− H(δl)
(1−Ro) ln 2

)
ln 2

]

ln(1− 2δl)
≤3

ln
[(

1− H(δl)
(1−Ro) ln 2

)
ln 2

]

ln
(
1− H(δl)

ln 2

) (2.10a)

=3
ln

[
(η−1)Ro ln 2

1−Ro

]

ln(ηRo)
(2.10b)

≤3
ln[(η − 1)Ro ln 2]

ln(ηRo)
, (2.10c)

which approaches 3 monotonically as Ro → 0. Note that the last inequality of (2.10)

follows from the fact that ln(ηRo) < 0. Hence, there exists an S1 ∈ (0, ξ], such that

3 ln[(η−1)Ro ln 2]
ln(ηRo)

< 4, for all Ro < S1. This lemma then follows from Lemma 2.3.

Fig. 2.3 shows how the normalized Gilbert-Varshamov distance can be approached by

decreasing Ro for a fixed k. We would like to point out that since j and k are integers,

Ro in fact can not be arbitrarily small for any fixed k ≥ 4. However, this restriction

can be relaxed if we start from the following generalized Gallager’s LDPC ensemble.

We construct the parity-check matrix of an (n, j, k, γ) LDPC ensemble, where j and

k are integers and γ ∈ [0, 1) satisfies that k/γ is an integer, by appending a Gallager’s

(n, 1, k/γ) parity-check matrix to a Gallager’s (n, j, k) parity-check matrix (let the

(n, j, k, 0) ensemble be exactly the Gallager’s (n, j, k) ensemble). Since there are

totally nj/k+nγ/k rows in an (n, j, k, γ) matrix, this ensemble has a guaranteed rate

Ro = 1−(j+γ)/k, which can be made arbitrarily small by adjusting γ even for a fixed

k ≥ 4. Following similar steps as in [14], it can be verified that Fact 2.1 is still true for

the generalized ensemble. Moreover, since k/γ ≥ k for all γ ∈ [0, 1), it can be shown

that Lemma 2.1 is also true for the generalized ensemble. Consequently, all the results

derived in this chapter will still hold when the original ensemble is the generalized
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LDPC ensemble, where we can safely treat k and Ro as two independent parameters.

However, we chose to present all the results based on the original Gallager’s ensemble

mainly for the reason of not complicating the proofs with the additional details

required for the case of the above mentioned generalized ensemble.
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Figure 2.3: H(a) − (1 − Ro) (dashed lines) and wo(a) (solid lines) with k = 8, for
Ro = 0.5, 0.375, 0.25 and 0.125 (from top to bottom), respectively. Note that the
logarithms are to the base 2.

2.3 Punctured LDPC Codes

Consider puncturing np bits of Gallager’s (n, j, k) LDPC codes with rate Ro as

described in the previous section. Note that, due to the randomness of the code

construction of the LDPC codes, any properties of the punctured codes should not

depend on the specific positions of the np punctured bits. We want to characterize
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the AWD Np(l), its asymptotic growth rate wp(a), and the resulting guaranteed rate

Rp.

Let Co be a randomly drawn code from the LDPC ensemble. If we ignore the

possibility that different codewords in the original LDPC code can become the same

codeword in the punctured code and overcount them, then we obtain the following

upper bound on the AWD of the punctured ensemble

Np(l) ≤Nub
p (l) (2.11a)

,
pn∑
i=0





average number of weight i + l codewords

in the original ensemble whose i 1’s are in

the np punctured positions and l 1’s are not





(2.11b)

=

pn∑
i=0

(
pn

i

)(
(1− p)n

l

)
P (a weight i + l word is in Co) (2.11c)

=

pn∑
i=0

(
pn
i

)(
(1−p)n

l

)
(

n
i+l

) No(i + l). (2.11d)

It then follows from (2.1) and the the well known property of binomial coefficients

(see, e.g., [46, Lemma 18.9] for a proof)

1

n
ln

(
n

an

)
→ H(a) uniformly ∀a ∈ [0, 1] as n →∞ (2.12)

that the asymptotic growth rate of this upper bound is given by

wp(a) ≤wub
p (a) (2.13a)

, lim
n→∞

1

(1− p)n
ln Nub

p (an) (2.13b)

=H(a) +
max0≤b≤1 T (a, b)

1− p
, (2.13c)
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where

T (a, b) , pH(b)−H(pb + (1− p)a) + wo(pb + (1− p)a) (2.14)

To find the true rate Rp of the punctured codes, let Nub
p (0) be the random variable

denoting the number of codewords in Co which become the all-0 codeword in the

punctured code Cp. Then, due to the linearity of the LDPC codes, we have

|Co|
Nub

p (0)
= |Cp|, (2.15)

where | · | denotes the cardinality of some set. Hence, if we define

R′ , 1

n
log2

|Co|
|Cp| (2.16)

to be the loss of rate with respect to the original codeword length n, then from

Markov’s inequality we have

P (R′ ≥ r) = P (Nub
p (0) ≥ 2nr) ≤ Nub

p (0)

2nr
≤ O

(
2

n

�
(1−p)wub

p (0)

ln 2
−r

�)
, (2.17)

which goes to 0 as n goes to infinity for all r >
(1−p)wub

p (0)

ln 2
. Therefore, if we let

∆R , max
{
0, (1− p)wub

p (0)
}

= max

{
0, max

0≤b≤1
T (0, b)

}
, (2.18)

then with asymptotically high probability, a guaranteed rate of the punctured codes

can be given by

Rp =
Ro −∆R/ ln 2

1− p
. (2.19)

Note that at this point, since Nub
p (l) and wub

p (a) are upper bounds of Np(l) and
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wp(a), respectively, they can be numerically evaluated and used to obtain various

ML performance bounds as in [2, 28, 47] for the punctured ensemble. However, to

obtain rigorously more analytical results and insight for the punctured LDPC codes,

we would like to analyze punctured LDPC codes in more detail in the next section.

2.4 Analysis of the Punctured LDPC Codes

In this section, we first find conditions for ∆R = 0, i.e., conditions for no rate

reduction with asymptotically high probability, which implies Nub
p (l) and wub

p (a) are

tight upper bounds. Then under these conditions, we further give upper bounds on

wub
p (a) and Nub

p (l), and use them in conjunction with the ML decoding performance

bound given in [48] to prove our main theorem.

Similar to what we showed in Lemma 2.3 and Lemma 2.4 that there are two

ways for δo to be arbitrarily close to the normalized Gilbert-Varshamov distance,

i.e., increasing k for a fixed Ro and decreasing Ro for a fixed k ≥ 4, there are also

two ways to achieve no rate loss, i.e., ∆R = 0, after puncturing. The first way is to

have a sufficiently large k as shown in the following lemma, and the second way is to

have a sufficiently small Ro for a fixed k ≥ 4 as shown in the consequent theorem.

Lemma 2.5 If

k >
ln[(1− β) ln 2]

ln(1− 2δo)
, (2.20)

where β , p
1−Ro

, then ∆R = 0.

Proof: We study the behavior of T (0, b) in two cases. When bp ∈ [0, δo] ∪ [1−
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δo, 1], we have from Fact 2.1

T (0, b) =pH(b)−H(pb) + w0(pb) (2.21a)

≤pH(b)−H(pb) (2.21b)

(a)
= −

[
pb ln

pb

b
+ (1− pb) ln

1− pb

1− b

]
+ (1− p) ln(1− b) (2.21c)

≤(1− p) ln(1− b) (2.21d)

≤0, (2.21e)

where the sum in the bracket following equality (a) is nonnegative since it is a relative

entropy [49, Theorem 2.6.3]. On the other hand, when bp ∈ (δo, 1−δo), we have from

Lemma 2.1

T (0, b) ≤pH(b) + (1−Ro) ln[1 + (1− 2bp)k]− (1−Ro) ln 2 (2.22a)

≤p ln 2 + (1−Ro) ln[1 + (1− 2bp)k]− (1−Ro) ln 2 (2.22b)

=(1−Ro){(β − 1) ln 2 + ln[1 + (1− 2bp)k]}. (2.22c)

Since ln[1 + (1 − 2x)k] is a monotonically decreasing function in x, it attains its

maximum at the left boundary, x = δo, and we have

max
δo≤bp≤1−δo

T (0, b) ≤ (1−Ro){(β − 1) ln 2 + ln[1 + (1− 2δo)
k]}. (2.23)
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Therefore, from (2.21), (2.23) and (2.18),

∆R = 0 ⇔ max
0≤b≤1

T (0, b) ≤ 0 (2.24a)

⇐(1−Ro){(β − 1) ln 2 + ln
[
1 + (1− 2δo)

k
]} < 0 (2.24b)

⇔ ln
[
1 + (1− 2δo)

k
]

< (1− β) ln 2 (2.24c)

⇐(1− 2δo)
k < (1− β) ln 2 (2.24d)

⇔k >
ln[(1− β) ln 2]

ln(1− 2δo)
(2.24e)

where we have used the fact that ln(1 + x) ≤ x, ∀x ≥ 0 in (2.24d), and the last step

follows from the fact that 1− 2δo < 1.

Lemma 2.5 implies that a sufficiently large k has to increase indefinitely to keep

∆R = 0 as the puncturing probability p approaches 1 − Ro. However, in the next

theorem, we prove that even with a fixed k ≥ 4, if the original ensemble has a small

enough rate, then it can be punctured to any given set of rates with ∆R = 0.

Theorem 2.1 Given any R1 ∈ (0, 1), and k ≥ 4, there exists an S2 ∈ (0, 1), such

that if we have Ro ∈ (0, S2), then ∆R = 0 for all Rp ∈ [Ro, R1].

Proof: Fix R1 ∈ (0, 1), and k ≥ 4. From Lemma 2.4 and Lemma 2.2, we

have for any η > 1, there exists an S1 > 0, such that for all Ro ∈ (0, S1), δo >

H−1((1− ηRo) ln 2) ≥ δm. Thus, for any R′
p ∈ [Ro, R1], if we let p = 1− Ro/R

′
p, we
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have

ln[(1− β) ln 2]

ln(1− 2δo)
≤3

ln
[(

1− 1−Ro/R′p
1−Ro

)
ln 2

]

ln
(
1− H(δo)

ln 2

) (2.25a)

≤3
ln

[
(1/R′p−1)Ro ln 2

1−Ro

]

ln(ηRo)
(2.25b)

≤3
ln[(1/R1 − 1)Ro ln 2]

ln(ηRo)
, (2.25c)

which approaches 3 monotonically as Ro → 0. Therefore, there exists an S2 ∈ (0, S1),

such that 3 ln[(1/R1−1)Ro ln 2]
ln(ηRo)

< 4, for all Ro < S2. Hence, when Ro ∈ (0, S2), we have

from Lemma 2.5 that ∆R = 0 for all k ≥ 4, and consequently

Rp =
Ro −∆R/ ln 2

1− p
=

Ro

Ro/R′
p

= R′
p, (2.26)

which completes the proof of the theorem.

Knowing how to have ∆R = 0, which implies tightness of the upper bounds wub
p (a)

and Nub
p (l), we would like to proceed further to characterize wub

p (a) and Nub
p (l) in a

way similar to Fact 2.1 as follows.

Theorem 2.2 Given any R1 ∈ (0, 1) and k ≥ 4, choose an Ro < S2, where S2 is as

given in Theorem 2.1 such that ∆R = 0. Moreover, choose p so that Rp ∈ [Ro, R1].

Let np , (1− p)n be the codeword length of the punctured codes. Then there exists a

δp ∈ (0, 1/2) such that wub
p (a) and Nub

p (l) satisfy the following properties:

1. wub
p (0) ≤ 0.

2. wub
p (a) < 0 for all a ∈ (0, δp), and wub

p (a) ≤ (1−Ro)Rp

Ro
ln[1+(1−2δo)

k]+ [H(a)−
(1−Rp) ln 2] for all a ∈ [δp, 1/2].

3. Nub
p (l) = O(n−j+3

p ) for all l ∈ (0, npδp).
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4. Nub
p (l) = Nub

p (np − l), for all l ∈ [0, np].

Proof: See Appendix A.1.

Fig. 2.4 depicts wub
p (a) for several punctured LDPC ensembles as examples. We

would like to point out that item 3 of the above theorem in fact implies that with

the choice of Ro as in the theorem and any j ≥ 5, the punctured codes have a linearly

increasing minimum distance with asymptotically high probability. Because, if we let

dmin and Np(l) be the random variables denoting the minimum distance and number

of codewords of weight l, respectively, of a randomly drawn code from the punctured

ensemble, then from Markov’s inequality, we have for all δ < δp,

P (dmin < δnp) =P


 ∑

l∈(0,δnp)

Np(l) ≥ 1


 (2.27a)

≤
∑

l∈(0,δnp)

Np(l) (2.27b)

≤np max
0<l<δnp

Nub
p (l) (2.27c)

=O
(
n−j+4

p

)
, (2.27d)

which goes to 0 asymptotically as np goes to infinity.

Armed with the upper bounds on wub
p (a) and Nub

p (l), we are now ready to state

our main theorem, which shows that for any MBIOS channel, a capacity-achieving

ensemble with any given rate can be constructed by puncturing any LDPC ensemble

with k > j ≥ 5 and a small enough rate. Moreover, it shows that the gap to capacity

of all punctured LDPC codes with any rate Rp ∈ [Ro, R1], where Ro is small enough

for no rate reduction for any target rate R1 as implied in Theorem 2.1, is the same and

decreases in O(Rk
o), which depends only on the parameters of the original codes. In

other words, under any MBIOS channel, there always exists a small enough Ro such

that puncturing preserves the gap to capacity of the original codes for all punctured
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Figure 2.4: The dashed line depicts H(a) − 0.5, and solid lines depict wub
p (a) with

k = 8 and Ro

1−p
= 0.5, for Ro = 0.5, 0.375, and 0.25 (from top to bottom), respectively.

Note that the logarithms are to the base 2.
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codes in any given rate range, which is consistent with the result in [44] for the BEC.

Theorem 2.3 Given any R1 ∈ (0, 1), and k > j ≥ 5, let S2 be as implied in

Theorem 2.1. For any given η > 1, and Ro ∈ (0, S2), if ε > ηk/3R
k/3−1
o / ln 2, then the

punctured ensemble with any rate Rp ∈ [Ro, R1] has a vanishing average block error

probability under ML decoding on the MBIOS channel with capacity C = Rp

1−ε
.

Proof: See Appendix A.2.

We conclude by making a point regarding the complexity of the punctured codes. A

quantity of interest for codes defined on graphs, called the graphical complexity, is

the number of edges per information bit in their graphical representation, which is

directly proportional to their iterative decoding complexity per information bit per

iteration. Although in the above theorem j and k can be kept fixed, it does not

imply that the capacity of MBIOS channels can be achieved by punctured LDPC

codes with a bounded graphical complexity. Indeed, the graphical complexity ∆ of

punctured LDPC codes can be calculated as follows.

∆ =
# of 1’s in the p.c.m. of the original code

number of information bits
=

nj

npRp

=
nj

n(1− p)Ro/(1− p)
=

j

Ro

(2.28)

Therefore, as shown in Theorem 2.3, when the multiplicative gap to capacity ε ap-

proaches 0, we need Ro to approach 0 in order to achieve the channel capacity, which

in turn implies that ∆ approaches infinity. In particular, ∆ should grow like ε−
3

k−3

for a fixed k. This growth rate should be compared to the growth rate of ln 1
ε

for

capacity-achieving (unpunctured) LDPC codes reported in [27]. This comparison

shows that although puncturing might be favorable for some values of ε away from

0, it is eventually not preferred for values of ε arbitrarily close to 0. The comparative

advantage of the punctured codes on the other hand is their universality as demon-
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strated in the last theorem. The inability of punctured codes to achieve capacity

(even with ML decoding) with bounded complexity is the main motivation for the

study reported in the following chapter.

2.5 Conclusion

Some fundamental properties of punctured LDPC codes are studied in this chap-

ter. We prove that given any target rate R1 in (0,1) and any k ≥ 4, there always

exists a small enough rate Ro of the original code, such that puncturing the original

code to any rate less than R1 is free of rate reduction with asymptotically high prob-

ability. In this case, the derived upper bounds on AWD and its asymptotic growth

rate of the punctured LDPC codes become tight, and we analyze them in detail to

prove three main results. First, punctured LDPC codes are “good”, i.e., they have a

linearly increasing minimum distance with asymptotically high probability. Second,

punctured LDPC codes are capacity-achieving on any MBIOS channel under ML de-

coding if they are punctured from an original ensemble with a small enough rate but

arbitrary k > j ≥ 5. Third, for any given set of rates between 0 and 1, there always

exists a small enough rate of the original ensemble, such that the gap to capacity of

the original ensemble for any MBIOS channel is preserved for all punctured LDPC

ensembles under ML decoding. These results show high potential for punctured

LDPC codes to be used in rate compatible coding and design of capacity-achieving

codes for general MBIOS channels.
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CHAPTER 3

Capacity-Achieving Codes with Bounded

Complexity

3.1 Introduction

In this chapter, we first investigate the maximum-likelihood (ML) decoding per-

formance of irregular repeat-accumulate (IRA) codes on memoryless binary-input

output-symmetric (MBIOS) channels. This code ensemble is chosen for the study

of capacity-achieving codes on MBIOS channels with bounded graphical complexity,

since the nonsystematic version of it is proved in [18] to have this property on the

binary erasure channel (BEC). ML decoding performance analysis is performed via

deriving the average weight distribution (AWD) of systematic and nonsystematic

versions of the ensembles. The asymptotic growth rate of the AWD (in the following

we refer to this quantity as the asymptotic average weight distribution (AAWD)) of

IRA ensembles is also calculated, which can be used to obtain various ML decod-

ing performance bounds as in [2, 28, 47]. In the process, the AAWD of low-density

generator matrix (LDGM) ensembles [29] is also derived and used to prove that

nonsystematic regular LDGM encoders, though are possible to, would not reduce
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the information rate with asymptotically high probability. Furthermore, the role of

the inner accumulator in spectral thinning is demonstrated. Our approach shows

that simple nonsystematic IRA codes have a better guaranteed performance than

systematic IRA and LDPC codes with the same graphical complexity, which is only

0.124 dB away from the Shannon limit when Divsalar’s bound [28] is used on the

binary-input additive white Gaussian noise (BIAWGN) channel. However, a con-

clusive answer as to whether these nonsystematic IRA ensembles achieve capacity

was not reached. The reason lies in the fact that their AAWD cannot be proved to

be strictly negative in the region of normalized weights close to zero. As a result,

it cannot be guaranteed that the number of low weight codewords in these ensem-

bles decreases exponentially fast. This further implies that their polynomial growth

behavior has to be estimated; a seemingly more difficult task.

Motivated by the inconclusive result regarding the capacity-achieving property

of IRA ensembles using ML decoding, we introduce a new family of codes, namely

the low-density parity-check and generator matrix (LDPC-GM) codes, which are

constructed by serially concatenating an outer LDPC code and an inner LDGM

code. We prove that LDPC-GM codes can achieve capacity using ML decoding on

any MBIOS channel with bounded graphical complexity. By deriving and analyzing

the upper bounds on the AWD and AAWD of the LDPC-GM codes with a rate-

1 LDGM inner code, we show that the inner rate-1 LDGM code helps eliminate

high weight LDPC codewords while maintaining a vanishing small amount of low

weight codewords. In addition to being capacity-achieving, it is also shown that

these ensembles achieve the asymptotic Gilbert-Varshamov bound [50, 51]. As a

supportive fact on the potential of these ensembles under iterative decoding, we also

show that LDPC-GM ensembles can achieve capacity on the BEC with bounded

decoding complexity (per information bit) for all erasure probabilities in (0, 1). This
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fact can also be viewed as an instance of symmetry observed in [52].

The remaining of this chapter is structured as follows. We derive and analyze

the AWD and AAWD of IRA and LDGM codes in Section 3.2. The derived AAWD

is then utilized to numerically evaluate the ML decoding performance of these codes

on the BIAWGN channel. In Section 3.3, we introduce the LDPC-GM codes and

prove that they are capacity-achieving with bounded graphical complexity on MBIOS

channels. Allowing the outer LDPC code and inner LDGM code to be more generally

irregular, we prove that the LDPC-GM codes can achieve capacity on any BEC with

bounded decoding complexity in Section 3.4. Finally, we conclude this chapter in

Section 3.5.

3.2 Average Weight Distribution of IRA Codes

One commonly used approach to analyze the ML performance of some code, is via

deriving its input-output weight enumerator (IOWE) as in [26]. A general method for

computing the IOWE of 1-input-t-output convolutional encoders is proposed in [53],

which can then be used to analyze the ML performance of several concatenated

code ensembles. However, if we view IRA codes as a serial concatenation of an outer

repetition code and an inner convolutional code, then the inner convolutional encoder

will have more than 1 input bits when the check node degree is greater than 3 as

shown in Fig. 3.1(a). Therefore, the method in [53] unfortunately can not be directly

applied to the general scenario of IRA ensembles with arbitrary check node degrees1.

In this section, we solve this problem by viewing an IRA code as a serial concatenated

code with an outer LDGM code and an inner accumulator code. Based on this

decomposition, we derive the average input-parity weight enumerator (AIPWE) of

1However, when the check node degree is small, this problem can be circumvented by further
decomposing the inner convolutional code into a regular check code and an accumulator code, and
using the IOWE of check codes with small check degrees derived in [54].
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IRA ensembles. Upper bounds on the AWD and AAWD of the systematic and

nonsystematic versions of the IRA and LDGM ensembles are then obtained from their

AIPWE, which can be used to obtain various ML performance bounds as in [2,28,47].

As an example, we use Divsalar’s bound to compare the performances of systematic

and nonsystematic IRA ensembles under ML decoding on the BIAWGN channel.

3.2.1 Background: LDGM and IRA Codes

Random Permutation


(a) LDGM

Random Permutation


(b) IRA

Figure 3.1: Factor graph for LDGM and IRA codes. Information bits are denoted
by filled gray circles, parity bits by open circles, and check nodes by squares.

Consider the LDGM and IRA codes as shown in Fig. 3.1. As can be seen in the

figure, both of them have two different sets of variable nodes, i.e., the information

nodes and the parity nodes. The systematic version of them uses all the variable

nodes as its codeword, while the nonsystematic one uses only the parity nodes.

Therefore, letting m denote the number of information bits and n denote the number

of parity bits, the rate R of the systematic and nonsystematic codes is m/(n + m)

and m/n, respectively.

Let λi be the fraction of edges between the information and check nodes that

are connected to an information node with i check node neighbors, and ρi be the

fraction of the same edges that are connected to a check node with i information
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node neighbors. Furthermore, define

λ(x) ,
∞∑
i=1

λix
i−1 (3.1a)

ρ(x) ,
∞∑
i=1

ρix
i−1 (3.1b)

to be the generating functions of λi’s and ρi’s. These two functions are used to

specify the ensembles of LDGM and IRA codes assuming random permutation of

edges between information and check nodes within each ensemble, and are known as

the “degree distribution” pair. A special case is the “(c, d) regular” code ensemble

defined by λ(x) = xc−1 and ρ(x) = xd−1.

The above degree distribution pair (λ, ρ) is from the edge perspective. It will

facilitate our following analysis if we also have an equivalent description from the

node perspective. Let λ̃i (respectively ρ̃i) be the fraction of information (respectively

check) nodes that are connected to i check (respectively information) nodes. Then

we have

λ̃i =
λi/i∑∞

j=1 λj/j
(3.2a)

ρ̃i =
ρi/i∑∞

j=1 ρj/j
. (3.2b)

3.2.2 Average Input-Parity Weight Enumerator of LDGM

and IRA Ensembles

The IOWE Aw,h of a binary linear block code C is defined to be the number

of codewords in C with input Hamming weight w and output Hamming weight h.

Similarly, we can define the input-parity weight enumerator (IPWE) Zw,h for LDGM

and IRA codes to denote the number of codewords with input weight w and parity
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weight h. Note that the IPWE and IOWE are the same for nonsystematic LDGM

and IRA codes, but different for systematic ones.

In this section, we calculate the AIPWE Zw,h of LDGM and IRA ensembles, which

is then used in the next section to obtain the AWD of systematic and nonsystematic

versions of the respective ensembles.

AIPWE of LDGM Ensembles

Consider the (λ, ρ) LDGM ensemble. Let W and H be the random variables

denoting the input and parity weight, respectively, of a randomly chosen codeword

of a code drawn randomly from the ensemble. Furthermore, let E be the random

variable denoting the total number of edges emanating from the information nodes

that are equal to 1 in the aforementioned codeword. Moreover, define

t , m

∞∑
i=1

iλ̃i (3.3)

to be the total number of edges between information and parity nodes. We have

Z
(LDGM)
w,h =2kP (H = h,W = w) (3.4a)

=2kP (W = w)
t∑

e=0

P (H = h,E = e|W = w) (3.4b)

=

(
k

w

) t∑
e=0

P (H = h|E = e,W = w)P (E = e|W = w). (3.4c)

The number of ways of having exactly e edges emanating from w information nodes,

out of a total of
(

k
w

)
possibilities, is equal to coef(

∏∞
u=1(1 + xuy)mλ̃u , xeyw), where

coef(f(x, y), xayb) denotes the coefficient of xayb in the polynomial f(x, y). Therefore,
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we have

P (E = e|W = w) =
coef

(∏∞
u=1(1 + xuy)mλ̃u , xeyw

)

(
k
w

) . (3.5)

On the other hand, given that the number of edges from the information nodes equal

to 1 is e, the output weight is h if and only if exactly h check nodes are connected to

an odd number of such edges, and the remaining n−h check nodes are connected to an

even number of them. Counting the number of ways of connecting e edges to t check

node sockets such that exactly h check nodes have an odd number of connections,

we see that the value is equal to coef(
∏∞

v=1[f−(x, v)y + f+(x, v)]nρ̃v , xeyh), where

f−(x, v) ,1

2
[(1 + x)v − (1− x)v] (3.6a)

f+(x, v) ,1

2
[(1 + x)v + (1− x)v]. (3.6b)

Since the total number of ways of connecting e edges to t sockets is equal to
(

t
e

)
, we

have

P (H = h|E = e,W = w) =
coef

(∏∞
v=1[f−(x, v)y + f+(x, v)]nρ̃v , xeyh

)
(

t
e

) , (3.7)

which is not related to the exact input weight w. Combining (3.4), (3.5) and (3.7),

we obtain the AIPWE of the (λ, ρ) LDGM ensemble

Z
(LDGM)
w,h =

t∑
e=0

1(
t
e

)coef

( ∞∏
u=1

(1 + xuy)mλ̃u , xeyw

)
coef

( ∞∏
v=1

[f−(x, v)y + f+(x, v)]nρ̃v , xeyh

)
.

(3.8)
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In particular, if λ(x) = xc−1 and ρ(x) = xd−1, we have t = cm, and

coef ((1 + xcy)m, xeyw) =





(
m
w

)
if e = cw,

0 else.

