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Abstract—In dynamic games with asymmetric information
structure, the widely used concept of equilibrium is perfect
Bayesian equilibrium (PBE). This is expressed as a strategy
and belief pair that simultaneously satisfy sequential rationality
and belief consistency. Unlike symmetric information dynamic
games, where subgame perfect equilibrium (SPE) is the natural
equilibrium concept, to date there does not exist a universal
algorithm that decouples the interdependence of strategies and
beliefs over time in calculating PBE. In this paper we find
a subset of PBE for an infinite horizon discounted reward
asymmetric information dynamic game. We refer to it as
Structured PBE or SPBE; in SPBE, any agents’ strategy
depends on the public history only through a common public
belief and on private history only through the respective agents’
latest private information (his private type). The public belief
acts as a summary of all the relevant past information and it’s
dimension does not increase with time. The motivation for this
comes the common information approach proposed in Nayyar
et al. (2013) for solving decentralized team (non-strategic)
resource allocation problems with asymmetric information. We
calculate SPBE by solving a single-shot fixed-point equation and
a corresponding forward recursive algorithm. We demonstrate
our methodology by means of a public goods example.

I. INTRODUCTION

Dynamic games with symmetric information among agents
has been studied well in game theory literature [1], [2], [3],
[4]. The appropriate equilibrium concept is subgame perfect
equilibrium (SPE) which is a refinement of Nash equilibrium.
A strategy profile is SPE if its restriction to any subgame of
the original game is also an SPE of the subgame. However
there are models of interest where strategic agents interact
repeatedly whilst observing private signals. For instance,
relay scheduling with private queue length information at
different relays [5]. Another example is that of Bayesian
learning games [6], [7], [8], [9] such as when customers
post reviews on websites such as Amazon; clearly agents
posses their own experience of the object they bought and
this constitutes private information. These examples lead to
a model with asymmetric information, where the notion of
SPE is ineffective.

Appropriate equilibrium concepts in such a case consist
of strategy profiles and beliefs. These include weak perfect
Bayesian equilibrium, perfect Bayesian equilibrium (PBE)
and Sequential equilibrium. PBE is the most commonly used
notion. The requirement of PBE is sequential rationality
of strategy as well as belief consistency. Due to the fact
that future beliefs depend on past strategy and strategies

are sequentially rational based on specific beliefs, finding
a pair of strategy and belief that satisfy PBE requirement
is a difficult problem and usually reduces to a large fixed-
point equation over the entire time horizon. To date, there
is no universal algorithm that provides simplification by
decomposing the aforementioned fixed-point equation for
calculating PBEs.

Our motivation stems from the work of Nayyar et al. [10].
Authors in [10] consider a decentralized dynamic team
problem (non-strategic agents) with asymmetric information.
Each agents observes a private type which evolves with time
as a controlled Markov process. They introduce a common
information based approach, whereby each agent calculates
a belief on every agents’ current private type. This belief
is defined in such a manner that despite having asymmetric
information, agents can agree on it. They proceed to show
optimality of policies that depend on private history only
through this belief and respective agents’ current private type.

The common information based approach has been studied
for finite horizon dynamic games with asymmetric informa-
tion in [11], [12], [13], [14], [9]. Of these, [11], [12] consider
models where the aforementioned belief from the common
information approach is updated independent of strategy. This
implies that the simultaneous requirements of sequential ra-
tionality and belief consistency can be decoupled, resulting in
a simplification in calculating PBEs. However these models
produce non-signaling PBEs. For the models studied in [13],
[14], [9] belief updates depend on strategies. Consequently
the resulting PBEs are signaling equilibria. The problem of
finding them though, becomes more complicated.

Other than the common information based approach, Li et
al. [15] consider a finite horizon zero-sum dynamic game,
where at each time only one agent out of the two knows the
state of the system. The value of the game is calculated by
formulating an appropriate linear program.

All works listed above for dynamic games consider a
finite horizon. In this paper, we deal with an infinite horizon
discounted reward dynamic game. Cole et al. [16] consider
an infinite horizon discounted reward dynamic game where
actions are only privately observable. They provide a fixed-
point equation for calculating a subset of sequential equi-
librium, which is referred to as Markov private equilibrium
(MPrE). In MPrE strategies depend on history only through
the latest private observation.



Contributions

In this work we follow the models of [13], [14], [9] where
beliefs are updated dependent on strategy and thus signaling
PBEs are considered.

This paper provides a one-shot fixed-point equation and a
forward recursive algorithm that together generate a subset of
perfect Bayesian equilibria for the infinite horizon discounted
reward dynamic game with asymmetric information. The
common information based approach of [10] is used and the
strategies are such that they depend on the public history only
through the common belief (which summarizes the relevant
information) and on private history only through respective
agents’ current private type. The PBE thus generated are
referred to as Structured PBE or SPBE and posses the
property that the mapping between belief and strategy is
stationary (w.r.t. time).

