
Error Exponent for Discrete Memoryless

Multiple-Access Channels

by

Ali Nazari

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Sandeep Pradhan, Co-Chair
Associate Professor Achilleas Anastasopoulos, Co-Chair
Professor David Neuhoff
Associate Professor Erhan Bayraktar
Associate Professor Jussi Keppo



c⃝ Ali Nazari 2011
All Rights Reserved



To my parents.

ii



ACKNOWLEDGEMENTS

It is my pleasure to thank the many people who made this thesis possible. I

would like to sincerely thank my research advisors Professor Sandeep Pradhan and

Professor Achilleas Anastasopoulos for their continuous support and encouragement,

for the opportunity they gave me to conduct independent research, and for their

exemplary respect. Even when I became frustrated with research, meetings with

them always left me with new ideas and renewed optimism. Their high standards

in research, creativity and insistence on high-level understanding of a problem are

qualities I hope to emulate in my own career.

I would also like to thank my dissertation committee members, Professor David

Neuhoff, Professor Erhan Bayraktar, and Professor Jussi Keppo for accepting to be on

my dissertation committee. I am grateful to Professor David Neuhoff for his interest

in my research and for sharing his deep knowledge. I am indebted to Professor

Bayraktar and Professor Keppo for introducing Mathematical Finance to me, which

is related to my future career. I feel grateful to Professor Jussi Keppo for accepting

to be on my dissertation committee despite the fact that he was going to be out of

the United States at the time of my defense.

The supportive work and efforts of the staff members of my department are hereby

acknowledged. I wish to thank Becky Turanski, Nancy Goings, Michele Feldkamp,

Ann Pace, Karen Liska and Beth Lawson for efficiently and cheerfully helping me

deal with myriad administrative matters. I would also like to sincerely thank all of

my friends in the Electrical Engineering Department for their invaluable friendship.

I would like to thank all of my Iranian friends, especially Dr. Alireza Tabatabaee

and Dr. Javid Moraveji for their invaluable friendship and support since the very first

iii



days I came to the United States. I have been lucky to have had wonderful friends

Morteza Nick, Sepehr Entezari and Alexandra Tate. I would especially like to thank

Alexandra for revising all of my papers over the past couple of years.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTERS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Dissertation overview . . . . . . . . . . . . . . . . . . . . . . 5

2 Background: Error Exponent . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Summary of Known Result . . . . . . . . . . . . . . . . . . . 12

2.2.1 Capacity Region for DM-MAC . . . . . . . . . . . . . 12
2.2.2 Known Bounds on the Error Exponents of DM-MAC 14

3 Lower Bounds on the Error Exponent of Multiple-Access Channels . 18
3.1 Point to Point: Lower Bounds on reliability function . . . . . 21

3.1.1 Packing functions . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Relation between packing function and probability of

error . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Packing Lemmas . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Error Exponent Bounds . . . . . . . . . . . . . . . . . 28

3.2 MAC: Lower Bounds on reliability function . . . . . . . . . . 32
3.2.1 Definition of Packing Functions . . . . . . . . . . . . 34
3.2.2 Relation between probability of error and packing func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Definition of Information Functions . . . . . . . . . . 40
3.2.4 Packing Lemmas . . . . . . . . . . . . . . . . . . . . . 45
3.2.5 Error exponent bounds . . . . . . . . . . . . . . . . . 48

3.3 Numerical result . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . 52

v



3.4.1 Point to Point Proofs . . . . . . . . . . . . . . . . . . 52
3.4.2 MAC Proofs . . . . . . . . . . . . . . . . . . . . . . . 64

4 Typicality Graphs and Their Properties . . . . . . . . . . . . . . . . 88
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Typicality graphs . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Sub-graphs contained in typicality graphs . . . . . . . . . . . 94

4.3.1 Subgraphs of general degree . . . . . . . . . . . . . . 94
4.3.2 Nearly complete subgraphs . . . . . . . . . . . . . . . 95
4.3.3 Nearly Empty Subgraphs . . . . . . . . . . . . . . . . 97

4.4 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Upper Bounds on the Error Exponent of Multiple-Access Channels . 115
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Sphere Packing Bound on the Average Error Exponent (Method

of Types Technique) . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 Sphere Packing Bound on the Average Error Exponent (Strong

Converse Technique) . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1 Point to Point Case . . . . . . . . . . . . . . . . . . . 122
5.3.2 MAC Case . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 A Minimum Distance on the Maximal Error Exponent . . . . 125
5.4.1 A Conjectured Tighter Upper Bound . . . . . . . . . 127

5.5 The Maximal Error Exponent vs. The Average Error Exponent130
5.6 Proof of Theorems . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.1 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . 132
5.6.2 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . 136
5.6.3 Proof of Fact 5.3.1 . . . . . . . . . . . . . . . . . . . 139
5.6.4 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . 141
5.6.5 Proof of Theorem 5.3.3 . . . . . . . . . . . . . . . . . 150
5.6.6 Proof of Theorem 5.4.1 . . . . . . . . . . . . . . . . . 153
5.6.7 Proof of Theorem 5.5.1 . . . . . . . . . . . . . . . . . 163

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

vi



LIST OF FIGURES

Figure

1.1 Block diagram of communication systems. . . . . . . . . . . . . . . . 1

1.2 Upper and Lower bounds on the error exponent for a DMC. . . . . . 3

1.3 A schematic of two-user multiple-access channel. . . . . . . . . . . . . 4

2.1 Achievable rates for a fixed channel input distribution PUXY . . . . . . 13

3.1 Lower bounds on the reliability function for point-to-point channel
(random coding −·, typical random coding −, expurgated −−. . . . . 19

vii



LIST OF TABLES

Table

3.1 Channel Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Eex vs. ELiu
r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



CHAPTER 1

Introduction

Information theory deals primarily with systems transmitting information or data

from one point to another. A rather general block diagram for visualizing the be-

havior of such systems is given in Figure 1.1. The source output in Figure 1.1 might

represent, for example, a voice waveform, the output of a set of sensors or a sequence

of binary digits from a magnetic tape. The channel might represent a telephone line,

a communication link or a high frequency radio link. The encoder represents any pro-

cessing of the source output performed prior to transmission. The decoder represents

the processing of the channel output with the objective of producing an acceptable

replica of the source output at the destination.

Source Encoder Channel Decoder Destination

Noise

Figure 1.1: Block diagram of communication systems.

In the early 1940’s, it was thought impossible to send information at a positive

rate with negligible probability of error. C. E. Shannon surprised the communications

theory society by presenting a theory for data transmission over noisy channels and

proving that probability of error could be made nearly zero for all transmission rates

below channel capacity. However, Shannon’s channel coding theorem is of asymptotic

nature; it states that for any transmission rate below the channel capacity, the proba-

1



bility of the error of the channel code can be made arbitrary small as the block length

becomes large enough. This theorem does not indicate how large the block length

must be in order to achieve a specific error probability. Furthermore, in practical sit-

uations, there are limitations on the delay of the communication and the block length

of the code cannot be arbitrarily large. Hence, it is important to study how the prob-

ability of error drops as a function of block length. A partial answer to this question

is provided by examining the error exponent of the channel. It is well-known that

the optimum error exponent E(R), at some fixed transmission rate R, (also known

as the channel reliability function) gives the decoding error probability exponential

rate of decay as a function of block-length for the best sequence of codes.

Error exponents have been meticulously studied for point to point discrete mem-

oryless channels (DMCs) in the literature [1, 17, 22, 23, 25, 45, 46]. Lower and upper

bounds on the channel reliability function for the DMC are known. A lower bound,

known as the random coding exponent Er(R), was developed by Fano [23] by upper-

bounding the average error probability over an ensemble of codes. This bound is loose

at low rates. Later, Gallager [27] considerably reduced the mechanics of developing

this bound. Gallager [29] also demonstrated that the random coding bound is the true

average error exponent for the random code ensemble. This result illustrates that the

weakness of the random coding bound, at low rates, is not due to upper-bounding

the ensemble average. Rather, this weakness is due to the fact that the best codes

perform much better than the average, especially at low rates. Two upper bounds,

known as sphere packing exponent Esp(R) and minimum distance exponent Emd(R)

were developed by Shannon, Gallager, and Berlekamp [45, 46]. The random coding

bound and the sphere packing bound turn out to be equal for code rates greater than

a certain value Rcrit, but are distinctly different at lower rates. Gallager [27] partly

closed this gap from below by introducing a technique to purge poor codewords from

a random code. This resulted in a new lower bound, the expurgated bound, which

is an improvement over the random coding bound at low rates [13, 26, 28]. The ex-

purgated bound, Eex(R), coincides with the minimum distance bound, Emd(R), at

R = 0 [16, pg. 189]. Shannon, Gallager, and Berlekamp [46] further closed this
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gap from above by combining the minimum distance bound with the sphere packing

bound. They proved that a straight line connecting any two points of Esp(R) and

Emd(R) is an error exponent upper bound. This procedure resulted in a new upper

bound, the straight line bound, which is an asymptotic improvement over the sphere

packing bound at low rates. Barg and Forney [8] investigated another lower bound

for the binary symmetric channel (BSC), called the “typical” random coding bound

ET (R). The authors showed that almost all codes in the standard random coding

ensemble exhibit a performance that is as good as the one described by the typical

random coding bound. In addition, they showed that the typical error exponent is

larger than the random coding exponent and smaller than the expurgated exponent at

low rates. Figure 1.2 shows all the upper and lower bounds on the reliability function

for a DMC. As we can see in this Figure, the error exponent lies inside the shaded

region for all transmission rates below the critical rate.

Rcritical C

E(R)

R

Emd

Esp

Est

Eex

ET

Er

Figure 1.2: Upper and Lower bounds on the error exponent for a DMC.

In the special case of binary codes, extensive study has been devoted not only

to bounds on the probability of decoding error but also to bounds on the minimum

Hamming distance. The asymptotically best lower bound on the minimum distance

was derived by Gilbert [31]. For many years, the asymptotically best upper bound on
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the minimum distance was the bound first given in an unpublished work by Elias [9],

subsequently improved by Welch, et al. [35] and Levenshtein [36]. The best upper

and lower bounds remain asymptotically different, so the actual asymptotic behavior

of the best obtainable minimum Hamming distance remains unanswered.

Recent work on communication aspects of information theory has concentrated on

network information theory: the theory of simultaneous rates of communication from

many senders to many receivers in the presence of interference and noise. Examples

of large communication networks include computer networks, satellite networks and

phone systems. A complete theory of network information would have wide impli-

cations for the design of communication and computer networks. In this thesis, we

concentrate on a communication model, in which two transmitters wish to reliably

communicate two independent messages to a single receiver. This model is known as a

Multiple-Access Channel. A schematic is depicted in Figure 1.3. A common example

of this channel is a satellite receiver with many independent ground stations, or a set

of cell phones communicating with a base station. In this model, the senders must

contend not only with the receiver noise but with interference from each other as well.

Decoder Destination

Multiple

Access

Channel

Source 1

Source 2

Encoder 1

Encoder 2

Figure 1.3: A schematic of two-user multiple-access channel.

The first attempt to calculate capacity regions for multiuser systems were made by

Shannon in his fundamental paper [44]. The capacity region for discrete memoryless

multiple-access channels was found by Ahlswede in [3] and Liao in [37]. A symmetric

characterization of the region was given by Ahlswede, in [4]. In their coding theorem,

they proved that for any rate pair in the interior of a certain set C, and for all
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sufficiently large block length, there exists a multiuser code with an arbitrary small

average probability of error. Conversely, for any rate pair outside of C, the average

probability of error is bounded away from 0. The set C is called the capacity region

of the channel.

Regarding discrete memoryless multiple-access channels (DM-MACs), stronger

versions of Ahlswede and Liao’s coding theorem, giving exponential upper and lower

bounds for the error probability, were derived by several authors. Slepian andWolf [47],

Dyachkov [20], Gallager [30], Pokorny and Wallmeier [41], and Liu and Hughes [38]

studied random coding bounds on the average error exponent. Haroutunian [33]

studied a sphere packing bound on the error probability.

Comparing the state of the art in the study of error exponents for DMCs and

DM-MACs, we observe that the latter is much less advanced. We believe the main

difficulty in the study of error exponents for DM-MACs is due to the fact that error

performance in a DM-MAC depends on the pair of codebooks (in the case of a two-

user MAC) used by the two transmitters, while at the same time, each transmitter

can only control its own codebook. This simple fact has important consequences. For

instance, expurgation has not been studied in MAC, because by eliminating some of

the “bad” codeword pairs, we may end up with a set of correlated input sequences

which is hard to analyze.

1.1 Dissertation overview

This dissertation has four main chapters along with the Introduction chapter and

a conclusion statement.

In Chapter 3, we study lower bounds on the average error exponent of DM-MACs.

First, we present a unified framework to obtain all known lower bounds (random

coding, typical random coding and expurgated bound) on the reliability function of a

point-to-point DMC. By using a similar idea for a two-user discrete DM-MAC, three

lower bounds on the reliability function are derived. The first one (random coding) is

identical to the best known lower bound on the reliability function of DM-MAC [38].
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It is shown that the random coding bound is the performance of the average code in

the constant composition code ensemble. The second bound (typical random coding)

is the typical performance of the constant composition code ensemble. To derive the

third bound (expurgated), we eliminate some of the codewords from the codebook

with larger rate. This is the first bound of this type that explicitly uses the method

of expurgation for MACs. It is shown that the exponent of the typical random coding

and the expurgated bounds are greater than or equal to the exponent of the known

random coding bounds for all rate pairs. Moreover, an example is given where the

exponent of the expurgated bound is strictly larger. These bounds can be universally

obtained for all discrete memoryless MACs with given input and output alphabets.

The concept of typicality and typical sequences is central to information theory.

It has been used to develop computable performance limits for several communication

problems. In Chapter 4, we formally introduce and characterize the typicality graph

and investigate some subgraph containment problems. The typicality graphs provide

a strong tool in studying a variety of multiuser communication problems. Transmit-

ting correlated information over a MAC, transmitting correlated information over a

broadcast channel and communicating over a MAC with feedback, are three prob-

lems in which the properties of typicality graphs play a crucial role. The evaluation

of performance limits of a multiuser communication problem can be thought of as

characterizing certain properties of typicality graphs of random variables associated

with the problem. The techniques used to study the typicality graph is applied in

Chapter 5 to develop tighter bounds on the error exponents of discrete memoryless

multiple-access channels.

In Chapter 5, we study two new upper bounds on the error exponent of a two-

user discrete memoryless multiple-access channel. The first bound (sphere packing)

is an upper bound on the average error exponent, while the second one (minimum

distance) is valid only for the maximal error exponent. To derive the sphere packing

bound, first, we revisit the point-to-point case and examine the techniques used for

obtaining the sphere bound on the optimum error exponent. By using a similar

approach for two-user DM-MACs, we develop a sphere packing bound on the average
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error exponent of such channels. This bound outperforms the known sphere packing

bound derived by Haroutunain [33]. This is the first bound of its type that explicitly

imposes independence of the users’ input distributions (conditioned on the time-

sharing auxiliary variable) and, thus, results in tighter sphere-packing exponents when

compared to the tightest known sphere packing exponent in [33]. We also describe a

simpler derivation of the Haroutunian’s sphere packing bound and we show that we

can easily make it tighter by using the properties of the typicality graphs we obtained

in Chapter 4. We, furthermore, derive an upper bound (minimum distance) on the

maximal error exponent for DM-MACs. To obtain this bound, first, an upper bound

on the minimum Bhattacharyya distance between codeword pairs of any multi-user

code is derived. For a certain large class of two-user (DM) MACs, an upper bound

on the maximal error exponent is derived as a consequence of the upper bound on

Bhattacharyya distance. This bound is tighter than the sphere packing bound at low

transmission rates. Using a conjecture about the structure of the typicality graph,

a tighter minimum distance bound for the maximal error exponent is derived and is

shown to be tight at zero rates. Finally, the relationship between average and maximal

error probabilities for a two user (DM) MAC is studied. As a result, a method to

derive new bounds on the average/maximal error exponent by using known bounds

on the maximal/average one is obtained.
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CHAPTER 2

Background: Error Exponent

2.1 Preliminaries

For any alphabet X , P(X ) denotes the set of all probability distributions on X .