(3.9)

coef
(
[f−(x, d)y + f+(x, d)]n, xeyh

)
=

(
n

h

)
coef

(
f−(x, d)hf+(x, d)n−h, xe

)
. (3.10)

Hence (3.8) simplifies to the following AIPWE for the (c, d) regular LDGM ensemble

Z
(LDGM)
w,h =

(
m
w

)
(

cm
cw

)
(

n

h

)
coef

(
f−(x, d)hf+(x, d)n−h, xcw

)
. (3.11)

AIPWE of IRA Ensembles

A (λ, ρ) IRA code can be viewed as a serially concatenated code with an outer

nonsystematic (λ, ρ) LDGM code and an inner accumulator code. In addition, the

randomness of the LDGM ensemble construction is equivalent to having a uniform

interleaver2 [55] between the inner and outer codes. Based on the above, we have

Z
(IRA)
w,h =

n∑
s=0

Z
(LDGM)
w,s A

(acc)
s,h(

n
s

) , (3.12)

where A
(acc)
w,h denotes the IOWE of the accumulator code, which is given in [26] to be

A
(acc)
w,h =





(
n−h
bw/2c

)(
h−1

dw/2e−1

)
if bw/2c ≤ n− h and dw/2e ≤ h,

0 else.

(3.13)

2A uniform interleaver of length n is a probabilistic device that maps any given input of weight
w to all

(
n
w

)
possible permutations of it with equal probability.
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Hence, from (3.12), (3.13) and (3.8), we obtain the AIPWE of the (λ, ρ) IRA ensemble

as

Z
(IRA)
w,h =

∑

s≥0,ds/2e≤h
bs/2c≤n−h

{(
n−h
bs/2c

)(
h−1

ds/2e−1

)
(

n
s

)

×
t∑

e=0

1(
t
e

)coef

( ∞∏
u=1

(1 + xuy)mλ̃u , xeyw

)
coef

( ∞∏
v=1

[f−(x, v)y + f+(x, v)]nρ̃v , xeys

)}
.

(3.14)

Similarly, from (3.12), (3.13) and (3.11), we obtain the AIPWE of the (c, d) regular

IRA ensemble as

Z
(IRA)
w,h =

(
m
w

)
(

cm
cw

)
∑

s≥0,ds/2e≤h
bs/2c≤n−h

(
n− h

bs/2c
)(

h− 1

ds/2e − 1

)
coef

(
f−(x, d)sf+(x, d)n−s, xcw

)
.

(3.15)

3.2.3 Asymptotic Average Weight Distribution of LDGM

and IRA Ensembles

Consider an LDGM or IRA ensemble with AIPWE Zw,h. Let N(l) be the average

number of codewords of weight l in a randomly drawn code from the ensemble. Then

for the systematic ensembles, their AWD is given by

N(l) =

min(m,l)∑

w=max(0,l−n)

Zw,l−w. (3.16)

However, for the nonsystematic ensembles, different input words can result in the

same output codeword in a nonsystematic code. Such codewords should not be

counted more than once in the weight distribution. As a result, the AWD of non-

systematic ensembles can not be obtained as directly as that for the systematic ones.
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For example, for a nonsystematic regular LDGM code with even d, both the all-0

and the all-1 input word result in the all-0 output word. If we just overcount the

repeated codewords in a code, then we obtain the following upper bound for the

AWD of nonsystematic ensembles

N(l) ≤ Nub(l) ,
m∑

w=0

Zw,l. (3.17)

To analyze the asymptotic behavior of the AWD’s, we use the following two

equations proved in [56]

lim
n→∞

coef(f(x),xan)6=0

1

n
ln coef(f(x)n, xan) = inf

x>0
ln

f(x)

xa
(3.18a)

lim
n→∞

coef(f(x,y),xanybn) 6=0

1

n
ln coef(f(x, y)n, xanybn) = inf

x>0,y>0
ln

f(x, y)

xayb
, (3.18b)

where 0 < a, b < 1, and f(x) and f(x, y) are polynomials with nonnegative coeffi-

cients. Note that the convergence of (3.18a) ((3.18b), respectively) is uniform in a

(and b) at the vicinity of any point such that infx>0
f(x)
xa 6= 0 (infx>0,y>0

f(x,y)
xayb 6= 0)

as pointed out in [56]. The property of binomial coefficients as in (2.12) will also be

used.

Define the AAWD of an ensemble with AWD N(l) to be

w(a) , lim
n→∞

1

n
ln N(an). (3.19)

We have the following result.

Theorem 3.1 The AAWD of the nonsystematic (c, d) regular LDGM, nonsystem-

atic (c, d) regular IRA, systematic (c, d) regular LDGM, and systematic (c, d) regular
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IRA ensembles, respectively, satisfy

w(a) ≤H(a) + max
0≤b≤1

{
R(1− c)H(b) + inf

x>0
ln

f−(x, d)af+(x, d)1−a

xbd

}
, wub(a) (3.20)

w(a) ≤ max
0≤r≤min(2(1−a),2a)

{
(1− a)H

(
r

2(1− a)

)
+ aH

( r

2a

)

+ max
0≤b≤1

[
R(1− c)H(b) + inf

x>0
log

f−(x, d)rf+(x, d)1−r

xbd

]}
, wub(a) (3.21)

w(a) = max
max(0, a−1+R

R
)≤b≤min(1, a

R
)

{
R(1− c)H(b) + (1−R)

[
H

(
a− bR

1−R

)

+ inf
x>0

log
f−(x, d)

a−bR
1−R f+(x, d)1−a−bR

1−R

xbd

]}
(3.22)

w(a) = max
max(0, a−1+R

R
)≤b≤min(1, a

R
)
R(1− c)H(b)

+ max
0≤r≤min(2(1−a−bR

1−R
),2(a−bR

1−R
))

{
(1−R)

[(
1− a− bR

1−R

)
H

(
r

2
(
1− a−bR

1−R

)
)

+
a− bR

1−R
H

(
r

2
(

a−bR
1−R

)
)

inf
x>0

log
f−(x, d)rf+(x, d)1−r

xbd

]}
, (3.23)

where H(a) , −a ln a− (1−a) ln(1−a) is the binary entropy function evaluated with

natural logarithms.

Proof: From (3.17) and (3.11), the AAWD of the nonsystematic (c, d) regular
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LDGM ensemble with R , d/c and AWD N(l) can be calculated as follows3

w(a) = lim
n→∞

1

n
log N(an) (3.24a)

≤ lim
n→∞

1

n
log Nub(an) (3.24b)

= lim
n→∞

1

n
ln

m∑
w=0

Z
(LDGM)
w,an (3.24c)

= lim
n→∞

1

n
ln

m∑

bm=0

(
m
bm

)(
n
an

)
coef(f−(x, d)anf+(x, d)(1−a)n, xbcm)(

cm
bcm

) (3.24d)

= lim
n→∞

1

n
ln

[(
n

an

)
max
0≤b≤1

(
Rn
bRn

)
coef(f−(x, d)anf+(x, d)(1−a)n, xbdn)(

dn
bdn

)
]

+ o(n),

(3.24e)

where o(n) is a function of n that converges to 0 as n approaches infinity. Now,

(3.20) follows from (3.18a) and (2.12).

Similarly, (3.21), (3.22) and (3.23) can be derived from (3.11), (3.15), (3.16),

(3.17), (3.18a) and (2.12).

Analogous results for the irregular LDGM and IRA ensembles can also be obtained

in a straightforward manner from (3.8), (3.14), (3.16), (3.17), (3.18b) and (2.12), and

are omitted here.

The derived upper bounds on the AAWD of nonsystematic ensembles are suffi-

cient for obtaining various ML performance upper bounds. However, we still have to

determine the guaranteed (design) rate of these codes due to the possible occurrence

of rate reduction. In the following, we will show that regular nonsystematic LDGM

and IRA codes indeed suffer no rate reduction with asymptotically high probability.

Let R1 be the true rate of a randomly drawn code from the nonsystematic (c, d)

regular LDGM ensemble. Let Nub(0) be the random variable denoting the number

3R may not be the true guaranteed rate of the nonsystematic (c, d) regular LDGM ensemble
since nonsystematic codes with repeated codewords can undergo a rate reduction.
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of input words that result in all-0 codeword in a randomly drawn code. Then, we

have by the linearity of the LDGM codes and Markov’s inequality that

P (R1 < R− r) =P (2nR/2nR1 > 2nr) (3.25a)

=P (Nub(0) > 2nr) (3.25b)

≤Nub(0)

2nr
(3.25c)

≤O

(
2

n

�
wub(0)

ln 2
−r

�)
, (3.25d)

which converges to 0 as n approaches infinity for all r > wub(0)
ln 2

. Therefore, if

wub(0) ≤ 0, the nonsystematic (c, d) regular LDGM ensemble essentially suffers no

rate reduction with asymptotically high probability. This last inequality is shown to

be true in the following theorem.

Theorem 3.2 For the (c, d) nonsystematic regular LDGM ensembles, R = d/c is

the guaranteed rate with asymptotically high probability in the ensemble, i.e., these

ensembles suffer no rate reduction.

Proof: Following the above discussion, it is sufficient to show that wub(0) ≤ 0

for these ensembles. Starting form the expression in (3.20) we have for every b ∈ [0, 1]

R(1− c)H(b) + inf
x>0

ln
f+(x, d)

xbd
≤ (1− d)H(b) + inf

x>0
ln

f+(x, d)

xbd
. (3.26)

However, the right hand side of this inequality is exactly the AAWD of Gallager’s

(n, d, d) ensemble as described in Section 2.2 with rate 0. Thus from Fact 2.1, it
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follows that

wub(0) = max
0≤b≤1

{
R(1− c)H(b) + inf

x>0
ln

f+(x, d)

xbd

}
(3.27a)

≤ max
0≤b≤1

{
(1− d)H(b) + inf

x>0
ln

f+(x, d)

xbd

}
(3.27b)

= max
b∈{0,1/2,1}

{
(1− d)H(b) + inf

x>0
ln

f+(x, d)

xbd

}
(3.27c)

=0. (3.27d)

Since the accumulator code maps distinct input words to distinct output words, we

have the following corollary.

Corollary 3.1 The nonsystematic (c, d) regular IRA ensemble suffers no rate reduc-

tion, and its guaranteed rate is given by R = c/d with asymptotically high probability.

3.2.4 Numerical Results

Although the AAWD’s given in Theorem 3.1 do not assume close forms, we can

still numerically evaluate these expressions to acquire some intuition and insight on

the performance of the LDGM and IRA ensembles. Fig. 3.2 depicts the AAWD of the

nonsystematic (10,5) regular LDGM and IRA ensembles, and compares them with

those of the (7,14) regular LDPC ensemble given in [56] and the rate-1/2 random

ensemble. As can be seen in the figure, the IRA ensemble has a more concentrated

AAWD than the LDGM ensemble. This demonstrates how the rate-1 accumula-

tor code helps eliminate low weight codewords in the nonsystematic LDGM codes.

Moreover, this figure shows that the AAWD of the nonsystematic (10,5) regular IRA

ensemble well approximates that of the random ensemble with the same rate for

positive values of the AAWD.
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Figure 3.2: The AAWD of the nonsystematic (10,5) regular LDGM ensemble, nonsys-
tematic (10,5) regular RA ensemble, (7,14) regular LDPC ensemble, and the random
ensemble. All of them have rate 1/2, and the logarithm is to the base 2.
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A similar comparison is shown in Fig. 3.3. The effect of the accumulator code is

also evident for both the systematic (12,12) and the nonsystematic (10,5) regular IRA

ensembles. Also can be seen in this figure is that the AAWD of the nonsystematic

IRA ensemble is better than that of the systematic one with the same graphical

complexity. This finding is consistent with the results of [18] for the BEC.
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Figure 3.3: The AAWD of the systematic (12,12) regular LDGM ensemble, system-
atic (12,12) regular RA ensemble, nonsystematic (10,5) regular RA ensemble, and
the random ensemble. All of them have rate 1/2, and the logarithm is to the base 2.

Motivated by the above numerical examples, we now focus on the nonsystem-

atic regular IRA ensembles and investigate their AAWD’s with different check node

degrees and the same rate. Fig. 3.4 shows that the AAWD of the rate 1/2 nonsys-

tematic regular IRA ensembles approaches that of the random code ensemble (for

positive values of the AAWD) with increasing check node degrees. In particular,

the AAWD of the nonsystematic (12,6) regular IRA ensemble almost coincides with
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that of the random ensemble for all growth exponent values greater than 0 with a

moderate check node degree equal to 6 + 2 = 8. Compared with LDPC ensembles,

which are proved in [27] to have a random-ensemble-like AAWD only at the limit

when the check node degree goes to infinity, IRA ensembles appear to have a great

potential of achieving capacity with bounded (small) check node degrees.

However, it is proved in [57] that if a code can be encoded in linear time using

sub-linear memory (IRA codes fall in this category) then this code can not have

minimum distance growing linearly with n. This result explains why the AAWD of

IRA ensembles is always nonnegative as can be seen in the figures, and imposes a

difficulty on proving IRA codes to be capacity-achieving on MBIOS channels even

with ML decoding. For instance, the ML bound in [48] cannot be used in the same

way used to prove that regular LDPC codes can achieve capacity on MBIOS channels

with ML decoding [27]. In the next section, we introduce a new family of codes that

circumvent this problem and are proved to be capacity-achieving on MBIOS channels

with ML decoding.

Table 3.1: Comparison of ( Eb

N0
)∗ as given in (3.28) for several ensembles with rate

1/2.
Ensemble e ( Eb

N0
)∗(dB)

nonsystematic (4,2) regular IRA 8 0.308
Systematic (6,6) regular IRA 8 0.444

(4,8) regular LDPC 8 0.426
nonsystematic (6,3) regular IRA 10 0.308

Systematic (8,8) regular IRA 10 0.343
(5,10) regular LDPC 10 0.341

nonsystematic (8,4) regular IRA 12 0.308
Systematic (10,10) regular IRA 12 0.318

(6,12) regular LDPC 12 0.318
nonsystematic (10,5) regular IRA 14 0.308
Systematic (12,12) regular IRA 14 0.311

(7,14) regular LDPC 14 0.311
Shannon limit 0.184
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Figure 3.4: Comparison for the AAWD of nonsystematic regular RA ensembles with
different right degrees. All of them have rate 1/2, and the logarithm is to the base
2.
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To further investigate how regular IRA ensembles perform on the BIAWGN chan-

nel with ML decoding, we invoke Divsalar’s bound [28] on the minimum bit signal

to noise ratio (SNR) ( Eb

N0
)∗ required for reliable communication as follows

(
Eb

N0

)∗ ≤ 1

R
max
0≤a≤1

{
(1− e−2w(a))(1− a)

2a

}
. (3.28)

This bound is shown in [28] to have the same error exponent as the tangential sphere

bound of Poltyrev [47], which often happens to be the tightest reported upper bound

for block codes transmitted over the BIAWGN channel (see [58]). The results for

rate-1/2 nonsystematic regular IRA, systematic regular IRA and regular LDPC en-

sembles are summarized in Table 3.1. The comparison is based on the same graphical

complexity, denoted by e in the table. As can be seen, all nonsystematic regular

IRA ensembles with a check node degree greater than 3 yield the same performance

bound, which is better than that of their corresponding systematic regular IRA and

regular LDPC ensembles, and is only 0.124 dB away from the Shannon limit. This

result seems to suggest that nonsystematic regular IRA codes with small check node

degrees can come very close to the BIAWGN channel capacity.

3.3 LDPC-GM Codes

In this section, we introduce the LDPC-GM codes, which are serially concatenated

codes with an outer LDPC code and an inner LDGM code. In particular, we show

that if the outer code is Gallager’s LDPC code and the inner code is a rate-1 regular

LDGM code, then this LDPC-GM ensemble can achieve capacity on MBIOS channels

using ML decoding with bounded graphical complexity.
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Figure 3.5: The factor graph of the LDPC-GM codes

3.3.1 Concatenation of LDPC and Rate-1 LDGM Codes

Consider the concatenation of an outer Gallager’s (n, j, k1) LDPC code with guar-

anteed rate Ro = 1 − j/k1 as described in Section 2.2 (assuming k1 is even as well)

and an inner rate-1 (k2, k2) regular LDGM code as shown in Fig. 3.5. For simplicity,

we assume that k = k1 = k2 throughout this chapter. If we ignore the possibility

that different LDPC codewords can become the same codeword after further encoded

by the inner LDGM code and just overcount them, then due to the randomness of

the LDPC code construction and from (3.11), the AWD Nc(l) of this LDPC-GM

ensemble can be bounded by

Nc(l) ≤ Nub
c (l) ,

n∑
s=0

No(s)Z
(LDGM)
s,l(
n
s

) (3.29a)

=

(
n

l

) bn−l/kc∑

s=dl/ke

No(s)(
kn
ks

) coef(f−(x, k)lf+(x, k)n−l, xks), (3.29b)

where the change of the range of the summation in the last equality is due to the fact

that coef(f−(x, k)lf+(x, k)n−l, xks) = 0 for s < dl/ke and s > bn− l/kc. To calculate
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the asymptotic growth rate of Nub
c (l), we employ (3.18a) and (2.12) to get

wc(a) , lim
n→∞

1

n
ln Nc(an) (3.30a)

≤ lim
n→∞

1

n
ln Nub

c (an) (3.30b)

=H(a) + max
a
k
≤b≤1− a

k

wo(b)− kH(b) + inf
x>0

ln
f−(x, k)af+(x, k)1−a

xbk
(3.30c)

(a)

≤H(a) + max
a
k
≤b≤1− a

k

wo(b) + a ln[1− (1− 2b)k] + (1− a) ln[1 + (1− 2b)k]− ln 2

(3.30d)

,wub
c (a), (3.30e)

where inequality (a) follows by substituting x = b
1−b

in the infimum expression.

Since Theorem 3.2 shows that regular LDGM ensembles are free of rate reduction

with asymptotically high probability, we conclude that the guaranteed rate R of this

LDPC-GM ensemble is Ro with asymptotically high probability.

3.3.2 Analysis of the LDPC-GM Codes

In this section, we will first characterize wub
c (a), and then use the derived results

to prove that LDPC-GM codes can be capacity-achieving on MBIOS channels using

ML decoding with bounded graphical complexity. Although wub
c (a) is not symmetric

about a = 1/2, the following lemma shows that we can focus on analyzing wub
c (a) for

a ∈ [0, 1/2] and bound wub
c (a) by wub

c (1− a) for a ∈ [1/2, 1].

Lemma 3.1 wub
c (a) ≤ wub

c (1− a) for all a ∈ [1/2, 1].

Proof: Since

ln[1− (1− 2b)k] ≤ 0 ≤ ln[1 + (1− 2b)k], ∀b ∈ [0, 1], (3.31)
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and 1 − a ≤ a for all a ∈ [1/2, 1], it follows from (3.30) that for all a ∈ [1/2, 1], we

have

wub
c (a) =H(a) + max

a
k
≤b≤1− a

k

wo(b) + a ln[1− (1− 2b)k] + (1− a) ln[1 + (1− 2b)k]− ln 2

(3.32a)

≤H(1− a)

+ max
1−a

k
≤b≤1− 1−a

k

wo(b) + (1− a) ln[1− (1− 2b)k] + a ln[1 + (1− 2b)k]− ln 2

(3.32b)

=wub
c (1− a). (3.32c)

In the next theorem, we prove that given any R1 in [0, 1], the positive part of

wub
c (a) can be upper bounded by the AAWD of the random ensemble for any rate

R ≤ R1 if k is sufficiently large. In this case, we also prove that Nc(l) decreases at

least polynomially with n in the negative part of wub
c (a) when j ≥ 3.

Theorem 3.3 For any R1 ∈ [0, 1], there exists an integer M < ∞ such that for

all k > M and for all LDPC-GM codes with design rate R ∈ [0, R1], there exists a

δ′ < H−1((1−R) ln 2) such that the following two statements are true.

1.

wub
c (a)





≤ 0 if a = 0,

< 0 if a ∈ (0, δ′],

≤ H(a)− (1−R) ln 2 if a ∈ (δ′, 1/2].

(3.33)

2. Nub
c (l) = O(n−j+2) for all l ∈ (0, δ′n] ∪ [n− δ′n, n].
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Proof: See Appendix B.1.

One important point in the above theorem is that, M only depends on R1, and does

not vary with the design rate R. Therefore, given any MBIOS channel with capacity

C, if we let R1 = C, then a fixed and finite k > M (e.g., k = M + 1) depending

only on C is sufficient for all LDPC-GM codes of design rate R ∈ [0, C] to satisfy

the two statements of Theorem 3.3. On the contrary, if M were also dependent

on R (as proved in [27] for the case of regular LDPC codes), then M (and thus

the graphical complexity) could approach infinity as R approaches the capacity C.

Indeed, this is the essence of our bounded graphical complexity result as will be

proved in Theorem 3.4.

If we let dmin and Nc(l) be the random variables denoting the minimum distance

and number of codewords of weight l, respectively, of a randomly drawn code from

the LDPC-GM ensemble, and if we denote by δGV = H−1((1−R) ln 2) the normalized

Gilbert-Varshamov distance, then from Markov’s inequality, we have for all ε > 0,

P (dmin ≤ (δGV − ε)n) =P


 ∑

l∈(0,(δGV −ε)n]

Nc(l) ≥ 1


 (3.34a)

≤
∑

l∈(0,(δGV −ε)n]

Nc(l) (3.34b)

≤n max
l∈(0,δ′n]

Nub
c (l) + n exp

{
n sup

a∈(δ′,δGV −ε]

wub
c (a) + o(n)

}

(3.34c)

=O(n−j+3), (3.34d)

where the last equality follows from the facts proved in Theorem 3.3. In particular,

for the first term in (3.34c) we have Nub
c (l) = O(n−j+2) for all l ∈ (0, δ′n] and for the
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second term we have

wub
c (a) < 0 for all a ∈ [δ′, δGV − ε] (3.35a)

⇒n exp

{
n sup

a∈(δ′,δGV −ε]

wub
c (a) + o(n)

}
decreases exponentially for large n. (3.35b)

Equation (3.34) implies that P (dmin > (δGV − ε)n) approaches 1 asymptotically as

n approaches infinity when j ≥ 4. Since ε can be arbitrarily small, we have proved

the following corollary.

Corollary 3.2 For any R1 ∈ [0, 1], there exists an integer M < ∞ such that for all

k > M , and for all j ≥ 4, all LDPC-GM codes with design rate R ∈ [0, R1] have

a normalized minimum distance, which is arbitrarily close to the Gilbert-Varshamov

bound with asymptotically high probability.

In Fig. 3.6, we compare the AAWD of the LDPC, the LDPC-GM and the random

ensemble with R = 0.5 and k = 8. It is evident that the rate-1 LDGM inner code

helps eliminate high weight codewords in the outer LDPC code. As a trade-off, the

growth rate of some low weight codewords increases slightly. However, as long as the

growth rate of the low weight codewords remains negative, the number of low weight

codewords still becomes vanishingly small as n goes to infinity.

We are now ready to state the main theorem of this section, which shows that

given any MBIOS channel, there always exists a finite value M such that the LDPC-

GM ensemble with k > M is capacity-achieving.

Theorem 3.4 Given any MBIOS channel with capacity C, there exists an integer

M < ∞ such that the average block error probability PB of the LDPC-GM ensembles

with k > M , j ≥ 4 and rate R < C is vanishingly small when ML decoding is used.

Proof: See Appendix B.2.
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The logarithm is to the base 2 in this figure.

58



As can be seen in Fig. 3.5, the graphical complexity ∆ of these LDPC-GM codes

can be evaluated as follows

∆ =
n(j + k) + n

Rn
=

(2−R)k + 1

R
. (3.36)

Since Theorem 3.4 guarantees that k does not approach infinity, we can deduce that

these LDPC-GM codes with any rate R ∈ (0, 1) can be capacity-achieving on any

MBIOS channel with bounded graphical complexity.

3.4 Density Evolution for LDPC-GM Codes on

the BEC

Although the aforementioned LDPC-GM ensembles have finite graphical com-

plexity, the decoding complexity under ML decoding is still exponential. In this

section, we show that by allowing the outer LDPC and inner LDGM codes to be

more generally irregular, there exist capacity-achieving LDPC-GM ensembles on any

BEC under BP decoding with bounded decoding complexity per information bit. Al-

though this is not a proof that the same might be true for MBIOS channels, it is a

good indication of the potential of the LDPC-GM codes.

Consider the concatenation of a (λ, ρ) irregular LDPC code and a (2, 2) regular

LDGM code, where λ and ρ are the standard variable and check node degree dis-

tributions, respectively, from the edge perspective as defined in [59]. Note that this

LDPC-GM ensemble has guaranteed rate

R = 1−
∫ 1

0
ρ(t)dt∫ 1

0
λ(t)dt

. (3.37)

Let q be the channel erasure probability, and let x1, x2, x3 and x4 be the probabilities

59



of erasure on edges from check to variable (LDGM), variable to check (LDPC), check

to variable (LDPC) and variable to check (LDGM) nodes, respectively, as shown in

Fig. 3.5. Then, assuming we are operating at some fixed point, we have the following

density evolution equations4.

x1 =1− (1− q)(1− x4) (3.38a)

x2 =x2
1λ(x3) (3.38b)

x3 =1− ρ(1− x2) (3.38c)

x4 =x1λ̃(x3), (3.38d)

where λ̃(x) =
∑∞

i=1 λ̃ix
i and

λ̃i =
λi/i∫ 1

0
λ(t)dt

, (3.39)

denoting the fraction of variable nodes in the LDPC code with degree i. Equivalently,

we have

λ̃(x) =

∫ x

0
λ(t)dt∫ 1

0
λ(t)dt

. (3.40)

Note that equations (3.38) are also the density evolution equations for the serially

concatenated codes with an outer LDPC code and an inner differentiator code5.

4The density evolution method can be applied here since LDPC-GM codes are instances of
multi-edge type LDPC codes [16].

5A differentiator code with input ak and output bk is defined by the input-output relation
bk = ak−1 + ak
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Solving these equations for x3, we have

x3 =1− ρ(1− x2) (3.41a)

=1− ρ(1− x2
1λ(x3)) (3.41b)

=1− ρ

(
1−

[
q

1− (1− q)λ̃(x3)

]2

λ(x3)

)
. (3.41c)

where the last equality follows from the following:

x4 = x1λ̃(x3) = [1− (1− q)(1− x4)]λ̃(x3) (3.42a)

⇒x4

[
1− (1− q)λ̃(x3)

]
= qλ̃(x3) (3.42b)

⇒x4 =
qλ̃(x3)

1− (1− q)λ̃(x3)
(3.42c)

⇒1− x4 =
1− λ̃(x3)

1− (1− q)λ̃(x3)
(3.42d)

⇒x1 = 1− (1− q)(1− x4) =
q

1− (1− q)λ̃(x3)
. (3.42e)

If (3.41) has no solution in (0, 1], then x3 must converge to 0, and thus x4 must

converge to 0 as the number of iterations approaches infinity. Therefore, if we have

1− ρ

(
1−

[
q

1− (1− q)λ̃(x3)

]2

λ(x3)

)
< x3, ∀x3 ∈ (0, 1] (3.43)

then the BP decoding is successful. Note that, (3.41) is essentially the same as

equation (6) in [18] except for the following changes: x0 → 1 − x3, p → 1 − q,

λ(·) → ρ(·), ρ(·) → λ(·), and R(·) → λ̃(·). More generally, (3.41) is an instance of

the symmetry introduced in [52]. So, in the following, we will use the results proved

in [18] to show two particular degree distribution pairs are capacity-achieving under

BP decoding.
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Theorem 3.5 (Check-regular ensemble) Let

λ(x) =
1− (1− x)

1
k−1

[
1− (1− q)

(
1− kx + (k − 1)

[
1− (1− x)

k
k−1

])]2 (3.44)

ρ(x) =xk−1. (3.45)

Then for k = 3 and q ∈ [12
13

, 1), λ(x) has only non-negative coefficients. Moreover,

for any ε ∈ (0, 1), let M(ε) be the smallest positive integer such that6

∞∑

i=M(ε)+1

λi

i
<

ε(1− q)

qk
, (3.46)

and let λε(x) be the truncated degree distribution of λ(x) by treating all variable nodes

with degree greater than M(ε) as pilot bits. Then the degree distribution pair (λε, ρ)

achieves a fraction 1− ε of the channel capacity with vanishing bit error probability

under BP decoding.