The provided methodology (consisting of solving a one-
shot fixed-point equation) provides a decomposition of the
interdependence between belief and strategy in PBEs and
enables a systematic evaluation of SPBEs.

The model allows for signaling amongst agents as beliefs
depend on strategies. This is because the source of asymmetry
of information in our model is that each agent has a privately
observed type that affects the utility function of all the
agents. These types evolve as a controlled Markov process
and depend on actions of all agents (the actions are assumed
to be common knowledge).

Our methodology for proving our results is as follows:
first we extend the finite horizon model of [13] to include
belief-based terminal reward. This does not change the proofs
significantly but helps us simplify the exposition and proofs
of the infinite horizon case. In the next step, the infinite
horizon results are obtained with the help of the finite horizon
ones through continuity arguments as horizon T →∞.

We demonstrate our methodology of finding SPBEs
through a concrete public goods game.

The remainder of this paper is organized as follows: Sec-
tion II introduces the model for the dynamic game with pri-
vate types and discounted reward. We consider two versions
of the problem, finite and infinite horizon. Section III defines
the backward recursive algorithm for calculating SPBEs in
the finite horizon model. The results in this section are an
adaptation of the finite horizon results from [13]. This is
done so that the finite horizon results can be appropriately
used in Section IV. Section IV contains the central result of
this paper, namely the fixed-point equation that defines the
set of SPBE strategy for the infinite horizon game. Finally,
Section V discusses a concrete example of a public goods
game with two agents. This example is an infinite horizon
version of the finite horizon public goods example from [1,
ch. 8, Example 8.3].

II. MODEL FOR DYNAMIC GAME

We consider a dynamical system with N strategic agents,
denoted by N . Associated with each agent i at any time
t ≥ 1, is a type xit ∈ X i. The set of types is denoted by X i
and is assumed to be finite. We assume that each agent i can

observe their own type xit but not that of others. Denote the
profile of types at time t by xt = (xit)i∈N .

Each agent i at any time t ≥ 1, after observing their private
type xit takes action ait ∈ Ai. The set of available actions to
agent i is denoted by Ai and is assumed to be finite. It is
assumed that the action profile is publicly observed and is
common knowledge.

The type of each agent evolves over time as a controlled
Markov process independent of other agents given the action
profile at = (ait)i∈N . We assume a time-homogeneous kernel
Qi for evolution of agent i’s type i.e., P(xt+1 | x1:t, a1:t) =
P(xt+1 | xt, at) =

∏N
i=1Q

i(xit+1 | xit, at). The notation we
use is a1:t = (ak)k=1,...,t. Initial belief, at time 1, is assumed
as P(x1) =

∏N
i=1Q

i
0(xi1).

Associated with each agent i is a reward function Ri

that depends on the type and action profiles i.e., reward
at time t for agent i is Ri(xt, at). Furthermore, rewards
are accumulated over time in a discounted manner with a
common discount factor δ ∈ (0, 1). We consider two versions
of the problem - finite horizon (T ) and infinite horizon. For
the finite horizon problem we introduce a terminal reward.
We first define beliefs πt since the terminal reward is defined
as a function of beliefs.

Define the public history hct at time t as the set of publicly
observed actions i.e., hct = a1:t−1 ∈ (×Ni=1Ai)t−1. Denote
the set of public histories by Hct . Define private history hit
of any agent i at time t as the set of privately observed
types xi1:t ∈ (X i)t of agent i and publicly observed action
profiles a1:t−1 i.e., hit = (xi1:t, a1:t−1). Denote the set of
private histories by Hit. Note that private history hit contains
public history hct . Also denote the overall history at time t
by ht = (x1:t, a1:t−1) and the set of all such histories by Ht.

Any strategy used by agent i can be represented as gi =
(git)t≥1 with git : Hit → ∆(Ai). The notation we use is: ∆(S)
is the set of all probability distributions over the elements of
the set S.

The belief πt ∈ ×Nj=1∆(X j), at any time t, depends on
the strategy profile g1:t−1 = (gj1:t−1)j∈N . Given a strategy
profile g1:t−1, we define the belief as follows: πt(xt) =(
πit(x

i
t)
)
i∈N , with πit(x

i
t) = Pg(xit | hct) if Pg(hct) > 0,

else

πit(x
i
t) =

∑
xi
t−1∈X i

Qi(xit | xit−1, at−1)πit−1(xit−1). (1)

Initial belief is πi1(xi1) = Qi0(xi1). The above definition
ensures that the belief random variable Πt, at any time t,
is measurable, even if the set of histories resulting in any
instance πt has zero measure under strategy g.

Finally, in the finite horizon game, for each agent i there
is a terminal reward Gi(πT+1, x

i
T+1) that depends on the

terminal type of agent i and the terminal belief. It is assumed
that Gi(·) is absolutely bounded.

III. FINITE HORIZON

In this section, we state and prove properties of the finite
horizon backwards recursive algorithm for calculating SPBE,
adopted from [13] with minor modifications to accommodate



for terminal rewards (specifically belief-based). The results
from this section are used in Section IV to prove the infinite
horizon equilibrium result.