The type of a sequence x = (x1, ..., xn) ∈ X n is the distributions Px on X defined by

Px(x) ,
1

n
N(x|x), x ∈ X , (2.1)

where N(x|x) denotes the number of occurrences of x in x. Let Pn(X ) denote the

set of all types in X n, and define the set of all sequences in X n of type P as

TP , {x ∈ X n : Px = P}. (2.2)

The joint type of a pair (x,y) ∈ X n×Yn is the probability distribution Px,y on X ×Y

defined by

Px,y(x, y) ,
1

n
N(x, y|x,y), (x, y) ∈ X × Y , (2.3)

where N(x, y|x,y) is the number of occurrences of (x, y) in (x,y). The relative

entropy or I-divergence between two probability distributions P,Q ∈ P(X ) is defined
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as

D(P ||Q) ,
∑
x∈X

P (x) log
P (x)

Q(x)
. (2.4)

Let W(Y|X ) denote the set of all stochastic matrices with input alphabet X and

output alphabet Y . Then, given stochastic matrices V, W ∈ W(Y|X ), the conditional

I-divergence is defined by

D(V ||W |P ) ,
∑
x∈X

P (x)D (V (·|x)||W (·|x)) . (2.5)

Definition 2.1.1. A discrete memoryless channel (DMC) is defined by a stochastic

matrix W : X → Y, where X , the input alphabet, and Y, the output alphabet, are

finite sets. The channel transition probability for n-sequences is given by

W n(y|x) ,
n∏

i=1

W (yi|xi),

where x , (x1, ..., xn) ∈ X n, y , (y1, ..., yn) ∈ Yn. An (n,M) code for a given

DMC, W , is a set C = {(xi, Di) : 1 ≤ i ≤ M} with (a) xi ∈ X n, Di ⊂ Yn and

(b) Di ∩ Di′ = ∅ for i ̸= i′. The transmission rate, R, for this code, is defined as

R = 1
n
logM .

When message i is transmitted, the conditional probability of error of code C is

given by

ei(C,W ) , W n(Dc
i |xi). (2.6)

The average probability of error for this code is defined as

e(C,W ) , 1

M

M∑
i=1

ei(C,W ), (2.7)
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and the maximal probability of error is defined as

em(C,W ) , max
i

W n(Dc
i |xi). (2.8)

An (n,M, λ) code for W : X → Y, is an (n,M) code C with em(C,W ) ≤ λ. The

average and maximal error exponents, at rate R, are defined as:

E∗
av(R) , lim sup

n→∞
max
C∈C

− 1

n
log e(C,W ), (2.9)

E∗
m(R) , lim sup

n→∞
max
C∈C

− 1

n
log em(C,W ), (2.10)

where C is the set of all codes of length n and rate R. The typical average error

exponent of an ensemble C, at rate R, is defined as:

ET
av(R) , lim inf

δ→0
lim sup
n→∞

max
C̃⊂C:P(C̃)>1−δ

min
C∈C̃

− 1

n
log e(C,W ), (2.11)

where P is the uniform distribution over C. The typical error exponent is basically the

exponent of the average error probability of the worst code belonging to the best high

probable collection of the ensemble.

Definition 2.1.2. A two-user discrete memoryless multiple-access channel (DM-

MAC) is defined by a stochastic matrix W : X × Y → Z, where X , Y, the input

alphabets, and Z, the output alphabet, are finite sets. The channel transition proba-

bility for n-sequences is given by

W n(z|x,y) ,
n∏

i=1

W (zi|xi, yi), (2.12)

where x , (x1, ..., xn) ∈ X n, y , (y1, ..., yn) ∈ Yn, and z , (z1, ..., zn) ∈ Zn.

An (n,M,N) multi-user code for a given MAC, W , is a set C = {(xi,yj, Dij) : 1 ≤

i ≤ M, 1 ≤ j ≤ N} with

• xi ∈ X n, yj ∈ Yn, Dij ⊂ Zn

10



• Dij ∩Di′j′ = ∅ for (i, j) ̸= (i′, j′).

The transmission rate pair is defined as (RX , RY ) =
(
1
n
logMX ,

1
n
logMY

)
. When

message (i, j) is transmitted, the conditional probability of error of two-user code C

is given by

eij(C,W ) , W n(Dc
ij|xi,yj). (2.13)

The average and maximal probability of error for the two-user code, C, are defined as

e(C,W ) , 1

MN

M∑
i=1

N∑
j=1

eij(C,W ), (2.14)

em(C,W ) , max
i,j

eij(C,W ). (2.15)

An (n,M,N, λ) code, C, for the DM-MAC, W , is an (n,M,N) code with

e(C,W ) ≤ λ. (2.16)

Finally, the average and maximal error exponents at rate pair (RX , RY ), are defined

as:

E∗
av(RX , RY ) , lim sup

n→∞
max
C∈CM

− 1

n
log e(C,W ), (2.17)

E∗
m(RX , RY ) , lim sup

n→∞
max
C∈CM

− 1

n
log em(C,W ), (2.18)

where CM is the set of all codes of length n and rate pair (RX , RY ). The typical

average error exponent of an ensemble C, at rate pair (RX , RY ), is defined as:

ET
av(RX , RY ) , lim inf

δ→0
lim sup
n→∞

max
C̃⊂C:P(C̃)>1−δ

min
C∈C̃

− 1

n
log e(C,W ), (2.19)

where P is the uniform distribution over C.
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2.2 Summary of Known Result

2.2.1 Capacity Region for DM-MAC

The typical results of information theory are of asymptotic character and relate

to the existence of codes with certain properties. Theorems asserting the existence of

codes are called direct results while those asserting non-existence are called converse

results. A combination of such results giving a complete asymptotic solution is called

a coding theorem. In particular, a result stating that for rates above capacity, or

outside the capacity region, the probability of error, as a function of block length,

goes exponentially to 1, is called a strong converse theorem.

The capacity region for discrete memoryless multiple-access channels was charac-

terized by Ahlswede [3] and Liao [37]. In their coding theorem, they proved that for

any rate pair (RX , RY ) in the interior of a certain set C, and for all sufficiently large

blocklength n, there exists a multiuser code with an arbitrary small average proba-

bility of error. Conversely, for any rate pair outside of C, the average probability of

error is bounded away from 0. The set C, called the capacity region [47], is defined as

C ,
∪

PUXY ∈B

(RX , RY ) :

0 ≤ RX ≤ I(X ∧ Z|Y, U)

0 ≤ RY ≤ I(Y ∧ Z|X,U)

0 ≤ RX +RY ≤ I(XY ∧ Z|U)

 , (2.20)

and B is the set of all distributions defined on U × X × Y such that (a) X − U − Y

form a Markov chain, (b) U− (X,Y )−Z form a Markov chain, (c) U ∈ U = {1, 2, 3}.

In this single-letter characterization, U is called an auxiliary random variable. Un-

like the case of point-to-point communication, where the single-letter characterization

involves random variables associated with the channel input and the channel output,

in many-to-one communication, the single-letter characterization of the capacity re-

gion involves, in addition, an auxiliary random variable. This random variable can be

interpreted as a source of randomness that all the terminals can share to maximize
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the transmission rates. The first Markov chain can be interpreted as imposing the

condition on the channel input distribution that the two encoders do not commu-

nicate with each other while transmitting data. The second Markov chain can be

interpreted as imposing the condition that channel does not look at the source of

randomness shared among the terminals.

For a given channel input distribution PUXY in B, the rates that are achievable

belong to a pentagon. This is depicted in Figure 2.1.

I(Y ∧ Z|U)

I(X ∧ Z|U)

I(Y ∧ Z|XU)

I(X ∧ Z|Y U)

RY

RX

Figure 2.1: Achievable rates for a fixed channel input distribution PUXY .

Since the capacity region uses the average error probability as performance crite-

rion, this type of capacity region is called the average capacity region. For maximal

error probability, the capacity regions are generally smaller and their determination

is a challenging problem. In fact, for a general transmission system, there is a theory

of coding for the average error probability and another for the maximal error proba-

bility. The drawback of the average error concept is that a small error probability is

guaranteed only if both senders use their codewords with equal probabilities. For a

DMC, it is unimportant whether we work with average or maximal error. However,

for compound channels, the average performance generally does not coincide with the

maximal performance. In particular, for discrete memoryless multiple-access chan-

nels, Dueck [19] proposed an example in which the maximal error capacity region was

strictly smaller than the average error capacity region.

The converse theorems in [3,37] are weak converse theorems. Dueck [19] proved a

13



strong converse theorem by using the Ahlswede-Gacs-Korner [43] method of “blowing

up decoding sets” in conjunction with a new “wringing technique”. Later, Ahlswede [5]

proved Dueck’s result without using the method of “blowing up decoding sets”.

Ahlswede used his old method to derive upper bounds on the length of maximal

error codes in conjunction with a “suitable wringing” technique to derive an upper

bound on the length of average error codes. The heart of his approach was the fact

that multi-user codes for MAC have subcodes with a certain independence structure.

2.2.2 Known Bounds on the Error Exponents of DM-MAC

The first lower bound on the error exponent of DM-MAC was derived by Slepain

and Wolf [47] for a communication situation in which a third information source is

jointly encoded by both users of the multiple-access channel. They proved that when

the third source is not present, their bound yields an achievable error exponent for

the MAC. Their bound does not reflect the possibility of time sharing; hence, it is

loose for certain channels. In particular, for some rate pairs interior to the capacity

region, their exponent was negative. This problem was remedied by Gallger [30] who

presented a tighter random coding bound. All other random coding exponents have

been derived by using the method of types. Dyachkov [20] obtained a random coding

exponent, improving upon the one of Slepian and Wolf. However, it suffered from a

lack of positivity in the interior of the capacity region. Pokorny and Wallmeier [41]

derived a random coding bound which could be achieved universally for all MAC’s

with given input and output alphabets. They observed that the position of the

codewords, not the channel itself, plays a crucial role in determining the magnitude

of the decoding error. They used the joint type of the codewords as the measure of

distance. The approach used in their proof can be decomposed into a packing lemma

and the calculation of the error bound. Pokorny and Wallmeier’s packing lemma

establishes the existence of codewords with some specified property, i.e., they showed

that not too many codeword pairs are at a small distance from a given pair. They used

the maximum mutual information decoding rule to bound the average probability of
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error. Later, Liu and Hughes [38] derived another random coding bound for the

average error exponent of DM-MACs. Like Pokorny and Wallmeier’s result, their

bound is universally achievable, in the sense that neither the choice of codewords nor

the choice of decoding rule is dependent on the channel statistics. Their approach

was very similar to Pokorny and Wallmeier’s approach. The main differences are that

their packing lemma incorporated the channel output into all packing inequalities and

was proved by using a different random code ensemble which leads to a tighter result.

They used the minimum equivocation decoding rule to bound the probability of error.

This random coding exponent is greater than or equal to those of previously known

bounds. Moreover, they presented examples for which their exponent was strictly

larger [38]. In the following, we present their random coding bound:

Fact 2.2.1. For every finite set U , PXY U ∈ Pn(X × Y × U) satisfying X − U − Y ,

RX ≥ 0, RY ≥ 0, δ > 0, and u ∈ T n
PU

, there exists a multi-user code

C = {(xi,yj, Dij) : i = 1, ...,MX , j = 1, ...,MY }, (2.21)

with xi ∈ TPX|U (u) and yj ∈ TPY |U (u) for all i and j, MX ≥ 2n(RX−δ), and MY ≥

2n(RY −δ), such that for every MAC, W : X × Y → Z

e(C,W ) ≤ 2−n[ELiu
r (RX ,RY ,W,PXY U )−δ], (2.22)

whenever n ≥ n1(|X |, |Y|, |Z|, |U|, δ), where

ELiu
r (RX , RY ,W, PXY U) , min

α=X,Y,XY
ELiu

rα (RX , RY ,W, PXY U), (2.23)
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and ELiu
rα (RX , RY ,W, PXY U), α = X, Y,XY are defined respectively by

ELiu
rX (RX , RY ,W, PXY U) = min

VUXY Z∈VLiu(PXY U )
D(VZ|XY U ||W |VUXY ) + IV (X ∧ Y |U)

+ |IV (X ∧ Y Z|U)−RX |+, (2.24a)

ELiu
rY (RX , RY ,W, PXY U) = min

VUXY Z∈VLiu(PXY U )
D(VZ|XY U ||W |VUXY ) + IV (X ∧ Y |U)

+ |IV (Y ∧XZ|U)−RY |+, (2.24b)

ELiu
rXY (RX , RY ,W, PXY U) = min

VUXY Z∈VLiu(PXY U )
D(VZ|XY U ||W |VUXY ) + IV (X ∧ Y |U)

+ |IV (XY ∧ Z|U) + IV (X ∧ Y |U)−RX −RY |+, (2.24c)

where VLiu(PXY U) is defined as

VLiu(PXY U) , {VUXY Z : VXU = PXU , VY U = PY U}. (2.25)

Liu, and Hughes [38] proved that the average error exponent of MAC,W : X×Y →

Z, satisfies

E∗
av(RX , RY ) ≥ ELiu

r (RX , RY ,W ), (2.26)

where

ELiu
r (RX , RY ,W ) , sup

U :|U|=4

max
PXY U :
X−U−Y

ELiu
r (RX , RY ,W, PXY U). (2.27)

On the other hand, Haroutunian[33] has derived an upper bound for the reliability

function of MAC W. This result asserts that E∗
av(RX , RY ) is bounded above by

EH
sp(RX , RY ,W ) , max

PXY

min
VZ|XY

D(VZ|XY ||W |PXY ). (2.28)

Here, the maximum is taken over all possible joint distributions on X × Y , and the
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minimum over all channels VZ|XY which satisfy at least one of the following conditions

IV (X ∧ Z|Y ) ≤ RX , (2.29a)

IV (Y ∧ Z|X) ≤ RY , (2.29b)

IV (XY ∧ Z) ≤ RX +RY . (2.29c)

This bound tends to be somewhat loose because it does not take into account the

separation of the two encoders in the MAC.
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CHAPTER 3

Lower Bounds on the Error Exponent of

Multiple-Access Channels

In this chapter, we develop two new lower bounds for the reliability function of

DM-MACs. These bounds outperform the best known random coding bound derived

in [38].

Toward this goal, we first revisit the point-to-point case and look at the tech-

niques that are used for obtaining the lower bounds on the optimum error exponents.

The techniques can be broadly classified into three categories. The first is the Gal-

lager technique [29]. Although this yields expressions for the error exponents that

are computationally easier to evaluate than others, the expressions themselves are

harder to interpret. The second is the Csiszar-Korner technique [16]. This technique

gives more intuitive expressions for the error exponents in terms of optimization of

an objective function involving information quantities over probability distributions.

This approach is more amenable to generalization to multi-user channels. The third

is the graph decomposition technique using α-decoding [15]. α-decoding is a class of

decoding procedures that includes maximum likelihood decoding and minimum en-

tropy decoding. Although this technique gives a simpler derivation of the exponents,

we believe that it is harder to generalize this to multi-user channels. All three classes

of techniques give expressions for the random coding and expurgated exponents. The

expressions obtained by the three techniques appear in different forms.
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Figure 3.1: Lower bounds on the reliability function for point-to-point channel (ran-
dom coding −·, typical random coding −, expurgated −−.

In developing our main result, we first develop a new simpler technique for deriving

the random coding and expurgated exponents for the point-to-point channel using a

constant composition code ensemble with α-decoding. We present our results in the

format given in [15]. This technique also gives upper bounds on the ensemble averages.