Proof: See Appendix B.3.1.

The decoding complexity per information bit of this check-regular ensemble can be

calculated as follows

∆ <
knq + 2n + n

(1− q)(1− ε)n
=

qk + 3

(1− q)(1− ε)
, (3.47)

which approaches the bounded value qk+3
1−q

as ε approaches 0.

6M(ε) exists for all ε ∈ (0, 1) since
∑∞

i=1
λi

i =
∫ 1

0
λ(t)dt = 1

qk , which means
∑∞

i=M(ε)+1
λi

i can
be made arbitrarily close to 0 by increasing M(ε).
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Theorem 3.6 (Variable-regular ensemble) Let

λ(x) =x2 (3.48)

ρ(x) =1 +

2(1− q)(1− x)2 sin

(
1
3
arcsin

(√
−27(1−q)(1−x)

3
2

4q3

))

√
3q4

[
− (1−q)(1−x)

3
2

q3

] 3
2

. (3.49)

Then for q ∈ [0.05, 1], ρ(x) has only non-negative coefficients. Moreover, for any

ε ∈ (0, 1), let M(ε) be the smallest positive integer such that7

∞∑

i=M(ε)+1

ρi <
ε(1− q)

3
, (3.50)

and let

ρε(x) ,


1−

M(ε)∑
i=1

ρi


 +

M(ε)∑
i=1

ρix
i−1 (3.51)

be the truncated degree distribution of ρ(x). Then the degree distribution pair (λ, ρε)

achieves a fraction 1− ε of the channel capacity with vanishing bit error probability

under BP decoding.

Proof: See Appendix B.3.2.

The decoding complexity per information bit of this variable-regular ensemble can

be calculated as follows

∆ <
3n + 2n + n

(1− q)(1− ε)n
=

6

(1− q)(1− ε)
, (3.52)

which approaches the bounded value 6
1−q

as ε approaches 0.

7M(ε) exists for all ε ∈ (0, 1) since
∑∞

i=1 ρi = 1, which means
∑∞

i=M(ε)+1 ρi can be made
arbitrarily close to 0 by increasing M(ε).
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One drawback of these capacity-achieving degree distribution pairs is that they

are not guaranteed to be valid, i.e., with only nonnegative coefficients, for all

q ∈ (0, 1). Thus, it is not clear if there exist capacity-achieving check-regular ensem-

bles with bounded complexity for the BEC with erasure probability q < 12/13 (re-

spectively, variable-regular ensembles for the BEC with erasure probability q < 0.05).

However, since this is true for q in the vicinity of 1 (which is not true for the capacity-

achieving IRA codes in [18]), it is possible to construct capacity-achieving ensembles

with bounded complexity for any q by considering punctured LDPC-GM codes. The

idea is to construct a low-rate capacity-achieving code for a bad (i.e., q close to 1)

BEC channel, and then use puncturing to increase its rate. In [60], it is shown that

random puncturing results in no performance loss on the gap to capacity for codes on

the BEC. It follows that puncturing can be used to increase the rate of LDPC-GM

codes without affecting their capacity-achievability, a fact that was also observed by

Pfister and Sason [52]. Furthermore, since a punctured LDPC-GM ensemble can also

be viewed as another unpunctured LDPC-GM ensemble with inner irregular LDGM

code (which is no longer rate-1 in general), we have the following theorem.

Theorem 3.7 Let (λ, ρ) be a degree distribution pair implied by Theorem 3.5 or

Theorem 3.6 for some given ε and q′. Consider the LDPC-GM ensemble, whose

outer LDPC code has degree distribution pair (λ, ρ), and inner LDGM code has

degree distribution pair (f, g). Then for any given p ∈ [0, q′], if

f(x) =x(1− p) + p (3.53a)

g(x) =x, (3.53b)

then this LDPC-GM ensemble achieves a fraction of 1− ε of the channel capacity on

the BEC with erasure probability q , q′−p
1−p

under BP decoding.

64



Proof: See Appendix B.3.3.

According to this theorem, given any capacity-achieving degree distribution pair

(λ, ρ) for some erasure probability q′, we can generate capacity-achieving LDPC-GM

ensembles for all erasure probabilities q ∈ [0, q′] by adjusting p. Since q′ can be

arbitrarily close to 1, and the maximum degrees of f and g are bounded for all p,

this construction can produce capacity-achieving LDPC-GM ensembles for all BECs

with bounded decoding complexity per information bit.

3.5 Conclusion

In this chapter, we first studied some fundamental properties of IRA codes, and

then introduced LDPC-GM codes, which were proved to be capacity-achieving on the

BEC and MBIOS channels using BP and ML decoding, respectively, with bounded

graphical complexity. These LDPC-GM codes are the first reported ensembles that

achieve capacity on MBIOS channels with bounded graphical complexity.

For the IRA codes, we derived their AIPWE by viewing an IRA code as a serially

concatenated code with an outer LDGM code and an inner accumulator code. The

resulting AIPWE was then used to derive the AWD for systematic and nonsystem-

atic versions of IRA codes, and their asymptotic growth rate was also calculated. In

the process, we also derived the AAWD of the systematic and nonsystematic LDGM

codes, and proved that nonsystematic regular LDGM codes are free of rate reduc-

tion with asymptotically high probability. By numerically evaluating the AAWD

of the ensembles, we concluded that: (a) the accumulator code plays an important

role in eliminating low weight codewords for IRA ensembles; (b) the nonsystematic

regular IRA ensembles have more concentrated AAWD’s than their corresponding

systematic ones with the same graphical complexity; (c) the nonsystematic regu-

lar IRA ensembles with moderate check node degrees have AAWD’s very close to
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that of the random ensemble for all growth rate values greater than zero. The bit

SNR thresholds on the BIAWGN channel based on Divsalar’s bound were obtained

to show that nonsystematic regular IRA ensembles with small check node degrees

have a better guaranteed ML performance than the corresponding systematic regular

IRA and regular LDPC ensembles with the same graphical complexity, which is only

0.124 dB away from the Shannon limit. However, although these promising results

made nonsystematic IRA ensembles strong candidates for capacity-achieving codes

on noisy channels with bounded graphical complexity, the fact that they do not have

linearly increasing minimum distance as proved in [57] prevented this statement from

being rigorously proved.

Motivated by this reason, LDPC-GM codes, i.e., concatenated codes with an

outer LDPC code and an inner LDGM code, were introduced. In the case that

the outer code is a Gallager’s (n, j, k) LDPC code and the inner code is a rate-1

(k, k) regular LDGM code, we proved that for any desired range of rates R, there

always exists an integer M < ∞ such that if k > M , then the resulting AAWD

of the LDPC-GM codes has a positive part, which can be upper bounded by the

AAWD of the random ensemble, and a negative part, where the number of codewords

vanishes at least polynomially in n when j ≥ 4. This result was attributed to the

presence of the rate-1 LDGM encoder, which helps eliminate high weight codewords

while maintaining a vanishingly small amount of low weight codewords in the LDPC

code. The implication of the above statement is that these codes achieve the Gilbert-

Varshamov bound with asymptotically high probability. Furthermore, after applying

the ML performance bound given in [48] to these LDPC-GM codes, we proved that

they can achieve capacity on any MBIOS channel using ML decoding. Since all these

results hinged on the only condition that k is greater than some finite number, we

have proved that these LDPC-GM codes are capacity-achieving codes with bounded
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graphical complexity on any MBIOS channel. Finally, if the outer LDPC code is

allowed to be irregular, then invoking the density evolution method, we showed two

particular ensembles of the LDPC-GM codes to be capacity-achieving on the BEC

under BP decoding with bounded decoding complexity. Moreover, extensions valid

for all erasure probabilities of the BEC using inner irregular LDGM codes were also

presented.

These favorable results could suggest a high potential for the LDPC-GM codes to

achieve capacity on MBIOS channels with bounded decoding complexity per iteration

under BP decoding. This remains an open problem mainly due to the fact that the

only available method for studying the performance of turbo-like codes under BP is

density evolution, which becomes ineffective as an analytical tool in MBIOS channels.

Even if this problem could be solved another open problem arises: since the required

number of iterations for successful iterative decoding for the LDPC-GM codes as

a function of the gap to capacity remains unknown (a fact that is true also for

all other known capacity-achieving codes), it is not clear whether bounded graphical

complexity property implies bounded decoding complexity using iterative decoding.
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CHAPTER 4

Iterative Decoding Performance Bounds for

LDPC Codes

4.1 Introduction

Since the main difficulty in using the density evolution (DE) method for the

asymptotic performance analysis of codes with iterative decoding on memoryless

binary-input output-symmetric (MBIOS) channels is that the evolved densities in

general require an infinite-dimensional description, one way to circumvent this prob-

lem is to track the evolution of the densities projected to some finite-dimensional

space. Specifically proposed approaches in this category include the Gaussian ap-

proximation [43], the extrinsic information transfer (EXIT) chart [61], and the gen-

eralized EXIT (GEXIT) [62] chart methods. Unfortunately, since the EXIT and

GEXIT chart methods still require numerical calculations, and the Gaussian ap-

proximation does not imply any upper or lower bounds on the exact performance,

these results still can not be used to analytically bound the code performance.

In [25], the authors proposed to map the evolved densities to Bhattacharyya

parameters, which are further used to bound the bit error probability of the low-
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density parity-check (LDPC) codes under sum-product (SP) decoding [8] on MBIOS

channels. It turns out that an upper bound on the Bhattacharyya parameters can be

obtained by a recursion involving only one-dimensional real numbers, so the whole

result can be used to determine a guaranteed decoding capability for the LDPC codes.

In this chapter, we improve this result of [25] by showing that the same recursively

determined upper bound on the bit error probability of the LDPC codes not only

holds for the SP decoding, but also holds for the min-sum (MS) decoding [8]. This

result is attained by upper bounding the probability of error of the root bit of a tree

code by a sequence error probability of a subcode of the tree code, and then using

the union bound. Therefore, the whole proof does not involve the Bhattacharyya

parameters.

Then, we turn our attention to SP decoding, and derive recursive lower and upper

bounds on the probability of bit error and the Bhattacharyya parameter, respectively,

after each iteration. The recursive upper bound on the Bhattacharyya parameter

is tighter than the one given in [25], and is also found independently by Jin and

Richardson in [30]. Both derived lower and upper bounds become exact and recover

the one-dimensional DE equation on the binary erasure channel (BEC). Exploiting

the resemblance of our recursions to the DE equation on the BEC, we prove that

LDPC codes under SP decoding on the BEC always have the best asymptotic perfor-

mance among all MBIOS channels with the same uncoded bit error probability, and

always have the worst one among all MBIOS channels with the same Bhattacharyya

parameter. In other words, the one-dimensional DE equation of LDPC codes on

the BEC can be used to bound the SP decoding performance of LDPC codes from

below and above on all MBIOS channels. For instance, since an abundance of studies

have resulted in LDPC codes working reliably on any given BEC, we can always find

codes working reliably on any given MBIOS channel according to this result. Note
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also that, due the nature of the proofs of the main lemmas, this performance con-

nection between the BEC and MBIOS channels is also true for the general family of

multi-edge type LDPC codes [16], including the irregular repeat-accumulate (IRA)

codes [17, 18] and the low-density parity-check and generator matrix (LDPC-GM)

codes introduced in Chapter 3.

The remaining of this chapter is structured as follows. In Section 4.2, we review

the preliminary background on Bhattacharyya parameters, MBIOS channels and the

asymptotic performance analysis of LDPC codes. Then, we present our asymptotic

performance analysis of LDPC codes on MBIOS channels under MS and SP decoding

in Section 4.3 and 4.4, respectively. Finally, we conclude this chapter in Section 4.5.

4.2 Preliminaries

Let the random variable Y from the alphabet Y be an observation of the binary

variable x from the alphabet X , {0, 1}. Suppose the statistics of Y are com-

pletely characterized by the conditional probability density function1 (pdf) f(y|x).

In the two-hypothesis testing problem of decoding x given a realization y of Y , the

Bhattacharyya parameter B is defined as

B ,
∫

Y

√
f(y|0)f(y|1)dy, (4.1)

and it is shown in [64, Theorem 7.5] that B is an upper bound on the maximum-

likelihood (ML) decoding error probability. A property of B following from the

1Mixed and discrete random variables can also be accommodated by including the Dirac delta
function to probability density functions. See [63, Section 5.3] for a discussion.
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Cauchy-Schwarz inequality is that

0 ≤ B =

∫

Y

√
f(y|0)f(y|1)dy ≤

√(∫

Y
f(y|0)dy

)(∫

Y
f(y|1)dy

)
= 1. (4.2)

If x and y are the input and output symbols, respectively, of an MBIOS channel, then

we may assume that Y is the set of real numbers R and further have the symmetry

condition:

f(y|0) = f(−y|1), ∀y ∈ R. (4.3)

To analyze the asymptotic average iterative decoding performance of a (λ, ρ)

irregular LDPC ensemble when the codeword length goes to infinity, where λ and

ρ are the degree distribution pair as defined in (1.1), it is shown in Fact 1.2 that

we can as well consider the cycle-free case. In this case, the probability of bit error

after l decoding iterations is the probability of decoding error of the root bit on

the computation tree of l + 1 (variable node) levels whose construction is dictated

by the degree distributions (λ, ρ) as in [59]. See Fig. 4.1 for an example of the

computation tree. Due to the symmetry condition of MBIOS channels, we can

also assume without loss of generality that the all-zero codeword is transmitted.

Hence, in the following two sections, we will analyze the asymptotic MS and SP

iterative decoding performances of the (λ, ρ) LDPC ensemble on MBIOS channels

by considering the corresponding tree codes and assuming the transmission of the

all-zero codeword.
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Figure 4.1: Computation tree of the (x2, x3) LDPC ensemble of level 3 (two itera-
tions), where circles denote variable nodes and squares denote check nodes.

4.3 Min-Sum Decoding Performance Analysis

Consider an arbitrary binary tree code whose codebook is C = {c0 =

0, c1, . . . , cM}, where ci = (ci1, ci2, . . . , cin) is a codeword of length n for all i, and c0 is

the all-zero codeword. Let ci1 be the root bit of this tree for all i, x = (x1, x2, . . . , xn)

the transmitted codeword, and y = (y1, y2, . . . , yn) the received sequence from an

MBIOS channel with conditional pdf f(y|x). When MS decoding is performed on

this tree, it essentially performs maximum-likelihood sequence detection (MLSqD)

on the whole sequence to produce an estimate ĉ = (ĉ1, ĉ2, . . . , ĉn). Therefore, if we

define the decision region for the codeword ci as

Ui ,
⋂

k 6=i

Uik, (4.4)

where

Uik ,
{

y ∈ Rn|
n∏

j=1

f(yj|cij) ≥
n∏

j=1

f(yj|ckj)

}
, (4.5)

then the probability of the root bit being in error under MS decoding assuming the

transmission of the all-zero codeword c0 is

PMS
b = P (ĉ1 = 1|x = c0) = P

(
y ∈

⋃
i,ci1=1

Ui|x = c0

)
. (4.6)
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We would like to find a compact representation of the set

U ,
⋃

i,ci1=1

Ui, (4.7)

or at least a superset of U so that we can bound PMS
b from above. Note that such

an upper bound is also a valid upper bound on the probability of root bit error P SP
b

when the SP decoding is performed on the tree since the SP decoding essentially

performs optimal ML decoding for each bit.

Definition 4.1 Define the subcode Cr of C as the set of codewords in C such that

(i) each check node with parent variable node equal to 1 has exactly one child vari-

able node equal to 1, and

(ii) each check node with parent variable node equal to 0 has all child variable nodes

equal to 0.

Note that in this reduced codebook Cr, the only codeword with root bit equal to 0 is

the all-zero codeword. Moreover, as can be seen in Fig. 4.2, the number of codewords

with root bit equal to 1 is reduced in Cr. In the following lemma, we show how we

can use this reduced codebook Cr to characterize U .

Lemma 4.1 U ⊂ ⋃
i,ci1=1,ci∈Cr

Ui0.

Proof: Given any y ∈ U =
⋃

i,ci1=1 Ui, there exists a k such that y ∈ Uk

and ck1 = 1. To proceed with our proof, we first carry out the following labeling

procedure on the codeword ck.

1. At the initial state, the root bit is labelled as “survived”, and all the other vari-

able nodes are unlabelled. Note that in this labeling procedure, the “survived”

variable nodes will always have value 1 in ck. We first consider the check nodes

at the topmost level of the tree.

73



Original Codebook


Reduced Codebook


Figure 4.2: A Comparison of the original codebook C and the reduced codebook Cr,
where variable nodes with value 1 are denoted by filled gray circles, variable nodes
with value 0 by open circles, and check nodes by squares.
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2. For every check node c at this level whose parent node is labelled as “survived”,

it must have at least one child variable node with value 1 in ck since “survived”

nodes always have value 1 in ck. Choose an arbitrary child variable node of

c with value 1 in ck, and label it as “survived”. Then, label the subtrees

emanating from the other unlabelled child variable nodes of c as “dropped”.

3. If there are no check nodes at the next lower level of the tree, stop. Otherwise,

move to the check nodes at the next lower level and go back to 2.

As we can see after this labeling procedure, the check nodes with a “survived” parent

node all have exactly one “survived” child node, and the ones with a “dropped”

parent node have purely “dropped” child nodes. Therefore, if we let

cm =





0 for all “dropped” bits,

1 = ck for all “survived” bits,

(4.8)

where 0 denotes the all-zero word and 1 denotes the all-one word, then we have

cm ∈ Cr ⊂ C. Moreover, since the root bit is labelled as “survived”, cm1 = ck1 = 1.

In the following, we would like to prove that y ∈ Um0, which completes the proof of

the lemma. Let

cl =





ck for all “dropped” bits,

0 for all “survived” bits,

(4.9)

i.e., let cl be the bitwise XOR of ck and cm. Then, since ck and cm are valid

codewords in C, so is cl. Moreover, since y ∈ Uk implies y ∈ Ukl, we have from (4.5)
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that

n∏
j=1

f(yj|ckj) ≥
n∏

j=1

f(yj|clj) ⇒
∏

all “survived” bits j

f(yj|ckj) ≥
∏

all “survived” bits j

f(yj|clj)

(4.10a)

⇒
∏

all “survived” bits j

f(yj|cmj) ≥
∏

all “survived” bits j

f(yj|0)

(4.10b)

⇒
n∏

j=1

f(yj|cmj) ≥
n∏

j=1

f(yj|0), (4.10c)

which proves that y ∈ Um0 as desired.

This lemma shows that we can upper bound PMS
b by the probability of MLSqD

error PMLSqD
s on the reduced codebook Cr assuming that the all-zero codeword is

transmitted. One way to proceed from here is to use union bound and the fact

(see [64, Theorem 7.5] for a proof) that

P (y ∈ Ui0|x = c0) ≤ Dw(ci), ∀i, (4.11)

where w(ci) denotes the Hamming weight of ci, and D is the Bhattacharyya parame-

ter associated with the MBIOS channel f(y|x), to further upper bound PMLSqD
s . For

this purpose, we would like to introduce the weight enumerator Nl(x) of the nonzero

codewords of the reduced codebook Cl of the tree code Gl of level l + 1 associated

with a randomly drawn code from the (λ, ρ) LDPC ensemble. Let Ai be the number

of codewords of weight i in Cl. We define Nl(x) by

Nl(x) ,
∞∑
i=1

Aix
i. (4.12)
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Moreover, let Nl(x) denote the expected value of Nl(x) averaged over the whole (λ, ρ)

LDPC ensemble. We have the following lemma.

Lemma 4.2 N0(x) = x and

Nl(x) = λ(ρ′(1)Nl−1(x)), ∀l ≥ 1, (4.13)

where ρ′(x) denotes the derivative of ρ(x) with respect to x.

Proof: It is obvious that N0(x) = x. To prove the recursion for Nl(x), first

consider the subtree emanating from the ith check node ci immediately below the

root bit. Let Z
(i)
l (x) denote the weight enumerator of the nonzero codewords of the

reduced codebook of this subtree. Since, the root bit is 1 for all nonzero codewords

in the reduced codebook Cl, there is exactly one child subtree with root 1 emanating

from ci for all nonzero codewords in Cl. Therefore, if ci has degree dc, then we have

Z
(i)
l (x) = (dc − 1)Nl−1(x), (4.14)

which implies that

Z
(i)
l (x) =

∞∑
i=1

(i− 1)Nl−1(x)ρi = ρ′(1)Nl−1(x). (4.15)

Similarly, if the root bit has degree dv, then we have

Nl(x) =
dv−1∏
i=1

Z
(i)
l (x), (4.16)
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which implies that

Nl(x) =
∞∑

j=1

dc−1∏
i=1

Z
(i)
l (x)λj =

∞∑
j=1

dc−1∏
i=1

Z
(i)
l (x)λj = λ(Z

(1)
l (x)), (4.17)

where the second equality follows from the fact that the subtrees emanating from

different ci’s are generated independently, and the third equality follows from the fact

that Z
(i)
l (x) does not depend on i as shown in (4.15). Combining (4.15) and (4.17),

the lemma is proved.

Using this lemma and the union bound on PMLSqD
s , we have the following theorem.

Theorem 4.1 Given any (λ, ρ) LDPC ensemble, let PMS
l and P SP

l be its asymp-

totic (as the codeword length approaches infinity) average bit error probability after

l iterations under MS and SP decoding, respectively, on an MBIOS channel with

Bhattacharyya parameter D. If we define the sequence {zl}∞l=0 by z0 = D, and

zl = λ(ρ′(1)zl−1), ∀l ≥ 1, (4.18)

then we have

P SP
l ≤ PMS

l ≤ zl, ∀l ≥ 0. (4.19)

Proof: From Lemma 4.2, we see that zl = Nl(D) for all l. Now, the theorem

follows from the union bound on PMLSqD
s as discussed above.

A similar result to Theorem 4.1 is established in [25, Lemma 1]. However, Theo-

rem 4.1 differs from [25, Lemma 1] in two aspects. First, Theorem 4.1 is proved for

both MS and SP decoding while [25, Lemma 1] was proved only for the SP decoding.

Second, we did not keep track of the evolution of the Bhattacharyya parameters,

which are used in [25] to bound P SP
l for all l.
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4.4 Sum-Product Decoding Performance Analysis

Let

m = log
f(y|0)

f(y|1)
(4.20)

be the log-likelihood ratio (LLR) of the input variable x given the output variable

y of the MBIOS channel f(y|x). Moreover, let M be the random variable whose

realization is m assuming x = 0, and g(m) be the pdf of M . Then the symmetry

condition (4.3) becomes

g(−m) = e−mg(m), ∀m ∈ R. (4.21)

Also, the Bhattacharyya parameter associated with f(y|x) can be expressed as

B(M) =

∫ ∞

−∞
f(y|0)

√
f(y|1)

f(y|0)
dy = E

[
e−

M
2

]
. (4.22)

Define the probability of error Pe(M) of the LLR M under ML decoding as follows

Pe(M) =

∫ 0

−∞
g(m)dm. (4.23)

We have from (4.21) that

B(M) =

∫ ∞

−∞
g(m)e−

m
2 dm = 2

∫ 0

−∞
g(m)e−

m
2 dm ≥ 2Pe(M). (4.24)

Also, we have the following lemma.

79



Lemma 4.3

E

[
tanh

|M |
2

]
= 1− 2Pe(M) (4.25)

Proof:

E

[
tanh

|M |
2

]
=

∫ ∞

0

(
tanh

m

2

)
[g(m) + g(−m)] dm

=

∫ ∞

0

(
1− e−m

1 + e−m

) [
g(m) + e−mg(m)

]
dm

=

∫ ∞

0

(
1− e−m

)
g(m)dm

=

∫ ∞

0

g(m)dm−
∫ 0

−∞
g(m)dm

=1− 2Pe(M) (4.26)

Now, consider the SP decoding on a tree code used on an MBIOS channel. As

shown in [15], all the SP decoding messages can be represented by the LLR’s and sat-

isfy the symmetry condition (4.21). Assuming that the all-zero codeword is transmit-

ted, we have the following lemma characterizing the evolution of the Bhattacharyya

parameters and the probability of ML decoding errors associated with the incoming

and outgoing messages at a variable node. Note that in the following, we will use

capital letters to denote random variables, whose realizations are denoted by the

corresponding lower-case letters.

Lemma 4.4 Let v be a variable node of degree dv. Furthermore, let M0 be the

incoming message from the channel, Mv the outgoing message on an edge, and

M1,M2, . . . , Mdv−1 the incoming messages from the other edges. Assuming all the
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incoming messages are independent with each other, we have

B(Mv) =
dv−1∏
i=0

B(Mi), (4.27)

and

2Pe(Mv) ≥
dv−1∏
i=0

[2Pe(Mi)] . (4.28)

Proof: Since under SP decoding [15],

mv =
dv−1∑
i=0

mi, (4.29)

it suffices to prove the lemma for dv = 2. The general statements then follow by

induction. From (4.22), (4.27) is true since the incoming messages are independent

with each other. Now, we prove (4.28) for dv = 2.

From Lemma 4.3, we have

2Pe(Mv) ≥
1∏

i=0

[2Pe(Mi)]

⇔1− E

[
tanh

|Mv|
2

]
≥

(
1− E

[
tanh

|M0|
2

])(
1− E

[
tanh

|M1|
2

])
(4.30a)

⇔E

[
tanh

|Mv|
2

]
≤

E

[
tanh

|M0|
2

]
+ E

[
tanh

|M1|
2

]
− E

[
tanh

|M0|
2

]
E

[
tanh

|M1|
2

]
. (4.30b)
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Since mv = m0 + m1, the left hand side of (4.30b) becomes

∫

m0+m1≥0

[
1− e−(m0+m1)

]
g0(m0)g1(m1)dm0dm1

=

∫

m0≥0,m1≥0

[
1− e−(m0+m1)

]
g0(m0)g1(m1)dm0dm1

+

∫

m0≥−m1,m1<0

[
1− e−(m0+m1)

]
g0(m0)g1(m1)dm0dm1

+

∫

m1≥−m0,m0<0

[
1− e−(m0+m1)

]
g0(m0)g1(m1)dm0dm1, (4.31)

where g0 and g1 are the pdf’s of M0 and M1, respectively. On the other hand, the

right hand side of (4.30b) becomes

∫

m0≥0

(
1− e−m0

)
g0(m0)dm0 +

∫

m1≥0

(
1− e−m1

)
g1(m1)dm1

−
∫

m0≥0,m1≥0

(
1− e−m0

) (
1− e−m1

)
g0(m0)g1(m1)dm0dm1

=

∫

m0≥0,m1≥0

[
1− e−(m0+m1)

]
g0(m0)g1(m1)dm0dm1

+

∫

m0≥0,m1<0

(
1− e−m0

)
g0(m0)g1(m1)dm0dm1

+

∫

m1≥0,m0<0

(
1− e−m1

)
g0(m0)g1(m1)dm0dm1. (4.32)

Comparing the right hand sides of (4.31) and (4.32), since

∫

mi≥0,mj<0

(
1− e−mi

)
gi(mi)gj(mj)dmidmj

≥
∫

mi≥−mj ,mj<0

(
1− e−mi

)
gi(mi)gj(mj)dmidmj (4.33a)

≥
∫

mi≥−mj ,mj<0

(
1− e−mie−mj

)
gi(mi)gj(mj)dmidmj, (4.33b)

for (i, j) equal (1, 2) and (2, 1), (4.30b) is true, and hence (4.28) is proved.
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Similar evolution equation and inequality for the Bhattacharyya parameters and the

probability of ML decoding errors at a check node are also derived in the following

lemma.