To distinguish quantities defined in this section with infi-
nite horizon, we add a superscript T to all the quantities.

A. Finite Horizon problem and Backwards Recursion

Consider a finite horizon, T > 1, problem in the above
dynamic game model.

Define the value functions
(
V i,Tt : ×j∈N∆(X j) × X i →

R
)
i∈N ,t∈{1,...,T} and strategy

(
γ̃i,Tt

)
i∈N ,t∈{1,...,T} back-

wards inductively as follows.
1) ∀ i ∈ N , set V i,TT+1 ≡ Gi.
2) For any t ∈ {1, . . . , T} and πt, solve the following fixed-

point equation in (γ̃i,Tt )i∈N . ∀ i ∈ N , xi ∈ X i,

γ̃i,Tt (· | xit) ∈ argmax
γi
t(·|xi

t)∈∆(Ai)

Eγ
i
t(·|xi

T ),γ̃−i,T
t ,π−i

t
[
Ri(Xt, At)

+ δV i,Tt+1

([
F (πjt , γ̃

j,T
t , At)

]N
j=1

, Xi
t+1

)
| πt, xit

]
(2)

(see below for the various quantities involved in the above
expression).

3) Then define,

V i,Tt (πt, x
i
t) = Eγ̃

i,T
t (·|xi

t),γ̃
−i,T
t ,π−i

t
[
Ri(Xt, At)

+ δV i,Tt+1

([
F (πjt , γ̃

j,T
t , At)

]N
j=1

, Xi
t+1

)
| πt, xit

]
(3)

Denote by θit the mapping πt 7→ γ̃i,Tt i.e., γ̃i,Tt = θit[πt].
In (2), the expectation is with the following distribution

(X−it , Ait, A
−i
t , Xi

t+1) ∼ π−it (x−it )γi,Tt (ait | xit)
γ̃−i,Tt (a−it | x−it )Qi(xit+1 | xit, at). (4)

and

F (πj , γj , a)(x′j)

=


∑
xj∈X j πj(xj)γj(aj | xj)Qj(x′j | xj , a)∑

x̃j πj(x̃j)γj(aj | x̃i)
if Den. > 0∑

xj∈X j πj(xj)Qj(x′j | xj , a) if Den. = 0

(5)

Below we define strategy-belief pair (β?, µ?),

β? =
(
βi,?t

)
t∈{1,...,T},i∈N βi,?t : Hit → ∆(Ai) (6a)

µ? =
(
µi,?t
)
t∈{1,...,T},i∈N µi,?t : Hit → ∆(Ht) (6b)

based on the mapping θ produced by the above algorithm.
Define belief µ? inductively as follows: set µ?1(x1) =∏N
i=1Q

i
0(xi1). Then for t ∈ {1, . . . , T},

µi,?t+1

[
hct+1

]
= F

(
µi,?t [hct ], θ

i
t

[
µ?t [h

c
t ]
]
, at
)

(7a)

µ?t+1

[
hct+1

]
(xt+1) =

N∏
i=1

µi,?t+1

[
hct+1

]
(xit+1) (7b)

Denote the strategy arising out of γ̃i,Tt by βi,?t i.e.,

βi,?t (ait | hit) = θit
[
µ?t [h

c
t ]
]
(ait | xit) (8)

B. Finite Horizon Result

In this section, we presented three lemmas. The first two
are technical results needed in the proof of the third. The
result of the third lemma is used in Section IV.

Define the reward-to-go W i,βi,T
t for any agent i and

strategy βi as

W i,βi,T
t (hit) = Eβ

i,β−i,?,µ?
t [hc

t ]
[ T∑
n=t

δn−tRi(Xn, An)

+ δT+1−tGi(ΠT+1, X
i
T+1) | hit

]
. (9)

Here agent i’s strategy is βi whereas all other agents use
strategy β−i,? defined above. Since X i,Ai are assumed to
be finite and Gi absolutely bounded, the reward-to-go is finite
∀ i, t, βi, hit.

Lemma 1. For any t ∈ {1, . . . , T}, i ∈ N , hit and βi,

V i,Tt (µ?t [h
c
t ], x

i
t) ≥ Eβ

i,β−i,?,µ?
t [hc

t ]
[
Ri(Xt, At)

+ δV i,Tt+1

([
F (µj,?t [hct ], β

j,?
t , At)

]N
j=1

, Xi
t+1

)
| hit
]

(10)

Proof. We use proof by contradiction. Suppose ∃ i, t, ĥit, β̂i
such that (10) is violated. Construct strategy γ̂it as

γ̂it(a
i
t | xit) =

{
β̂it(a

i
t | ĥit) if xit = x̂it

1
|Ai| if xit 6= x̂it

(11)

Then

V i,Tt (µ?t [ĥ
c
t ], x̂

i
t) (12a)