As a bonus, we obtain the typical random coding exponent for this channel. This

gives an exact characterization (lower and upper bounds that meet) of the error

exponent of almost all codes in the ensemble. When specialized to the BSC, this

reduces to the typical random coding bound of Barg and Forney [8]1. Figure 3.1

shows the random coding, the typical random coding, and the expurgated bounds for

a BSC with crossover probability p = 0.05, which is representative of the general case.

All three lower bounds are expressed as minimizations of a single objective function

under different constraint sets. The reasons for looking at typical performance are

two-fold. The first is that the average error exponent is in general smaller than the

typical error exponent at low rates, hence, the latter gives a tighter characterization

of the optimum error exponent of the channel. For example, for the BSC, although

1Barg and Forney gave only a lower bound in [8].
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the average performance of the linear code ensemble is given by the random coding

exponent of the Gallager ensemble, the typical performance is given by the expurgated

exponent of the Gallager ensemble. In this direction, it was also recently noted in [12]

that for the 8-PSK Gaussian channel, the typical performance of the ensemble of group

codes over Z8 equals the expurgated exponent of the Gallager ensemble, whereas the

typical performance of the ensemble of binary coset codes (under any mapping) is

bounded away from the same. The second is that in some cases, expurgation may

not be possible or may not be desirable. For example, (a) in the MAC, the standard

expurgation is not possible, and (b) if one is looking at the performance of the best

linear code for a channel, then expurgation destroys the linear structure which is not

desirable. In the proposed technique, we provide a unified way to derive all the three

lower bounds on the optimum error exponents, and upper bounds on the ensemble

average and the typical performance. We wish to note that the bounds derived in this

chapter are universal in nature. The proposed approach appears to be more amenable

to generalization to multi-user channels.

A brief outline of the technique is given as follows. First, for a given constant

composition code, we define a pair of packing functions that are independent of the

channel. For an arbitrary channel, we relate the probability of error of a code with

α-decoding to its packing functions. Packing functions give pair-wise and triple-

wise joint-type distributions of the code. This is similar in spirit to the concept of

distance distribution of the code. Then, we do random coding and obtain lower and

upper bounds on the expected value of the packing functions of the ensemble without

interfacing it with the channel. That is, these bounds do not depend on the channel.

Finally, using the above relation between the packing function and the probability of

error, we get single-letter expressions for the bounds on the optimum error exponents

for an arbitrary channel.

Toward extending this technique to MACs, we follow a three-step approach. We

start with a constant conditional composition ensemble identical to [38]. Then, we

provide a new packing lemma in which the resulting code has better properties in

comparison to the packing lemmas in [41] and [38]. This packing lemma is similar
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to Pokorny’s packing lemma, in the sense that the channel conditional distribution

does not appear in the inequalities. One of the advantages of our methodology is that

it enables us to partially expurgate some of the codewords and end up with a new

code with stronger properties. In particular, we do not eliminate pairs of codewords.

Rather, we expurgate codewords from only one of the codebooks and analyze the

performance of the expurgated code.

Contributions: In summary, the key contributions of the results of this chapter are

• An exact characterization of the typical error exponent for the constant com-

position code ensemble for the DMC.

• A new lower bound on the optimum error exponent for the DM-MAC.

• An upper bound on the average error exponent of the constant composition

code ensemble for the DM-MAC.

• A characterization of the typical error exponent for the constant composition

code ensemble for the DM-MAC.

This chapter is organized as follows: Section 3.1 unifies the derivation of all lower

bounds on the reliability function for a point-to-point DMC. Our main results for

the DM-MAC are introduced in Section 3.2. Some numerical results are presented in

Section 3.3. The proofs of some of these results are given in Section 3.4.

3.1 Point to Point: Lower Bounds on reliability

function

3.1.1 Packing functions

Consider the class of DMCs with input alphabet X and output alphabet Y . In

the following, we introduce a unified way to derive all known lower bounds on the

reliability function of such a channel. We will follow the random coding approach.

First, we choose a constant composition code ensemble. Then, we define a packing
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function, π : C × P(X × X ) → R, on all codebooks in the ensemble. The packing

function that we use is the average number of codeword pairs sharing a particular

joint type, VXX̃ . Specifically, for P ∈ Pn(X ), VXX̃ ∈ Pn(X × X ), and any code

C = {x1,x2, ...,xM} ⊂ TP , the packing function is defined as:

π(C, VXX̃) =
1

M

M∑
i=1

∑
j ̸=i

1TV
XX̃

(xi,xj). (3.1)

We call this the first order packing function. Using this packing function, we prove

three different packing lemmas, each of which shows the existence of a code with some

desired properties.

In the first packing lemma, tight upper and lower bounds on the expectation of

the packing function over the ensemble are derived. By using this packing lemma,

upper and lower bounds on the expectation of the average probability of error over the

ensemble are derived. These bounds meet for all transmission rates below the critical

rate2. In the second packing lemma, by using the expectation and the variance of

the packing function, we prove that for almost all codes in the constant composition

code ensemble, the bounds in the first packing lemma are still valid. By using this

tight bound on the performance of almost every code in the ensemble, we provide

a tighter bound on the error exponent which we call the “typical” random coding

bound. As we see later in the chapter, the typical random coding bound is indeed the

typical performance of the constant composition code ensemble. In the third packing

lemma, we use one of the typical codes and eliminate some of its “bad” codewords.

The resulting code satisfies some stronger constraints in addition to all the previous

properties. By using this packing lemma and an efficient decoding rule, we re-derive

the well-known expurgated bound.

To provide upper bounds on the average error exponents, such as those given

below in Fact 3.1.1 and Theorem 3.1.1, for every VXX̃X̂ ∈ Pn (X × X × X ), we define

2This is essentially a re-derivation of the upper and lower bounds on the average probability of
error obtained by Gallager in a different form. The present results are for constant composition
codes.
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a second packing function λ : C × P(X × X × X ) → R on all codes in the constant

composition code ensemble as follows:

λ(C, VXX̃X̂) ,
1

M

M∑
i=1

∑
j ̸=i

∑
k ̸=i,j

1TV
XX̃X̂

(xi,xj,xk). (3.2)

We call this the second order packing function. As it is clear from the definition,

this quantity is the average number of codeword triplets sharing a common joint

distribution in code C.

3.1.2 Relation between packing function and probability of

error

First, we consider the decoding rule at the receiver, and secondly we relate the

average probability of error to the packing function.

Decoding Rule: In our derivation, error probability bounds using maximum- like-

lihood and minimum-entropy decoding rules will be obtained in a unified way. The

reason is that both can be given in terms of a real-valued function on the set of

distributions on X × Y . This type of decoding rule was introduced in [15] as the

α − decoding rule. For a given real-valued function α, a given code C, and for a

received sequence y ∈ Yn, the α−decoder accepts the codeword x̂ ∈ C for which the

joint type of x̂ and y minimizes the function α, i.e., the decoder accepts x̂ if

x̂ = argmin
x∈C

α(P · Vy|x). (3.3)

It was shown in [15] that for fixed composition codes, maximum-likelihood and

minimum-entropy are special cases of this decoding rule. In particular, for maximum-

likelihood decoding,

α(P · V ) = D(V ||W |P ) +H(V |P ), (3.4)
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and for minimum entropy decoding,

α(P · V ) = H(V |P ), (3.5)

where P is the fixed composition of the codebook, and V is the conditional type of y

given x.

Relation between probability of error and packing function: Next, for a given

channel, we derive an upper bound and a lower bound on the average probability of

error of an arbitrary constant composition code in terms of its first order and second

order packing functions. The rest of the chapter is built on this crucial derivation.

Consider the following argument about the average probability of error of a code C

used on a channel W .

e(C,W ) =
1

M

M∑
i=1

W n(Dc
i |xi)

=
1

M

M∑
i=1

W n
({

y : α(P · Vy|xi
) ≥ α(P · Vy|xj

) for some j ̸= i
}
|xi

)
=

∑
VXX̃Y ∈Pr

n

(
2−n[D(VY |X ||W |P )+HV (Y |X)]

[
1

M

M∑
i=1

Ai (VXX̃Y , C)

])
, (3.6)

where Pr
n and Ai (VXX̃Y , C) are defined as follows

Pr
n ,

{
VXX̃Y ∈ Pn(X × X × Y) : VX = VX̃ = P , α(P · VY |X̃) ≤ α(P, VY |X)

}
,

(3.7)

Ai (VXX̃Y , C) ,
∣∣{y : (xi,xj,y) ∈ TVXX̃Y

for some j ̸= i
}∣∣ . (3.8)

From the inclusion-exclusion principle, it follows that Ai(VXX̃Y , C) satisfies

Bi(VXX̃Y , C)− Ci(VXX̃Y , C) ≤ Ai(VXX̃Y , C) ≤ Bi(VXX̃Y , C), (3.9)
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where

Bi(VXX̃Y , C) ,
∑
j ̸=i

1TV
XX̃

(xi,xj)
∣∣∣{y : y ∈ TVY |XX̃

(xi,xj)
}∣∣∣ , (3.10)

Ci(VXX̃Y , C) ,
∑
j ̸=i

∑
k ̸=i,j

1TV
XX̃

(xi,xj)1TV
XX̃

(xi,xk)∣∣∣{y : y ∈ TVY |XX̃
(xi,xj) ∩ TVY |XX̃

(xi,xk)
}∣∣∣ . (3.11)

Next, we provide an upper bound on the second term on the right hand side of

(3.6) as follows.

1

M

M∑
i=1

Ai (VXX̃Y , C) ≤ 1

M

M∑
i=1

Bi (VXX̃Y , C) (3.12a)

=
1

M

M∑
i=1

∑
j ̸=i

1TV
XX̃

(xi,xj)
∣∣∣{y : y ∈ TVY |XX̃

(xi,xj)
}∣∣∣ (3.12b)

≤ 1

M

M∑
i=1

∑
j ̸=i

1TV
XX̃

(xi,xj)2
nH(Y |XX̃) (3.12c)

= π(C, VXX̃)2
nH(Y |XX̃) (3.12d)

On the other hand

{
y : (xi,xj,y) ∈ TVXX̃Y

for some j ̸= i
}
⊂ TVY |X (xi), (3.13)

so we can conclude that

1

M

M∑
i=1

Ai(VXX̃Y , C) ≤ 2nHV (Y |X). (3.14)

Combining the above with (3.6), we have an upper bound on the probability of error

in terms of the first order packing function as follows.

e(C,W ) ≤
∑

VXX̃Y ∈Pr
n

2−n[D(VY |X ||W |P )]min
{
2−nIV (X̃∧Y |X)π(C, VXX̃), 1

}
(3.15)
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Next, we consider the lower bound. For that, we provide a lower bound on Bi and

upper bound on Ci as follows.

1

M

M∑
i=1

Bi(VXX̃Y , C) =
1

M

M∑
i=1

∑
j ̸=i

1TV
XX̃

(xi,xj)
∣∣∣{y : y ∈ TVY |XX̃

(xi,xj)}
∣∣∣

≥ π(C, VXX̃)2
n[H(Y |XX̃)−δ], (3.16)

and

1

M

M∑
i=1

Ci(VXX̃Y , C) =

1

M

M∑
i=1

∑
j ̸=i

∑
k ̸=i,j

1TV
XX̃

(xi,xj)1TV
XX̃

(xi,xk)
∣∣∣{y : y ∈ TVY |XX̃

(xi,xj) ∩ TVY |XX̃
(xi,xk)

}∣∣∣
=

∑
VXX̃X̂Y :

VXX̂Y =VXX̃Y

1

M

M∑
i=1

∑
j ̸=i

∑
k ̸=i,j

1TV
XX̃X̂

(xi,xj,xk)
∣∣∣{y : y ∈ TVY |XX̃X̂

(xi,xj,xk)
}∣∣∣ .

(3.17)

By using 2nH(Y |XX̃X̂) as an upper bound on the size of
{
y : y ∈ TVY |XX̃X̂

(xi,xj,xk)
}
,

it can be shown that (3.17) can be upper bounded by

≤
∑

VXX̃X̂Y :
VXX̂Y =VXX̃Y

2nH(Y |XX̃X̂)λ(C, VXX̃X̂) (3.18)

Combining (3.6), (3.16), and (3.18) we have the following lower bound on the average

probability of error.

e(C,W ) ≥
∑

VXX̃Y ∈Pr
n
2−n[D(VY |X ||W |P )+IV (X̃∧Y |X)+δ]∣∣∣∣∣π(C, VXX̃)−

∑
VXX̃X̂Y :

VXX̂Y =VXX̃Y

2−n[IV (X̂∧Y |XX̃)]λ(C, VXX̃X̂)

∣∣∣∣∣
+

(3.19)

Observe that these upper and lower bounds apply for every code C. We have ac-

complished the task of relating the average probability of error to the two packing

26



functions. The key results of this subsection are given by (3.15) and (3.19). Next, we

use the packing lemmas to derive the bounds on the error exponents.

3.1.3 Packing Lemmas

Lemma 3.1.1. (Random Coding Packing Lemma) Fix R > 0, δ > 0, a suf-

ficient large n and any type P of sequences in X n satisfying H(P ) > R. For any

VXX̃ ∈ Pn(X × X ), the expectation of the first order packing function over the con-

stant composition code ensemble is bounded by

2n(R−IV (X∧X̃)−δ) ≤ E
(
π(XM , VXX̃)

)
≤ 2n(R−IV (X∧X̃)+δ), (3.20)

where XM , (X1, X2, ..., XM) ⊂ TP are independent and Xis are uniformly dis-

tributed on TP , and 2n(R−δ) ≤ M ≤ 2nR. Moreover, the following inequality holds for

the second order packing function:

E
(
λ(XM , VXX̃X̂)

)
≤ 2n[2R−IV (X∧X̃)−IV (X̂∧XX̃)+4δ] for all VXX̃X̂ ∈ Pn(X×X×X ).

(3.21)

Proof. The proof follows directly from the fact that two words drawn independently

from TP have a joint type VXX̃ with probability close to 2−nI(X∧X̂). The details are

provided in Section 3.4.1.

Lemma 3.1.2. (Typical Random Code Packing Lemma) Fix R > 0, δ > 0, a

sufficient large n and any type P of sequences in X n satisfying H(P ) > R. Almost

every code, Ct, with 2n(R−δ) ≤ M ≤ 2nR codewords, in the constant composition code

ensemble satisfies the following inequalities

2n[R−IV (X∧X̃)−2δ] ≤ π(Ct, VXX̃) ≤ 2n[R−IV (X∧X̃)+2δ] for all VXX̃ ∈ Pn(X × X ),

(3.22)
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and

λ(Ct, VXX̃X̂) ≤ 2n[2R−IV (X∧X̃)−IV (X̂∧XX̃)+4δ] for all VXX̃X̂ ∈ Pn(X × X × X ).

(3.23)

Proof. The proof is provided in Section 3.4.1. In the proof, we evaluate the vari-

ance of the packing function and use Chebyshev’s inequality to show that with high

probability the packing function is close to its expected value.

Lemma 3.1.3. (Expurgated Packing Lemma) For every sufficiently large n,

every R > 0, δ > 0 and every type P of sequences in X n satisfying H(P ) > R , there

exists a set of codewords Cex = {x1,x2, ...,xM∗} ⊂ TP with M∗ ≥ 2n(R−δ)

2
, such that

for any VXX̃ ∈ Pn(X × X ),

π(Cex, VXX̃) ≤ 2n(R−IV (X∧X̃)+2δ), (3.24)

and for every sequence xi ∈ Cex,

|TVX̃|X
(xi) ∩ Cex| ≤ 2n(R−IV (X∧X̃)+2δ). (3.25)

Proof. The proof is provided in Section 3.4.1. The basic idea of the proof is simple.