Lemma 4.5 Let c be a check node of degree dc. Furthermore, let Mc be the outgoing

message on an edge, and M1,M2, . . . , Mdc−1 the incoming messages from the other

edges. Assuming all the incoming messages are independent with each other, we have

1−B(Mc) ≥
dc−1∏
i=1

[1−B(Mi)] , (4.34)

and

1− 2Pe(Mc) =
dc−1∏
i=1

[1− 2Pe(Mi)] . (4.35)

Proof: Since under SP decoding [15],

tanh
mc

2
=

dc−1∏
i=1

tanh
mi

2
, (4.36)

and from (4.2), 1−B(M) ≥ 0 for all LLR M , it again suffices to prove the lemma for

dc = 3. The general statements then follow by induction. From Lemma 4.3, (4.36),

and the fact that

| tanh x| = tanh |x|, ∀x, (4.37)

(4.35) follows directly by the independence of the incoming messages. Now, we

prove (4.34) for dc = 3, which, from (4.22), is equivalent to proving that

E
[
e−

Mc
2

]
≤ 1−

2∏
i=1

(
1− E

[
e−

Mi
2

])
. (4.38)
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From (4.36), we have

mc = log

(
1 +

∏2
i=1 tanh mi

2

1−∏2
i=1 tanh mi

2

)
(4.39a)

= log

(
1 +

∏2
i=1

1−e−mi

1+e−mi

1−∏2
i=1

1−e−mi

1+e−mi

)
(4.39b)

= log

(∏2
i=1(1 + e−mi) +

∏2
i=1(1− e−mi)∏2

i=1(1 + e−mi)−∏2
i=1(1− e−mi)

)
(4.39c)

= log

(
1 + e−m1e−m2

e−m1 + e−m2

)
. (4.39d)

Let g1 and g2 be the pdf’s of M1 and M2, respectively. From (4.39), we have on the

left hand side of (4.38) that

E
[
e−

Mc
2

]
=E

[√
e−M1 + e−M2

1 + e−M1e−M2

]
(4.40a)

=

∫ ∞

−∞

∫ ∞

−∞
g1(m1)g2(m2)

√
e−m1 + e−m2

1 + e−m1e−m2
dm1dm2 (4.40b)

=

∫ ∞

0

∫ ∞

0

[g1(m1)g2(m2) + g1(−m1)g2(−m2)]

√
e−m1 + e−m2

1 + e−m1e−m2

+ [g1(m1)g2(−m2) + g1(−m1)g2(m2)]

√
1 + e−m1e−m2

e−m1 + e−m2
dm1dm2 (4.40c)

=2

∫ ∞

0

∫ ∞

0

g1(m1)g2(m2)
√

(e−m1 + e−m2)(1 + e−m1e−m2)dm1dm2,

(4.40d)
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where the last equality follows from (4.21). Similarly, the right hand side of (4.38)

can be written as follows:

1−
2∏

i=1

(
1− E

[
e−

Mi
2

])

=E
[
1−

(
1− e−

M1
2

)(
1− e−

M2
2

)]
(4.41a)

=

∫ ∞

−∞

∫ ∞

−∞
g1(m1)g2(m2)

(
e−

m1
2 + e−

m2
2 − e−

(m1+m2)
2

)
dm1dm2 (4.41b)

=

∫ ∞

0

∫ ∞

0

[g1(m1)e
−m1

2 + g1(−m1)e
m1
2 ][g2(m2) + g2(−m2)]

+ [g1(m1) + g1(−m1)][g2(m2)e
−m2

2 + g2(−m2)e
m2
2 ]

− [g1(m1)e
−m1

2 + g1(−m1)e
m1
2 ][g2(m2)e

−m2
2 + g2(−m2)e

m2
2 ]dm1dm2 (4.41c)

=2

∫ ∞

0

∫ ∞

0

g1(m1)g2(m2)

[
e−

m1
2

(
1 + e−m2

)
+ e−

m2
2

(
1 + e−m1

)− 2e−
m1
2 e−

m2
2

]
dm1dm2, (4.41d)

where the first equality follows from the independence of M1 and M2, and the last

equality follows from (4.21). Let ai , e−mi , for i = 1, 2. Then, we see from (4.40)

and (4.41) that it is sufficient to prove

√
(1 + a1a2)(a1 + a2) ≤ (1 + a2)

√
a1 + (1 + a1)

√
a2 − 2

√
a1a2, (4.42)
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for all 0 ≤ ai ≤ 1, for all i. Now, since

[(1 + a2)
√

a1 + (1 + a1)
√

a2 − 2
√

a1a2]
2 − (1 + a1a2)(a1 + a2)

=(1 + a2)
2a1 + (1 + a1)

2a2 + 4a1a2 + 2(1 + a1)(1 + a2)
√

a1a2

− 4(1 + a1)a2

√
a1 − 4(1 + a2)a1

√
a2 − (1 + a2

2)a1 − (1 + a2
1)a2 (4.43a)

=2
√

a1a2 [4
√

a1a2 + (1 + a1)(1 + a2)− 2(1 + a1)
√

a2 − 2(1 + a2)
√

a1] (4.43b)

=2
√

a1a2 [(1 + a1)− 2
√

a1] [(1 + a2)− 2
√

a2] (4.43c)

=2
√

a1a2(1−√a1)
2(1−√a2)

2 (4.43d)

≥0, (4.43e)

(4.42) is true, and hence (4.34) is proved.

Since all the incoming messages to the variable and check nodes are independent

with each other on a tree code under SP decoding, Lemma 4.4 and Lemma 4.5 can

be used to imply the following theorem.

Theorem 4.2 For the (λ, ρ) LDPC ensemble with SP decoding used on an MBIOS

channel with conditional pdf f(y|x), the Bhattacharyya parameter Bl associated with

the outgoing message of any variable node after the lth decoding iteration asymptot-

ically satisfies

Bl ≤ Dλ (1− ρ (1−Bl−1)) , (4.44)

where

D ,
∫ ∞

−∞

√
f(y|0)f(y|1)dy, (4.45)

and B0 = D. Moreover, the probability of bit error Pl of any variable node after the
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lth decoding iteration asymptotically satisfies

2Pl ≥ 2P0λ (1− ρ (1− 2Pl−1)) , (4.46)

where P0 is the uncoded bit error probability under ML decoding of the channel.

Proof: As discussed in Section 4.2, the probability of error associated with the

outgoing message of any variable node after the lth decoding iteration is, asymptot-

ically as the codeword length goes to infinity, the one of the root variable node of

a tree of level l + 1. Since all the variable and check nodes in the tree have exactly

the same degree distributions λ and ρ, respectively, and the channel is memoryless,

all the incoming messages from child nodes to a parent node are independent and

identically distributed. Hence, if we let v be a variable node in the tree, Mv its

outgoing message, M0 the incoming message from the channel, and Mc one of its

incoming messages from its child nodes, then we have from Lemma 4.4 that

B(Mv) = B(M0)
∞∑
i=1

[B(Mc)]
(i−1) λi = Dλ(B(Mc)), (4.47)

and

2Pe(Mv) ≥ 2Pe(M0)
∞∑
i=1

[2Pe(Mc)]
(i−1) λi = 2Pe(M0)λ(2Pe(Mc)). (4.48)

Similarly, if we let c be a check node in the tree, Mc its outgoing message, and Mv

one of its incoming messages, then we have from Lemma 4.5 that

B(Mc) ≤ 1−
∞∑
i=1

[1−B(Mv)]
(i−1) ρi = 1− ρ(1−B(Mv)), (4.49)
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and

2Pe(Mc) = 1−
∞∑
i=1

[1− 2Pe(Mv)]
(i−1) ρi = 1− ρ(1− 2Pe(Mv)). (4.50)

Combining (4.47), (4.48), (4.49), (4.50), and the fact that λ and ρ are monotonically

increasing functions (since all λi’s and ρi’s are nonnegative), the theorem is proved.

The recursion (4.44) was also found independently in [30, Theorem 2]. Notice that

on the BEC of erasure probability ε, the Bhattacharyya parameter of this channel is

ε, and the probability of uncoded bit error is ε/2. Hence, (4.44) and (4.46) are both

satisfied with equality, and recover the well-known DE equation

xl = ελ (1− ρ (1− xl−1)) , x0 = ε, (4.51)

where xl is the bit erasure probability after the lth decoding iteration on the BEC.

Using this fact, we have the following corollary.

Corollary 4.1 For any (λ, ρ) LDPC ensemble, its asymptotic SP decoding perfor-

mance on the MBIOS channel with Bhattacharyya parameter D is always better than

or equal to that on the BEC with erasure probability ε ≥ D. Moreover, its asymptotic

SP decoding performance on the MBIOS channel with uncoded bit error probability

P0 is always worse than or equal to that on the BEC with erasure probability ε ≤ 2P0.

Proof: From (4.44), (4.46) and (4.51), we have xl ≥ Bl when ε ≥ D, and

xl ≤ 2Pl when ε ≤ 2P0 for all l ≥ 0. Since the erasure probability is two times

the bit error probability, which in general is less than or equal to the Bhattacharyya

parameter as shown in (4.24), the corollary is proved.
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Notice that, Lemma 4.4 and Lemma 4.5 can also be used for the more general family

of multi-edge type LDPC codes [16], including the IRA codes [17,18] and the LDPC-

GM codes introduced in Chapter 3, to produce similar results. Hence, Corollary 4.1 is

not restricted to the irregular LDPC codes, but also holds for the general multi-edge

type LDPC codes.

4.5 Conclusion

In this chapter, we analyze the asymptotic performance of LDPC codes under

MS and SP decoding on MBIOS channels. This is done by bounding the bit error

probability of the root bit of the tree code associated with the (λ, ρ) LDPC ensemble

assuming that the all-zero codeword is transmitted. When MS decoding is performed

on this tree code, we upper bound the probability of the root bit being in error by

the probability of sequence error under MLSqD of a subcode of the tree code. A

recursive equation describing the evolution of the weight enumerator of this subcode

after each iteration is then derived and used in a union bound to bound the ML

decoded sequence error of this subcode. As a result, we obtain a recursive upper

bound on the bit error probability after each iteration for the LDPC codes under MS

decoding on MBIOS channels. Note that this upper bound is also an upper bound

for the SP decoding since SP decoding is optimal on the bit error probability for tree

codes. This result is very similar to [25, Lemma 1] with the difference being that we

establish it not only for the SP decoding, but also for the MS decoding, and that we

obtain it via a totally different approach.

When SP decoding performance is considered, we derive a recursive upper bound

on the Bhattacharyya parameter as well as a recursive lower bound on the probability

of bit error associated with the outgoing message of the root bit after each iteration.

More significantly, both recursions recover the DE equation on the BEC for LDPC
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codes with the inequalities being exact equalities. This further implies that the SP

decoding performance of LDPC codes on the BEC can serve as a lower bound of

the ones on all MBIOS channels with the same Bhattacharyya parameter, and also

an upper bound of the ones on all MBIOS channels with the same probability of

uncoded bit error. This result is also true for the more general multi-edge type

LDPC codes, including IRA and LDPC-GM codes, since the main ingredient in the

proof, i.e., Lemma 4.4 and Lemma 4.5, can also be utilized for these codes. Note

also that the derived lower bound on the probability of bit error is also valid under

MS decoding due to the optimality of SP decoding on the bit error probability for

tree codes.
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CHAPTER 5

Low Complexity Algorithms for Joint Data

Detection and Frequency/Phase Estimation

5.1 Introduction

Coherent data communication requires perfect knowledge of the frequency and

phase of the carrier signal. In practical communication systems, however, the mo-

bility of the transmitter/receiver, in conjunction with the ambient and electronic

noise at the receiver circuitry results in a time-varying phase that is unknown to

the receiver. The presence of this frequency/phase jitter has multiple effects on the

transmitted signal, the most severe of which is distortion of the transmitted signal

and generation of inter-symbol interference (ISI), which becomes significant as the

frequency/phase dynamics increase. Nevertheless, even when the channel dynamics

are slow, the effect is a multiplicative phase distortion that can cause a significant

performance loss, if not accounted for at the receiver.

There are three basic techniques (see [65] for a tutorial review) for detecting data

in the presence of frequency/phase jitter:

(i) A training sequence is transmitted periodically that aids at frequency and phase
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estimation, followed by coherent data detection.

(ii) The received signal is passed through a memoryless nonlinearity (e.g., squaring

binary phase shift keying (BPSK) signals,) that eliminates the data dependence,

thus allowing channel estimation, followed by coherent data detection

(iii) Joint data detection and frequency/phase estimation.

Clearly, the first two schemes do not exploit all the channel information available at

the received sequence. As a result, the first two solutions are adequate for high signal-

to-noise ratios (SNRs) and slow channel dynamics, but they perform very poorly

(in terms of bandwidth efficiency or bit-error-rate (BER)) in more severe scenarios.

Thus, when high-performance codes are employed over fast channels, some sort of

joint detection and estimation needs to be performed.

Motivated by the desire to exploit the information from the whole sequence while

keeping a low computational complexity, several joint detection/estimation algo-

rithms have been proposed in the literature. These can be classified into the following

two categories. The first category involves alternate maximization (or more formally,

expectation maximization (EM)), where the tasks of channel-conditioned data de-

tection and data-conditioned channel estimation are performed iteratively starting

from an initial channel estimate, until convergence occurs [66–68]. The second cat-

egory of algorithms is based on a suboptimal search over the set of all sequences by

appropriately pruning the sequence tree according to a tree-pruning algorithm, such

as the T-algorithm [69], the M-algorithm [70], or the per-survivor processing (PSP)

algorithm [71–75]. It is noted that the above mentioned approaches are valid for any

joint data detection and channel estimation problem and not only for the particular

problem of joint data detection and frequency/phase estimation discussed in this

chapter. The impetus for the aforementioned research on approximate algorithms
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was the belief that the exact solution of the joint data detection and parameter es-

timation problem requires an exponential complexity with respect to the sequence

length to be found.

Since future communication systems will operate close to their theoretical limits,

joint data detection and parameter estimation will become indispensable in achieving

the highest possible performance with the given resources, and thus, the following

questions arise:

(i) How accurate is the conventional wisdom that exact joint data detection and

frequency/phase estimation requires exponential complexity with respect to the

sequence length?

(ii) What is the impact of a negative answer to the above question on the design

of approximate algorithms?

(iii) How can the complexity/performance tradeoff of these approximate algorithms

be analyzed, and how can it be improved?

In this chapter, we continue the work initiated in [31] in trying to provide answers

to the above questions. In particular, it is shown here that the exact, generalized-

likelihood-based, joint detection and frequency/phase estimation of uncoded se-

quences is a polynomial-complexity problem in the sequence length. Furthermore,

the proposed technique can be generalized to solve the problem of symbol-by-symbol

soft-decision generation implied by the min-sum algorithm, which can be used when

turbo-like coded sequences are utilized. In this chapter, we concentrate on the un-

coded sequence detection problem, since the extension to symbol-by-symbol soft-

decision generation can be performed in a way similar to the one described in [31].

Furthermore, based on the proposed exact solution, we develop a class of approxi-

mate algorithms. Finally, a framework for analyzing the performance of both exact
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and approximate algorithms at arbitrary SNR is proposed. In the case of perfor-

mance analysis for the exact algorithms, it is shown that analysis is possible exactly

due to the novel polynomial-complexity structure. For the approximate algorithms,

it is shown that their performance can get close to that of the exact algorithms with

reasonable complexity.

The remaining of the chapter is structured as follows. Section 5.2 develops the

system and channel model under consideration. The polynomial-complexity exact

algorithm for joint data detection and frequency/phase estimation is developed in

Section 5.3, after reviewing the corresponding results from [31]. Section 5.4 presents

the performance analysis for the exact, as well as several approximate algorithms.

Numerical results are presented in Section 5.5, while the conclusions are summarized

in Section 5.6. For the sake of clarity, most of the proofs are relegated to Appendix C.

5.2 Channel Model

Consider the transmission of a length-N sequence of symbols sk ∈ A, where A
is a set of complex-valued numbers with unit magnitude. The equivalent low-pass

transmitted signal is of the form

s(t) =
N∑

k=1

sk

√
Ekq(t− kT ), (5.1)

where q(t) is a pulse shape function satisfying the no-ISI Nyquist criterion [76, Sec-

tion 9.2.1] with unit energy, T is the symbol duration, and the energy of the kth

transmitted symbol Ek equals to Es or Ep depending on whether sk is an infor-

mation symbol or pilot symbol, respectively. If this signal is transmitted over an

additive white Gaussian noise (AWGN) channel and is further rotated by a phase

process φ(t) unknown to both transmitter and receiver, then the received signal z(t)
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can be modelled as

z(t) = s(t)ejφ(t) + n(t), (5.2)

where n(t) is a zero mean complex white Gaussian process with one-sided power

spectral density level N0. This channel is motivated by considering the front-end of

a wireless communication system, where φ(t) is due to the phase difference between

the transmitted signal carrier and the mixing oscillator at the receiver. Moreover, a

generally time-varying φ(t) may also be attributed to the instability of the oscillators

and the mobility at both the transmitting and receiving end. However, in this model,

amplitude variations are ignored. This is done mainly in order to isolate the effects

of phase rotation on the system performance and is under the assumption that an

automatic gain control mechanism is present that compensates for the amplitude

variations.

For this observation model, optimal pre-processing depends on the phase process

φ(t) and in general should employ fractionally-spaced sampling. However, for sim-

plicity, we will assume symbol-spaced sampling, since all algorithms presented in this

chapter generalize easily to the fractionally-spaced model. We will further assume

perfect epoch synchronization. Then, if the phase rotation process φ(t) is modelled

by a constant unknown phase θ ∈ [0, 2π), i.e., if

φ(t) = θ ∀t ∈ [0, NT ), (5.3)

then there will be no ISI and we have the following equivalent discrete-time model

z = Dsejθ + n, (5.4)
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where s , (s1, s2, . . . , sN)T as the superscript T denotes transpose, D is a diag-

onal matrix with diagonal elements (
√

E1,
√

E2, . . .,
√

EN), z , (z1, z2, . . . , zN)T

is the vector of symbol-spaced observations, and n , (n1, n2, . . . , nN)T is a vector

of independent identically-distributed (iid) zero-mean circularly symmetric complex

Gaussian random variables with variance N0/2 per real and imaginary component.

On the other hand, if the phase rotation process is modelled by

φ(t) = 2π(fd/T )t + θ ∀t ∈ [0, NT ), (5.5)

where fd ∈ [0, 1) is the normalized frequency jitter, and θ ∈ [0, 2π) is the phase shift,

then as shown in [65] under the assumption of no ISI and perfect gain control, the

discrete-time model becomes

zk = sk

√
Eke

j(2πfdk+θ) + nk ∀k = 1, 2, . . . , N. (5.6)

5.3 Algorithms for Exact Generalized-likelihood

Detection

For this section and the rest of the chapter, we will restrict our attention to the

special case where we use equally probable antipodal signaling, i.e., A = {+1,−1}
for simplicity. Moreover, we will assume that the first one, and the first two symbols

are pilot symbols for models (5.4), and (5.6), respectively. With a little abuse of

notation, it is understood that all following detection algorithms are applied only to

information symbols by setting beforehand the pilot symbols to +1. However, we

note that all the algorithms and results presented in this chapter can be general-

ized to arbitrary alphabet A, unequal a-priori probabilities, arbitrary pilot symbol

positioning, and energy assignments with a complexity increase by a factor O(|A|2).
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5.3.1 Background: The Constant Phase Model

In this subsection, we review the low complexity exact generalized-likelihood

algorithm proposed in [31, 77, 78] for completeness and for the purpose of showing

the basic idea from which we develop the exact algorithm for the more complicated

model (5.6). The sequence estimate based on the generalized-likelihood ratio test

(GLRT) for model (5.4) can be written in the following double maximization form

ŝGLRT , arg max
s̃∈AN

{
max

θ̃∈[0,2π)
p(z|s̃, θ̃)

}
= arg max

s̃∈AN

{
max

θ̃∈[0,2π)
<{zHDs̃ejθ̃}

}
(5.7a)

= arg max
s̃∈AN

|zHDs̃|. (5.7b)

where <{z} denotes the real part of the complex number z and zH the Hermitian

transpose of the vector z. If we assume that the constant phase rotation θ is uniformly

distributed in [0, 2π), then the GLRT solution coincides with the maximum-likelihood

sequence detection (MLSD) solution ŝMLSD [31]. Furthermore, this optimal solution

can be obtained exactly with O(N log N) complexity as follows (for details on the

correctness of the algorithm, refer to [31]).

1. Calculate the set of partitioning points (or thresholds) from the received signal

z as follows

Φ , {φi ∈ [0, 2π) : φi , ∠zi ± π

2
, ∀i = 2, 3, . . . , N}, (5.8)

where ∠z denotes the phase component of the complex number z.

2. Sort Φ so that Φ = {0 ≤ t1 ≤ t2 ≤ . . . ≤ t2(N−1) ≤ 2π}. We use j(i) to denote

the index of the observation symbol zj(i) associated with ti.

3. Find the candidate sequence supported by the first partition, which contains
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phase 0,

s1 = ŝ(0), (5.9)

where

ŝ(θ̃) , arg max
s̃∈AN

<{zHDs̃ejθ̃}. (5.10)

4. Sequentially evaluate the candidate sequence si+1 from si by flipping the j(i)th

bit of si.

5. As explicitly proved in [31], ŝGLRT must be one of the candidate sequences

s1, s2, . . . , s2(N−1). Hence we have

ŝGLRT = arg max
s̃∈{s1,s2,...,s2(N−1)}

<{zHDs̃ejθ̂(s̃)} = arg max
s̃∈{s1,s2,...,s2(N−1)}

|zHDs̃|,

(5.11)

where

θ̂(s̃) , arg max
θ̃∈[0,2π)

<{zHDs̃ejθ̃} = −∠(zHDs̃). (5.12)

The actual algorithm in [31, 77, 78] further simplifies the metric evaluation

in (5.11), so that the overall complexity is dominated by the sorting in step 2, which

can be performed with O(N log N) complexity. Note that the basic idea behind the

algorithm is to partition the parameter space [0, 2π) in such a way that performing

coherent sequence detection with one hypothesized parameter taken from each set of

the partition provides a sufficient set of candidate sequences for finding the GLRT

solution.
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5.3.2 The Linear Phase Model

Consider the model in (5.6). If the statistical models of the unknown parameters

fd and θ are known to the receiver, then we have the following optimal MLSD solution

ŝMLSD , arg max
s̃∈AN

p(z|s̃) = arg max
s̃∈AN

Efd,θ [p(z|s̃, fd, θ)] . (5.13)

However, if such a statistical model does not exist or is unknown to the receiver, and

thereby the optimality of detection rules is not defined, we can apply the following

sensible GLRT criterion for detection

ŝGLRT , arg max
s̃∈AN

{
max

(f̃d,θ̃)∈Λ
p(z|s̃, f̃d, θ̃)

}
, (5.14)

where Λ , [0, 1)× [0, 2π) is the 2-dimensional parameter space over which maximiza-

tion of the unknown parameters fd and θ is performed for each possible transmitted

sequence. In the rest of the section, we will aim at finding this exact GLRT solution

with polynomial complexity.

Defining

f̂d(s̃) , arg max
f̃d∈[0,1)

{
max

θ̃∈[0,2π)
p(z|s̃, f̃d, θ̃)

}
= arg max

f̃d∈[0,1)

∣∣∣∣∣
N∑

k=1

z∗k s̃k

√
Eke

j2πf̃dk

∣∣∣∣∣ (5.15a)

and

θ̂(s̃) , arg max
θ̃∈[0,2π)

{
max

f̃d∈[0,1)
p(z|s̃, f̃d, θ̃)

}
= −∠

(
N∑

k=1

z∗k s̃k

√
Eke

j2πf̂d(s̃)k

)
(5.15b)

to be the sequence-conditioned frequency and phase estimates, respectively, where

the superscript ∗ denotes complexity conjugate, and s̃k denotes the kth component
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of the vector s̃, we have

ŝGLRT = arg max
s̃∈AN

p(z|s̃, f̂d(s̃), θ̂(s̃)). (5.16)

Looking at (5.16), we can make the following observation. There are two sources of

complexity in finding the GLRT solution. The first one is combinatorial in nature

and is related to the exponential growth of the size of AN , over which a maximization

is taken. The second source of complexity is computational in nature and is related

to the evaluation of each metric p(z|s̃, f̂d(s̃), θ̂(s̃)) for a given hypothesized sequence.

This latter complexity is linear in N for the constant phase model as evidenced

in (5.7b). It should be clear however, that there is no hope in finding a closed-form

solution for the metric p(z|s̃, f̂d(s̃), θ̂(s̃)), since this is equivalent to finding a closed-

form solution to the sequence-conditioned frequency estimate f̂d(s̃) in (5.15a). But

this, in turn, involves maximization of the magnitude of the discrete-time Fourier

transform (DTFT) of the sequence {zks̃
∗
k

√
Ek}N

k=1 over the continuous interval [0, 1)

[65]. Therefore, frequency estimation can only be performed within a pre-specified

accuracy with finite complexity in all practical algorithms. Since this complexity

is unavoidable even when the data sequence is known, we are only interested in

the first source of complexity manifesting itself through the combinatorial explosion

of the number of data sequences. As can be seen in (5.16), even if we omit the

frequency-estimation complexity, the exact GLRT solution still appears to demand

O(2N) complexity. We will now propose an exact algorithm, which performs this

task with O(N4) complexity regardless of the SNR.