≥ Eγ̂
i
t(·|x̂i

t),β
−i,?
t ,µ?

t [ĥc
t ]
[
Ri(Xt, At)δV

i,T
t+1 (12b)

+
([
F (µj,?t [ĥct ], β

j,?
t (· | ĥct , ·), At)

]N
j=1

, Xi
t+1

)
| µ?t [ĥct ], x̂it

]
= Eβ̂

i
t,β

−i,?
t ,µ?

t [ĥc
t ]
[
Ri(Xt, At) + δV i,Tt+1 (12c)([

F (µj,?t [ĥct ], β
j,?
t (· | ĥct , ·), At)

]N
j=1

, Xi
t+1

)
| ĥit
]

> V i,Tt (µ?t [ĥ
c
t ], x̂

i
t) (12d)

The first inequality above follows from the algorithm defi-
nition in (2) and (3), the second equality follows from the
definition above in (11) and finally the last inequality follows
from the assumption at the beginning of this proof.

Since the above is clearly a contradiction, the result
follows.

Lemma 2.

Eβ
i
t+1:T ,β

−i,?
t+1:T ,µ

?
t+1[hc

t ,at]
[ T∑
n=t+1

δn−(t+1)Ri(Xn, An)

+ δT+1−tGi(ΠT+1, X
i
T+1) | hit, at, xit+1

]
= Eβ

i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ]
[ T∑
n=t+1

δn−(t+1)Ri(Xn, An)

+ δT+1−tGi(ΠT+1, X
i
T+1) | hit, at, xit+1

]
(13)

Proof. This result relies on the structure of the update in (7),
specifically that µ−i,?t+1 [hct+1] is a deterministic function of
µ−i,?t [hct ], β

−i,?
t , at and does not depend on βi.



Consider the joint pmf-pdf of random variables involved
in the expectation

Pβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ]
(
x−it+1, at+1:T , xt+2:T , x

i
T+1,

πT+1 | hit, at, xit+1

)
(14)

This can be written as A
B with

A =
∑
x−i
t

Pβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ]
(
x−it , at, xt+1, at+1:T , xt+2:T ,

xiT+1, πT+1 | hit
)

(15a)

B =
∑
x̃−i
t

Pβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ]
(
x̃−it , at, x

i
t+1 | hit

)
(15b)

Using causal decomposition we can write

A =
∑
x−i
t

Pβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ](x−it | hit)βit(ait | hit)

β−i,?t (a−it | hct , x−it )Q(xt+1 | xt, at)

Pβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ](at+1:T , xt+2:T , x

i
T+1, πT+1

| hit, at, x−it , xt+1) (16a)

=
∑
x−i
t

µ−i,?t [hct ](x
−i
t )βit(a

i
t | hit)β

−i,?
t (a−it | hct , x−it )

Qi(xit+1 | xit, at)Q−i(x−it+1 | x
−i
t , at)

Pβ
i
t+1:T ,β

−i,?
t+1:T ,µ

?
t+1[hc

t+1](at+1:T , xt+2:T , x
i
T+1, πT+1

| hit, at, x−it , xt+1) (16b)

where the second equality follows from the
fact that given hit, at, x

−i
t , xt+1 and µ?t [h

c
t ], the

probability of (at+1:T , xt+2:T , x
i
T+1, πT+1) depends on

hit, at, x
−i
t , xt+1, µ

?
t+1[hct+1] only through βit+1:T , β

−i,?
t+1:T .

Also the second equality above uses the fact that types
evolve conditionally independent given action. Performing
similar decomposition of the denominator B and substituting
back in the expression from (14) allows us to cancel the
terms βi(·) and Qi(·). Using the belief update from (7), this
gives that the expression in (14) is

µ−i,?t+1 [hct+1](x−it+1)Pβ
i
t+1:T ,β

−i,?
t+1:T ,µ

?
t+1[hc

t+1](at+1:T , xt+2:T ,

xiT+1, πT+1 | hit, at, xt+1)

= Pβ
i
t+1:T ,β

−i,?
t+1:T ,µ

?
t+1[hc

t+1](x−it+1, at+1:T , xt+2:T ,

xiT+1, πT+1 | hit, at, xit+1) (17a)

The above equality follows directly from definition.
This completes the proof.

The result below shows that the value function from the
backwards recursive algorithm is higher than any reward-to-
go.

Lemma 3. For any t ∈ {1, . . . , T}, i ∈ N , hit and βi,

V i,Tt (µ?t [h
c
t ], x

i
t) ≥W

i,βi,T
t (hit) (18)

Proof. We use backward induction for this. At time T , using
the maximization property from (2),

V i,TT (µ?T [hcT ], xiT ) (19a)

, Eγ̃
i,T
T (·|xi

T ),γ̃−i,T
T ,µ?

T [hc
t ]
[
Ri(XT , AT ) (19b)

+ δGi
([
F (µj,?T [hcT ], γ̃j,TT , AT )

]N
j=1

, Xi
T+1

)
| µ?T [hcT ], xiT

]
≥ Eγ

i,T
T (·|xi

T ),γ̃−i,T
T ,µ?