From Lemma 3.1.1, we know that for every VXX̃ , there exists a code whose packing

function is upper bounded by a number that is close to 2n(R−IV (X∧X̃)). Since the

packing function is an average over all codewords in the code, we infer that for at least

half of the codewords, the corresponding property (3.25) is satisfied. In Section 3.4.1,

we show that there exists a single code that works for every joint type.

3.1.4 Error Exponent Bounds

Now, we obtain the bounds on the error exponents using the results from the

previous three subsections. We present three lower bounds and two upper bounds.

The lower bounds are the random coding exponent, typical random coding exponent

and expurgated exponent. All the three lower bounds are expressed as minimization
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of the same objective function under different constraint sets. Similar structure is

manifested in the case of upper bounds. For completeness, we first rederive the well-

known result of random coding exponent.

Fact 3.1.1. (Random Coding Bound) For every type P of sequences in X n and

0 ≤ R ≤ H(P ), δ > 0, every DMC, W : X → Y, and 2n(R−δ) ≤ M ≤ 2nR,

the expectation of the average error probability over the constant composition code

ensemble with M codewords of type P , can be bounded by

2−n[ErL(R,P,W )+3δ] ≤ P̄e ≤ 2−n[Er(R,P,W )−2δ], (3.26)

whenever n ≥ n1(|X |, |Y|, δ), where

Er(R,P,W ) , min
VXX̃Y ∈Pr

D(VY |X ||W |P ) + |IV (X̃ ∧XY )−R|+, (3.27)

ErL(R,P,W ) , min
VXX̃Y ∈Pr:

IV (X̃∧XY )≥R

D(VY |X ||W |P ) + IV (X̃ ∧XY )−R, (3.28)

and

Pr ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P , α(P, VY |X̃) ≤ α(P, VY |X)

}
. (3.29)

In particular, there exists a set of codewords Cr = {x1,x2, ...,xM} ⊂ TP , with M ≥

2n(R−δ), such that for every DMC, W : X → Y,

e(Cr,W ) ≤ 2−n[Er(R,P,W )−3δ]. (3.30)

Proof. The proof is straightforward and is outlined in Section 3.4.1.

It is well known that for R ≥ Rcrit, the random coding error exponent is equal

to the sphere packing error exponent, and as a result the random coding bound is a

tight bound. In addition, the following is true.
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Corollary 3.1.1. For any R ≤ Rcrit,

max
P∈P(X )

ErL(R,P,W ) = max
P∈P(X )

Er(R,P,W ). (3.31)

Proof. The proof is provided in the Section 3.4.1.

Next, we have an exact characterization of the typical performance of the constant

composition code ensemble.

Theorem 3.1.1. (Typical random Coding Bound) For every type P of sequences

in X n, δ > 0, and every transmission rate satisfying 0 ≤ R ≤ H(P ), almost all codes,

Ct = {x1,x2, ...,xM} with xi ∈ TP for all i, M ≥ 2n(R−δ), satisfy

2−n[ETL(R,P,W )+4δ] ≤ e(Ct,W ) ≤ 2−n[ET (R,P,W )−3δ], (3.32)

for every DMC, W : X → Y, whenever n ≥ n1(|X |, |Y|, δ). Here,

ET (R,P,W ) , min
VXX̃Y ∈Pt

D(VY |X ||W |P ) + |IV (X̃ ∧XY )−R|+, (3.33)

ETL(R,P,W ) , min
VXX̃Y ∈Pt:

IV (X̃∧XY )≥R

D(VY |X ||W |P ) + IV (X̃ ∧XY )−R, (3.34)

where

P t ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P, IV (X ∧ X̃) ≤ 2R,

α(P, VY |X̃) ≤ α(P, VY |X)
}
. (3.35)

Proof. The proof is provided in Section 3.4.1.

In Theorem 3.1.1, we proved the existence of a high probability (almost 1) collec-

tion of codes such that every code in this collection satisfies (3.32). This provides a

lower bound on the typical average error exponent for the constant composition code

ensemble as defined in equation (2.11). In the following, we show that the typical
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performance of the best high-probability collection cannot be better than that given

in Theorem 3.1.1.

Corollary 3.1.2. For every type P of sequences in X n and every transmission rate

satisfying 0 ≤ R ≤ H(P ),

ET (R,P,W ) ≤ ET
av(R,P ) ≤ ETL(R,P,W ), (3.36)

where ET
av(R,P ) is the typical average error exponent of the constant composition (P )

code ensemble.

Proof. The proof is provided in the Section 3.4.1.

Clearly, since the random coding bound is tight for R ≥ Rcrit, the same is true

for the typical random coding bound. For R ≤ Rcrit we have the following result.

Corollary 3.1.3. For any R ≤ Rcrit,

max
P∈P(X )

ETL(R,P,W ) = max
P∈P(X )

ET (R,P,W ). (3.37)

Proof. The proof is very similar to that of Corollary 3.1.1 and is omitted.

It can be seen that the typical random coding bound is the true error exponent

for almost all codes, with M codewords, in the constant composition code ensemble.

A similar lower bound on the typical random coding bound was derived by Barg and

Forney [8] for the binary symmetric channel. Although the approach used here is

completely different from the one in [8], in the following corollary we show that these

two bounds coincide for binary symmetric channels.

Corollary 3.1.4. For a binary symmetric channel with crossover probability p, and

for 0 ≤ R ≤ Rcrit

max
P∈P(X )

ET (R,P,W ) = ETRC(R), (3.38)

where ETRC is the lower bound for the error exponent of a typical random code in [8].
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Finally, we re-derive the well-known expurgated error exponent in a rather straight-

forward way.

Fact 3.1.2. (Expurgated Bound) For every type P of sequences in X n and 0 ≤

R ≤ H(P ), δ > 0, there exists a set of codewords Cex = {x1,x2, ...,xM∗} ⊂ TP with

M∗ ≥ 2n(R−δ)

2
, such that for every DMC, W : X → Y,

e(Cex,W ) ≤ 2−n[Eex(R,P,W )−3δ] (3.39)

whenever n ≥ n1(|X |, |Y|, δ), where

Eex(R,P,W ) , min
VXX̃Y ∈Pex

D(VY |X ||W |P ) + |IV (X̃ ∧XY )−R|+ (3.40)

where

Pex ,
{
VXX̃Y ∈ P(X × X × Y) : VX = VX̃ = P, IV (X ∧ X̃) ≤ R,

α(P, VY |X̃) ≤ α(P, VY |X)
}

(3.41)

Proof. The proof is provided in Section 3.4.1.

Note that none of the mentioned three bounds have their “traditional format” as

found in [16], [28], but rather the format introduced in [15] by Csiszar and Korner. It

was shown in [15] that the new random coding bound is equivalent to the original one

for maximum likelihood and minimum entropy decoding rule. Furthermore, the new

format for the expurgated bound is equivalent to the traditional one for maximum

likelihood-decoding and it results in a bound that is the maximum of the traditional

expurgated and random coding bounds.

3.2 MAC: Lower Bounds on reliability function

Consider a DM-MAC, W , with input alphabets X and Y , and output alphabet Z.

In this section, we present three achievable lower bounds on the reliability function
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(upper bound on the average error probability) for this channel. The method we are

using is very similar to the point-to-point case. Again, the goal is first proving the

existence of a good code and then analyzing its performance. The first step is choosing

the ensemble. The ensemble, C, we are using is similar to the ensemble in [38]. For a

fixed distribution, PUPX|UPY |U , the codewords of each code in the ensemble are chosen

from TPX|U (u) and TPY |U (u) for some sequence u ∈ TPU
. Intuitively, we expect that

the codewords in a “good” code must be far from each other. In accordance with the

ideas of Csiszar and Korner [16], we use conditional types to quantify this statement.

We select a prescribed number of sequences in X n and Yn so that the shells around

each pair have small intersections with the shells around other sequences. In general,

two types of packing lemmas have been studied in the literature based on whether the

shells are defined on the channel input space or channel output space. The packing

lemma in [41] belongs to the first type, and the one in [38] belongs to the second type.

All the inequalities in the first type depend only on the channel input sequences.

However, in the second type, the lemma incorporates the channel output into the

packing inequalities. In this chapter, we use the first type. In the following, we follow

a four step procedure to arrive at the error exponent bounds. In step one, we define

first-order and second-order packing functions. These functions are independent of

the channel statistics. Next, in step two, for any constant composition code and

any DM-MAC, we provide upper and lower bounds on the probability of decoding

error in terms of these packing functions. In step three, by using a random coding

argument on the constant composition code ensemble, we show the existence of codes

whose packing functions satisfy certain conditions. Finally, in step four, by connecting

the results in step two and three, we provide lower and upper bounds on the error

exponents. Our results include a new tighter lower bound on the error exponent for

DM-MAC using a new partial expurgation method for multi-user codes. We also give

a tight characterization of the typical performance of the constant composition code

ensemble. Both the expurgated bound as well as the typical bound outperform the

random coding bound of [38], which is derived as special case of our methodology.
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3.2.1 Definition of Packing Functions

Let CX = {x1,x2, ...,xMX
} and CY = {y1,y2, ...,yMY

} be constant composition

codebooks with xi ∈ TPX|U (u) and yj ∈ TPY |U (u), for some u ∈ TPU
. In the following,

for a two-user code C = CX ×CY , we define the following quantities that we will use

later in this section.

Definition 3.2.1. Fix a finite set U , and a joint type VUXY X̃Ỹ ∈ Pn(U × (X ×Y)2).

For code C, the first-order packing functions are defined as follows:

NU(C, VUXY ) ,
1

MXMY

MX∑
i=1

MY∑
j=1

1TVUXY
(u,xi,yj), (3.42a)

NX(C, VUXY X̃) ,
1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk), (3.42b)

NY (C, VUXY Ỹ ) ,
1

MXMY

MX∑
i=1

MY∑
j=1

∑
l ̸=j

1TV
UXY Ỹ

(u,xi,yj,yl), (3.42c)

NXY (C, VUXY X̃Ỹ ) ,
1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

∑
l ̸=j

1TV
UXY X̃Ỹ

(u,xi,yj,xk,yl). (3.42d)

Moreover, for any VUXY X̃Ỹ X̂Ŷ ∈ Pn (U × (X × Y)3), we define a set of second-

order packing functions as follows:

ΛX(C, VUXY X̃X̂) ,
1

MXMY

∑
i,j

∑
k ̸=i

∑
k′ ̸=i,k

1TV
UXY X̃X̂

(u,xi,yj,xk,xk′), (3.43a)

ΛY (C, VUXY Ỹ Ŷ ) ,
1

MXMY

∑
i,j

∑
l ̸=j

∑
l′ ̸=j,l

1TV
UXY Ỹ Ŷ

(u,xi,yj,yl,yl′), (3.43b)

ΛXY (C, VUXY X̃Ỹ X̂Ŷ ) ,
1

MXMY

∑
i,j

∑
k ̸=i
l ̸=j

∑
k′ ̸=i,k
l′ ̸=j,l

1TV
UXY X̃Ỹ X̂Ŷ

(u,xi,yj,xk,yl,xk′ ,yl′).

(3.43c)

The second-order packing functions are used to prove the tightness of the results

of Theorem 3.2.1 and Theorem 3.2.2. Next, we will obtain upper and lower bounds

on the probability of decoding error for an arbitrary two-user code that depend on
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its packing functions defined above.

3.2.2 Relation between probability of error and packing func-

tions

Consider the multiuser code C as defined above, and a function α : P(U × X ×

Y × Z) → R. Taking into account the given u, α-decoding yields the decoding sets

Dij =
{
z : α(Pu,xi,yj ,z) ≤ α(Pu,xk,yl,z) for all (k, l) ̸= (i, j)

}
. (3.44)

The average error probability of this multiuser code on DM-MAC, W , can be written

as

e(C,W ) , 1

MXMY

∑
i,j

W n(Dc
ij|xi,yj)

=
1

MXMY

∑
i,j

W n(
∪
k ̸=i

Dkj|xi,yj) +
1

MXMY

∑
i,j

W n(
∪
l ̸=j

Dil|xi,yj)

+
1

MXMY

∑
i,j

W n(
∪
k ̸=i
l ̸=j

Dkl|xi,yj). (3.45)

The first term on the right side of (3.45) can be written as

1

MXMY

∑
i,j

W n(
∪
k ̸=i

Dkj|xi,yj)

=
1

MXMY

∑
i,j

W n
({

z : α(Pu,xk,yj ,z) ≤ α(Pu,xi,yj ,z), for some k ̸= i
}
|u,xi,yj

)
=

1

MXMY

∑
i,j

∑
z:

α(Pu,xk,yj ,z)≤α(Pu,xi,yj ,z)

for some k≠i

W n (z|u,xi,yj)

=
1

MXMY

∑
i,j

∑
VUXY X̃Z
∈Vr

X,n

∑
z:

α(Pu,xk,yj ,z)≤α(Pu,xi,yj ,z)

for some k ̸=i

1TV
UXY X̃Z

(u,xi,yj,xk, z)W
n (z|u,xi,yj)

(3.46)
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=
∑

VUXY X̃Z∈Vr
X,n

2−n[D(VZ|XY U ||W |VXY U )+HV (Z|XY U)]·

[ 1

MXMY

∑
i,j

1TVUXY
(u,xi,yj) · AX

i,j (VUXY X̃Z , C)
]
, (3.47)

where

AX
i,j (VUXY X̃Z , C) ,

∣∣{z : (u,xi,yj,xk, z) ∈ TVUXY X̃Z
for some k ̸= i}

∣∣
Vr
X,n , {VUXY X̃Z : α(VUXY Z) ≥ α(VUX̃Y Z), VUX = VUX̃ = PUX , VUY = PUY } .

(3.48)

Note that Vr
X,n is a set of types of resolution n, therefore, we use a subscript n to

define it. Similarly, the second and third term term on the right side of (3.45) can be

written as follows:

1

MXMY

∑
i,j

W n(
∪
l ̸=j

Dil|xi,yj)

=
∑

VUXY Ỹ Z∈Vr
Y,n

2−n[D(VZ|XY U ||W |VXY U )+HV (Z|XY U)]

·
[ 1

MXMY

∑
i,j

1TVUXY
(u,xi,yj).A

Y
i,j (VUXY Ỹ Z , C)

]
, (3.49)

where

AY
i,j (VUXY Ỹ Z , C) ,

∣∣{z : (u,xi,yj,yl, z) ∈ TVUXY Ỹ Z
for some l ̸= j}

∣∣
Vr
Y,n , {VUXY Ỹ Z : α(VUXY Z) ≥ α(VUXỸ Z), VUX = PUX , VUY = VUỸ = PUY } , (3.50)
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and,

1

MXMY

∑
i,j

W n(
∪
k ̸=i
l ̸=j

Dkl|xi,yj)

=
∑

VUXY X̃Ỹ Z∈Vr
XY,n

2−n[D(VZ|XY U ||W |VXY U )+HV (Z|XY U)]

·
[ 1

MXMY

∑
i,j

1TVUXY
(u,xi,yj).A

XY
i,j (VUXY X̃Ỹ Z , C)

]
, (3.51)

where

AXY
i,j (VUXY X̃Ỹ Z , C) ,

∣∣{z : (u,xi,yj,xk,yl, z) ∈ TVUXY X̃Ỹ Z
for some k ̸= i, l ̸= j}

∣∣
Vr
XY,n , {VUXY X̃Ỹ Z : α(VUXY Z) ≥ α(VUX̃Ỹ Z), VUX = VUX̃ = PUX , VUY = VUỸ = PUY } .