Defining the parameter-conditioned sequence estimate as

ŝ(f̃d, θ̃) , arg max
s̃∈AN

p(z|s̃, f̃d, θ̃), (5.17)
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the GLRT problem can be restated as

ŝGLRT = arg max
ŝ(f̃d,θ̃):(f̃d,θ̃)∈Λ

p(z|ŝ(f̃d, θ̃), f̃d, θ̃). (5.18)

Furthermore, collecting all candidate GLRT solutions in the sufficient set

T , {ŝ(f̃d, θ̃)|(f̃d, θ̃) ∈ Λ}, (5.19)

the GLRT problem becomes

ŝGLRT = arg max
s̃∈T

p(z|s̃, f̂d(s̃), θ̂(s̃)). (5.20)

It is now clear how one can proceed to prove the polynomial-complexity result: if

the size of T grows only polynomially with N , and T can be constructed by a

polynomial-complexity algorithm, then using (5.20), one can solve the problem with

polynomial combinatorial complexity. As shown in [31] for a general GLRT problem,

constructing the sufficient set T is equivalent to partitioning the parameter space

Λ into subsets in such a way that all parameter pairs (f̃d, θ̃) in each subset result

in the same sequence ŝ(f̃d, θ̃). It was further shown that this partitioning can be

accomplished by superimposing the boundaries defined by equations of the form

|zk −
√

Ek(+1)ej(2πf̃dk+θ̃)|2 = |zk −
√

Ek(−1)ej(2πf̃dk+θ̃)|2

⇔2πf̃dk + θ̃ = ∠zk ± π

2
+ 2πm, (5.21)

for all k = 1, 2, . . . , N , and all integers m. An example of the resulting partitioned

parameter space is shown in Fig. 5.1.

By observing that there are 2k lines for each k, we conclude that there are O(N2)

lines in total implied by (5.21). Using a well-known result from computational ge-
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Figure 5.1: An example of the partitioned parameter space for N = 4.

ometry [79], we can deduce that at most |T | = O(N4) polygons can be generated by

superimposing O(N2) lines and that there is an O(N4)-complexity algorithm that

can construct these polygons, and thus the sufficient set T . We further improve this

worst-case estimate by using the additional information that every line with k = i

intersects at most one line with k = j, j 6= i, and is parallel to all lines with k = i.

Indeed, due to the above observation, it is straightforward to show that there are

at most |T | = O(N3) partitions resulted from these lines since each line intersects

at most N − 1 other lines. Moreover, to compute all intersection points of each

additional line at k = i with all previously drawn lines, the following algorithm can

be used.

1. Find the entrance intersection point on the polygon adjacent to the left or

upper boundary of the parameter space Λ. It is sufficient to look only at the

left and upper boundary, because all lines have negative slopes. The complexity

of this step is O(i2) for all 2i lines.

2. Find the exit intersection point among all sides of this polygon. Note that

the number of sides per polygon is constant on the average, resulting in O(1)
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complexity for this step.

3. Identify the next polygon (O(1) complexity with proper indexing). If there is

no next polygon, i.e., the exit point hits the lower or right boundary, then quit.

Otherwise, go to step 2.

Since there are O(N2) lines in total, and each line visits at most N polygons as shown

above, we have shown that the size of the partition and its construction complexity

are both O(N3).

After constructing all O(N3) polygons, we take an arbitrary parameter pair (fd, θ)

from each polygon and do coherent symbol by symbol detection hypothesizing (fd, θ)

as the CSI. The resulting O(N3) sequences from all polygons then constitute the

sufficient set T . Finally, the frequency estimate and the noncoherent metric are

evaluated for each of these sequences, and the latter is further maximized to find the

GLRT solution according to

ŝGLRT = arg max
s̃∈T

∣∣∣∣∣
N∑

k=1

z∗k s̃k

√
Eke

j2πf̂d(s̃)k

∣∣∣∣∣ . (5.22)

Since these two final steps require O(N) complexity for each polygon and we have

O(N3) polygons, we have verified that the whole algorithm finds the exact GLRT

solution with O(N4) complexity. We summarize the above discussion in the following

proposition.

Proposition 5.1 The proposed algorithm in this subsection finds the exact GLRT

solution for model (5.6) with worst-case complexity O(N4) when omitting the com-

plexity of the frequency estimator, where N is the sequence length.

Proof: Follows from the above discussion and the framework developed in [31].
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5.4 Performance Analysis of Exact and Approxi-

mate Algorithms

The purpose of this section is to demonstrate that the polynomial-complexity

results developed above, aside from their conceptual value, are also useful in at least

two additional respects. The first is that they enable accurate performance analysis

of the corresponding exact GLRT algorithms, which would otherwise be impossible

or result in loose performance bounds. The second is that they imply a family

of approximate algorithms that can be easily implemented and analyzed. In the

following, the exact and two approximate algorithms are analyzed for the constant

phase model (5.4) and one approximate algorithm is analyzed for the linear phase

model (5.6).

5.4.1 Constant Phase Model: Exact GLRT Algorithm

In this subsection, we present a performance analysis for the polynomial-

complexity exact GLRT algorithm for the model in (5.4). The resulting performance

upper bound turns out to be extremely tight as can be seen in section 5.5, and is

now given by the following proposition.

Proposition 5.2 Under the assumptions of the model in (5.4), the sequence error

probability for the exact GLRT solution (which is the same as the optimal MLSD

104



solution), can be upper bounded by

PMLSD ≤

2
N−2∑
w=1

∫ ∞

0

R

(
r, Et,

EtN0

2

)
Q1

(
r|Et − 2wEs|√

2wEtEs(Et − wEs)N0

,
r
√

Et√
2wEs(Et − wEs)N0

)
dr

+

∫ ∞

0

R(r, Et,
EtN0

2
)Q1

(
r|Ep − (N − 1)Es|√
2(N − 1)EtEsEpN0

,
r
√

Et√
2(N − 1)EsEpN0

)
dr

+ 1−
[
1−Q

(√
2Es

N0

)]N−1

, (5.23)

where

Et , Ep + (N − 1)Es (5.24)

denotes the total signalling energy,

R(r, s, σ2) , r

σ2
e−

r2+s2

2σ2 I0(
rs

σ2
) (5.25)

is the Ricean density function with

I0(x) , 1

π

∫ π

0

ex cos θdθ (5.26)

being the 0th-order modified Bessel function of the first kind,

Q1(a, b) ,
∫ ∞

b

xe
−(x2+a2)

2 I0(ax)dx (5.27)

is the Marcum’s Q function, and

Q(x) , 1√
2π

∫ ∞

x

e−
t2

2 dt (5.28)
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is the Gaussian tail function.

Proof: See Appendix C.1.

The essence of the proof is to use union bound over a much smaller sufficient set

of sequences rather than all the 2N sequences. This can be done mainly because the

set of all possible MLSD solutions had been tremendously reduced to have a size

linear in N as was shown in Section 5.3.1.

5.4.2 Constant Phase Model: Pilot-Only (PO) Algorithm

It is possibly the simplest approximate algorithm, which uses the channel infor-

mation provided by the pilot symbol only, and performs symbol-by-symbol detection

as follows

ŝi = arg max
s̃∈A

p(zi|s̃, z1) i = 2, . . . , N. (5.29)

This pilot-only (PO) algorithm has complexity O(N), and its performance is given

by the following proposition.

Proposition 5.3 The probability of bit error of the PO algorithm of the model

in (5.4) is exactly

Pb(PO) = 1−
∫ 2π

0

∫ π
2

−π
2

T

(
y + x,

Es

N0

)
T

(
x,

Ep

N0

)
dydx, (5.30)

where

T (x, S) , 1

2π
e−S +

√
S

π
cos(x)e−S sin2(x)

[
1−Q(

√
2S cos(x))

]
(5.31)

is the probability density function (pdf) of the phase component of a circularly sym-
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metric complex Gaussian random variable with mean
√

S and variance 1 (see [80] for

more information on T (x, S)). Therefore, the corresponding probability of sequence

error is

PPO = 1−
[∫ 2π

0

∫ π
2

−π
2

T

(
y + x,

Es

N0

)
T

(
x,

Ep

N0

)
dydx

]N−1

. (5.32)

Proof: See Appendix C.2.

It is worth noting that even if we drop the magnitude information of z1 and

condition only on ∠z1 in (5.29), we will still obtain the same performance in this

uncoded sequence case. However, if we are also interested in the soft decisions of

the receiver as required in the coded sequence case, then the magnitude information

provided by the pilot symbol would help improve the performance as shown in [81].

5.4.3 Constant Phase Model: Uniform Sampling (US) Al-

gorithm

Motivated by the exact algorithm described in Section 5.4.1, we now consider a

simple approximate analogue of it and analyze its performance. The idea behind

this algorithm is that instead of optimally partitioning the parameter space [0, 2π)–a

process that has complexity O(N log N)–one can partition the parameter space in a

sensible, but somewhat arbitrary way, in order to reduce complexity. The simplest

such partitioning may be the uniform partitioning (or sampling), which results in

the following algorithm.

1. Define L samples {ai}L
i=1 as

ai , 2πi

L
, ∀ i = 1, 2, . . . , L. (5.33)
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2. Obtain L candidate sequences ŝ(ai) for all i, and select

ŝUS = arg max
ŝ(ai):i∈{1,2,...,L}

|zHDŝ(ai)| (5.34)

This algorithm has complexity O(LN) and a characterization of its performance

is given by the following proposition.

Proposition 5.4 Under the assumption that L ≥ 2, the probability of sequence error

for the US algorithm can be bounded by

PMLSD ≤ PUS ≤PMLSD + (N − 1)(N − 2)

∫ ∞

0

R

(
r, Et,

EtN0

2

) [∫ π
L

− π
L

T

(
θ − π

2
,

Es

Et(Et − Es)N0

r2

)
dθ

]2

dr

(5.35a)

=PMLSD + O

(
N2

L2
e
−Es

N0

)
. (5.35b)

Proof: See Appendix C.3.

The main idea behind the proof can again be attributed to the parameter space

partitioning perspective. The event that we miss the MLSD solution is exactly the

event that none of our sampling points is in the same partition with the MLSD

solution. It is the probability of this event that is characterized and upper bounded

in the proof.

Equation (5.35a) can be numerically evaluated to provide a measure of how far

the performance of the US algorithm is from that of the MLSD algorithm. Also,

the asymptotic expression in (5.35b) reveals some interesting insight. First, for high

SNR, the performance of this approximate algorithm converges exponentially to that

of the exact algorithm for any N and L ≥ 2. Moreover, for any fixed SNR, if L

increases slightly faster than N (e.g., as N1+ε, for an arbitrarily small positive ε),
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then the performance of this approximate algorithm approaches that of the MLSD

algorithm for large N . As will be shown in Section 5.5, this latter bound is indeed

pessimistic: a small L is enough to make the performance of the US algorithm close

to that of the MLSD algorithm for all SNR values of interest.

5.4.4 Linear Phase Model: 2-Dimensional Uniform Sam-

pling (US2D) Algorithm

Motivated by the good performance of the US algorithm for the constant phase

model, we propose a similar approximate algorithm for the more complicated linear

phase model as follows.

1. Define QfQθ samples of frequency-phase pairs as

(ai, bj) ,
(

i

Qf

,
2πj

Qθ

)
,∀i = 1, . . . , Qf , j = 1, . . . , Qθ. (5.36)

2. Obtain QfQθ candidate sequences ŝ(ai, bj) and the corresponding frequency

estimates fi,j = f̂d(ŝ(ai, bj)) for all i, j , and select

ŝUS2D = arg max
ŝ(ai,bj)

i∈{1,2,...,Qf}
j∈{1,2,...,Qθ}

∣∣∣∣∣
N∑

k=1

z∗k ŝk(ai, bj)
√

Eke
j2πfi,jk

∣∣∣∣∣ , (5.37)

where ŝk(·, ·) denotes the kth component of the vector ŝ(·, ·).

This algorithm has complexity O(QfQθN) and its performance is given by the fol-

lowing proposition.

Proposition 5.5 Under the assumption that Qf ≥ 4N and Qθ ≥ 4 and for any fd
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and θ, the probability of sequence error for the US2D algorithm can be bounded by

PCSI ≤ PUS2D ≤PCSI + PGLRT +

{
1− 2

N∏

k=1

[1− ql(k)] +
N∏

k=1

[1− 2ql(k)]

}

+
{
1− 2(1− qu)N + (1− 2qu)N

}
(5.38a)

=PCSI + PGLRT + O

(
N2

Qf

e
−Es

N0

)
+ O

(
N

Qθ

e
−Es

N0

)
, (5.38b)

where PCSI and PGLRT are the probability of sequence error for the perfect channel

state information (CSI) and the exact GLRT algorithms, respectively, and

ql(k) ,
∫ 2πk

Qf

0

T

(
x− π

2
,
Es

N0

)
+ T

(
x +

π

2
,
Es

N0

)
dx, (5.39a)

qu ,
∫ 2π

Qθ

0

T

(
x− π

2
,
Es

N0

)
+ T

(
x +

π

2
,
Es

N0

)
dx. (5.39b)

Proof: See Appendix C.4.

This result is very similar in spirit to Proposition 5.4. One difference is that

because of the additional frequency jitter, we may need to increase Qf quadratically

with N in order to have a performance close to that of the exact GLRT algorithm.

Another difference is that in this case, the upper and lower bounds do not agree even

for large Qf and Qθ.

5.5 Numerical Results

In this section, numerical results are presented for the exact and approximate

algorithms developed earlier for both the constant and the linear phase models.
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Figure 5.2: Analytical results of exact and approximate algorithms for the constant
phase model.

5.5.1 The Constant Phase Model

Fig. 5.2 compares the performance bounds for the three algorithms (where the

expression for the PO algorithm is exact) developed in Section 5.4 for model (5.4)

with optimally chosen pilot energies versus the information bit SNR

Eb

N0

, Et

N0(N − 1) log2 |A|
. (5.40)

Also shown is the PCSI performance curve, and a “naive” MLSD bound obtained

by a union bound over all 2N sequences. As can be seen in the figure, the upper

bound of the US algorithm, which is obtained by substituting the MLSD bound

into (5.35a), performs almost identically to the upper bound of the exact MLSD

algorithm, and is very close to the performance curve of the perfect CSI receiver.

With a moderate choice of L = 8 in the approximate algorithm, it performs equally

well for both N = 4 and N = 32 cases. As compared with the PO algorithm, we

gain 2 dB when N = 4 and about 0.5 dB when N = 32 by using the US algorithm.

Note also that the upper bound for the MLSD algorithm is actually very tight since
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the CSI performance is a lower bound.

5.5.2 The Linear Phase Model

In this subsection we provide various simulation results regarding the implemen-

tation of the US2D algorithm. For simplicity, we use Ep = Es instead of optimizing

Ep throughout our simulations.
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Figure 5.3: Comparison of simulation results between different frequency estimators
for QPSK modulated sequences with N = 16, fd = 0.2, for the US2D algorithm with
large Qf and Qθ = 4.

One way to perform frequency estimation for a given sequence, is to zero-pad the

sequence with D zeros and perform an (N + D)-point FFT to find the frequency

component with the maximum magnitude. This entails O((N + D) log(N + D))

complexity per sequence, which can be undesirable in the US2D algorithm. Since

the US2D algorithm is aiming at low complexity, we adopt the simplest version of
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the Luise and Reggiannini (L&R) estimator [82] for this algorithm, which evaluates

a frequency estimate as

f̂d(s) = ∠
N−1∑
i=1

(zi+1s
∗
i+1)(zis

∗
i )
∗, (5.41)

thus having linear complexity in N . Note that in general, the L&R estimator can

use more autocorrelation coefficients than just the first one as in this case. As

can be seen in Fig. 5.3, the considerably much faster L&R estimator suffers only

about 1 dB performance loss (at BER=10−3) compared to the higher accuracy FFT

estimators. Therefore, in all the following simulations, we will employ this L&R

frequency estimator for the US2D algorithm.
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Figure 5.4: Relation between M and Qθ for the simulated US2D algorithm with
N = 16, fd = 0.2, and a large Qf .

To examine the effect of Qθ in the US2D algorithm, we have nullified the effect of
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Qf by using a large Qf such that no performance can be gained by further increasing

this Qf . Fig. 5.4 shows the performance of the US2D algorithm for a large enough

Qf , different values of Qθ, and different M-PSK alphabets. As can be seen in the

figure, very little improvement can be gained by selecting Qθ > M regardless of N .

This suggests that Proposition 5.5, which shows that performance behaves as O( N
Qθ

),

provides a conservative estimate.
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Figure 5.5: Effect of Qf on the simulated US2D algorithm with BPSK signals and
fd, θ uniformly random. In all simulations, Qθ = 2. The different SNR values are
chosen to make all performance curves saturate in approximately the same bit error
rate.

Due to the above observation, we fix Qθ = M in the US2D algorithm and in-

vestigate how Qf affects performance. Fig. 5.5 clearly shows that to achieve the

best performance, Qf should grow approximately quadratically with N as predicted

in Proposition 5.5. This result for Qf together with the previous one for Qθ sug-

gests that it is possible to employ an O(N3)-complexity US2D algorithm to achieve
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a near-exact performance.
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Figure 5.6: Simulation results of the exact GLRT, US2D, and an ad hoc pilot-only
algorithm for BPSK modulated sequences with fd, θ uniformly random. Qθ = 2 and
Qf = 10, 40 for N = 5, 10, respectively for the simulated US2D algorithm.

Fig. 5.6 shows that the US2D algorithm with a fast L&R frequency estimator

can indeed achieve a performance close to that of the exact GLRT algorithm, which

employs a very accurate FFT-based frequency estimator, by choosing a moderate Qf

and Qθ. Notice that the number of frequency samples was increased quadratically

with N . Also shown is the performance of an ad-hoc pilot-only algorithm, which first

estimates fd and θ using the first two pilots and then does symbol-by-symbol detec-

tion hypothesizing the estimated CSI. It is obvious that for this linear phase model,

it is much more desirable to extract the channel information from the whole received

sequence by performing joint detection/estimation schemes rather than restricting

our attention only to the channel information provided by pilots. Also shown in
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Fig. 5.6 are the upper bounds derived in Proposition 5.5. However, the parameters

used for obtaining these bounds were Qθ = 8 and Qf = 8N which are different from

those used to obtain the simulated performance. This was due to the fact that the

bound is valid for Qθ ≥ 4 and Qf ≥ 4N as mentioned in Proposition 5.5.

5.6 Conclusion and Discussion

Several low complexity joint detection/estimation algorithms for noncoherent

channels with an unknown phase rotation are presented and analyzed in this chapter.

If the phase process is modelled by a constant phase shift, then we showed that the

low complexity US algorithm can be applied, which yields a performance close to

that of the ML receiver with perfect CSI. In the case that the phase process is mod-

elled by both a frequency jitter and a phase shift, we showed that the exact GLRT

solution can be obtained with combinatorial complexity O(N4) or well approximated

by the proposed US2D algorithm with complexity O(QfQθN).

When powerful codes are utilized, symbol by symbol soft decisions will be desired

by the decoder for iterative decoding. The proposed algorithms can also be adapted

to provide this information. It is very similar to the one discussed in [31], and the

additional manipulation will only increase the whole complexity of the algorithms

by a factor of N .

We conclude by noting that the basic idea behind the exact algorithms is to

think of decision regions in the parameter space rather than in the observation space

as is the traditional approach. This is helpful since in the discussed problems, the

dimension of the observation space grows with N , while that of the parameter space

remains fixed. It is thus expected that similar results will hold every time the number

of independent parameters that need to be estimated grows slower than N .

116



CHAPTER 6

Polynomial Complexity Optimal Decoding of

Trellis Codes Transmitted through Fading

Channels

6.1 Introduction

The problem of optimal decoding of trellis coded sequences transmitted over a

frequency non-selective, time-selective complex fading channel is considered in this

chapter. It is a well-known fact that when the channel state information (CSI) is

known to the receiver, the receiver can use Viterbi’s algorithm (VA) to find the

maximum a posteriori probability sequence detection (MAPSqD) solution with lin-

ear complexity in sequence length, N . However, when the CSI is not available at

the receiver, the MAPSqD solution cannot be obtained using such a simple dynamic

programming technique, due to the memory imposed on the received sequences by

the channel. One approach to solve this problem is to transmit regularly spaced pilot

symbols. The receiver can estimate the channel using the pilots and then use VA

to decode the sequence based on the estimated CSI. Although this might be a sat-

isfactory approach for high signal-to-noise ratio (SNR) applications, the unreliably
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estimated CSI provided by pilots may substantially deteriorate the decoding perfor-

mance when the operating SNR is low, e.g., when high-performance codes are used.

In this case, joint sequence decoding and channel estimation, e.g., true MAPSqD in

the presence of unknown CSI, appears to be a desirable policy.

There is an extensive set of literature on suboptimal algorithms for solving

the joint decoding/estimation problem. The expectation-maximization (EM) algo-

rithm [68, 83] performs a two-step statistical iteration between channel-conditioned

sequence decoding and data-conditioned channel estimation. A family of algorithms

can be constructed by viewing this problem as a hypothesis testing problem with

each hypothesis (sequence) being a path in a tree of depth N . Since testing all hy-

potheses amounts to exponential complexity, a tree-pruning algorithm, such as the

T-algorithm [69], the M-algorithm [70], or the per-survivor processing (PSP) [75]

algorithm can be employed to trade off complexity for performance. In all these

works, the underlying assumption was that the optimal (exact) MAPSqD solution

can only be found with an exponential complexity in the sequence length N due to

the exponential growth of the sequence tree.

It is our intention to prove that the exact MAPSqD solution can be obtained with

only polynomial complexity in the sequence length, N . Similar problems have been

addressed in the case of uncoded sequences for a class of channel models in [31, 84].

The basic idea behind these works is that although the sequence tree (and thus the

number of hypotheses) grows exponentially in N , there is only a certain number of

sequences that are potential candidates for the MAPSqD solution. This sufficient

set of sequences is not known a-priori. But once the noisy observation is obtained

at the receiver, there is a polynomial-complexity algorithm to obtain it [31, 84].

This algorithm is derived by defining a new kind of “decision regions” that parti-

tion the channel parameter space, as contrast to the traditionally defined decision
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regions that partition the observation space. By studying the structure of these

new “decision regions”, the authors showed that their number grows only polyno-

mially with N and that there is a polynomial-complexity algorithm that constructs

them. Unfortunately, all arguments used in [31, 84] rely heavily on the assumption

of uncoded-sequence transmission.

In this chapter, in order to solve the MAPSqD problem for trellis coded sequences,

we adopt the concept of “decision regions” defined in the parameter space as in [31,

84]. Contrary to the previous works, however, we define a set of sufficient survivor

sequences and study their evolution in time. In particular, we show that this set can

be updated in a forward recursive fashion and that the cardinality of the resulting

set grows only polynomially, thus establishing the polynomial-complexity result for

the coded case.

The same ideas can be used to define both forward and backward sufficient sur-

vivor sets. This essentially means that the exact symbol-by-symbol soft decisions

(more specifically, the messages corresponding to the min-sum algorithm [85]) can

also be generated with polynomial complexity. Applications that can potentially ben-

efit from this development include serially concatenated convolutional codes through

flat-fading channels, where now the entire system consisting of the inner trellis code

and the channel can provide an exact “soft inverse” [86] [87, p. 85] with a feasible

computational complexity.

The remaining of this chapter is structured as follows. In Section 6.2, we formulate

the MAPSqD problem for the trellis coded sequence transmission over flat-fading

channels, and relate it to another equivalent problem. After that, Section 6.3 is

devoted to reformulate this equivalent problem so as to introduce the sufficient set of

the candidates of the MAPSqD solution. Based on this reformulation, an algorithm

is proposed in section 6.4 to find the MAPSqD solution and also proved to require
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only a polynomial complexity for the simple case where the trellis has two states.

Finally, we conclude this chapter in section 6.5.

6.2 System and Channel Model

Consider the transmission of a sequence of information symbols a =

(a1, a2, . . . , aN)T , where T denotes the transpose of some matrix, and ak ∈ A ,

{1, . . . , K} for all k. This sequence is encoded and modulated by a finite state

machine (FSM) described by the following items.

1. Its state sk ∈ S , {1, . . . , I} at time k with the assumption that the initial

state s0 is known by both transmitter and receiver

2. The transition (or trellis edge) ek at time k, determined by a given previous

state sk−1 and a current input ak, such that ek , (sk−1, ak) ∈ E , {(s, a) : s ∈
S, a ∈ A}

3. The “next-state” function ns : E → S, such that sk = ns(ek) for all k

4. The “output function” out : E → O , {1, . . . , M}, such that the transmitted

M-ary phase shift keying (M-PSK) symbol is

yk =
√

Ese
j 2π

M
out(ek),∀k (6.1)

with Es being the symbol energy

5. The “previous-state function” ps : E → S, such that sk−1 = ps(ek)

6. The “input function” in : E → A, such that ak = in(ek)

Suppose the sequence y = (y1, y2, . . . , yN)T is transmitted through a frequency-

non-selective/time-selective complex fading channel, and assume that the channel
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remains constant for the entire sequence transmission. The observation model can

be expressed as

z = cy + n, (6.2)

where z = (z1, z2, . . . , zN)T is the received sequence, c is a zero-mean circularly

symmetric complex Gaussian random variable with variance E[|c|2] = 1, n =

(n1, n2, . . . , nN)T is a vector of independent identically-distributed (iid) zero-mean

circularly symmetric complex Gaussian random variables with variance N0.

When no CSI is available at the receiver, i.e., when the realization of c is unknown,

the MAPSqD solution to this problem is

âMAPSqD = arg max
a∈AN

p(z|a)p(a) = arg max
a∈AN

{
ln p(a) +

1

N0(N0 + NEs)
|zHy|2

}
,

(6.3)

where H denotes the Hermitian transpose of some matrix. Due to the linear and

Gaussian nature of the observation model, this problem can be expressed in a double

maximization form (see [88] for details) as

âMAPSqD = arg max
a∈AN

max
c∈C

{
ln p(a)− 1

N0

|z− cy|2 − |c|2
}

, (6.4)

where C is the set of all complex numbers. Since there is a one-to-one correspondence

between e and a, finding âMAPSqD is equivalent to finding êMAPSqD as follows

êMAPSqD = arg max
e∈ẼN

max
c∈C

LN(e, c), (6.5)
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where

Lk(ek, c) ,
k∑

i=1

Li(ei, c), (6.6)

Lk(ek, c) , ln p(in(ek))− 1

N0

|zk − c
√

Ese
j 2π

M
out(ek)|2 − |c|2

N
, (6.7)

ek , (e1, e2, . . . , ek)
T , and

Ẽk ,{ek : ns(ei) = ps(ei+1), ∀i = 1, 2, . . . , k − 1, ps(e1) = so}, (6.8)

which is the set of all valid paths up to time k.

6.3 The Sufficient Set of Survivor Matrices

For a given c, if we define the survivor that ends in state i at time k obtained by

the VA as

V̂k(i|c) = arg max
ek∈Ẽk:ns(ek)=i

Lk(ek, c), ∀i ∈ S, (6.9)

then we have the following lemma.

Lemma 6.1

êMAPSqD = V̂N(i|c) for some i ∈ S and c ∈ C (6.10)

Proof: See Appendix D.1.

Therefore, if we define V̂k(c) , (V̂k(1|c), V̂k(2|c), . . . , V̂k(I|c))T to be the survivor

matrix consisting of all survivors that end in different states conditioned on parameter
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c at time k, and collect all such survivor matrices in a set

D̂k ,{V̂k(c) : c ∈ C}, (6.11)

then instead of searching êMAPSqD in ẼN , we need only search through all

rows of all survivor matrices in a potentially smaller sufficient set D̂N .