T [hc
t ]
[
Ri(XT , AT ) (19c)

+ δGi
([
F (µj,?T [hcT ], γ̃j,TT , AT )

]N
j=1

, Xi
T+1

)
| µ?T [hcT ], xiT

]
= W i,βi,T

T (hiT ) (19d)

Here the second inequality follows from (2) and (3) and the
final equality is by definition in (9).

Assume that the result holds for all n ∈ {t + 1, . . . , T},
then at time t we have

V i,Tt (µ?t [h
c
t ], x

i
t) (20a)

≥ Eβ
i
t,β

−i,?
t ,µ?

t [hc
t ]
[
Ri(Xt, At) (20b)

+ δV i,Tt+1

([
F (µj,?t [hct ], β

j,?
t , At)

]N
j=1

, Xi
t+1

)
| hit
]

≥ Eβ
i
t,β

−i,?
t ,µ?

t [hc
t ]
[
Ri(Xt, At) (20c)

+ δEβ
i
t+1:T ,β

−i,?
t+1:T ,µ

?
t+1[hc

t ,At]
[ T∑
n=t+1

δn−(t+1)Ri(Xn, An)

+ δT−tGi(ΠT+1, X
i
T+1) | hit, At, Xi

t+1

]
| hit
]

= Eβ
i
t:T ,β

−i,?
t:T ,µ?

t [hc
t ]
[ T∑
n=t

δn−tRi(Xn, An) (20d)

+ δT+1−tGi(ΠT+1, X
i
T+1) | hit

]
= W i,βi,T

t (hit) (20e)

Here the first inequality follows from Lemma 1, the second
inequality from the induction hypothesis, the third equality
follows from Lemma 2 and the final equality by definition (9).

IV. SPBE IN INFINITE HORIZON

In this section we consider the infinite horizon dynamic
game, with naturally no terminal reward.

A. Perfect Bayesian Equilibrium

A perfect Bayesian equilibrium is the pair of strategy and
belief (β?, µ?), where

β? =
(
βi,?t

)
t≥1,i∈N βi,?t : Hit → ∆(Ai) (21a)

µ? =
(
µi,?t
)
t≥1,i∈N µi,?t : Hit → ∆(Ht) (21b)

such that sequential rationality is satisfied: ∀ i ∈ N , βi,
t ≥ 1, hit ∈ Hit,

Eβ
i,?,β−i,?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | hit
]

≥ Eβ
i,β−i,?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | hit
]

(22)

and beliefs satisfy certain consistency conditions (please
refer [1, pp. 331] for the exact conditions).



B. Fixed Point Equation for Infinite Horizon

In this section, we state the fixed-point equation that
defines the value function and strategy mapping for the
infinite horizon problem. This is analogous to the backwards
recursion ((2) and (3)) that defined the value function and θ
mapping for the finite horizon problem.

Define the set of functions V i : ×Nj=1∆(X j) × X i → R
and strategies γ̃i : X i → ∆(Ai) (which is generated formally
as γ̃i = θi[π] for given π) via the following fixed-point
equation: ∀ i ∈ N , xi ∈ X i,

γ̃i(· | xi) ∈ argmax
γi(·|xi)∈∆(Ai)

Eγ
i(·|xi),γ̃−i,π−i[

Ri(X,A)

+ δV i
(
[F (πj , γ̃j , Aj)]Nj=1, X

i,′) | π, xi], (23a)

V i(π, xi) = Eγ̃
i(·|xi),γ̃−i,π−i[

Ri(X,A)

+ δV i
(
[F (πj , γ̃j , Aj)]Nj=1, X

i,′) | π, xi]. (23b)

Note that the above is a joint fixed-point equation in (V, γ̃),
unlike the backwards recursive algorithm earlier which re-
quired solving a fixed-point equation only in γ̃. Here the
unknown quantity is distributed as

(X−i, Ai, A−i, Xi,′) ∼ π−i(x−i)γi(ai | xi)
γ̃−i(a−i | x−i)Q(xi,′ | xi, a). (24)

and F (·) is as defined in (5).
Define belief µ? inductively as follows: set µ?1(x1) =∏N
i=1Q

i
0(xi1). Then for t ≥ 1,

µi,?t+1

[
hct+1

]
= F

(
µi,?t [hct ], θ

i
[
µ?t [h

c
t ]
]
, at
)

(25a)

µ?t+1

[
hct+1

]
(xt+1) =

N∏
i=1

µi,?t+1

[
hct+1

]
(xit+1) (25b)

By construction the belief defined above satisfies the consis-
tency condition needed for a Perfect Bayesian Equilibrium.
Denote the stationary strategy arising out of γ̃ by β? i.e.,

βi,?t (ait | hit) = θi
[
µ?t [h

c
t ]
]
(ait | xit) (26)

C. Relation between Infinite and Finite Horizon problems

The following result highlights the similarities between the
fixed-point equation in infinite horizon and the backwards
recursion in the finite horizon.