(3.52)

Clearly, AX
i,j (VUXY X̃Z) satisfies

BX
i,j (VUXY X̃Z , C)− CX

i,j (VUXY X̃Z , C) ≤ AX
i,j (VUXY X̃Z , C) ≤ BX

i,j (VUXY X̃Z , C) ,

(3.53)

where

BX
i,j (VUXY X̃Z , C) ,

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk).
∣∣{z : z ∈ TVZ|UXY X̃

(u,xi,yj,xk}
∣∣,
(3.54)

CX
i,j (VUXY X̃Z , C) ,

∑
k ̸=i

∑
k′ ̸=k,i

1TV
UXY X̃

(u,xi,yj,xk)1TV
UXY X̃

(u,xi,yj,xk′)

·
∣∣{z : z ∈ TVZ|UXY X̃

(u,xi,yj,xk) ∩ TVZ|UXY X̃
(u,xi,yj,xk′)}

∣∣. (3.55)
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Having related the probability of error and the function BX
i,j, B

Y
i,j and BXY

i,j , our next

task is to provide a simple upper bound on these functions. This is done as follows.

1

MXMY

∑
i,j

1TVUXY
(u,xi,yj)B

X
i,j (VUXY X̃Z , C)

=
1

MXMY

∑
i,j

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk)
∣∣∣{z : z ∈ TVZ|UXY X̃

(u,xi,yj,xk)
}∣∣∣

≤ 2nH(Z|UXY X̃) 1

MXMY

∑
i,j

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk)

= 2nH(Z|UXY X̃)NX(C, VUXY X̃) (3.56)

Similarly, we can provide upper bounds for BY
i,j and BXY

i,j . Moreover, we can also

provide trivial upper bounds on A(·) functions as was done in the point-to-point

case.

AX
i,j(VUXY X̃Z , C) ≤ 2nHV (Z|XY U).

The same bound applies to AY and AXY . Collecting all these results, we provide the

following upper bound on the probability of error.

e(C,W ) ≤
∑

VUXY X̃Z
∈Vr

X,n

2−n[D(VZ|XY U ||W |VXY U )]min
{
2−nIV (X̃∧Z|XY U)NX(C, VUXY X̃), 1

}

+
∑

VUXY Ỹ Z
∈Vr

Y,n

2−n[D(VZ|XY U ||W |VXY U )]min
{
2−nIV (Ỹ ∧Z|XY U)NY (C, VUXY Ỹ ), 1

}

+
∑

VUXY X̃Ỹ Z
∈Vr

XY,n

2−n[D(VZ|XY U ||W |VXY U )]min
{
2−nIV (X̃Ỹ ∧Z|XY U)NXY (C, VUXY X̃Ỹ ), 1

}

(3.57)

Next, we consider lower bounds on B(·) functions and upper bounds on C(·)

functions. One can use a similar argument to show the following

1

MXMY

∑
i,j

1TVUXY
(u,xi,yj)B

X
i,j (VUXY X̃Z , C) ≥ 2n[H(Z|UXY X̃)−δ]NX(C, VUXY X̃).
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Similar lower bounds can be obtained for BY and BXY . Moreover, we have the

following arguments for bounding from above the function CX .

1

MXMY

∑
i,j

1TVUXY
(u,xi,yj) · CX

i,j (VUXY X̃Z)

=
1

MXMY

∑
i,j

1TVUXY
(u,xi,yj)

∑
k ̸=i

∑
k′ ̸=k,i

1TV
UXY X̃

(u,xi,yj,xk)1TV
UXY X̃

(u,xi,yj,xk′)

·
∣∣∣{z : z ∈ TVZ|UXY X̃

(u,xi,yj,xk) ∩ TVZ|UXY X̃
(u,xi,yj,xk′)

}∣∣∣
=

1

MXMY

∑
i,j

∑
VUXY X̃X̂Z :

VUXY X̂Z=VUXY X̃Z

∑
k ̸=i

∑
k′ ̸=k,i

1TV
UXY X̃X̂

(u,xi,yj,xk,xk′)

·
∣∣∣{z : z ∈ TVZ|UXY X̃X̂

(u,xi,yj,xk,xk′)
}∣∣∣

≤
∑

VUXY X̃X̂Z :
VUXY X̂Z=VUXY X̃Z

2nH(Z|UXY X̃X̂) 1

MXMY

∑
i,j

∑
k ̸=i

∑
k′ ̸=k,i

1TV
UXY X̃X̂

(u,xi,yj,xk,xk′)

=
∑

VUXY X̃X̂Z :
VUXY X̂Z=VUXY X̃Z

2nH(Z|UXY X̃X̂)ΛX(C,VUXY X̃X̂). (3.58)

Similar relation can be obtained that relate CY and ΛY , C
XY and ΛXY . Combining

the lower bounds on B(·)-functions and upper bounds on C(·)-functions, we have the

following lower bound on the probability of decoding error.
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e(C,W )

≥
∑

VUXY X̃Z
∈Vr

X,n

2−n[D(VZ|XY U ||W |V )+IV (X̃∧Z|XY U)]

∣∣∣∣∣∣∣∣NX −
∑

VUXY X̃X̂Z :
VUXY X̂Z=VUXY X̃Z

2nI(X̂∧Z|UXY X̃)ΛX

∣∣∣∣∣∣∣∣
+

+
∑

VUXY Ỹ Z
∈Vr

Y,n

2−n[D(VZ|XY U ||W |V )+IV (Ỹ ∧Z|XY U)]

∣∣∣∣∣∣∣∣NY −
∑

VUXY Ỹ Ŷ Z :
VUXY Ŷ Z=VUXY Ỹ Z

2nI(Ŷ ∧Z|UXY Ỹ )ΛY

∣∣∣∣∣∣∣∣
+

+
∑

VUXY X̃Ỹ Z
∈Vr

XY,n

2−n[D(VZ|XY U ||W |V )+IV (X̃Ỹ ∧Z|XY U)]

·

∣∣∣∣∣∣∣∣NXY −
∑

VUXY X̃X̂Ỹ Ŷ Z :
VUXY X̂Ŷ Z=VUXY X̃Ỹ Z

2nI(X̂Ŷ ∧Z|UXY X̃Ỹ )ΛXY

∣∣∣∣∣∣∣∣
+

. (3.59)

This completes our task of relating the average probability of error of any code

C in terms of the first and the second order packing functions. We next proceed

toward obtaining lower bounds on the error exponents. The expressions for the error

exponents that we derive are conceptually very similar to those derived for the point-

to-point channels. However, since we have to deal with a bigger class of error events,

the expressions for the error exponents become longer. To state our results concisely,

in the next subsection, we define certain functions of information quantities and

transmission rates. We will express our results in terms of these functions. The

reader can skip this subsection, and move to the next subsection without losing the

flow of the exposition. The reader can come back to it when we refer to it in the

subsequent discussions.

3.2.3 Definition of Information Functions

In the following, we consider five definitions which are mainly used for conciseness.
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Definition 3.2.2. For any fix rate pair RX , RY ≥ 0 , and any distribution VUXY X̃Ỹ ∈

P (U × (X × Y)2), we define

FU(VUXY ) , I(X ∧ Y |U), (3.60a)

FX(VUXY X̃) , I(X ∧ Y |U) + IV (X̃ ∧XY |U)−RX , (3.60b)

FY (VUXY Ỹ ) , I(X ∧ Y |U) + I(Ỹ ∧XY |U)−RY , (3.60c)

FXY (VUXY X̃Ỹ ) , I(X ∧ Y |U) + I(X̃ ∧ Ỹ |U) + I(X̃Ỹ ∧XY |U)−RX −RY .

(3.60d)

Moreover, for any VUXY X̃Ỹ X̂Ŷ ∈ P (U × (X × Y)3), we define

EX
S (VUXY X̃X̂) , I(X̂ ∧XY X̃|U) + I(X̃ ∧XY |U) + I(X ∧ Y |U)− 2RX , (3.61a)

EY
S (VUXY Ỹ Ŷ ) , I(Ŷ ∧XY Ỹ |U) + I(Ỹ ∧XY |U) + I(X ∧ Y |U)− 2RY , (3.61b)

EXY
S (VUXY X̃Ỹ X̂Ŷ ) , I(X̂Ŷ ∧XY X̃Ỹ |U) + I(X̃Ỹ ∧XY |U) + I(X ∧ Y |U)

+ I(X̃ ∧ Ỹ |U) + I(X̂ ∧ Ŷ |U)− 2RX − 2RY . (3.61c)

Definition 3.2.3. For any given RX , RY ≥ 0, PXY U ∈ P (X × Y × U), we define

the sets of distributions Vr
X , Vr

Y and Vr
XY as follows:

Vr
X , {VUXY X̃Z : α(VUXY Z) ≥ α(VUX̃Y Z), VUX = VUX̃ = PUX , VUY = PUY } , (3.62a)

Vr
Y , {VUXY Ỹ Z : α(VUXY Z) ≥ α(VUXỸ Z), VUX = PUX , VUY = VUỸ = PUY } , (3.62b)

Vr
XY , {VUXY X̃Ỹ Z : α(VUXY Z) ≥ α(VUX̃Ỹ Z), VUX = VUX̃ = PUX , VUY = VUỸ = PUY } .

(3.62c)

Moreover, Vr,L
X , Vr,L

Y and Vr,L
XY are sets of distributions and defined as

Vr,L
X ,

{
VUXY X̃Z ∈ Vr

X : I(X̃ ∧XY Z|U) ≥ RX

}
, (3.63a)

Vr,L
Y ,

{
VUXY Ỹ Z ∈ Vr

Y : I(Ỹ ∧XY Z|U) ≥ RY

}
, (3.63b)

Vr,L
XY ,

{
VUXY X̃Ỹ Z ∈ Vr

XY : I(X̃Ỹ ∧XY Z|U) + I(X̃ ∧ Ỹ ) ≥ RX +RY

}
. (3.63c)
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Definition 3.2.4. For any given RX , RY ≥ 0, PXY U ∈ P (X × Y × U), we define

the sets of distributions VT
X , VT

Y , and VT
XY as follows

VT
X ,



VUXY X̃ : VXU = VX̃U = PXU , VY U = PY U

FU(VUXY ), FU(VUX̃Y ) ≤ RX +RY

FX(VUXY X̃) ≤ RX +RY

α(VUXY Z) ≥ α(VUX̃Y Z)


(3.64a)

VT
Y ,



VUXY Ỹ : VXU = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUXỸ ) ≤ RX +RY

FY (VUXY Ỹ ) ≤ RX +RY

α(VUXY Z) ≥ α(VUXỸ Z)


(3.64b)

VT
XY ,



VUXY X̃Ỹ : VXU = VX̃U = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUX̃Y ), FU(VUXỸ ), FU(VUX̃Ỹ ) ≤ RX +RY

FX(VUXY X̃), FX(VUXỸ X̃) ≤ RX +RY

FY (VUXY Ỹ ), FY (VUX̃Y Ỹ ) ≤ RX +RY

FXY (VUXY X̃Ỹ ), FXY (VUX̃Y XỸ ) ≤ RX +RY

α(VUXY Z) ≥ α(VUX̃Ỹ Z)


(3.64c)

Moreover, VT,L
X , VT,L

Y , and VT,L
XY are sets of distributions and defined as

VT,L
X ,

{
VUXY X̃Z ∈ VT

X : I(X̃ ∧XY Z|U) ≥ RX

}
, (3.65a)

VT,L
Y ,

{
VUXY Ỹ Z ∈ VT

Y : I(Ỹ ∧XY Z|U) ≥ RY

}
, (3.65b)

VT,L
XY ,

{
VUXY X̃Ỹ Z ∈ VT

XY : I(X̃Ỹ ∧XY Z|U) + I(X̃ ∧ Ỹ ) ≥ RX +RY

}
. (3.65c)

Definition 3.2.5. For any given RX , RY ≥ 0, PXY U ∈ P (X × Y × U), we define
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the sets of distributions Vex
X , Vex

Y , and Vex
XY as follows

Vex
X ,



VUXY X̃ : VXU = VX̃U = PXU , VY U = PY U

FU(VUXY ), FU(VUX̃Y ) ≤ min{RX , RY }

FX(VUXY X̃) ≤ min{RX , RY }

α(VUXY Z) ≥ α(VUX̃Y Z)


(3.66a)

Vex
Y ,



VUXY Ỹ : VXU = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUXỸ ) ≤ min{RX , RY }

FY (VUXY Ỹ ) ≤ min{RX , RY }

α(VUXY Z) ≥ α(VUXỸ Z)


(3.66b)

Vex
XY ,



VUXY X̃Ỹ : VXU = VX̃U = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUX̃Y ), FU(VUXỸ ), FU(VUX̃Ỹ ) ≤ min{RX , RY }

FX(VUXY X̃), FX(VUXỸ X̃) ≤ min{RX , RY }

FY (VUXY Ỹ ), FY (VUX̃Y Ỹ ) ≤ min{RX , RY }

FXY (VUXY X̃Ỹ ), FXY (VUX̃Y XỸ ) ≤ min{RX , RY }

α(VUXY Z) ≥ α(VUX̃Ỹ Z)


(3.66c)
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Definition 3.2.6. For any given RX , RY ≥ 0, PXY U ∈ P (X × Y × U), and VUXY X̃Ỹ ∈

P (U × (X × Y)2), we define the following quantities

EX(RX , RY ,W, PXY U , VUXY X̃) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ |I(X̃ ∧XY Z|U)−RX |+, (3.67a)

EY (RX , RY ,W, PXY U , VUXY Ỹ ) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ |I(Ỹ ∧XY Z|U)−RY |+, (3.67b)

EXY (RX , RY ,W, PXY U , VUXY X̃Ỹ ) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ |I(X̃Ỹ ∧XY Z|U) + IV (X̃ ∧ Ỹ |U)−RX −RY |+. (3.67c)

Moreover, we define

EL
X(RX , RY ,W, PXY U , VUXY X̃) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ I(X̃ ∧XY Z|U)−RX , (3.68a)

EL
Y (RX , RY ,W, PXY U , VUXY Ỹ ) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ I(Ỹ ∧XY Z|U)−RY , (3.68b)

EL
XY (RX , RY ,W, PXY U , VUXY X̃Ỹ ) , D(VZ|XY U ||W |VXY U) + IV (X ∧ Y |U)

+ I(X̃Ỹ ∧XY Z|U) + IV (X̃ ∧ Ỹ |U)−RX −RY , (3.68c)

and,

Eα
β (RX , RY ,W, PXY U ,Vα

β ) , min
VUXY β̃Z∈Vα

β

Eβ(RX , RY ,W, PXY U , VUXY β̃), (3.69a)

Eα,L
β (RX , RY ,W, PXY U ,Vα

β ) , min
VUXY β̃Z∈Vα,L

β

EL
β (RX , RY ,W, PXY U , VUXY β̃), (3.69b)

for α ∈ {r, T, ex}, and β ∈ {X,Y,XY }.
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3.2.4 Packing Lemmas

As we did in the point-to-point case, here we perform random coding and derive

bounds on the packing functions. The results will be stated as three lemmas, one for

the average and one for the typical performance of the ensemble, and finally one for

the expurgated ensemble. These results will be used in conjunction with the relation

between the packing functions and the probability of error established in Section 3.2.2

to obtain the bounds on the error exponents.

Lemma 3.2.1. Fix a finite set U , PXY U ∈ Pn(X × Y × U) such that X − U − Y ,

RX ≥ 0, RY ≥ 0 , δ > 0, 2n(RX−δ) ≤ MX ≤ 2nRX , 2n(RY −δ) ≤ MY ≤ 2nRY , and u ∈

TPU
. Let XMX , {X1, X2, ..., XMX

} and Y MY , {Y1, Y2, ..., YMY
} are independent,

and Xis and Yjs are uniformly distributed over TPX|U (u) and TPY |U (u) respectively.