However, since C is an infinite set, constructing D̂N by going through all c ∈ C
requires infinite complexity. We make the following observation: it is sensible to

expect that the function V̂k(c) remains constant for a range of c’s. More rigorously,

we can partition C in such a way that for all c in each set of the partition, V̂k(c) is

the same. This leads us to the definition of the “parameter space decision regions”

T k(Vk) ,{c ∈ C : V̂k(c) = Vk}, (6.12)

defined for every valid survivor matrix Vk ∈ Dk, where

Dk , {(e(1)k, e(2)k, . . . , e(I)k)T : e(i)k ∈ Ẽk, ns(e
(i)
k ) = i, ∀i ∈ S, and

e
(i)
l 6= e

(j)
l ⇒ ns(e

(i)
l ) 6= ns(e

(j)
l ), ∀i, j ∈ S, 1 ≤ l ≤ k} (6.13)

is the set of all valid survivor matrices at time k. The constraints in (6.13) imply

that once survivors merge, they have to stay merged for their entire past. With

the introduction of the “parameter space decision regions”, it is now clear that the

sufficient set can be constructed as

D̂k ={Vk ∈ Dk : T k(Vk) 6= φ}. (6.14)

In the next section, we show that D̂N and TN(VN), ∀VN ∈ D̂N can be generated

with polynomial complexity in N , and furthermore, that the size of the resulting
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sufficient set D̂N is also polynomial in N .

6.4 Recursive Construction of the Sufficient Set

Define the set of all possible extensions of Vk as

ext(Vk) ,
{
Wk+1 ∈ Dk+1 : Wk+1(i, k + 1) = e ⇒ Wk+1(i) = [Vk(ps(e)), e]

}
,

(6.15)

where we use B(i, j) to denote the jth element of the ith row in the matrix B, and

B(i) to denote the ith row of B. Also, define the following set of channel parameters

P k(Vk, e) ,
{

c ∈ C : Lk+1([Vk(ps(e)), e]T , c) = max
ẽ∈E:ns(ẽ)=ns(e)

Lk+1([Vk(ps(ẽ)), ẽ]T , c)

}
. (6.16)

Observe that the set P k(Vk, e) is a convex polytope since its boundaries are straight

lines in C. It should be clear from this definition that for any c ∈ P k(Vk, e), if

the survivor matrix at time k is Vk, then the VA (conditioned on c) will choose

[Vk(ps(e)), e] as one of the survivor extensions. As a consequence of the VA, we

have the following lemma.

Lemma 6.2

T k+1(Vk+1) =
⋃

Wk:Vk+1∈ext(Wk)

{
T k(Wk)

⋂
i∈S

P k(Wk,Vk+1(i, k + 1))

}
(6.17)

Proof: See Appendix D.2.

Lemma 6.2 essentially suggests a recursive algorithm for constructing T k+1(Vk+1).

In addition, the set D̂k+1 can be easily obtained by collecting all Vk+1 such that
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T k+1(Vk+1) is nonempty. However, since the set P k(Wk, e) needs to be generated

for all Wk ∈ D̂k, the size of D̂k+1 can grow (in the worst case) as β|D̂k| for some

β > 1, and thus the size of the sufficient set D̂N will be exponential in N .

To overcome this problem, we modify the above algorithm by utilizing the pos-

sibility that several survivor matrices Wk may result in the same set P k(Wk, e). In

particular, if Wk and Uk are such that

Wk(i, j) 6= Uk(i, j) ⇒ Wk(i, j) = Wk(l, j) and Uk(i, j) = Uk(l, j) ∀i, l ∈ S,

(6.18)

i.e., if they only differ in positions at which all the survivors merge together, then

P k(Wk, e) = P k(Uk, e), ∀e ∈ E . Therefore, we can partition D̂k into groups

Gk
1, G

k
2, . . . , G

k
αk

such that any two survivor matrices that satisfy (6.18) belong to

the same group. Fig. 6.1 shows an example of this partitioning.
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3   G
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3   G 3   G 3   G

3   G3   G

3   G
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3 5 6
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2

Figure 6.1: An example of groups for I = K = M = 2 and k = 3. Although in this
example only G3

1 and G3
2 have more than one element, for larger k the sets Gk

i have
a large number of elements.

With this modification, instead of constructing P k(Wk, e) for all Wk ∈ D̂k, we

can construct P k(Wk, e) for only one Wk ∈ Gk
i in each group i = 1, 2, . . . , αk, thus

reduce complexity. This leads to the following modified algorithm:

1. Construct T 1(V1) for all V1 ∈ D1. If T 1(V1) 6= φ, put V1 into D̂1.
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2. Given D̂k and T k(Vk) for all Vk ∈ D̂k, construct groups Gk
1, G

k
2, . . . , G

k
αk

.

3. For each i = 1, 2, . . . , αk, do the following.

(a) Choose an arbitrary matrix Wk ∈ Gk
i , and construct P k(Wk, e),∀e ∈ E .

(b) For all Vk+1 = ext(Uk),Uk ∈ Gk
i , if

T k(Uk)
⋂
i∈S

P k(Wk,Vk+1(i, k + 1)) 6= φ, (6.19)

then

i. Union this set with T k+1(V k+1), where T k+1(V k+1) is initially set to be

φ. (Note that T k+1(V k+1) is exactly what was defined in Lemma 6.2)

ii. Put V k+1 into D̂k+1.

4. Iteratively do steps 2) and 3) until we get D̂N and TN(VN).

Unfortunately, the proof of the polynomial complexity of the algorithm is only

available for the case of I = 2. Although this is the simplest case, it has important

applications, such as a differentially encoded BPSK system, and the IRA codes [17],

which can be decomposed as a concatenation of an outer LDGM code and an inner

accumulator code as shown in Chapter 3.

Lemma 6.3 For I = 2, the number of groups αk is at most polynomial in k.

Proof: See Appendix D.3.

We conclude the main result of this chapter in the following theorem.

Theorem 6.1 For I = 2, the algorithm stated in Lemma 6.2 and modified using

the groups defined in (6.18) can find the exact êMAPSqD solution with worst-case

polynomial complexity in N for any signal-to-noise ratio.
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Proof: Since Lemma 6.3 shows that the number of groups αk is at most poly-

nomial in k, it in turn implies that all sets T k+1(Vk+1) are polytopes defined by a

number of equations which is polynomial in N . Since each equation represents a

line in the complex plane, the problem becomes equivalent to finding all partitions

generated by a polynomial number of lines in C. This problem has been studied

before in [79], where it is shown that there exists a polynomial-complexity algorithm

that can find the at-most-polynomial number of such polytopes. The existence of

this algorithm completes the proof.

6.5 Discussion and Conclusion

In this chapter, the problem of optimal MAPSqD of a trellis coded data sequence

transmitted over a frequency-nonselective/time-selective complexity fading channel

is considered. The case when the receiver does not have CSI is addressed. It is

shown that, contrary to the traditional belief, the exact solution can be obtained

with polynomial complexity in the sequence length (however, only the proof for the

two-state trellis case is presented). The novel approach we used here to establish

these results is to view this detection problem from the channel parameter space as

opposed to the observation space and define appropriate decision regions.

We would like to point out that with a small modification, one can also solve the

more interesting problem of obtaining symbol-by-symbol soft decisions with polyno-

mial complexity. In particular, the metric

SbSk(a) , max
a:ak=a

ln{p(z|a)p(a)}

= max
a:ak=a

{
ln p(a) +

1

N0(N0 + NEs)
|zHy|2

}

= max
e:in(ek)=a

{
max
c∈C

LN(e, c)

}
, (6.20)
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which is exactly the metric implied by the min-sum algorithm [8] can be obtained

using the following idea. Recall that in the proposed algorithm, we have the suffi-

cient sets D̂k of forward survivor matrices for all time instants k. Similarly, we can

construct the sufficient sets B̂k of backward survivor matrices at all time instants.

Therefore for any given edge ek we can always find its best past and future evolution

and the corresponding soft metric by comparing all the possible combinations of all

the past and future survivors in the forward D̂k−1 and backward B̂k+1 sufficient sets,

respectively.
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CHAPTER 7

Summary and Future Directions

In this chapter, we summarize our main results presented in this thesis and discuss

future research directions.

7.1 Summary

In this thesis, we consider the general problem of channel coding in digital com-

munication systems with low computational complexity under two scenarios. In the

case where the channel is a memoryless binary-input output-symmetric (MBIOS)

channel, we work on design and analysis of capacity-achieving binary linear codes

defined on factor graphs. On the other hand, when the channel has memory, we

explore the possibility of optimal detection and decoding for uncoded and coded

sequences, respectively, with a much preferable polynomial complexity to the tradi-

tionally believed exponential complexity.

In Chapter 2, we focus on the design of capacity-achieving codes through punc-

turing. In particular, we derive and analyze upper bounds on the average weight

distribution (AWD) and asymptotic AWD (AAWD) of punctured Gallager’s (n, j, k)

low-density parity-check (LDPC) codes, and prove that they can achieve capacity on
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any MBIOS channel using maximum-likelihood (ML) decoding if they are punctured

from some original code with small enough rate and k > j ≥ 5. Furthermore, we

show that any desired rate can be achieved through puncturing without rate reduc-

tion (with respect to the original codeword length) if the original code has a small

enough rate, a condition that also implies that punctured codes are “good”, i.e., they

have linearly increasing minimum distance, with asymptotically high probability.

Amongst all the capacity-achieving codes, the ones whose graphical representa-

tion has a bounded graphical complexity, i.e., the number of edges per information

bit in the graph is bounded, are studied in Chapter 3. In particular, their ML

decoding performance on MBIOS channels and belief-propagation (BP) decoding

performance on the binary erasure channel (BEC) are investigated. We derive upper

bounds on the AWD and AAWD of systematic and nonsystematic irregular repeat

accumulate (IRA) codes, which are known to be capacity-achieving with bounded

complexity on the BEC, by viewing them as serially concatenated codes with an

outer low-density generator matrix (LDGM) code and an inner accumulator code.

These upper bounds can be used in a variety of ML decoding performance bounds

to determine the asymptotic capability of the codes. As an example, we invoke Di-

vsalar’s bound and show that nonsystematic IRA codes are guaranteed to have a

better ML decoding performance than systematic IRA and LDPC codes with the

same graphical complexity on the binary-input additive white Gaussian noise (BI-

AWGN) channel. By numerically plotting the AAWD of IRA codes, we also see that

nonsystematic IRA codes have a more concentrated asymptotic spectrum than the

systematic ones, and that the inner accumulator code plays an important role in

eliminating low-weight codewords.

Motivated by the open problem of whether there exist capacity-achieving codes

on general MBIOS channels with bounded graphical complexity, we introduce a new
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family of serially concatenated codes with an outer LDPC code and an inner LDGM

code, called LDPC-GM codes. By deriving and analyzing an upper bound on the

AAWD of these codes, we prove that they can achieve capacity on any MBIOS

channel using ML decoding with bounded graphical complexity if the outer code

is a Gallager’s LDPC code and the inner code is a regular rate-1 LDGM code.

Moreover, we show that they have linearly increasing minimum distance that achieves

the Gilbert-Varshamov bound of all rates. These results should be attributed to the

presence of the inner rate-1 LDGM code, which is shown to help eliminate high-weight

codewords while maintaining a vanishingly small amount of low-weight codewords in

the outer LDPC code. To investigate the BP decoding performance of these LDPC-

GM codes on the BEC, we utilize the powerful density evolution (DE) method, and

give two specific capacity-achieving LDPC-GM ensembles (with the outer LDPC

codes allowed to be irregular) using BP decoding based on the mathematical results

given in [18]. Furthermore, using the notion of puncturing, we show that LDPC-GM

codes can achieve capacity on the BEC with any erasure probability if the inner

LDGM code is also allowed to be irregular. The aforementioned results suggest high

potential of the LDPC-GM codes for achieving capacity on MBIOS channels using

BP decoding with bounded decoding complexity per iteration.

All results thus far assume either ML decoding on MBIOS channels or iterative

decoding on the much simpler BEC. In Chapter 4 we make an attempt to bridge

this gap, by analyzing the performance of iterative decoding on MBIOS channels. In

particular, we derive bounds on the asymptotic performance of LDPC codes with the

min-sum (MS) and BP decoding on MBIOS channels. For MS decoding, by upper

bounding the bit error probability of the root bit of a tree code by the sequence error

probability of a subcode of the tree code, and using the union bound, we obtain a

recursive upper bound on the bit error probability after each iteration. As for the
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BP decoding, we track the evolution of the probability of error and Bhattacharyya

parameter associated with the outgoing message of bits after each iteration. As a

result, a recursive lower bound on the probability of bit error and an upper bound

on the Bhattacharyya parameter, which can also serve as an upper bound on the

probability of bit error, are then derived for each iteration. Both recursions recover

the one-dimensional DE equation for LDPC codes on the BEC with inequalities

becoming exact equalities. This fact further implies that the asymptotic BP decoding

performance of LDPC codes on the BEC is the best among all MBIOS channels with

the same probability of uncoded bit error, and is the best among all MBIOS channels

with the same Bhattacharyya parameter. Since this relationship between the BEC

and all MBIOS channels is based purely on Fact 1.1 and Fact 1.2, it holds for the

more general multi-edge type LDPC codes as well.

We turn our attention to channels with memory in Chapter 5, where we con-

sider issues regarding the detection of uncoded sequences on additive white Gaussian

noise (AWGN) channels subject also to unknown phase rotation and frequency jit-

ter. Making the block-independent assumption and assuming the detection is based

on generalized-likelihood ratio test (GLRT), we give an algorithm that finds the ex-

act solution with O(N4) complexity, where N is the sequence length. This result

is based on the parameter-space-partitioning structure introduced in [31], which is

further utilized in the analysis for a family of exact and approximate algorithms

in that chapter. These analytical results are then compared with various simula-

tion results, where we show that the proposed uniform-sampling (US) algorithm

and 2-dimensional uniform-sampling (US2D) algorithm well approximate the corre-

sponding exact algorithms with much reduced complexity, and outperform the simple

pilot-only (PO) algorithm.

Although the parameter-space-partitioning structure introduced in [31] and used
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in Chapter 5 highly relies on the uncoded assumption of the transmitted sequences,

we still manage to prove its feasibility for coded sequences in Chapter 6. In that

chapter, we devise an algorithm that finds the optimal maximum a posteriori prob-

ability sequence detection (MAPSqD) solution for 2-state-trellis coded sequences on

the frequency nonselective/time-selective fading channel with polynomial complexity.

Important applications of this result, though only for 2-state-trellis coded sequences,

include the differentially encoded BPSK system and the IRA codes [17], which can be

decomposed into an outer LDGM code and an inner accumulator code as mentioned

before.

7.2 Future Directions

Some extensions to the presented results in this thesis and directions for future

research are discussed below.

7.2.1 Extensions to the Min-Sum Decoding Performance

Analysis

In Chapter 4, we proved that for the (λ, ρ) LDPC ensemble with BP decoding on

the MBIOS channel with Bhattacharyya parameter D, if x0 = D, and

xl = Dλ(1− ρ(1− xl−1)), ∀l ≥ 1, (7.1)

then asymptotically (as the codeword length goes to infinity) the average probability

of bit error Pl after l decoding iterations of the LDPC ensemble satisfies

Pl ≤ xl, ∀l ≥ 0. (7.2)
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We conjecture that the same recursively determined upper bound (7.1) also holds

for the MS decoding performance. As an example, Tables 7.1 and 7.2 compare the

true decoding threshold and the threshold implied by the conjectured bound (7.1)

for regular LDPC codes with MS decoding on the BIAWGN channel and binary

symmetric channel (BSC), and show no contradiction to this conjecture.

Table 7.1: Thresholds of the variance on the BIAWGN channel for regular LDPC
ensembles with MS decoding.

dv dc σmin−sum σbound

3 6 0.8177 0.7691
4 8 0.7455 0.7222
5 10 0.6957 0.6822
3 5 0.9154 0.8713
4 6 0.8716 0.8568
3 4 1.1020 1.0724
4 10 0.6776 0.6515
3 9 0.6751 0.6292
3 12 0.6079 0.5664

Table 7.2: Thresholds of the crossover probability on the BSC for regular LDPC
ensembles with MS decoding.

dv dc pmin−sum pbound

3 6 0.070 0.048
4 8 0.054 0.038
5 10 0.042 0.031
3 5 0.094 0.072
4 6 0.079 0.069
3 4 0.131 0.119

Moreover, we found that we can connect the recursion (7.1) to the reduced code-

book Cr defined in Definition 4.1, which is used in the MS decoding performance

analysis in Chapter 4, as follows. Without loss of generality, let us consider the tree

code C of l + 1 levels associated with the regular (xdv−1, xdc−1) LDPC ensemble, and

let Cr be the reduced codebook of C. Define sequentially
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(i) a
(l)
ij = number of combinations of different i nonzero codewords in Cr such that

the Hamming weight of the OR of these i codewords is j,

(ii) A
(l)
i (x) =

∑∞
j=1 a

(l)
ij xj, and

(iii) Nl(x) =
∑∞

i=1(−1)i−1A
(l)
i (x).

In other words, A
(l)
1 (x) is the traditional weight enumerator of the nonzero codewords,

and A
(l)
i (x) is the weight enumerator of the OR of i different nonzero codewords for

all i ≥ 2 in Cr. We have the following lemma describing the evolution of Nl(x) for

each l.

Lemma 7.1 Nl(x) = x[1− (1−Nl−1(x))dc−1]dv−1 for all l ≥ 0.

Proof: See Appendix E.

Therefore, if one can prove that

Ql ≤ Nl(D) (7.3)

where Ql is the probability of sequence error for Cr under maximum-likelihood se-

quence detection (MLSqD) on the MBIOS channel with Bhattacharyya parameter

D assuming the transmission of the all-zero codeword, then it follows directly from

the discussion of the reduced codebook in Chapter 4 that the recursion (7.1) gives a

true upper bound on the probability of bit error for LDPC codes under MS decoding.

Recall that in Chapter 4, we proved that

Ql ≤ A
(l)
1 (D) (7.4)

using the union bound. It is thus possible that by taking care of the overlaps in the
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pairwise decision regions,

Ql ≤ Nl(D) = A
(l)
1 (D)− A

(l)
2 (D) + A

(l)
3 (D)− . . . (7.5)

can be shown to be true. However, proving (7.5) turns out to be a difficult task.

7.2.2 Graph Reduction

In Chapter 3, we proved that codes with state nodes can achieve capacity on

any MBIOS channel under ML decoding with bounded graphical complexity. A

practically more interesting question would be whether by introducing state nodes

into the graph, finite-length codes can also have a better complexity-performance

tradeoff under ML or even BP decoding. As an initial step to understanding this

problem, we introduce a simple approach of adding state nodes to the graph, that

can decrease the graphical complexity of any given code, maintain its ML decoding

performance, and possibly increase its BP decoding performance on MBIOS channels

in the following.

Let H be the m × n parity-check matrix of some given code C dictated by its

graphical representation with no state nodes, i.e., an edge in the graph between the

ith check node and jth variable node is reflected by a 1 in the ith row and jth

column of H. Consider the following modification of the H matrix (and equivalently

the graphical representation of the code):

1. Add a new check node and state node to the graph, and define the new gener-

alized parity-check matrix H ′′ with state nodes of the new code C ′ as follows.

H ′′ =




H 0T

x 1


 , (7.6)
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where x is some nonzero row vector of length n, 0 is the all-0 row vector of

length m, and the superscript T denotes transposition of some matrix.

2. Add the last row of H ′′ to the other rows which have 1’s in places where x has

1’s thus resulting in the matrix H ′.

Consider the code

C ′ = {c : ∃v s.t. (c v)H ′T = 0} (7.7)

The resulting code C ′ satisfies the following lemmas.

Lemma 7.2 C ′ = C.

Proof: In the first step of the modification, since the additional check node

only restricts the additional state node to be determined by the other variable nodes

and does not interfere with the existing parity-check equations, the codebook re-

mains unchanged. Moreover, in the second step of the modification, since only row

operations are performed on H ′′, the codebook still remains unchanged.

This lemma shows that the ML decoding performance the code is unchanged on

MBIOS channels by the modification. In the following lemma, we show that this

modification may even increase the BP decoding performance of the code on the

BEC.

Lemma 7.3 The BP decoding performance of H ′ is better than or equal to that of

H on the BEC.

Proof: Let c be the additional check node and v the additional state node. It

suffices to prove that if S ′ is a stopping set1 of H ′, then S , S ′ \ {v} is a stopping

1A stopping set is a set of variable nodes in the graph such that all its check node neighbors are
connected to this set at least twice. It is shown in [89] that the stopping sets are exactly the sets of
variable nodes in the graph that if erased, can not be recovered by the BP decoding on the BEC.
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set of H. Let Z0 be the set of check nodes that are not connected to v on the graph

H ′, i.e., the set of check nodes in H whose connection is not changed in the proposed

modification. Also, let Z1 be the set of check nodes, except c, that are connected to v

on H ′, i.e., the set of check nodes in H whose connection is changed in the proposed

modification. Moreover, let Z ′
s and Zs be the sets of check nodes that are connected

to some variable node in S ′ and S on graphs H ′ and H, respectively. Assuming S ′

is a stopping set of H ′, we want to prove that all check nodes in Zs are connected to

at least two variable nodes in S.

Let z be a check node in Zs

⋂Z0. Since the connection of z is not changed in the

modification, and S ⊂ S ′, we have z ∈ Z ′
s. Since S ′ is a stopping set, and z is not

connected to v on H ′, it is connected to at least two variable nodes in S ′ \ {v} = S
on H ′. Again, since the connection of z is not changed in the modification, it is

connected to at least two variable nodes in S on H. On the other hand, when z is a

check node in Zs

⋂Z1, we would like to proceed by discussing three cases.

Case 1: z is not in Z ′
s. Then we know that S ′ ⊂ V1, where V1 denotes the set of

variable nodes, except v, that are connected to c on H ′, and that S ′ = S. Since S ′ is
a stopping set of H ′, we have |S ′| ≥ 2, where | · | denotes the cardinality of some set.

Now, since z ∈ Z1, we have that z is connected to all the variables in V1 ⊃ S ′ = S
on H. So, z is connected to at least two variable nodes in S on H.

Case 2: z is in Z ′
s, but v is not in S ′. Then we have S ′ = S. Since, S ′ is

a stopping set, z is connected to at least 2 variable nodes in S ′ on H ′. With the

additional connections from z to the variable nodes in V1, z is still connected to at

least two variable nodes in S on H.

Case 3: z is in Z ′
s, and v is in S ′. Since v is in S ′, c is in Z ′

s. Moreover, since

S ′ is a stopping set, |V1

⋂S| ≥ 1. Also, since z is in Z ′
s, S ′ is a stopping set, and

z is not connected to any variable nodes in V1 on H ′, z is connected to at least one
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variable node in S \ V1 on H ′. Hence, with the additional connections from z to the

variable nodes in V1, z is connected to at least two variable nodes in S on H.

A similar result to Lemma 7.3 on general MBIOS channels can be argued as follows.

Let c, v, Z0, Z1 and V1 be as defined in the proof of Lemma 7.3, and let V0 be the

set of variable nodes that are not connected to c in H ′. More over, let Eo be the

set of edges connected from V0 to Z1 and from V1 to Z0, and Ei the set of edges

connected from V1 to Z1. Then, we can view the local structure (V1,Z1, Ei) as a

subsystem of H that outputs messages on any edge e ∈ Eo according to the input

messages on the edges in Eo \{e} and the channel observations of the variables in V1.

We can as well view the input messages on Eo as reliability messages from channel

of some imaginary variables. For the edge e ∈ Eo such that e is connected to some

v1 ∈ V1, the corresponding imaginary variable of the input message on e is connected

to v1 through a repetition code structure, i.e., through an imaginary check node

connecting it and v1. On the other hand, for the edge e ∈ Eo such that e is connected

to some z1 ∈ Z1, the corresponding imaginary variable of the input message on e is

connected directly to z1. Let H1 be the new graph including the imaginary variable

and check nodes and the original local structure. What the subsystem (V1,Z1, Ei)

does on H1 is some sort of extrinsic bit decoding for each imaginary variable node

given the observations of all the other variable nodes in H1. Now, let H ′
1 be the

corresponding graph with imaginary variable and check nodes for the modified local

structure (V1

⋃{v},Z1

⋃{c}, E ′i), where E ′i is modified from Ei as proposed. Then,

since H ′
1 is a tree code, the modified local structure performs the exact extrinsic

maximum a-posteriori probability (MAP) decoding for the imaginary variable nodes.

Due to the optimality of the MAP decoding performance, we conclude that the

modified local structure in H ′ always gives an extrinsic bit decoding performance,

which is better than or equal to that given by the original local structure. See Fig 7.1
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(a) Original local struc-
ture in H

(b) H1 (c) Modified local struc-
ture in H ′

(d) H ′
1

Figure 7.1: An example of the proposed modification on a local structure, where
code nodes are denoted by open circles, state nodes by filled gray circles, and check
nodes by squares.

for an illustration.

It is now clear that the proposed modification can maintain the ML decoding

performance and possibly increase the BP decoding performance of codes on MBIOS

channels. In the following example, we show that the proposed modification can also

decrease the graphical complexity for some H if we choose x wisely.

Example 7.1

Let

H =




1 1 1 1 1 0

0 1 1 1 1 1


 (7.8)

x =

(
0 1 1 1 1 0

)
. (7.9)
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Then we have

H ′ =




1 0 0 0 0 0 1

0 0 0 0 0 1 1

0 1 1 1 1 0 1




, (7.10)

which is a tree code while H has loops. This example shows that H ′ can be better

than H in terms of BP decoding performance on MBIOS channels. Moreover, com-

paring the number of 1’s in H and H ′, we see that the graphical complexity is also

reduced.

More challenging questions in this direction include whether there exist other

modification algorithms that can give better complexity-performance tradeoffs, and

whether there exists a modification algorithm that can find the simplest graphical

representation of any given code. Advanced matrix theory may be needed in an-

swering these questions. In addition one might consider randomized algorithms and

prove existence through an averaging argument.

7.2.3 Other Research Directions

1. Let us revisit the fundamental question: “How simple can graph codes be as a

function of their performance?” So far, our contribution (and the contributions

in the literature) provide us with the achievable complexity, while the required

complexity remains unknown for general codes with state nodes. Does this

question have different answers for different decoding algorithms? Answers

to these type of questions can directly impact the construction of capacity-

achieving codes with the optimal performance-complexity tradeoff. As a first

step, one can consider the simpler problem of whether a fixed proportion (with

respect to the codeword length) of state nodes with a limited degree prohibits a
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code with bounded graphical complexity from achieving capacity. Since every

graph with state nodes is equivalent (in the sense of representing the same

code) to another graph without state nodes corresponding to the parity-check

matrix of the code, we may be able to solve this simpler problem by checking

whether the considered graph with state nodes is equivalent to a graph without

state nodes that satisfies the necessary condition for achieving capacity given

by [27].

2. We show in this thesis that the decoding complexity per iteration for capacity-

achieving codes can be bounded regardless of the gap to capacity on general

MBIOS channels. Does this come at the price of increasing the required number

of iterations? More generally, how does the required number of iterations scale

as a function of the gap to capacity for capacity-achieving codes? The GEXIT

chart method [62] seems to provide a framework for analysis, and seems to

support the conjecture that the required number of iterations scale like 1/ε,

where ε is the gap to capacity. However, a rigorous proof of such a statement

will require further investigation into the properties of GEXIT charts.