Lemma 4. Consider the finite horizon game with Gi ≡ V i.
Then V i,Tt = V i, ∀ i ∈ N , t ∈ {1, . . . , T} satisfies the
backwards recursive construction (2) and (3).

Proof. Use backward induction for this. Consider the finite
horizon algorithm at time t = T , noting that V i,TT+1 ≡ Gi ≡
V i,

γ̃i,TT (· | xiT ) ∈ argmax
γi
T (·|xi

T )∈∆(Ai)

Eγ
i
T (·|xi

T ),γ̃−i,T
T ,π−i

T

[
Ri(XT , AT )

+ δV i
([
F (πjT , γ̃

j,T
T , AT )

]N
j=1

, Xi
T+1

)
| πT , xiT

]
(27a)

V i,TT (πT , x
i
T ) = Eγ̃

i,T
T (·|xi

T ),γ̃−i,T
T ,π−i

T

[
Ri(XT , AT )

+ δV i
([
F (πjT , γ̃

j,T
T , AT )

]N
j=1

, Xi
T+1

)
| πT , xiT

]
(27b)

Comparing the above set of equations with (23), we can see
that the pair (V, γ̃) arising out of (23) satisfies the above. Now
assume that V i,Tn ≡ V i for all n ∈ {t+1, . . . , T}. At time t,
in the finite horizon construction from (2), (3), substituting
V i in place of V i,Tt+1 from the induction hypothesis, we get
the same set of equations as (27). Thus V i,Tt ≡ V i satisfies
it.

D. Equilibrium Result

Below we state the central result of this paper. It states that
the strategy-belief pair (β?, µ?) constructed from the solution
of the fixed-point equation (23) and the forward recursion
of (25) and (26) indeed constitutes a PBE.

Theorem 5. Assuming that the fixed-point equation (23)
admits an absolutely bounded solution V i (for all i ∈ N ),
the strategy-belief pair (β?, µ?) defined in (25) and (26) is a
PBE of the infinite horizon discounted reward dynamic game
i.e., ∀ i ∈ N , βi, t ≥ 1, hit ∈ Hit,

Eβ
i,?,β−i,?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | hit
]

≥ Eβ
i,β−i,?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | hit
]

(28)

Remark: Note that by definition in (7), µ? already satis-
fies the consistency conditions required for perfect Bayesian
equilibrium.

Proof. We divide the proof into two parts: first we show that
the value function V i is at least as big as any reward-to-
go function; secondly we show that under the strategy β?i ,
reward-to-go is V i.

Part 1: For any i ∈ N , βi define the following reward-
to-go functions

W i,βi

t (hit) = Eβ
i,β−i,?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | hit
]

(29a)

W i,βi,T
t (hit) = Eβ

i,β−i,?,µ?
t [hc

t ]
[ T∑
n=t

δn−tRi(Xn, An)

+ δT+1−tV i(ΠT+1, X
i
T+1) | hit

]
(29b)

Since X i,Ai are finite sets the reward Ri is absolutely
bounded, the reward-to-go W i,βi

t (hit) is finite ∀ i, t, βi, hit.
For any i ∈ N , hit ∈ Hit,

V i
(
µ?t [h

c
t ], x

i
t

)
−W i,βi

t (hit) =(
V i
(
µ?t [h

c
t ], x

i
t

)
−W i,βi,T

t (hit)
)

+
(
W i,βi,T
t (hit)−W

i,βi

t (hit)
)
(30)

Combining results from Lemma 3 and 4, the term in the first
bracket in RHS of (30) is non-negative. Using (29), the term
in the second bracket is



(
δT+1−t)Eβi,β−i,?,µ?

t [hc
t ]
[
−

∞∑
n=T+1

δn−(T+1)Ri(Xn, An)

+ V i(ΠT+1, X
i
T+1) | hit

]
. (31)

The summation in the expression above is bounded by a
convergent Geometric series. Also, V i is bounded. Hence the
above quantity can be made arbitrarily small by choosing T
appropriately large. Since the LHS of (30) does not depend
on T , this gives that

V i
(
µ?t [h

c
t ], x

i
t

)
≥W i,βi

t (hit) (32)

Part 2: Since the strategy β? generated in (26) is such
that βi,?t depends on hit only through µ?t [h

c
t ] and xit, the

reward-to-go W i,βi,?

t , at strategy β?, can be written (with
abuse of notation) as

W i,βi,?

t (hit) = W i,βi,?

t (µ?t [h
c
t ], x

i
t)

= Eβ
?,µ?

t [hc
t ]
[ ∞∑
n=t

δn−tRi(Xn, An) | µ?t [hct ], xit
]

(33)

For any hit ∈ Hit,

W i,βi,?

t (µ?t [h
c
t ], x

i
t) = Eβ

?,µ?
t [hc

t ]
[
Ri(Xt, At) + δW i,βi,?