For every joint type VUXY X̃Ỹ ∈ Pn(U × (X × Y)2), the expectation of the packing

functions over the random code XMX × Y MY are bounded by

2−n[FU (VUXY )+δ] ≤ E
[
NU(X

MX × Y MY , VUXY )
]
≤ 2−n[FU (VUXY )−2δ], (3.70a)

2−n[FX(VUXY X̃)+3δ] ≤ E
[
NX(X

MX × Y MY , VUXY X̃)
]
≤ 2−n[FX(VUXY X̃)−4δ], (3.70b)

2−n[FY (VUXY Ỹ )+3δ] ≤ E
[
NY (X

MX × Y MY , VUXY Ỹ )
]
≤ 2−n[FY (VUXY Ỹ )−4δ], (3.70c)

2−n[FXY (VUXY X̃Ỹ )+4δ] ≤ E
[
NXY (X

MX × Y MY , VUXY X̃Ỹ )
]
≤ 2−n[FXY (VUXY X̃Ỹ )−4δ],

(3.70d)

whenever n ≥ n0(|U|, |X |, |Y|, δ). Moreover, for any VUXY X̃Ỹ X̂Ŷ ∈ Pn(U × (X ×Y)3)

E
[
ΛX(X

MX × Y MY , VUXY X̃X̂)
]
≤ 2−n(EX

S (VUXY X̃X̂)−4δ), (3.71a)

E
[
ΛY (X

MX × Y MY , VUXY Ỹ Ŷ )
]
≤ 2−n(EY

S (VUXY Ỹ Ŷ )−4δ), (3.71b)

E
[
ΛXY (X

MX × Y MY , VUXY X̃Ỹ X̂Ŷ )
]
≤ 2−n(EXY

S (VUXY X̃Ỹ X̂Ŷ )−6δ), (3.71c)

whenever n ≥ n0(|U|, |X |, |Y|, δ).
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Proof. The proof is provided in Section 3.4.2.

Lemma 3.2.2. Fix a finite set U , PXY U ∈ Pn(X × Y × U) such that X − U − Y ,

RX ≥ 0, RY ≥ 0 , δ > 0, 2n(RX−δ) ≤ MX ≤ 2nRX , 2n(RY −δ) ≤ MY ≤ 2nRY , and u ∈

TPU
. Almost every multi-user code C = CX ×CY , CX = {x1,x2, ...,xMX

} ⊂ TPX|U (u)

and CY = {y1,y2, ...,yMY
} ⊂ TPY |U (u), in the constant composition code ensemble,

C, satisfies the following inequalities:

2−n[FU (VUXY )+3δ] ≤ NU(C, VUXY ) ≤ 2−n[FU (VUXY )−3δ], (3.72a)

2−n[FX(VUXY X̃)+5δ] ≤ NX(C, VUXY X̃) ≤ 2−n[FX(VUXY X̃)−5δ], (3.72b)

2−n[FY (VUXY Ỹ )+5δ] ≤ NY (C, VUXY Ỹ ) ≤ 2−n[FY (VUXY X̃Ỹ )−5δ], (3.72c)

2−n[FXY (VUXY X̃Ỹ )+5δ] ≤ NXY (C, VUXY X̃Ỹ ) ≤ 2−n[FXY (VUXY X̃Ỹ )−5δ], (3.72d)

for all VUXY X̃Ỹ ∈ Pn(U × (X × Y)2), and

ΛX(C, VUXY X̃X̂) ≤ 2−n(EX
S (VUXY X̃X̂)−5δ), (3.73a)

ΛY (C, VUXY Ỹ Ŷ ) ≤ 2−n(EY
S (VUXY Ỹ Ŷ )−5δ), (3.73b)

ΛXY (C, VUXY X̃Ỹ X̂Ŷ ) ≤ 2−n(EXY
S (VUXY X̃X̂)−7δ). (3.73c)

for all VUXY X̃Ỹ X̂Ŷ ∈ Pn (U × (X × Y)3), whenever n ≥ n0(|U|, |X |, |Y|, δ).

Proof. The proof is provided in 3.4.2.

Lemma 3.2.3. For every finite set U , PXY U ∈ Pn(X ×Y ×U) such that X−U −Y ,

RX ≥ 0, RY ≥ 0 , δ > 0, and u ∈ TPU
, there exist a multi-user code C∗ = C∗

X × C∗
Y ,

C∗
X = {x1,x2, ...,xM∗

X
} ⊂ TPX|U (u) and C∗

Y = {y1,y2, ...,yM∗
Y
} ⊂ TPY |U (u) with

M∗
X ≥ 2n(RX−δ)

2
, M∗

Y ≥ 2n(RY −δ)

2
, such that for every joint type VUXY X̃Ỹ ∈ Pn(U ×
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(X × Y)2),

NU(C
∗, VUXY ) ≤ 2−n[FU (VUXY )−6δ] (3.74a)

NX(C
∗, VUXY X̃) ≤ 2−n[FX(VUXY X̃)−6δ] (3.74b)

NY (C
∗, VUXY Ỹ ) ≤ 2−n[FY (VUXY Ỹ )−6δ] (3.74c)

NXY (C
∗, VUXY X̃Ỹ ) ≤ 2−n[FXY (VUXY X̃Ỹ )−6δ] (3.74d)

and for any 1 ≤ i ≤ M∗
X , and any 1 ≤ j ≤ M∗

Y ,

1TVUXY
(u,xi,yj) ≤ 2−n[FU (VUXY )−min{RX ,RY }−6δ] (3.75a)∑

k ̸=i

1TV
UXY X̃

(u,xi,yj,xk) ≤ 2−n[FX(VUXY X̃)−min{RX ,RY }−6δ] (3.75b)∑
l ̸=j

1TV
UXY Ỹ

(u,xi,yj,yl) ≤ 2−n[FY (VUXY Ỹ )−min{RX ,RY }−6δ] (3.75c)∑
k ̸=i

∑
l ̸=j

1TV
UXY X̃Ỹ

(u,xi,yj,xk,yl) ≤ 2−n[FXY (VUXY X̃Ỹ )−min{RX ,RY }−6δ], (3.75d)

whenever

n ≥ n0(|U|, |X |, |Y|, δ).

Proof. The proof is provided in 3.4.2.

As it is shown in the Section 3.4.2, the above property is derived by the method of

expurgation. Unlike the point-to-point case, expurgation in the MAC is not a trivial

procedure. To see that, observe that expurgating bad pairs of codewords results in a

code with correlated messages, which is hard to analyze. Instead, what we do is a sort

of “partial” expurgation. Roughly speaking, we start with a code whose existence is

proved in Lemma 3.2.1 and eliminate some of the bad codewords from the code with

the larger rate (as opposed to codeword pairs). By doing that, all messages in the

new code are independent, and such a code is easier to analyze.
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3.2.5 Error exponent bounds

We can now proceed in a fashion that is similar to the point-to-point case and

derive a series of exponential bounds based on Lemmas 3.2.1, 3.2.2, and 3.2.3. In

the following, we present three lower bounds, the random coding, the typical ran-

dom coding, and the expurgated bounds. As in the case of point-to-point channels,

here too, all the lower bounds are expressed in terms of the optimization of a single

objective function under different constraint sets.

Theorem 3.2.1. Fix a finite set U , PXY U ∈ Pn(X × Y × U) such that X − U − Y ,

RX ≥ 0, RY ≥ 0 , δ > 0, 2n(RX−δ) ≤ MX ≤ 2nRX , 2n(RY −δ) ≤ MY ≤ 2nRY , and u ∈

TPU
. Consider the ensemble, C, of multi-user codes consisting of all pair of codebooks

(CX , CY ), where CX = {x1,x2, ...,xMX
} ⊂ TPX|U (u) and CY = {y1,y2, ...,yMY

} ⊂

TPY |U (u). The expectation of the average probability of error over C is bounded by

2−n[ErL(RX ,RY ,W,PXY U )+8δ] ≤ P̄e ≤ 2−n[Er(RX ,RY ,W,PXY U )−6δ] (3.76)

whenever n ≥ n1(|Z|, |X |, |Y|, |U|, δ), where

Er(RX , RY ,W, PXY U) , minβ=X,Y,XY Er
β(RX , RY ,W, PUXY ,Vr

β), (3.77)

ErL(RX , RY ,W, PXY U) , minβ=X,Y,XY Er,L
β (RX , RY ,W, PUXY ,Vr,L

β ). (3.78)

Proof. The proof is provided in 3.4.2.

Corollary 3.2.1. In the low rate regime,

ErL(RX , RY ,W, PXY U) = Er(RX , RY ,W, PXY U). (3.79)

We call this rate region as the critical region for W .

Proof. The proof is similar to the proof of Corollary 3.1.1 and is omitted.

Theorem 3.2.2. Fix a finite set U , PXY U ∈ Pn(X × Y × U) such that X − U − Y ,

RX ≥ 0, RY ≥ 0 , δ > 0, 2n(RX−δ) ≤ MX ≤ 2nRX , 2n(RY −δ) ≤ MY ≤ 2nRY ,
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and u ∈ TPU
. The average probability of error for almost all multi-user codes C =

CX ×CY , CX = {x1,x2, ...,xMX
} ⊂ TPX|U (u) and CY = {y1,y2, ...,yMY

} ⊂ TPY |U (u),

in ensemble C, satisfies the following inequalities

2−n[ETL(RX ,RY ,W,PXY U )+7δ] ≤ e(C,W ) ≤ 2−n[ET (RX ,RY ,W,PXY U )−6δ] (3.80)

whenever n ≥ n1(|Z|, |X |, |Y|, |U|, δ), where

ET (RX , RY ,W, PXY U) , minβ=X,Y,XY ET
β (RX , RY ,W, PUXY ,VT

β ) (3.81)

ETL(RX , RY ,W, PXY U) , minβ=X,Y,XY ET,L
β (RX , RY ,W, PUXY ,VT,L

β ). (3.82)

Proof. The proof is provided in 3.4.2.

Corollary 3.2.2. For every finite set U , PXY U ∈ Pn(X ×Y×U) such that X−U−Y

, RX ≥ 0, RY ≥ 0,

ET (RX , RY , PXY U ,W ) ≤ ET
av(RX , RY ) ≤ ETL(RX , RY , PXY U ,W ). (3.83)

Proof. The proof is very similar to the proof of Corollary 3.1.2.

Corollary 3.2.3. In the low rate regime,

ETL(RX , RY , PXY U ,W ) = ET (RX , RY , PXY U ,W ). (3.84)

Proof. The proof is similar to the proof of Corollary 3.1.1 and is omitted.

Theorem 3.2.3. For every finite set U , PXY U ∈ Pn(X ×Y×U) such that X−U−Y

, RX ≥ 0, RY ≥ 0, δ > 0, and u ∈ TPU
, there exists a multi-user code

C = {(xi,yj, Dij) : i = 1, ...,M∗
X , j = 1, ...,M∗

Y } (3.85)

with xi ∈ TPX|U (u), yj ∈ TPY |U (u) for all i and j, M∗
X ≥ 2n(RX−δ)

2
, and M∗

Y ≥ 2n(RY −δ)

2
,
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such that for every MAC W : X × Y → Z

e(C,W ) ≤ 2−n[Eex(RX ,RY ,W,PXY U )−5δ] (3.86)

whenever n ≥ n1(|Z|, |X |, |Y|, |U|, δ), where

Eex(RX , RY ,W, PXY U) , minβ=X,Y,XY Eex
β (RX , RY ,W, PUXY ,Vex

β ). (3.87)

Proof. The proof is provided in 3.4.2.

This exponential error bound can be universally obtained for all MAC’s with given

input and output alphabets, since the choice of the codewords does not depend on

the channel.

In the following, we show that the bounds in Theorems 3.2.1, 3.2.2, 3.2.3 are at

least as good as the best known random coding bound, found in [38]. For this purpose,

let us use the minimum equivocation decoding rule.

Definition 3.2.7. Given u, for a multiuser code

C = {(xi,yj, Dij) : i = 1, ...,MX , j = 1, ...,MY }

we say that the Dij are minimum equivocation decoding sets for u, if z ∈ Dij implies

H(xiyj|zu) = min
k,l

H(xkyl|zu).

It can be easily observed that these sets are equivalent to α-decoding sets, where

α(u,x,y, z) is defined as

α(VUXY Z) , HV (XY |ZU). (3.88)

Here, VUXY Z is the joint empirical distribution of (u,x,y, z).

Theorem 3.2.4. For every finite set U , PXY U ∈ P(X × Y × U) , RX ≥ 0, RY ≥ 0,
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and W : X × Y → Z, and an appropriate α-decoder (minimum equivocation),

Er
β(RX , RY ,W, PXY U) ≥ ELiu

rβ (RX , RY ,W, PXY U) β = X,Y,XY, (3.89a)

ET
β (RX , RY ,W, PXY U) ≥ ELiu

rβ (RX , RY ,W, PXY U) β = X,Y,XY, (3.89b)

Eex
β (RX , RY ,W, PXY U) ≥ ELiu

rβ (RX , RY ,W, PXY U) β = X,Y,XY. (3.89c)

Hence

Er(RX , RY ,W, PXY U) ≥ ELiu
r (RX , RY ,W, PXY U), (3.90a)

ET (RX , RY ,W, PXY U) ≥ ELiu
r (RX , RY ,W, PXY U), (3.90b)

Eex(RX , RY ,W, PXY U) ≥ ELiu
r (RX , RY ,W, PXY U), (3.90c)

for all PXY U ∈ P(X ×Y ×U) satisfying X−U −Y . Here, ELiu
r is the random coding

exponent of [38] which is defined in (2.23).

Proof. The proof is provided in 3.4.2.

We expect our typical random coding and expurgated bound to be strictly better

than the one in [38] at low rates. This is so, because all inequalities in (3.64a)-

(3.64c) and (3.66a)-(3.66c) will be active at zero rates, and thus (due to continuity)

at sufficiently low rates. Although we have not been able to prove this fact rigorously,

in the next section, we show that this is true by numerically evaluating the expurgated

bound for different rate pairs.

3.3 Numerical result

In this section, we calculate the exponent derived in Theorem 3.2.3 for a multiple-

access channel very similar to the one used in [38]. This example shows that strict

inequality can hold in (3.89c). Consider a discrete memoryless MAC with X = Y =

Z = {0, 1} and the transition probability given in Table 3.1. First, we choose some

time-sharing alphabet U of size |U| = 4. Then some channel input distribution
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x y z W (z|xy)
0 0 0 0.99
0 0 1 0.01
0 1 0 0.01
0 1 1 0.99
1 0 0 0.01
1 0 1 0.99
1 1 0 0.50
1 1 1 0.50

Table 3.1: Channel Statistics

PUPX|UPY |U is chosen randomly. Table 3.2 gives numerical values of the random

coding exponent of [38], and the expurgated exponent we have obtained for selected

rate pairs. As we see in the table, in the low rate regime, we have strictly better

results in comparison with the results of [38]. For larger rate pairs, the inequalities

containing min{RX , RY } will not be active anymore, thus, we will end up with result

similar to [38].

3.4 Proof of Theorems

3.4.1 Point to Point Proofs

This section contains the proof of all lemmas and theorems related to point to

point result.