3. We have already seen in this thesis that the rate-1 accumulator code and regu-

lar LDGM code help eliminate low-weight and high-weight codewords, respec-

tively, for their corresponding outer codes. However, this asymptotic spectrum

shaping effect is only guaranteed to help in ML performance of codes. Can a

rate-1 pre-coder or post-coder also help in the iterative decoding performance?

The success of the accumulate-repeat-accumulate (ARA) [54] codes seem to

suggest a positive answer to this problem. For a detailed analysis, the effect of

concatenating a rate-1 code on the DE equation may need to be studied.

4. Finally, although we have established that polynomial complexity optimal
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MLSD can be performed for uncoded and 2-state trellis-coded sequences on

channels with parametric uncertainty, the case of arbitrary trellis-coded se-

quences remains unanswered.
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APPENDIX A

Proofs of Properties of Punctured LDPC Codes in

Chapter 2

A.1 Proof of Theorem 2.2

1. Since ∆R = 0, we have from (2.18) that

wp(0) ≤ ∆R

1− p
= 0 (A.1)

2. We study the behavior of T (a, b) in two cases. When [bp + (1− p)a] ∈ (0, δo)∪
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(1− δo, 1), we have from Fact 2.1 that

T (a, b) =pH(b)−H(pb + (1− p)a) + wo(pb + (1− p)a) (A.2a)

<pH(b)−H(pb + (1− p)a) (A.2b)

=− [pb + (1− p)a] ln
b

[pb + (1− p)a]

− [1− pb− (1− p)a] ln
1− b

[1− pb− (1− p)a]

+ (1− p)a ln b + (1− p)(1− a) ln(1− b) (A.2c)

≤(1− p)[a ln b + (1− a) ln(1− b)] (A.2d)

≤− (1− p)H(a), (A.2e)

where the last two inequalities are due to the fact that relative entropy is always

nonnegative [49, Theorem 2.6.3]. On the other hand, when [bp + (1 − p)a] ∈
[δo, 1− δo], we have from Lemma 2.1

T (a, b) ≤pH(b) + (1−Ro) ln
1 + [1− 2(pb + (1− p)a)]k

2

≤p ln 2 + (1−Ro) ln
1 + [1− 2(pb + (1− p)a)]k

2
(a)

≤p ln 2 + (1−Ro) ln
1 + (1− 2δo)

k

2

=(1−Ro)
[
(β − 1) ln 2 + ln(1 + (1− 2δo)

k)
]
, (A.3)

where (a) is true since ln[1 + (1− 2x)k] is a monotonically decreasing function

in x, which implies that it attains its maximum at the left boundary x = δo.
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Hence, for all a ∈ (0, 1],

max
0≤b≤1

T (a, b) ≤ max
0<bp+(1−p)a<1

T (a, b)





< −(1− p)H(a) , or

≤ (1−Ro)[(β − 1) ln 2 + ln(1 + (1− 2δo)
k)]

(A.4)

From (2.24) and the assumption that Ro < S2, we see that

(1−Ro)[(β − 1) ln 2 + ln(1 + (1− 2δo)
k)] < 0. (A.5)

Also, we have

(1−Ro)[(β − 1) ln 2 + ln(1 + (1− 2δo)
k)] ≥(1−Ro)(β − 1) ln 2 (A.6a)

>− (1− p) ln 2. (A.6b)

Now, since −(1− p)H(a) is a convex function taking values in [−(1− p) ln 2, 0]

and is symmetric about a = 1/2, we can conclude from (A.5) and (A.6) that

there exists a δp ∈ (0, 1/2), such that

−(1− p)H(a) ≤ (1−Ro)[(β − 1) ln 2 + ln(1 + (1− 2δo)
k)] (A.7)

if and only if a ∈ [δp, 1− δp]. Equations (2.13), (A.4) and (A.7) then prove this

part of the theorem after some simple algebraic manipulations.

3. From (2.11),

max
0<l<npδp

Nub
p (l) ≤ max

0<l<npδp

max
0≤i≤np

n

(
pn
i

)(
(1−p)n

l

)
(

n
i+l

) No(i + l) (A.8)
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Let

f(i + l) , n

(
pn
i

)(
(1−p)n

l

)
(

n
i+l

) No(i + l). (A.9)

We study the behavior of f(i + l) in two cases. When (i + l) ∈ (0, nδo), we

have from Fact 2.1

f(i + l) =n

(
pn
i

)(
(1−p)n

l

)
(

n
i+l

) O(n−j+2) = O(n−j+3
p ), (A.10)

where we have used the fact that
(pn

i )((1−p)n
l )

( n
i+l)

≤ 1 and that np = (1 − p)n. On

the other hand, when (i + l) ∈ [nδo, npδp + np), we have from (2.13), (A.3),

(A.7), and the fact that l ∈ (0, npδp)

lim
np→∞

1

np

ln f(i + l) ≤H(a) +
(1−Ro)[(β − 1) ln 2 + ln(1 + (1− 2δo)

k)]

1− p

(A.11a)

<H(a) +
−(1− p)H(a)

1− p
(A.11b)

=0 (A.11c)

i.e., f(i + l) decreases exponentially in np in this range. Hence, from (A.10)

and (A.11), this part of the theorem is proved.

4. This part follows from (2.11), Fact 2.1, and the fact that

(
n

i

)
=

(
n

n− i

)
,∀i ∈ {0, 1, . . . , n}. (A.12)
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A.2 Proof of Theorem 2.3

Based on Theorem 2.2, for all Ro ∈ (0, S2) the code with rate Ro can be punctured

to a code with rate Rp ∈ [Ro, R1] and have all four properties listed in Theorem 2.2.

We seek sufficient conditions for ε such that the punctured code has a vanishing

probability of block error with ML decoding on the MBIOS channel with capacity

C = Rp

1−ε
.

Let U ⊂ {1, 2, . . . , n}, and U c be its complementary set. The following upper

bound on the average block error probability under ML decoding was derived in [48]:

PB ≤
∑

l∈U

{Np(l)D
l}+ 2

−npEr(Rp+ ln α
np ln 2

)
, (A.13)

where

α , max
l∈Uc

Np(l)

2npRp − 1

2np

(
np

l

) , (A.14)

Er(·) is the random coding exponent, and

D ,
∫ ∞

−∞

√
p(y|0)p(y|1)dy (A.15)

is the Bhattacharya parameter, where p(y|0) and p(y|1) are the conditional proba-

bility density functions of the output of the MBIOS channel given the input. Note

that D < 1 since C > 0. If we apply this bound to the punctured ensemble and let

U ,
{

l :
l

np

∈ (0, δp) ∪ (1− δp, 1]

}
, (A.16)
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then we have from Theorem 2.2 and the fact that D < 1,

∑

l∈U

{Np(l)D
l} ≤ Dnp +

∑

l∈U\{np}
Nub

p (l)Dl ≤ npO
(
n−j+3

p

)
= O

(
n−j+4

p

)
. (A.17)

Note that, although there is always one codeword with weight np ∈ U , the pair-

wise error probability due to that codeword in the union bound decreases at least

exponentially in np.

¿From Theorem 2.2 we have

lim
np→∞

ln α

np

= max
δp≤a≤1−δp

wp(a)− [H(a)− (1−Rp) ln 2]

≤ max
δp≤a≤1−δp

wub
p (a)− [H(a)− (1−Rp) ln 2]

≤(1−Ro)Rp

Ro

ln[1 + (1− 2δo)
k]

≤(1−Ro)C

Ro

ln[1 + (1− 2δo)
k]. (A.18)

Hence, by (A.13), (A.17) and (A.18), for a punctured ensemble with rate Rp =

(1− ε)C to have a vanishing average block error probability, it is sufficient to have

(1− ε)C +
ln α

np ln 2
< C ⇔ ε >

ln α

npC ln 2
⇐ ε >

(1−Ro)

Ro ln 2
ln[1 + (1− 2δo)

k]. (A.19)

We would like to further upper bound the quantity on the right hand side of the

above inequality, in order to express the sufficient condition only as a function of Ro

and not δo. Towards this goal, we have from Lemma 2.4 and Lemma 2.2 that for any
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η > 1, there exists an S1, such that for all Ro ∈ (0, S1),

(1−Ro)

Ro ln 2
ln[1 + (1− 2δo)

k] ≤ 1

Ro ln 2
(1− 2δo)

k (A.20a)

≤ 1

Ro ln 2

(
1− H(δo)

ln 2

)k/3

(A.20b)

≤ 1

Ro ln 2
(ηRo)

k/3 (A.20c)

=
ηk/3R

k/3−1
o

ln 2
. (A.20d)

Now, Since S2 ≤ S1 as shown in the proof of Theorem 2.1, this theorem is proved.
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APPENDIX B

Proofs of Properties of LDPC-GM Codes in

Chapter 3

B.1 Proof of Theorem 3.3

Fix an R1 and pick an arbitrary δ ∈ (0, H−1((1−R1) ln 2)).

1. Define

f(b) , wo(b) + a ln
1− (1− 2b)k

2
+ (1− a) ln

1 + (1− 2b)k

2
. (B.1)

We will bound f(b) in two cases.

Case (a): Let

M ′
1 ,

ln
[
1− H(δ)

(1−R1) ln 2

]

ln(1− 2δ)
≥

ln
[
1− H(δ)

(1−R) ln 2

]

ln(1− 2δ)
, (B.2)

and M1 = max{M ′
1, 1/δ}. By Lemma 2.3, if k > M1 then wo(δ) < 0 for all
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R ∈ [0, R1]. Therefore, for k > M1 and b ∈ [a/k, δ] ∪ [1− δ, 1− a/k], we have

f(b) ≤ wo(b)−H(a) ≤ max{wo(a/k), wo(δ)} −H(a), (B.3)

where the first inequality follows from the fact that relative entropy is al-

ways nonnegative [49, Theorem 2.6.3], and the second inequality follows from

Fact 2.1.

Case (b): b ∈ (δ, 1− δ). We have from Lemma 2.1 that

f(b) ≤(1−R) ln[1 + (1− 2b)k] + H(b)− (1−R) ln 2+

+ a ln
1− (1− 2b)k

2
+ (1− a) ln

1 + (1− 2b)k

2
(B.4a)

≤− (1−R) ln 2− ln 2 +
{
H(b) + (2−R− a) ln[1 + (1− 2b)k]

}
(B.4b)

≤− (1−R) ln 2− ln 2 + {H(b) + 2 ln[1 + (1− 2b)k]}, (B.4c)

where the last two inequalities follow from (3.31). Since

∂2H(b)

∂b2
= − 1

(1− b)b
≤ −4, (B.5)

and

∂22 ln[1 + (1− 2b)k]

∂b2
=

8k[k − 1− (1− 2b)k](1− 2b)k−2

[1 + (1− 2b)k]2
(B.6a)

≤8k(k − 1)(1− 2b)k−2 (B.6b)

≤8k(k − 1)(1− 2δ)k−2, (B.6c)

which can be made arbitrarily close to 0 for a large enough k, there exists an
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M2 such that

k > M2 ⇒ ∂2H(b) + 2 ln[1 + (1− 2b)k]

∂b2
< 0, ∀b ∈ (δ, 1− δ). (B.7)

Furthermore, since

∂H(b) + 2 ln[1 + (1− 2b)k]

∂b

∣∣∣∣
b=1/2

=

{
ln

1− b

b
+
−4k(1− 2b)k−1

1 + (1− 2b)k

}∣∣∣∣
b=1/2

= 0,

(B.8)

it follows that the maximum of H(b)+2 ln[1+(1−2b)k] is attained at b = 1/2,

and thus

f(b) ≤ −(1−R) ln 2, ∀b ∈ (δ, 1− δ). (B.9)

Based on the above two cases, we have shown that for a fixed R1 and an

arbitrary δ ∈ (0, H−1((1 − R1) ln 2)), there exists an M , max{M1,M2} such

that for all k > M and for all LDPC-GM ensembles with R ≤ R1 we have

wub
c (a) = H(a) + max

a
k
≤b≤1− a

k

f(b) ≤ max{H(a)− (1−R) ln 2, wo(a/k), wo(δ)}.

(B.10)

For a = 0, we have max{wo(a/k), wo(δ)} = 0 and H(a) − (1 − R) ln 2 =

−(1 − R) ln 2 < 0, which implies wub
c (0) ≤ 0. For a = 1/2 we have

max{wo(a/k), wo(δ)} < 0 and H(a) − (1 − R) ln 2 = R ln 2 > 0. Since

max{wo(a/k), wo(δ)} < 0 for all a > 0, H(a) − (1 − R) ln 2 must intersect

with max{wo(a/k), wo(δ)} at some a = δ′ < H−1((1 − R) ln 2). This is true

since max{wo(a/k), wo(δ)} is a monotonically decreasing function with respect

to a for all a ∈ [0, 1/2].
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Thus for all a ∈ (0, δ′], wub
c (a) = max{wo(a/k), wo(δ)} < 0. In addition, for all

a ∈ [δ′, 1/2], wub
c (a) = H(a)− (1−R) ln 2. This concludes the proof of the first

statement of the theorem.

2. For all l ∈ (0, δ′n] ∪ [n− δ′n, n] and k > M , we have

Nub
c (l) =

bn−l/kc∑

s=dl/ke

No(s)Z
(LDGM)
s,l(
n
s

) (B.11a)

(a)

≤
δ′n∑

s=dl/ke
No(s) +

bn−l/kc∑

s=n−δ′n

No(s) +
n−δ′n∑

s=δ′n

No(s)Z
(LDGM)
s,l(
n
s

) (B.11b)

(b)

≤O(n−j+2) + n exp{n[H(l/n) + max
δ′≤b≤1−δ′

f(b)] + o(n)} (B.11c)

(c)

≤O(n−j+2) + n exp{n[H(l/n)− (1−R) ln 2] + o(n)} (B.11d)

(d)
=O(n−j+2), (B.11e)

where o(n) denotes some value that converges to 0 as n approaches infinity.

In (B.11), (a) follows from the fact that Z
(LDGM)
s,l /

(
n
s

) ≤ 1 since it is a proba-

bility as shown in (3.4); (b) follows from Fact 2.1; (c) follows from (B.9); (d)

follows from the fact that δ′ < H−1((1−R) ln 2).

B.2 Proof of Theorem 3.4

Let M be as defined in Theorem 3.3 for R1 = C. Moreover, let U ⊂ {1, 2, . . . , n},
and U c be its complementary set. The following upper bound on the average block

error probability under ML decoding is given in [48]:

PB ≤
∑

l∈U

{Nc(l)D
l}+ 2−nEr(R+ ln α

n ln 2
), (B.12)
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where

α , max
l∈Uc

Nc(l)

2nR − 1

2n

(
n
l

) , (B.13)

Er(·) is the random coding exponent, and

D ,
∫ ∞

−∞

√
p(y|0)p(y|1)dy ≤ 1 (B.14)

is the Bhattacharyya parameter, where p(y|0) and p(y|1) are the conditional prob-

ability density functions of the output of the MBIOS channel given the input. We

will apply this bound to the LDPC-GM ensemble with k > M , R < C, and

U ,
{

l :
l

n
∈ (0, δ′] ∪ [1− δ′, 1]

}
, (B.15)

where δ′ is as defined in Theorem 3.3. Regarding the first term, we have from

Theorem 3.3 that

∑

l∈U

{Nc(l)D
l} ≤

∑

l∈U

Nub
c (l) ≤ nO(n−j+2) = O(n−j+3). (B.16)

Regarding the second term, we have from the same theorem and Lemma 3.1 that

lim
n→∞

ln a

n
= max

a∈(δ′,1−δ′)
wc(a)− [H(a)− (1−R) ln 2] (B.17a)

≤ max
a∈(δ′,1/2]

wub
c (a)− [H(a)− (1−R) ln 2] (B.17b)

≤0. (B.17c)
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Hence

PB ≤ O(n−j+3) + 2−nEr(R), (B.18)

which converges to 0 as n approaches infinity for all R < C and j ≥ 4. Thus, the

theorem is proved.

B.3 Proofs of Section 3.4

First, we need a lemma.

Lemma B.1 If the degree distribution pair (λ, ρ) satisfies ρ(0) = 0, ρ(1) = 1, and

satisfies (3.41) for all x3 ∈ [0, 1], then R = 1− q.

Proof: [18, Lemma 1] shows that under the assumed conditions, we have

∫ 1

0
ρ(t)dt∫ 1

0
λ(t)dt

= q. (B.19)

B.3.1 Proof of Theorem 3.5

The facts that (λ, ρ) satisfies (3.41) for all x ∈ [0, 1] and that λ(x) has only non-

negative coefficients for k = 3 and q ∈ [12
13

, 1) are proved in [18, Theorem 1]. By the

definition of λε, we have effectively

λε(x) =

M(ε)∑
i=1

λix
i−1 (B.20)
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in the density evolution equations. Hence, it follows that λε(x) < λ(x), and the

corresponding λ̃ε(x) < λ̃(x) for all x ∈ (0, 1]. Therefore, (3.43) is satisfied, which

implies that the BP decoding is successful. To find the rate of this ensemble of codes,

let

δ ,
∞∑

M(ε)+1

λ̃i (B.21)

be the fraction of pilot nodes. Then, we have

R =
(1− δ)

∫ 1

0
λ(t)dt− ∫ 1

0
ρ(t)dt∫ 1

0
λ(t)dt

(B.22a)

=1− δ −
∫ 1

0
ρ(t)dt∫ 1

0
λ(t)dt

(B.22b)

=1− q − δ, (B.22c)

where the last equality follows from the facts that ρ(0) = 0, ρ(1) = 1, and Lemma B.1.

But, from (3.39)

δ =
∞∑

M(ε)+1

λi/i∫ 1

0
λ(t)dt

= q

∞∑

M(ε)+1

λi/i∫ 1

0
ρ(t)dt

= qk

∞∑

M(ε)+1

λi/i < ε(1− q). (B.23)

Therefore, it follows that R > (1− ε)(1− q), and the theorem is proved.

B.3.2 Proof of Theorem 3.6

The facts that (λ, ρ) satisfies (3.41) for all x ∈ [0, 1] and that ρ(x) has only non-

negative coefficients for q ∈ [0.05, 1] are proved in [18, Theorem 2]. Since ρε(x) > ρ(x)

for all x ∈ (0, 1], (3.43) is satisfied and the BP decoding is successful. As for the
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rate of this ensemble of codes, we have

R =1−
∫ 1

0
ρε(t)dt∫ 1

0
λ(t)dt

(B.24a)

=1−
∑M(ε)

i=1
ρi

i
+ 1−∑M(ε)

i=1 ρi∫ 1

0
λ(t)dt

(B.24b)

>1−
∑∞

i=1
ρi

i
+ 1−∑M(ε)

i=1 ρi∫ 1

0
λ(t)dt

(B.24c)

=1−
∫ 1

0
ρ(t)dt +

∑∞
i=M(ε)+1 ρi∫ 1

0
λ(t)dt

(B.24d)

(a)
=1− q − 3

∞∑

i=M(ε)+1

ρi (B.24e)

>(1− ε)(1− q), (B.24f)

where (a) follows from the facts that ρ(0) = 0, ρ(1) = 1, and Lemma B.1. Hence,

the theorem is proved.

B.3.3 Proof of Theorem 3.7

Let F be the degree distribution from the node perspective1 corresponding to f .

We have

F (x) =

∫ x

0
f(t)dt∫ 1

0
f(t)dt

= [x(1− p) + p]2, (B.25)

1That is, F (x) =
∑∞

i=0 Fix
i ,where Fi denotes the fraction of input nodes that have i neighboring

check nodes in the LDGM code.
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and the following set of density evolution equations

x1 =1− (1− q)(1− x4) (B.26a)

x2 =F (x1)λ(x3) (B.26b)

x3 =1− ρ(1− x2) (B.26c)

x4 =f(x1)λ̃(x3), (B.26d)

where q denotes the channel erasure probability. After some algebraic manipulations,

the fixed point equation can be shown to be

x3 = 1− ρ

(
1−

[
q(1− p) + p

1− (1− q)(1− p)λ̃(x3)

]2

λ(x3)

)
, (B.27)

which is the same as (3.41) if we let the erasure probability be q′ = q(1 − p) + p.

Hence, from Theorem 3.5 and Theorem 3.6, the decoding is successful under BP

decoding on the BEC with erasure probability q. Moreover, the rate of this ensemble

is given by

R ={rate of the outer LDPC code} × {number of input nodes in the LDGM code}
{number of check nodes in the LDGM code}

(B.28a)

={rate of the outer LDPC code} × G′(1)

F ′(1)
(B.28b)

>(1− ε)(1− q′)
1

1− p
(B.28c)

=(1− ε)(1− q), (B.28d)

which then proves this theorem.
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APPENDIX C

Proof of Analytical Results for Algorithms in

Chapter 5

C.1 Constant Phase Model: Exact GLRT Algo-

rithm

Let s0, ŝCSI be the transmitted sequence and the detected sequence for the hy-

pothetical receiver that has perfect CSI, respectively. The probability of sequence

error for the algorithm can be bounded as

PMLSD

=P (ŝMLSD 6= s0) (C.1a)

=P (ŝMLSD 6= s0, ŝCSI = s0) + P (ŝMLSD 6= s0, ŝCSI 6= s0) (C.1b)

≤P ({ŝMLSD 6= s0} ∩ {s0 = sj for some 1 ≤ j ≤ 2(N − 1)}) + P (ŝCSI 6= s0) (C.1c)

≤P




⋃

1≤i≤2(N−1),
i6=j

{|zHDs0| ≤ |zHDsi|}


 + 1−

[
1−Q

(√
2Es

N0

)]N−1

, (C.1d)
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where si, ∀i 6= 0 are the candidate sequences as defined in the exact GLRT algorithm.

To further evaluate the first term of (C.1), we define

X , zHDs0, (C.2)

Yi , zHDsi ∀1 ≤ i ≤ 2(N − 1). (C.3)

Since X and Y ′
i s are jointly Gaussian, we have the conditional pdf of Yi given X as

fYi|X(y|X) = CN
(

y,
Et − 2wiEs

Et

X,
4wiEs(Et − wiEs)N0

Et

)
, (C.4)

where CN (·,m, σ2) is the pdf of a circularly symmetric complex Gaussian random

variable with mean m and variance σ2, and wi is the number of places where s0 and

si differ. Therefore, we have

P
(∣∣zHDs0

∣∣ ≤
∣∣zHDsi

∣∣)

=

∫

C
P (|Yi| ≥ |x||X = x)fX(x)dx (C.5a)

=

∫

C

∫ ∞

|x|
R

(
r,

∣∣∣∣
Et − 2wiEs

Et

∣∣∣∣ |x|,
2wiEs(Et − wiEs)N0

Et

)
fX(x)drdx (C.5b)

=

∫ ∞

0

R

(
r, Et,

EtN0

2

)
Q1

(
r|Et − 2wiEs|√

2wiEtEs(Et − wiEs)N0

,
r
√

Et√
2wiEs(Et − wiEs)N0

)
dr,

(C.5c)

where C is the set of all complex numbers and fX is the pdf of X. Hence, by taking

the union bound in (C.1) and use the fact that candidate sequences corresponding

to neighboring partitions of [0, 2π) differ in only one symbol, which follows from the

structure of the exact polynomial-complexity algorithm, we obtain (5.23).
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C.2 Constant Phase Model: Pilot-Only (PO) Al-

gorithm

Since

arg max
s̃∈A

p(zi|s̃, z1)

= arg max
s̃∈A

∫ 2π

0

p(zi|s̃, θ, z1)f(θ|z1)dθ (C.6a)

= arg max
s̃∈A

∫ 2π

0

e
−|zi−s̃

√
Esejθ |2

N0
f(z1|θ)f(θ)

f(z1)
dθ (C.6b)

= arg max
s̃∈A

∫ 2π

0

e
2<{zis̃

√
Ese−jθ}

N0 e
2|z1|

√
Ep cos(∠z1−θ)

N0 dθ ∀i = 2, 3, . . . , N, (C.6c)

where f denotes the pdf’s dictated by its parameters, the bit error probability of the

algorithm can be evaluated as follows

Pb(PO)

=P

(∫ 2π

0

e
2<{z

√
Ese−jθ}
N0 e

2|z1|
√

Ep cos(∠z1−θ)

N0 dθ <

∫ 2π

0

e
−2<{z

√
Ese−jθ}

N0 e
2|z1|

√
Ep cos(∠z1−θ)

N0 dθ

)

(C.7a)

=P

(∫ 2π

0

[
e

2r
√

Es cos(θ−∠z)
N0 − e

−2r
√

Es cos(θ−∠z)
N0

]
e

2|z1|
√

Ep cos(∠z1−θ)

N0 dθ < 0

)
(C.7b)

=P

(∫ 2π

0

sinh

(
2r
√

Es cos(t− θ′)
N0

)
e

2|z1|
√

Ep cos θ′
N0 dθ′ < 0

)
, (C.7c)

where z is a circularly symmetric complex Gaussian random variable with mean
√

Es and variance N0, r , |z|, and t , ∠z1 − ∠z. Since sinh(2r
√

Es cos θ
N0

) and

e
2|z1|

√
Ep cos θ

N0 are both symmetric bell shaped functions of θ in one period [−π, π],

their circular convolution would still be a bell shaped function. Observing further

that
∫ 2π

0
sinh(2r

√
Es cos(t−θ′)

N0
)e

2|z1|
√

Ep cos θ′
N0 dθ′ attains maximum at t = 0, minimum at
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t = π, and 0 at t = ±π
2
, we have

Pb(PO) =1− P
(
t ∈ [−π

2
,
π

2
]
)

(C.8a)

=1− Eθ

[∫ 2π

0

p
(
∠z ∈ [−π

2
+ ∠z1,

π

2
+ ∠z1]|∠z1, θ

)
f(∠z1|θ)d∠z1

]

(C.8b)

=1− Eθ

[∫ 2π

0

∫ π
2
+x

−π
2
+x

T

(
y − θ,

Es

N0

)
dyT

(
x− θ,

Ep

N0

)
dx

]
(C.8c)

=1− Eθ

[∫ 2π

0

∫ π
2

−π
2

T

(
y′ + x′,

Es

N0

)
T

(
x′,

Ep

N0

)
dy′dx′

]
(C.8d)

=1−
∫ 2π

0

∫ π
2

−π
2

T

(
y′ + x′,

Es

N0

)
T

(
x′,

Ep

N0

)
dy′dx′. (C.8e)

It then follows that

PPO = 1− [1− Pb(PO)]N−1 . (C.9)

C.3 Constant Phase Model: Uniform Sampling

(US) Algorithm

The lower bound follows easily by the optimality of the MLSD metric. The upper

bound of PUS is derived as follows

PUS =P (ŝUS 6= s0) (C.10a)

=P (ŝUS 6= s0, ŝMLSD = s0) + P (ŝUS 6= s0, ŝMLSD 6= s0) (C.10b)

≤P (ŝUS 6= ŝMLSD = s0) + PMLSD, (C.10c)
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where s0 is the transmitted sequence. The first term of this upper bound can be

further bounded as

P (ŝUS 6= ŝMLSD = s0)

≤P
(
No sample point is in the same partition with θ̂(s0)

)
(C.11a)

=P

(
L−1⋃
i=0

⋃

k,l:k 6=l

{φk, φl ∈ (ai, ai+1)} ∩ {θ̂(s0) ∈ (φk, φl)}
)

(C.11b)

≤
L∑

i=1

∑

k,l:k 6=l

Eθ

[
P

(
{φk, φl ∈ [ai, ai+1]} ∩ {θ̂(s0) ∈ (φk, φl)}|θ

)]
, (C.11c)

where the notation φl ∈ [a, b] is used to denote the event that one of the threshold

pairs obtained from zl as in (5.8) is inside [a, b]. Define

x1 ,Epe
jθ +

√
Epn1, (C.12)

xi ,Ese
jθ + s0,ini ∀i = 2, 3, . . . , N, (C.13)

X ,
N∑

i=1

xi. (C.14)

We have

φi =∠zi ± π

2
= s0,i∠zi ± π

2
= ∠xi ± π

2
∀i = 2, 3, . . . , N, (C.15)

θ̂(s0) =− ∠(zHs0) = ∠
N∑

i=1

(
s2
0,ie

jθ + s0,ini

)
= ∠X. (C.16)

Hence

p({φk, φl ∈ [ai, ai+1]} ∩ {θ̂(s0) is between φk, φl}|θ)

=2

∫

X:∠X∈[ai,ai+1]

∫

xk:∠xk±π
2
∈[ai,∠X]

∫

xl:∠xl±π
2
∈[∠X,ai+1]

f(xk, xl, X|θ)dxldxkdX, (C.17)
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which is under the assumption that L ≥ 2 so that the ith pair of thresholds can

not lie in the same sampling interval for all i. Since xi’s are iid complex Gaussian

random variables and X is the sum of them, we have

f(X|θ) =|X|f(|X|ej∠X |θ) =
|X|

πEtN0

e
− ||X|ej∠X−Etejθ |2

EtN0 , (C.18)

f(xl|X, θ) =CN (xl,
Es

Et

X,EsN0(1− Es

Et

), (C.19)

f(xk|xl, X, θ) =CN (xk,
Es

Ep + (N − 2)Es

(X − xl), EsN0(1− Es

Ep + (N − 2)Es

).