t+1([
F (µj,?t [hct ], θ

i[µ?t [h
c
t ]], A

j
t+1)

]N
j=1

, Xi
t+1

)
| µ?t [hct ], xit

]
(34a)

V i(µ?t [h
c
t ], x

i
t) = Eβ

?,µ?
t [hc

t ]
[
Ri(Xt, At) + δV i([

F (µj,?t [hct ], θ
i[µ?t [h

c
t ]], A

j
t+1)

]N
j=1

, Xi
t+1

)
| µ?t [hct ], xit

]
(34b)

Repeated application of the above for the first n time periods
gives

W i,βi,?

t (µ?t [h
c
t ], x

i
t) = Eβ

?,µ?
t [hc

t ]
[ t+n−1∑
m=t

δm−tRi(Xt, At)

+ δnW i,βi,?

t+n

(
Πt+n, X

i
t+n

)
| µ?t [hct ], xit

]
(35a)

V i(µ?t [h
c
t ], x

i
t) = Eβ

?,µ?
t [hc

t ]
[ t+n−1∑
m=t

δm−tRi(Xt, At)

+ δnV i
(
Πt+n, X

i
t+n

)
| µ?t [hct ], xit

]
(35b)

Here Πt+n is the n−step belief update under strategy and
belief prescribed by β?, µ?.

Taking difference gives

W i,βi,?

t (µ?t [h
c
t ], x

i
t)− V i(µ?t [hct ], xit)

= δnEβ
?,µ?

t [hc
t ]
[
W i,βi,?

t+n

(
Πt+n, X

i
t+n

)
− V i

(
Πt+n, X

i
t+n

)
| µ?t [hct ], xit

]
(36a)

Taking absolute value of both sides then using Jensen’s
inequality for f(x) = |x| and finally taking supremum over
hit gives us

sup
hi
t

∣∣W i,βi,?

t (µ?t [h
c
t ], x

i
t)− V i(µ?t [hct ], xit)

∣∣

≤ δn sup
hi
t

Eβ
?,µ?

t [hc
t ]
[∣∣W i,βi,?

t+n (Πt+n, X
i
t+n)

− V i(µ?t [hct ], xit)
∣∣ | µ?t [hct ], xit] (37)

Now using the fact that Wt+n, V
i are bounded

and that we can choose n arbitrarily large, we get
suphi

t
|W i,βi,?

t (µ?t [h
c
t ], x

i
t)− V i(µ?t [hct ], xit)| = 0.

V. A CONCRETE EXAMPLE

In this section, we consider an infinite horizon version
of the public goods example from [1, ch. 8, Example 8.3].
We solve the corresponding fixed point equation (arising out
of (23)) numerically to calculate the mapping θ (which in
turn generates the perfect Bayesian equilibrium (β?, µ?)).

The example consists of two symmetric agents. The type
space and action sets are X 1 = X 2 = {xH , xL} and A1 =
A2 = {0, 1}. Each agents’ type is static and does not vary
with time.

The actions represents whether agents are willing to con-
tribute for a common public good. If at least one agent
contributes then both agents receive utility 1 and the agent(s)
that contributed receive cost equal to their type. If no one
contributes then both agents receive utility 0. Thus the reward
function is

Ri(x, a) =

{
1− xi if ai = 1
a−i if ai = 0

(38)

where a−i represents the action taken by the agent other than
i.

We use the following values xH = 1.2, xL = 0.2 and con-
sider three values δ = 0, 0.5, 0.95. Since type sets have two
elements we can represent the distribution π1(·) ∈ ∆(X 1)
with only π1(xH) ∈ [0, 1], similarly for agent 2. For any
π = (π1, π2) ∈ [0, 1]2, the mapping θ[π] produces γ̃i(· | xi)
for every i ∈ {1, 2} and xi ∈ X i = {xH , xL}. Since the
action space contains two elements, we can represent the
distribution γ̃i(· | xi) by γ̃i(ai = 1 | xi) i.e., the probability
of taking action 1. We solve the fixed-point equation by
discretizing the π−space [0, 1]2 and all solutions that we find
are symmetric w.r.t. agents i.e., γ̃1(· | xL) for π = (π1, π2)
is the same as γ̃2(· | xL) for π′ = (π2, π1) and similarly for
type xH .

For δ = 0, the game is instantaneous and for the values
considered, we have 1 − xH = −0.2 < 0. This implies that
whenever agent 1’s type is xH , it is instantaneously profitable
not to contribute. This gives γ̃1(a1 = 1 | xH) = 0, for
all π. Thus we only plot γ̃1(a1 = 1 | xL); in Fig. 1. For
δ = 0 the fixed-point equation (23) is only for the variable
γ̃ and not V , and can be solved analytically. Refer to [13,
eq. (20) and Fig. (1)], where this solution is stated. There are
multiple solutions to the fixed-point equation and our result
from Fig. 1 matches with the one of the results in [13].