Proof. (Lemma 3.1.1) We use the method of random selection. Define M such that

2n(R−δ) ≤ M ≤ 2nR. (3.91)

In the following, we obtain the expectation of the packing functions over the constant

composition code ensemble. The expectation of π(XM , VXX̃) can be obtained as
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RX RY Eex(RX , RY ,W, PUXY ) ELiu
r (RX , RY ,W, PUXY )

0.01 0.01 0.2672 0.2330
0.01 0.02 0.2671 0.2330
0.01 0.03 0.2671 0.2330
0.02 0.01 0.2458 0.2230
0.02 0.02 0.2379 0.2230
0.02 0.05 0.2379 0.2230
0.03 0.01 0.2279 0.2130
0.03 0.03 0.2183 0.2130
0.04 0.01 0.2123 0.2030
0.04 0.04 0.2040 0.2030
0.05 0.05 0.1930 0.1930
0.06 0.01 0.1856 0.1830
0.06 0.06 0.1830 0.1830
0.07 0.01 0.1740 0.1730
0.07 0.07 0.1730 0.1730

Table 3.2: Eex vs. ELiu
r

follows:

E
(
π(XM , VXX̃)

)
=

1

M

M∑
i=1

∑
j ̸=i

E
(
1TVXX

(Xi, Xj)
)
=

1

M

M∑
i=1

∑
j ̸=i

P
(
Xj ∈ TVX̃|X

(Xi)
)

= (M − 1)P
(
X2 ∈ TVX̃|X

(X1)
)

≤ 2n(R−IV (X∧X̃)+δ). (3.92)

Similarly, it can be shown that for sufficiently large n,

E
(
π(XM , VXX̃)

)
≥ 2n(R−IV (X∧X̃)−δ). (3.93)

The expectation of λ over the ensemble can be written as

E
(
λ(XM , VXX̃X̂)

)
=

1

M

M∑
i=1

∑
j ̸=i

∑
k ̸=i,j

P
(
(Xi, Xj, Xk) ∈ TVXX̃X̂

)
. (3.94)

Since

2n[H(X̃X̂|X)−δ]

2nH(X̃)2nH(X̂)
≤ P

(
(Xi, Xj, Xk) ∈ TVXX̃X̂

)
≤ 2nH(X̃X̂|X)

2n[H(X̃)−δ]2n[H(X̂)−δ]
, (3.95)
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it can be concluded that

2n[ES(R,VXX̃X̂)−2δ] ≤ E
(
λ(XM , VXX̃X̂)

)
≤ 2n[ES(R,VXX̃X̂)+2δ], (3.96)

where ES is defined as follows,

ES(R, VXX̃X̂) , 2R− I(X ∧ X̃)− I(X̂ ∧ X̃X). (3.97)

By using (3.92) and markov inequality, it can be concluded that

P
(
π(XM , VXX̃) ≥ 2n(R−IV (X∧X̃)+2δ) for some VXX̃

)
≤
∑
VXX̃

E
(
π(XM , VXX̃)

)
2n(R−IV (X∧X̃)+2δ)

≤ 2−n δ
2 ,

(3.98)

therefore, there exists at least one code, Cr, with M codewords satisfying

π(Cr, VXX̃) ≤ 2n(R−IV (X∧X̃)+2δ). (3.99)

Proof. (Lemma 3.1.2) To prove that a specific property holds for almost all codes,

with certain number of codewords, in the constant composition code ensemble, we use

a second-order argument method. We already have obtained upper and lower bounds

on the expectation of the desired function over the entire ensemble. In the following,

we derive an upper bound on the variance of the packing function. Finally, by using

the Chebychev’s inequality, we prove that the desired property holds for almost all

codes in the ensemble.

To find the variance of the packing function, let us define Uij , 1TV
XX̃

(Xi, Xj),

and Yij , Uij + Uji. We can rewrite π(XM , VXX̃) as

π(XM , VXX̃) =
1

M

M∑
i=1

∑
j ̸=i

Uij =
1

M

M∑
i=1

∑
j<i

(Uij + Uji) =
1

M

M∑
i=1

∑
j<i

Yij. (3.100)
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It is easy to check that Yij’s are identically distributed pairwise independent random

variables. Therefore, the variance of π(XM , VXX̃) can be written as

V ar
(
π(XM , VXX̃)

)
=

1

M2

M∑
i=1

∑
j<i

V ar(Yij) =
1

M2

(
M

2

)
V ar(Y21). (3.101)

To find the variance of Y21, let us consider the following two cases for VXX̃ :

• VXX̃ is a symmetric distribution. In this case U12 = U21, therefore,

Y21 =

 2 with probability p ≤ 2−n[I(X∧X̃)−δ]

0 with probability 1− p
,

and the variance is upper bounded by

V ar(Y21) ≤ E(Y 2
21) = 4× 2−n[I(X∧X̃)−δ]. (3.102)

• VXX̃ is not a symmetric distribution. In this case, if Uij = 1 ⇒ Uji = 0.

Therefore,

P (Y12 = 1) = P (U12 = 1 or U21 = 1) = P (U12 = 1) + P (U21 = 1)

≤ 2× 2−n[I(X∧X̃)−δ], (3.103)

therefore,

V ar(Y21) ≤ E(Y 2
21) = 2× 2−n[I(X∧X̃)−δ]. (3.104)

By using (3.102), and (3.104), we have

V ar
(
π(XM , VXX̃)

)
≤ 1

M2

(
M

2

)
4× 2−n[I(X∧X̃)−δ] ≤ 2× 2−n[I(X∧X̃)−δ], (3.105)
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for any VXX̃ ∈ P(X × X ). Now, by using Chebychev’s inequality,

P
(∣∣π(XM , VXX̃)− E

(
π(XM , VXX̃)

)∣∣ ≥ 2nδ for some VXX̃

)
≤
∑
VXX̃

P
(∣∣π(XM , VXX̃)− E

(
π(XM , VXX̃)

)∣∣ ≥ 2nδ
)

≤
∑
VXX̃

V ar
(
π(XM , VXX̃)

)
22nδ

≤
∑
VXX̃

2× 2−n[I(X∧X̃)−δ]

22nδ

=
∑
VXX̃

2× 2−n(I(X∧X̃)+δ) ≤ 2−n δ
2 , for sufficiently large n. (3.106)

Moreover, by using (3.96) and Markov’s inequality, it can be concluded that

P
(
λ(XM , VXX̃X̂) ≥ 2n[ES(R,VXX̃X̂)+4δ] for some VXX̃X̂

)
≤
∑
VXX̃X̂

Eλ(XM , VXX̃X̂)

2n[ES(R,VXX̃X̂)+4δ]

≤ 2−nδ. (3.107)

Now, by combining (3.106) and (3.107) and using the bound on E
(
π(XM , VXX̃)

)
, we

conclude that for any VXX̃ ∈ P(X ×X ), any VXX̃X̂ ∈ P(X ×X ×X ), for sufficiently

large n

2n(R−I(X∧X̃)−δ) ≤ π(XM , VXX̃) ≤ 2n(R−I(X∧X̃)+δ),

λ(XM , VXX̃X̂) ≤ 2n[ES(R,VXX̃X̂)+4δ], (3.108)

with probability > 1− 2× 2−n δ
2 . We put all the codebooks satisfying (3.108) in a set

called CT .

Proof. (Lemma 3.1.3) Consider the code Cr , {x1,x2, ...,xM} whose existence is

asserted in random coding packing lemma. Let us define

Π(Cr) ,
∑
VXX̃

2−n(R−IV (X∧X̃)+3δ)π(Cr, VXX̃). (3.109)
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Note that using Lemma 3.1.1 and using the fact that

Π(Cr) =
1

M

M∑
i=1

∑
VXX̃

|TVX̃|X
(xi) ∩ Cr|2−n(R−IV (X∧X̃)+3δ)

 , (3.110)

it can be concluded that

Π(Cr) ≤
∑
VXX̃

2−n(R−IV (X∧X̃)+3δ)2n(R−IV (X∧X̃)+2δ) <
1

2
. (3.111)

As a result, it can be concluded that there exists M∗ ≥ M
2
codewords in Cr satisfying

∑
VXX̃

|TVX̃|X
(xi) ∩ Cr|2−n(R−IV (X∧X̃)+3δ) < 1. (3.112)

Let us call this subset of the code as Cex. Without loss of generality, we assume Cex

contains the first M∗ sequences of Cr, i.e., Cex = {x1,x2, ...,xM∗}. Since

|TVX̃|X
(xi) ∩ Cex| ≤ |TVX̃|X

(xi) ∩ Cr| ∀xi ∈ Cex, (3.113)

it can be concluded that for all xi ∈ Cex,

∑
VXX̃

|TVX̃|X
(xi) ∩ Cex|2−n(R−IV (X∧X̃)+3δ) < 1. (3.114)

Since all the terms in the summation are non-negative terms, we conclude that

|TVX̃|X
(xi) ∩ Cex| < 2n(R−IV (X∧X̃)+3δ), (3.115)

for all VXX̃ ∈ P(X ×X ), and all xi ∈ Cex. Also, by (3.115), it can be concluded that

π(Cex, VXX̃) =
1

M∗

M∗∑
i=1

|TVX̃|X
(xi) ∩ Cex| ≤ 2n(R−IV (X∧X̃)+3δ), (3.116)

for all VXX̃ ∈ P(X × X ).
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Proof. (Fact 3.1.1) We will use the result of Lemma 3.1.1 and the relation between

the probability of error and the packing functions. Let XM ,
(
X1, X2, ..., XM

)
be independent sequences of independent random variable, where Xis are uniformly

distributed on TP .

(Upper Bound): Taking expectation on both sides of (3.15), using Lemma 3.1.1

and using the continuity of information measures, it can be concluded that

E
(
e(XM ,W )

)
≤

∑
VXX̃Y ∈Pr

n

2−n[D(VY |X ||W |P )+|I(X̃∧XY )−R|+−δ]

≤ 2−n[Er(R,P,W )−2δ] (3.117)

whenever n ≥ n1(|X |, |Y|, δ), where

Er(R,P,W ) , min
VXX̃Y ∈Pr

D(VY |X ||W |P ) + |IV (XY ∧ X̃)−R|+, (3.118)

and Pr is defined in (3.29).

(Lower Bound): Taking expectation on both sides of (3.19), and using Lemma 3.1.1

we have

P̄e = Ee(XM ,W ) ≥
∑

VXX̃Y ∈Pr
n

2−n[D(VY |X ||W |P )+IV (X̃∧Y |X)+δ]
∣∣∣2n(R−I(X∧X̃)−δ)−

∑
VXX̃X̂Y :

VXX̂Y =VXX̃Y

2−n[IV (X̂∧Y |XX̃)]2n(2R−I(X∧X̃)−I(X̂∧XX̃)+4δ)
∣∣∣+

(3.119)

=
∑

VXX̃Y ∈Pr
n

2−n[D(VY |X ||W |P )+IV (X̃∧XY )−R+2δ]

∣∣∣∣∣∣∣∣1−
∑

VXX̃X̂Y :
VXX̂Y =VXX̃Y

2−n[IV (X̂∧XX̃Y )−R+3δ]

∣∣∣∣∣∣∣∣
+

(3.120)

Toward further simplification of this expression, we have the following lemma.
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Lemma 3.4.1.

min
VXX̃X̂Y :

VXX̂Y =VXX̃Y

I(X̂ ∧XX̃Y ) = I(X̃ ∧XY ). (3.121)

Proof. Note that, for any VXX̃X̂Y ,

I(X̂ ∧XX̃Y ) = I(X̂ ∧XY ) + I(X̂ ∧ X̃|XY ) ≥ I(X̂ ∧XY ), (3.122)

therefore,

min
VXX̃X̂Y :

VXX̂Y =VXX̃Y

I(X̂ ∧XX̃Y ) ≥ I(X̂ ∧XY ) = I(X̃ ∧XY ). (3.123)

Now, consider V ∗
XX̃X̂Y

defined as

V ∗
XX̃X̂Y

(x, x̃, x̂, y) = VX̃|XY (x̃|x, y)VX̃|XY (x̂|x, y)VXY (x, y). (3.124)

Note that V ∗
XX̂Y

= V ∗
XX̃Y

, and X̃ − (X, Y )− X̂. Therefore,

IV ∗(X̂ ∧XX̃Y ) = IV (X̂ ∧XY ) = IV (X̃ ∧XY ). (3.125)

By combining (3.123) and (3.125), the proof is complete.

Therefore, using the above lemma, (3.120) can be rewritten as

P̄e ≥
∑

VXX̃Y ∈Pr
n

I(X̃∧XY )>R+3δ

2−n[D(VY |X ||W |P )+IV (X̃∧XY )−R+3δ]. (3.126)

By using the continuity of information measures, it can be concluded that

E
(
e(XM ,W )

)
≥ 2−n[EL(R,P,W )+4δ], for sufficient large n (3.127)
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where

EL(R,P,W ) , min
VXX̃Y ∈Pr

I(X̃∧XY )≥R

D(VY |X ||W |P ) + IV (XY ∧ X̃)−R. (3.128)

Now, by using Markov inequality and (3.117), we conclude that

P
(
e(XM ,W ) ≥ 2−n[Er(R,P,W )−3δ]

)
≤

E
(
e(XM ,W )

)
2−n[Er(R,P,W )−3δ]

≤ 2−nδ. (3.129)

Therefore, with probability greater than 1−2−nδ, any selected code withM codewords

form the constant composition code ensemble satisfies the desired property. Let us

call one of these codebooks as Cr.

Proof. (Corollary 3.1.1) Consider the input distribution P ∗ ∈ P(X ) maximizing

the random coding bound, i.e.,

P ∗ , arg max
P∈P(X )

Er(R,P,W ). (3.130)

Let us define

V ∗
XX̃Y

, arg min
VXX̃Y

Er(R,P ∗,W ). (3.131)

For any R ≤ Rcrit, the random coding bound is a straight line with slope −1, and

the term in | · |+ is active. Therefore,

Er(R,P ∗,W ) = D(V ∗
Y |X ||W |P ∗) + IV ∗(X̃ ∧XY )−R. (3.132)

Here, IV ∗(X̃ ∧ XY ) ≥ R. It is clear that V ∗
XX̃Y

is the minimizing distribution in

ErL(R,P ∗,W ), and as a result

ErL(R,P ∗,W ) = Er(R,P ∗,W ). (3.133)
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Proof. (Theorem 3.1.1) In the proof of Fact 3.1.1, we used the lower and upper

bounds on the expected value of he first-order packing functions and an upper bound

on the expected value of the second-order packing functions. In the following, we use

similar techniques on the packing function of almost every codebook in the ensemble

by using the bounds obtained in Lemma 3.1.2. Consider the code C whose existence

is asserted in the typical random coding packing lemma. For all VXX̃ ∈ P(X × X ),

we have

1

M

M∑
i=1

|TVX̃|X
(xi) ∩ C| ≤ 2n(R−IV (X∧X̃)+2δ). (3.134)

By multiplying both sides of inequality (3.134) by M , and using the proper upper

bound on the number of sequences in C, we conclude that

|TVX̃|X
(xi) ∩ C| ≤ 2n(2R−IV (X∧X̃)+2δ) ∀i = 1, ...,M, (3.135)

for all VXX̃ ∈ P(X ×X ). We will obtain a higher error exponent for almost all codes

by removing certain types from the constraint set Pr
n. Consider any VXX̃ ∈ P(X ×X )

satisfying IV (X ∧ X̃) > 2(R + δ). By (3.135),

|TVX̃|X
(xi) ∩ C| = 0 for all i ⇒ π(C, VXX̃) = 0. (3.136)

Upper bound: Hence, by using (3.15) on C, and by using the result of Lemma

3.1.2, we have

e(C,W ) ≤
∑

VXX̃Y ∈PT
n (δ)

2−n[D(VY |X ||W |P )+|IV (XY ∧X̃)−R|+−2δ]

where

PT
n (δ) ,

{
VXX̃Y ∈ Pn(X × X × Y) : VX = VX̃ = P, IV (X ∧ X̃) ≤ 2R + 2δ

α(P, VY |X̃) ≤ α(P, VY |X)
}
.(3.137)
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Using the continuity of information measures, the upper bound as given by the the-

orem follows.