(C.20)

Letting

EN−i ,
[ Es

Ep+(N−i)Es
]2

Es(1− Es

Ep+(N−i)Es
)

for i integer, (C.21)

the expectation in the above equation can be exactly evaluated as

2

∫ ∞

0

∫ ai+1

ai

[∫

xl:∠xl±π
2
∈[∠X,ai+1]

∫

θk±π
2
∈[ai,∠X]

T (θk − ∠(X − xl),
EN−2

N0

|X|2)

|xl|
πEsN0(1− Es

Et
)
e
−
||xl|ej∠xl−Es

Et
X|2

EsN0(1−Es
Et

) dθkdxl


 |X|

πEtN0

e
− ||X|ej∠X−Etejθ |2

EtN0 d∠Xd|X|. (C.22)

Now, observe that the integrand of (C.22) depends only on θ, which is uniformly

distributed in [0, 2π). Since all sampling intervals have the same lengths, (C.22)

should not depend on the choice the sampling interval i. Also, note that (C.22) does

not depend on k nor l. Hence, after combining all the terms, we obtain

P (ŝUS 6= ŝMLSD = s0) ≤ L(N−1)(N−2)

∫ ∞

0

∫ 2π
L

0

1

2π

[∫ ∠X

−∠X

T (θ1 − π

2
,
EN−2

N0

|X|2)dθ1

]

[∫ 2π
L
−∠X

− 2π
L

+∠X

T (θ2 − π

2
,
EN−1

N0

|X|2)dθ2

]
R(|X|, Et,

EtN0

2
)d∠Xd|X|,
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which reduces to (5.35a).

C.4 Linear phase Model: 2-Dimensional Uniform

Sampling (US2D) Algorithm

The lower bound is obvious. The upper bound can be derived as follows

PUS2D

=P (ŝUS2D 6= s0) (C.23a)

=P (ŝUS2D 6= s0, ŝCSI = s0, ŝGLRT = s0) + P (ŝUS2D 6= s0, ŝCSI 6= s0, ŝGLRT = s0)

+ P (ŝUS2D 6= s0, ŝGLRT 6= s0) (C.23b)

≤P (ŝUS2D 6= ŝGLRT = ŝCSI) + PCSI + PGLRT , (C.23c)

where s0 is the transmitted sequence. The first term of this upper bound can be

further calculated as follows

P (ŝUS2D 6= ŝGLRT = ŝCSI)

≤P (no sample pair is in the same partition with(fd, θ)) (C.24a)

=P (∃ partitioning lines between (fd, θ) and the nearest four sample pairs).

(C.24b)
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To evaluate this expression, we define

A ,{No partitioning line lies between

(
fd − 1

Qf

, θ

)
and (fd, θ)}, (C.25a)

B ,{No partitioning line lies between (fd, θ) and

(
fd, θ +

2π

Qθ

)
}, (C.25b)

C ,{No partitioning line lies between (fd, θ)and

(
fd +

1

Qf

, θ

)
}, (C.25c)

D ,{No partitioning line lies between

(
fd, θ − 2π

Qθ

)
and (fd, θ)}. (C.25d)

Also, recall that all partitioning lines have negative slopes as in (5.21). We have

P (∃ partitioning lines between (fd, θ) and the nearest four partitioning points)

≤P ((Ac ∪Bc) ∩ (Bc ∪ Cc) ∩ (Cc ∪Dc) ∩ (Dc ∪ Ac)) (C.26a)

=P ((Ac ∩ Cc) ∪ (Bc ∩Dc)) (C.26b)

≤P (Ac ∩ Cc) + P (Bc ∩Dc). (C.26c)

We define further the event

Ek(f1, θ1, f2, θ2) , {∃ partitioning lines corresponding to

the kth symbol that lie between (f1, θ1) and (f2, θ2)} (C.27)
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and subsequently

ql(k) , P

(
Ek

(
fd − 1

Qf

, θ, fd, θ

)
| fd, θ

)
, (C.28a)

qu(k) , P

(
Ek

(
fd, θ, fd, θ +

2π

Qθ

)
| fd, θ

)
, (C.28b)

qr(k) , P

(
Ek

(
fd, θ, fd +

1

Qf

, θ

)
| fd, θ

)
, (C.28c)

qd(k) , P

(
Ek

(
fd, θ − 2π

Qθ

, fd, θ

)
| fd, θ

)
. (C.28d)

Since conditioning on fd and θ the N sets of partitioning lines are independent, we

have

P (Ac ∩ Cc) + P (Bc ∩Dc)

=[1− P (A)− P (C) + P (A ∩ C)] + [1− P (B)− P (D) + P (B ∩D)] (C.29a)

=Efd,θ

[{
1−

N∏

k=1

(1− ql(k))−
N∏

k=1

(1− qr(k)) +
N∏

k=1

(1− ql(k)− qr(k))

}
+

+

{
1−

N∏

k=1

(1− qu(k))−
N∏

k=1

(1− qd(k)) +
N∏

k=1

(1− qu(k)− qd(k))

}]
, (C.29b)

where we have used the fact that Qθ ≥ 4 and Qf ≥ 4N in the last equality. Now,

since Qf ≥ 4N , ql(k) and qr(k) can be evaluated as follows

ql(k) =P

(
1

2πk

(
∠zk − θ ± π

2

)
∈

[
fd − 1

Qf

, fd

]
| fd, θ

)
(C.30a)

=

∫ 2πfdk

2πfdk− 2πk
Qf

T

(
x− 2πfdk − π

2
,
Es

N0

)
+ T

(
x− 2πfdk +

π

2
,
Es

N0

)
dx (C.30b)

=

∫ 2πk
Qf

0

T

(
x− π

2
,
Es

N0

)
+ T

(
x +

π

2
,
Es

N0

)
dx (C.30c)

=qr(k) = O

(
k

Qf

e
−Es

N0

)
. (C.30d)
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Similarly, since Qθ ≥ 4, we can evaluate qu(k) and qd(k) as follows

qu(k) =P

((
∠zk − 2πkfd ± π

2

)
∈

[
θ, θ +

2π

Qθ

]
| fd, θ

)
(C.31a)

=

∫ θ+ 2π
Qθ

θ

T

(
x− θ − π

2
,
Es

N0

)
+ T

(
x− θ +

π

2
,
Es

N0

)
dx (C.31b)

=

∫ 2π
Qθ

0

T

(
x− π

2
,
Es

N0

)
+ T

(
x +

π

2
,
Es

N0

)
dx (C.31c)

=qd(k) = O

(
1

Qθ

e
−Es

N0

)
. (C.31d)

Note that ql(k), qr(k), qu(k) and qd(k) actually do not depend on fd and θ, and qu(k)

and qd(k) do not depend on k. Consequently, we have

P (ŝUS2D 6= ŝGLRT = ŝCSI)

≤
{

1− 2
N∏

k=1

(1− ql(k)) +
N∏

k=1

(1− 2ql(k))

}
+

{
1− 2(1− qu)N + (1− 2qu)N

}
,

(C.32)

which reduces to the expression in (5.38a).
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APPENDIX D

Proofs of Lemmas in Chapter 6

D.1 Proof of Lemma 6.1

Define

î(c) , arg max
j∈S

L
(
V̂N(j|c), c

)
(D.1)

to be the best survivor given c. We have

V̂N
(
î(c)|c

)
= arg max

e∈ẼN
L(e, c). (D.2)

Define further

ĉ(e) , arg max
c∈C

LN(e, c). (D.3)

Since ĉ(e) ∈ C, ∀e ∈ ẼN , (6.5) becomes

êMAPSqD = arg max
e∈ẼN

LN (e, ĉ(e)) (D.4a)

=V̂N
(
î(c)|c

)
for some c ∈ C, (D.4b)
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which proves lemma 6.1.

D.2 Proof of Lemma 6.2

By the VA, we know

V̂k+1(c) ∈ ext
(
V̂k(c)

)
and V̂k+1(i, k + 1|c) = e

⇒ns(e) = i and V̂k+1(i|c) = [V̂k(ps(e)|c), e]T

⇒Lk+1
(
[V̂k(ps(e)|c), e]T , c

)
= max

ẽ∈E:ns(ẽ)=i
Lk+1

(
[V̂k(ps(ẽ)|c), ẽ]T , c

)
, ∀i ∈ S (D.5)

where V̂k+1(i, j|c) denotes the jth element of the ith survivor in V̂k+1(c). Therefore

T k+1(Vk+1)

,
{

c ∈ C : V̂k+1(c) = Vk+1
}

=
{

c ∈ C : Vk+1 ∈ ext
(
Wk

)
,Wk = V̂k(c), Vk+1(i, k + 1) = e

⇒ Lk+1
(
[Wk(ps(e)), e]T , c

)
= max

ẽ∈E:ns(ẽ)=i
Lk+1

(
[Wk(ps(ẽ)), ẽ]T , c

)
, ∀i ∈ S

}

=
⋃

Wk:Vk+1∈ext(Wk)

T k(Wk) ∩ {
c ∈ C : Vk+1(i, k + 1) = e

⇒ Lk+1
(
[Wk(ps(e)), e]T , c

)
= max

ẽ∈E:ns(ẽ)=i
Lk+1

(
[Wk(ps(ẽ)), ẽ]T , c

)
, ∀i ∈ S

}

=
⋃

Wk:Vk+1∈ext(Wk)

{
T k(Wk)

⋂
i∈S

P k(Wk,Vk+1(i, k + 1))

}

which proves lemma 6.2.
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D.3 Proof of Lemma 6.3

Assume I = 2. Let i → j denote a transition from state i to state j. As defined

in section 6.4, a group at time k is uniquely specified by the following descriptions.

1. The merging time m < k before which all the survivors merge together into

one tail.

2. The merging state sm ∈ S = {1, 2} to which the only tail connects at the

merging time m.

3. The one-to-two transition (trivially sm → 1, sm → 2) of the survivor matrices

at time m + 1.

4. The two-to-two transitions (1 → 2, 2 → 1 or 1 → 1, 2 → 2) of survivor matrices

for all time instants l, m + 2 ≤ l ≤ k.

5. The edges corresponding to all the transitions in 3 and 4.

In the following, we will first create a partition Jk of the 2-dimensional space C,

such that within the same subset of the partition, descriptions 4 and 5 remain fixed

for all c. In other words, within each subset of partition Jk the number of different

groups is at most equal to the number of all possible combinations of descriptions 1

and 2 (since description 3 is trivial), which is 2k − 1. This shows that the number

of groups αk at time k is at most (2k− 1)|Jk|. Then, We will complete the proof by

showing that |Jk| is polynomial in k.

Actually, Jk is created by two sets of partitioning lines, which result in two

partitions Ak and Bk, respectively. We will discuss them separately in the following

two subsections.
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D.3.1 Construction of Ak

Let E i→j ⊂ E be the set of edges going from state i to state j and

êi→j
l (c) , arg max

e∈Ei→j
Ll(e, c) (D.6)

be the most likely edge going from state i to state j for a given c at time l. For any

given i, j and l, consider partition Ai→j
l of the 2-dimensional space C created by the

following partitioning lines

Ll(e, c) = Ll(f, c), ∀e 6= f, e, f ∈ E i→j (D.7)

Since each line in (D.7) defines a boundary of two possible results of a pairwise

comparison in set E i→j, within each bounded area of the partition Ai→j
l , êi→j

l (c)

defined by all pairwise comparisons in set E i→j, remains fixed for all c. Now consider

the finer partition Ak created by all the lines in (D.7) ∀i, j ∈ S, 1 ≤ l ≤ k. It follows

directly from the above discussion that êi→j
l (c) remains fixed for all c in the same

subset of partition Ak, ∀i, j ∈ S, 1 ≤ l ≤ k. In other words, description 5 is the

same for all survivor matrices at time k in the same subset of partition Ak.

D.3.2 Construction of Bk

Let another set of partitioning lines

Ll(e
1→2, c) + Ll(e

2→1, c) = Ll(e
1→1, c) + Ll(e

2→2, c) ∀ei→j ∈ E i→j, ∀i, j ∈ S, l ≤ k

(D.8)

define partition Bl. Then for any pairs c and c′ in the same subset of Bl, the

corresponding V̂k(c) and V̂k(c′) can not have different two-to-two transitions (1 → 2,
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2 → 1 or 1 → 1, 2 → 2) at time l, i.e.,

V̂k(1, l|c) = e1→2 ∈ E1→2, V̂k(2, l|c) = e2→1 ∈ E2→1 and (D.9)

V̂k(1, l|c′) = e1→1 ∈ E1→1, V̂k(2, l|c′) = e2→2 ∈ E2→2 (D.10)

can not both be true, because

V̂k(1, l|c) = e1→2 ∈ E1→2, V̂k(2, l|c) = e2→1 ∈ E2→1

⇒
l−1∑
i=1

Li

(
V̂k(1, i|c), c

)
+ Ll(e

1→2, c) ≥
l−1∑
i=1

Li

(
V̂k(2, i|c), c

)
+ Ll(e

2→2, c), and

l−1∑
i=1

Li

(
V̂k(2, i|c), c

)
+ Ll(e

2→1, c) ≥
l−1∑
i=1

Li

(
V̂k(1, i|c), c

)
+ Ll(e

1→1, c)

⇒Ll(e
1→2, c) + Ll(e

2→1, c) ≥ Ll(e
2→2, c) + Ll(e

1→1, c) (D.11)

and

V̂k(1, l|c′) = e1→1 ∈ E1→1, V̂k(2, l|c′) = e2→2 ∈ E2→2

⇒
l−1∑
i=1

Li

(
V̂k(1, i|c′), c′

)
+ Ll(e

1→1, c′) ≥
l−1∑
i=1

Li

(
V̂k(2, i|c′), c′

)
+ Ll(e

2→1, c′), and

l−1∑
i=1

Li

(
V̂k(2, i|c′), c′

)
+ Ll(e

2→2, c′) ≥
l−1∑
i=1

Li

(
V̂k(1, i|c′), c′

)
+ Ll(e

1→2, c′)

⇒Ll(e
1→1, c′) + Ll(e

2→2, c′) ≥ Ll(e
2→1, c′) + Ll(e

1→2, c′) (D.12)

contradict with the fact that c and c′ are in the same subset of Bl. Therefore for all

c in the same subset of Bl the two-to-two transitions at time l ≤ k for all survivor

matrices V̂k(c) are the same. If we construct the finer partition Bk by intersecting all

the lines in (D.8) ∀1 ≤ l ≤ k, then for all c in the same subset of Bk, the two-to-two

transitions of survivor matrices V̂k(c) at all time instants l, 1 ≤ l ≤ k are fixed, i.e.,
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description 4 is fixed for all survivor matrices at time k for all c in the same subset

of Bk.

Now, we construct Jk by intersecting all subsets of Ak and Bk. It follows from

the above discussion that descriptions 4 and 5 remain fixed for all survivors matrics

for all c in the same subset of partition Jk.

To enumerate the size of |Jk|, first observe that Ai→j
l is a partition created by

at most K(K−1)
2

lines ∀i, j ∈ {1, 2} ∀1 ≤ l ≤ k. Therefore Ak is a partition created

by at most 22kK(K−1)
2

lines. Moreover, since Bl is created by at most (K
2
)4 lines

∀1 ≤ l ≤ k, Bk is created by at most (K
2
)4k lines. Altogether, we conclude that Jk

is a partition created by at most 22kK(K−1)
2

+ (K
2
)4k lines, whose size is polynomial

in k [79]. This completes the proof of Lemma 6.3.
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APPENDIX E

Proof of Lemma 7.1 in Chapter 7

Define sequentially

(i) b
(l)
ij = number of combinations of different i nonzero codewords under one top-

most check node in Cr such that the Hamming weight of the OR of these i

codewords is j,

(ii) B
(l)
i (x) =

∑∞
j=1 b

(l)
ij xj, and

(iii) Zl(x) =
∑∞

i=1(−1)i−1Z
(l)
i (x).

We first prove the following lemma.

Lemma E.1

Zl(x) =

(
dc − 1

1

)
Nl−1(x)−

(
dc − 1

2

)
N2

l−1(x) + · · ·+ (−1)dc−2

(
dc − 1

dc − 1

)
Ndc−1

l−1 (x)

(E.1a)

=1− (1−Nl−1(x))dc−1. (E.1b)

Proof: Consider “OR”ing i different nonzero codewords under one particular

check node at the topmost level of the tree of level-(l + 1). Recall that in each
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such codeword, there is exactly one level-l subtree having root bit equal to 1, while

the other dc − 2 subtrees are identically zero. Let j denote the number of level-l

subtrees each of whose root bit is equal to 1 in at least one of the i codewords, and

let dc − 1− j denote the number of level-l subtrees whose root bits are equal to 0 in

all the i codewords. We will show that each term of Zl(x) in (E.1a) corresponds to

each j taking values from 1 to dc − 1.

Indeed for j = 1, the only contribution to the OR of the i codewords is coming

from the single level-l subtree with root 1, and thus the contribution is A
(l−1)
i (x). In

other words, the part of B
(l)
i (x) corresponding to j = 1 is exactly

(
dc−1

1

)
A

(l−1)
i (x),

and thus, the corresponding contribution to Zl(x) is exactly

(
dc − 1

1

) ∞∑
i=1

(−1)i−1A
(l−1)
i (x) =

(
dc − 1

1

)
Nl−1(x), (E.2)

where the factor
(

dc−1
1

)
enumerates the ways to pick a subtree among dc − 1 ones.

Now consider the case of j = 2. There are
(

dc−1
2

)
ways to pick these two subtrees

that have non-zero contributions to the OR of the i codewords. Let the first subtree

contributes i1 non-zero codewords and the second contributes i2 non-zero codewords.

Then, the corresponding individual contributions for each subtree are A
(l−1)
i1

(x) and

A
(l−1)
i2

(x), respectively. The total contribution to the OR of the i codewords is thus
∑

i1+i2=i A
(l−1)
i1

(x)A
(l−1)
i2

(x). In other words, the part of B
(l)
i (x) corresponding to

j = 2 is exactly
(

dc−1
2

) ∑
i1+i2=i A

(l−1)
i1

(x)A
(l−1)
i2

(x). As a result, the total contribution
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to Zl(x) corresponding to j = 2 is

(
dc − 1

2

) ∞∑
i=2

(−1)i−1
∑

i1+i2=i

A
(l−1)
i1

(x)A
(l−1)
i2

(x)

=−
(

dc − 1

2

) ∞∑
i1=1

∞∑
i2=1

(−1)i1+i2−2A
(l−1)
i1

(x)A
(l−1)
i2

(x)

=−
(

dc − 1

2

) [ ∞∑
i1=1

(−1)i1−1A
(l−1)
i1

(x)

]2

=−
(

dc − 1

2

)
N2

l−1(x). (E.3)

Hence, the lemma is true for dc = 2 and 3. Now, the general statement of the lemma

follows from induction on dc.

Next, we are going to prove that

Nl(x) = x[Zl(x)]dv−1. (E.4)

To prove this equation, it is sufficient to prove the following lemma, where we call

Nl(x) the code distribution of Cr.

Lemma E.2 Consider a code C consisting of two component codes C1 and C2, such

that

C = {[c1, c2] : c1 ∈ C1, c2 ∈ C2}. (E.5)

Let Q(x) =
∑

i(−1)i−1qi(x) and R(x) =
∑

i(−1)i−1ri(x) be the code distributions of

C1 and C2, respectively. Then, the code distribution of C is Q(x)R(x).

Proof: For any set of i distinct codewords

S = {[c11, c21], [c12, c22], . . . , [c1i, c2i]} ⊂ C, (E.6)
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define the projection functions

P1(S) ,{c1 ∈ C1 : ∃c2 ∈ C2, such that [c1, c2] ∈ S} (E.7a)

P2(S) ,{c2 ∈ C2 : ∃c1 ∈ C1, such that [c1, c2] ∈ S}. (E.7b)

Now, we choose a set of j codewords B1j from C1 and a set of k codewords B2k from

C2. Let y
(j,k)
i be the number of combinations of i different codewords in C, such that

the set of these i codewords S satisfies P1(S) = B1j and P2(S) = B2k. If i is even

(odd, respectively), then this combination will contribute a negative (positive) term

in the code distribution of C. Hence, we can define Y (j,k) ,
∑∞

i=1(−1)i−1y
(j,k)
i to be

the summed up term for all sets of codewords whose projection on C1 equals B1j,

and projection on C2 equals B2k. In the following, we will use induction to show that

Y (j,k) = (−1)j+k.

When j = k = 1, it is clear that Y (1,1) = 1. Suppose Y (j′,k′) = (−1)j′+k′ . When

j = j′ + 1 and k = k′, let c1 be some codeword in B1(j′+1). For any set of codewords

S, if P1(S) = B1(j′+1) and P2(S) = B2k′ , then S must include at least one codeword in

the set A , {[c1, c2] : c2 ∈ B2k′}. Counting the number of combinations of i = g + h

codewords, whose g codewords form a set S1 satisfying P1(S1) = B1(j′+1) \{c1} (note

that B1(j′+1) \ {c1} is some B1j′) and P2(S2) = B2k′ , and the other h codewords form

a set S2 satisfying S2 ⊂ A, we have

y
(j′+1,k′)
i =

k′∑

h=1

(
k′

h

)
y

(j′,k′)
i−h , ∀i (E.8)
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since there are
(

k′
h

)
ways of choosing h codewords in B2k′ to be paired with c1 in A.

This implies that

Y (j′+1,k′) =
∞∑
i=1

(−1)i−1y
(j′+1,k′)
i (E.9a)

=
∞∑
i=1

(−1)i−1

k′∑

h=1

(
k′

h

)
y

(j′,k′)
i−h (E.9b)

=
∞∑

g=1

k′∑

h=1

(−1)g+h−1

(
k′

h

)
y(j′,k′)

g (E.9c)

=
∞∑

g=1

(−1)g−1y(j′,k′)
g

k′∑

h=1

(−1)h

(
k′

h

)
(E.9d)

=Y (j′,k′)[(1− x)k′ − 1]|x=1 (E.9e)

=Y (j′,k′)(−1) (E.9f)

=(−1)j′+1+k′ , (E.9g)

where we have used the fact that y
(j′,k′)
g = 0 for all non-positive g. A similar argument

can be used to show that Y (j′,k′+1) = (−1)j′+k′+1. So, by induction we have that

Y (j,k) = (−1)j+k.

Since the number of ways of forming distinct pairs {B1j,B2k} is captured by

the coefficients of qj(x)rk(x), and the associated weight of the OR of every set of

codewords S such that P1(S) = B1j and P2(S) = B2k is captured by the powers of x

of the corresponding term in qj(x)rk(x), it follows that the code distribution of C is

∑

j,k

Y (j,k)qj(x)rk(x) =
∑

j,k

(−1)j+k−2qj(x)rk(x) = Q(x)R(x). (E.10)
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Now, since there are dv − 1 component codes emanating from the root bit, and the

root bit is always 1 for nonzero codewords, we have

Nl(x) = x[Zl(x)]dv−1 = x[1− (1−Nl−1(x))dc−1]dv−1, (E.11)

which completes the proof of the whole lemma.
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ABSTRACT

Design and Analysis of Capacity-Achieving Codes and Optimal

Receivers with Low Complexity

by

Chun-Hao Hsu

Chair: Achilleas Anastasopoulos

High performance channel coding schemes for digital communication systems with

low computational complexity are considered under two scenarios. Firstly, when the

channel is a memoryless binary-input output-symmetric (MBIOS) channel, we design

and analyze channel codes defined on factor graphs that can operate reliably and

arbitrarily close to the channel capacity.

We show that punctured low-density parity-check (LDPC) codes can achieve ca-

pacity on any MBIOS channel under maximum-likelihood (ML) decoding. Moreover,

we prove that puncturing preserves the multiplicative gap to capacity of the original

LDPC codes with a small enough rate, a fact that suggests high potential of using

punctured LDPC codes in rate-compatible coding.

The open problem of whether codes with state nodes can achieve capacity on

general MBIOS channels with bounded graphical complexity is investigated next.

Nonsystematic irregular repeat-accumulate (NIRA) codes are viewed as potential

1



candidates and their ML decoding performance is analyzed. Unable to assert the

capacity-achieving capability of NIRA codes, we propose a new family of codes,

namely the low-density parity-check and generator matrix codes, and prove that they

can achieve capacity on any MBIOS channel using ML decoding and on any binary

erasure channel (BEC) using belief propagation decoding with bounded graphical

complexity.

Motivated by the need to analytically characterize the iterative decoding perfor-

mance of codes on general MBIOS channels, we give tight performance lower and

upper bounds for LDPC codes with iterative decoding. Furthermore, we use these

bounds to show that multi-edge type LDPC codes, including nearly all known codes

defined on graphs, have the best iterative decoding performance on the BEC among

all MBIOS channels with the same uncoded bit error probability, and similarly, have

the worst iterative decoding performance on the BEC among all MBIOS channels

with the same Bhattacharyya parameter.

In the second scenario, more complicated channels with memory are consid-

ered. We focus on the channel with additive white Gaussian noise (AWGN) and

frequence/phase-jitter, and the flat-fading channel under the block independent as-

sumption to characterize the channel dynamics. We propose polynomial complexity

algorithms for optimal detection/decoding without channel state information at the

receiver. This result challenges the traditionally believed exponential complexity

demand for both uncoded and two-state trellis-coded transmissions.
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