Intuitively, with type xL the only value of π for which
agent 1 would not wish to contribute is if he anticipates agent
2’s type to be xL with high probability and rely on agent 2
to contribute. This is why for lower values of π2 (i.e., agent
2’s type likely to be xL) we see γ̃1(a1 = 1 | xL) = 0 in
Fig. 1.



Now consider γ̃1(a1 = 1 | xL) plotted in Fig. 1, 2
and 4. As δ increases, future rewards attain more priority
and signaling comes into play. So while taking an action,
agents not only look for their instantaneous reward but also
how their action affects the future public belief π about their
private type. It is evident in the figures that as δ increases,
at high π1, up to larger values of π2 agent 1 chooses not
to contribute when his type is xL. This way he intends to
send a “wrong” signal to agent 2 i.e., that his type is xH and
subsequently force agent 2 to invest. This way agent 1 can
free-ride on agent 2’s investment.

Now consider Fig. 3 and 5, where γ̃1(a1 = 1 | xH) is
plotted. Coordination via signaling is evident here. Although
it is instantaneously not profitable to contribute if agent 1’s
type is xH , by contributing at higher values of π2 (i.e.,
agent 2’s type is likely xH ) and low π1, agent 1 coordinates
with agent 2 to achieve net profit greater than 0 (reward
when no one contributes). This can be done since the loss of
contributing is −0.2 whereas profit from free-riding on agent
2’s contribution is 1.

Under the equilibrium strategy, beliefs Πt form a Markov
chain. One can trace this Markov chain to study the signaling
effect at equilibrium. On numerically simulating this Markov
chain for the above example (at δ = 0.95) we observe that
for almost all initial beliefs, within a few rounds agents
completely learn each other’s private type truthfully (or at
least with very high probability). In other words, agents
manage to reveal their private type via their actions at
equilibrium and to such an extent that it negates any possibly
incorrect initial belief about their type.

As a measure of cooperative coordination at equilibrium
one can perform the following calculation. Compare the value
function V 1(·, x) of agent 1 arising out of the fixed-point
equation, for δ = 0.95 and x ∈ {xH , xL} (normalize it by
multiplying with 1− δ so that it represents per-round value)
with the best possible attainable single-round reward under a
symmetric mixed strategy with a) full coordination and b) no
coordination. Note that the two cases need not be equilibrium
themselves, which is why this will result in a bound on the
efficiency of the evaluated equilibria.

In case a), assuming both agents have the same type x, full
coordination can lead to the best possible reward of 1+1−x

2 =
1− x

2 i.e., agent 1 contributes with probability 0.5 and agent 2
contributes with probability 0.5 but in a coordinated manner
so that it doesn’t overlap with agent 1 contributing.

In case b) when agents do not coordinate and invest with
probability p each, then the expected single-round reward is
p(1 − x) + p(1 − p). The maximum possible value of this
expression is (1− x

2 )2.
For x = xL = 0.2, the range of values of V 1(π1, π2, x

L)
over (π1, π2) ∈ [0, 1]2 is [0.865, 0.894]. Whereas full coor-
dination produces 0.9 and no coordination 0.81. It is thus
evident that agents at equilibrium end up achieving reward
close to the best possible and gain significantly compared to
the strategy of no coordination.

Similarly for x = xH = 1.2 the range is [0.3, 0.395].
Whereas full coordination produces 0.4 and no coordination

0.16. The gain via coordination is evident here too.
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Fig. 1. γ̃1(a1 = 1 | xL) vs. (π1, π2) at δ = 0.
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VI. CONCLUSION

This paper considers the infinite horizon discounted reward
dynamic game with private types i.e., where each agent can
only observe their own type. The types evolve as a controlled
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Fig. 5. γ̃1(a1 = 1 | xH) vs. (π1, π2) at δ = 0.95.

Markov process and are conditionally independent across
agents given the action profile. Asymmetry of information
between agents exists in this model, since each agent only
knows their own private type.

To date, there exists no universal algorithm for calcu-
lating PBE in models with asymmetry of information that
decouples, w.r.t. time, the calculation of strategy. Section IV
provides a single-shot fixed-point equation for calculating the
equilibrium generating function θ, which in conjunction with
the forward recursion in (25) and (26) gives a subset of PBEs
(β?, µ?) of this game. The method proposed in this paper
finds PBE of a certain type i.e., where for any agent i, his
strategy at equilibrium depends on the public history only
through the common belief πt and on private history only
through agent i’s current private type xit.

Finally, we demonstrate our methodology by a concrete
example of a two agent symmetric public goods game and ob-
serve the signaling effect in agents’ strategies at equilibrium
as discount factor is increased. The signaling effect implies
that agents take into account how their actions affect future
public beliefs π about their private type.

One important direction for future work is characterization
of games where the proposed SPBE exists. This boils down
to existence of a solution to the fixed-point equation in
Section IV, as any SPBE must satisfy this equation.
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