Lower bound: Using (3.19) on C and using Lemma 3.1.2, we have

e(C,W )

≥
∑

VXX̃Y ∈Pr
n

2−n[D(VY |X ||W |P )+IV (X̃∧Y |X)+δ]
∣∣∣π(C, VXX̃)

−
∑

VXX̃X̂Y :
VXX̂Y =VXX̃Y

2−n[IV (X̂∧Y |XX̃)]λ(C, VXX̃X̂)
∣∣∣+

≥
∑

VXX̃Y ∈PT
n (δ)

2−n[D(VY |X ||W |P )+IV (X̃∧Y |X)+δ]
∣∣∣2n(R−I(X∧X̃)−δ)

−
∑

VXX̃X̂Y :
VXX̂Y =VXX̃Y

2−n[IV (X̂∧Y |XX̃)]2n(2R−I(X∧X̃)−I(X̂∧XX̃)+2δ)
∣∣∣+

=
∑

VXX̃Y ∈PT
n (δ)

2−n[D(VY |X ||W |P )+IV (X̃∧XY )−R+2δ]

∣∣∣∣∣∣∣∣1−
∑

VXX̃X̂Y :
VXX̂Y =VXX̃Y

2−n[IV (X̂∧XX̃Y )−R−3δ]

∣∣∣∣∣∣∣∣
+

(3.138)

≥
∑

VXX̃Y ∈PT
n (δ)

I(X̃∧XY )>R+5δ

2−n[D(VY |X ||W |P )+IV (X̃∧XY )−R+3δ],

Here, the last inequality follows from Lemma 3.4.1.

By using the continuity argument, and for sufficient large n,

e(C,W ) ≥ 2−n[ELT (R,P,W )+4δ], (3.139)

where

ELT (R,P,W ) , min
VXX̃Y ∈PT

I(X̃∧XY )≥R

D(VY |X ||W |P ) + IV (XY ∧ X̃)−R. (3.140)
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Proof. (Corollary 3.1.2) Fix R ≥ 0, δ > 0. By the result of Theorem 3.1.1 and for

sufficiently large n, there exists a collection of codes, C∗, with length n and rate R,

such that

• P (C∗) ≥ 1− δ,

• 2−n[ETL(R,P,W )+4δ] ≤ e(C,W ) ≤ 2−n[ET (R,P,W )−3δ] for all C ∈ C∗.

Note that

max
C̃:P(C̃)>1−δ

min
C∈C̃

− 1

n
log e(C,W ) ≥ min

C∈C∗
− 1

n
log e(C,W ) ≥ ET (R,P,W )− 3δ. (3.141)

Now, consider any high probability collection of codes with length n and rate R. Let

us call this collection as Ĉ. Note that

P (C∗) ≥ 1− δ

P(Ĉ) ≥ 1− δ

⇒ P(C∗ ∩ Ĉ) ≥ 1− 2δ ⇒ C∗ ∩ Ĉ ̸= ϕ. (3.142)

Consider a code C(Ĉ) ∈ C∗ ∩ Ĉ. It can be concluded that

max
C̃:P(C̃)>1−δ

min
C∈C̃

− 1

n
log e(C,W ) ≤ max

C̃:P(C̃)>1−δ
− 1

n
log e(C(C̃),W ) ≤ ELT (R,P,W ) + 4δ.

(3.143)

The last inequality follows from the fact that C(Ĉ) ∈ C∗. By combining (3.141)

and (3.143), and by letting δ goes to zero and n goes to infinity, it can be concluded

that

ET (R,P,W ) ≤ ET
av(R) ≤ ETL(R,P,W ). (3.144)

Proof. (Fact 3.1.2) First, we prove the following lemma.

Lemma 3.4.2. Let Cex be the collection of the codewords whose existence is asserted

in Lemma 3.1.3. For any distribution VXX̃ ∈ Pn(X×X ), satisfying IV (X∧X̃) > R+δ,
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the following holds:

π(Cex, VXX̃) = 0. (3.145)

Proof. By (3.25),

|TVX̃|X
(xi) ∩ Cex| ≤ 2n(R−IV (X∧X̃)+2δ), (3.146)

for every xi ∈ Cex. Since IV (X ∧ X̃) > R + 2δ, it can be concluded that

|TVX̃|X
(xi) ∩ Cex| = 0 for every xi ∈ Cex ⇒ π(Cex, VXX̃) = 0 (3.147)

The rest of the proof is identical to the proof of random coding bound.

3.4.2 MAC Proofs

Proof. (Lemma 3.2.1) In this proof, we use a similar random coding argument

that Pokorny and Wallmeier used in [41]. The main difference is that our lemma

uses a different code ensemble which results in a tighter bound. Instead of choosing

our sequences from TPX
and TPY

, we choose our random sequences uniformly from

TPX|U (u), and TPY |U (u) for a given u ∈ TPU
. In [38], we see a similar random code

ensemble, however, their packing lemma incorporates the channel output z into the

packing inequalities. One can easily show that, by using this packing lemma and

considering the minimum equivocation decoding rule, we would end up with the

random coding bound derived in [38].

Fix any U , PXY U ∈ Pn(U × X × Y) such that X − U − Y , RX ≥ 0, RY ≥ 0 ,

δ > 0, and u ∈ TPU
. Define MX , MY such that

2n(RX−δ) ≤ MX ≤ 2nRX , 2n(RY −δ) ≤ MY ≤ 2nRY .

First, we find upper bounds on the expectations of packing functions for a fixed

α and VUXY X̃Ỹ , with respect to the random variables Xi and Yj. Since Xis and Yjs
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are i.i.d random sequences, we have

E
[
NU(X

MX × Y MY , VUXY )
]
, E

[ 1

MXMY

∑
i,j

1TVUXY
(u, Xi, Yj)

]
= E

[
1TVUXY

(u, X1, Y1)
]

=
∑
x,y

1TVXY |U
(x,y|u)P(X1 = x|u)P(Y1 = y|u)

≤
∑

(x,y)∈TVXY |U (u)

2−n[HV (X|U)−δ]2−n[HV (Y |U)−δ]

≤ 2nHV (XY |U)2−n[HV (X|U)−δ]2−n[HV (Y |U)−δ]

= 2−n[IV (X∧Y |U)−2δ] = 2−n[FU (VUXY )−2δ]. (3.148)

On the other hand,

E
[
NU(X

MX × Y MY , VUXY )
]
=
∑
x,y

1TVXY |U
(x,y|u)P(X1 = x|u)P(Y1 = y|u)

≥
∑

(x,y)∈TVXY |U (u)

2−nHV (X|U)2−nHV (Y |U)

≥ 2n[HV (XY |U)−δ]2−nHV (X|U)2−nHV (Y |U)

= 2−n[IV (X∧Y |U)+δ] = 2−n[FU (VUXY )+δ]. (3.149)

Therefore, by (3.148) and (3.149),

2−n[FU (VUXY )+δ] ≤ E
[
NU(X

MX × Y MY , VUXY )
]
≤ 2−n[FU (VUXY )−2δ]. (3.150)

By using a similar argument,

E
[
NX(X

MX × Y MY , VUXY X̃)
]
≤ 2−n[FX(VUXY X̃)−4δ]. (3.151)
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On the other hand,

E
[
NX(X

MX × Y MY , VUXY X̃)
]
≥ (MX − 1)E

[
1TVUXY

(u, X1, Y1)1TV
UXY X̃

(u, X1, Y1, X2)
]

= (MX − 1)
∑
x,y

P(X1 = x|u)P(Y1 = y|u)1TVUXY
(u,x,y)

·
∑
x̃

P(X2 = x̃|u)1TV
UXY X̃

(u,x,y, x̃)

≥ (MX − 1)
∑

x,y∈TVXY |U (u)

2−nHV (X|U)2−nHV (Y |U)

∑
x̃∈TV

X̃|UXY
(u,x,y)

2−nHV (X̃|U)

≥ (MX − 1) 2n[H(XY |U)−δ]2−nHV (X|U)2−nHV (Y |U)

· 2n[HV (X̃|UXY )−δ]2−nHV (X̃|U)

≥ 2−n[IV (X∧Y |U)+IV (X̃∧Y |U)+IV (X̃∧X|UY )−RX+3δ]

= 2−n[FX(VUXY X̃)+3δ]. (3.152)

Therefore, by (3.151) and (3.152),

2−n[FX(VUXY X̃)+3δ] ≤ E
[
NX(X

MX × Y MY , VUXY X̃)
]
≤ 2−n[FX(VUXY X̃)−4δ]. (3.153)

By using a similar argument for NY (.) and NXY (.), we can show that

2−n[FY (VUXY Ỹ )+3δ] ≤ E
[
NY (X

MX × Y MY , VUXY Ỹ )
]
≤ 2−n[FY (VUXY Ỹ )−4δ],

(3.154)

2−n[FXY (VUXY X̃Ỹ )+4δ] ≤ E
[
NXY (X

MX × Y MY , VUXY X̃Ỹ )
]
≤ 2−n[FXY (VUXY X̃Ỹ )−4δ].

(3.155)
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We can obtain an upper bound for E
[
ΛXY (X

MX × Y MY , VUXY X̃Ỹ X̂Ŷ )
]
as follows

E
[
ΛXY (X

MX , Y MY , VUXY X̃Ỹ X̂Ŷ )
]

= E

 1

MXMY

∑
i,j

∑
k ̸=i
l ̸=j

∑
k′ ̸=i,k
l′ ̸=j,l

1TV
UXY X̃Ỹ X̂Ŷ

(u, Xi, Yj, Xk, Yl, Xk′ , Yl′)


≤ M2

XM
2
YE
[
1TVUXY

(u, X1, Y1)1TV
UXY X̃Ỹ X̂Ŷ

(u, X1, Y1, X2, Y2, X3, Y3)
]

= M2
XM

2
Y

∑
x,y,x̃,ỹ,x̂,ŷ

P(X1 = x, Y1 = y, X2 = x̃, Y2 = ỹ, X3 = x̂, Y3 = ŷ|u)

· 1TVUXY
(u,x,y).1TV

UXY X̃Ỹ X̂Ŷ
(u,x,y, x̃, ỹ, x̂, x̂)

= M2
XM

2
Y

∑
x,y

P(X1 = x|u)Pr(Y1 = y|u) · 1TVUXY
(u,x,y)

·
∑
x̃

P(X2 = x̃|u)1TV
UXY X̃

(u,x,y, x̃) ·
∑
ỹ

P(Y2 = ỹ|u)1TV
UXY X̃Ỹ

(u,x,y, x̃, ỹ)

·
∑
x̂

P(X3 = x̂|u)1TV
UXY X̃Ỹ X̂

(u,x,y, x̃, ỹ, x̂)

·
∑
ŷ

P(Y3 = ŷ|u)1TV
UXY X̃Ỹ X̂Ŷ

(u,x,y, x̃, ỹ, x̂, ŷ)

≤ M2
XM

2
Y

∑
x,y∈TVXY |U (u)

2−n[HV (X|U)−δ]2−n[HV (Y |U)−δ]
∑

x̃∈TV
X̃|UXY

(u,x,y)

2−n[HV (X̃|U)−δ]

·
∑

ỹ∈TV
Ỹ |UXY X̃

(u,x,y,x̃)

2−n[HV (Ỹ |U)−δ]
∑

x̂∈TV
X̂|UXY X̃Ỹ

(u,x,y,x̃,ỹ)

2−n[HV (X̂|U)−δ]

·
∑

ŷ∈TV
Ŷ |UXY X̃Ỹ X̂

(u,x,y, x̃, ỹ, x̂)2−n[HV (Ŷ |U)−δ]

≤ M2
XM

2
Y · 2nH(XY |U)2−n[HV (X|U)−δ]2−n[HV (Y |U)−δ]2nHV (X̃|UXY )2−n[HV (X̃|U)−δ]

· 2nHV (Ỹ |UXY X̃)2−n[HV (Ỹ |U)−δ]2nHV (X̂|UXY X̃Ỹ )2−n[HV (X̂|U)−δ]2nHV (Ŷ |UXY X̃Ỹ X̂)

· 2−n[HV (Ŷ |U)−δ]

≤ 2−n[I(X̃Ỹ ∧XY |U)+I(X̂Ŷ ∧XY X̃Ỹ |U)+I(X∧Y |U)+I(X̃∧Ỹ |U)+I(X̂∧Ŷ |U)−2RX−2RY −6δ]

= 2−n[EXY
S (VUXY X̃Ỹ X̂Ŷ )−6δ]. (3.156)
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By using a similar argument, we can obtain the following bounds

E
[
ΛX(X

MX × Y MY , VUXY X̃X̂)
]
≤ 2−n[EX

S (VUXY X̃X̂)−4δ] (3.157)

E
[
ΛY (X

MX × Y MY , VUXY Ỹ Ŷ )
]
≤ 2−n[EY

S (VUXY Ỹ Ŷ )−4δ] (3.158)

Here, EX
S , EY

S and EXY
S are defined in (3.61a)-(3.61c).

By using Markov inequality, it can be concluded that

P
(
NU(X

MX × Y MY , VUXY ) ≥ 2−n[FU (VUXY )−3δ] for some VUXY

)
≤

∑
VUXY :

VUX=PUX
VUY =PUY

E
(
NU(X

MX × Y MY , VUXY )
)

2−n[FU (VUXY )−3δ]
≤

∑
VUXY :

VUX=PUX
VUY =PUY

2−nδ ≤ 2−n δ
2 (3.159)

Similarly, it can be shown that

P
(
NX(X

MX × Y MY , VUXY X̃) ≥ 2−n[FX(VUXY X̃)−5δ] for some VUXY X̃

)
≤ 2−n δ

2 ,

(3.160)

P
(
NY (X

MX × Y MY , VUXY Ỹ ) ≥ 2−n[FY (VUXY Ỹ )−5δ] for some VUXY Ỹ

)
≤ 2−n δ

2 ,

(3.161)

P
(
NXY (X

MX × Y MY , VUXY X̃Ỹ ) ≥ 2−n[FXY (VUXY X̃Ỹ )−5δ] for some VUXY X̃Ỹ

)
≤ 2−n δ

2 .

(3.162)

Now, by combining (3.159)-(3.162), and using the union bound, it can be concluded

that

P
(
NU(X

MX × Y MY , VUXY ) ≥ 2−n[FU (VUXY )−3δ] for some VUXY or

NX(X
MX × Y MY , VUXY X̃) ≥ 2−n[FX(VUXY X̃)−5δ] for some VUXY X̃ or

NY (X
MX × Y MY , VUXY Ỹ ) ≥ 2−n[FY (VUXY Ỹ )−5δ] for some VUXY Ỹ or

NXY (X
MX × Y MY , VUXY X̃Ỹ ) ≥ 2−n[FXY (VUXY X̃Ỹ )−5δ] for some VUXY X̃Ỹ

)
≤ 4× 2−n δ

2 , (3.163)
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therefore, there exists at least a multi-user code with the desired properties mentioned

in (3.70)-(3.71).

Proof. (Lemma 3.2.2) To prove that a specific property holds for almost all codes,

with certain number of codewords, in the constant composition code ensemble, we use

a second order argument method. We already have obtained upper and lower bounds

on the expectation of the desired function over the entire ensemble. In the following,

we derive an upper bound on the variance of the packing function. Finally, by using

the Chebychev’s inequality, we prove that the desired property holds for almost all

codes in the ensemble. To find the variance of NU(X
MX × Y MY , VUXY ), let us define

Wij , 1TVUXY
(u, Xi, Yj). Therefore, the variance of NU(X

MX × Y MY , VUXY ) can be

written as

V ar
(
NU(X

MX × Y MY , VUXY )
)
= V ar

(
1

MXMY

∑
i,j

1TVUXY
(u, Xi, Yj)

)

=
1

M2
XM

2
Y

V ar

(∑
i,j

Wij

)
. (3.164)

Since Wij’s are pairwise independent random variables, (3.164) can be written as

V ar
(
NU(X

MX × Y MY , VUXY )
)
=

1

M2
XM

2
Y

∑
i,j

V ar (Wij)

≤ 1

M2
XM

2
Y

∑
i,j

E (Wij)

≤ 1

MXMY

· 2−n[FU (VUXY )−2δ] ≤ 2−n[FU (VUXY )+RX+RY −2δ].

(3.165)

By defining Qj
ik , 1TV

UXY X̃
(u, Xi, Yj, Xk), the variance of NX(X

MX × Y MY , VUXY X̃)

69



can be upper-bounded as follows

V ar
(
NX(X

MX × Y MY , VUXY X̃)
)
= V ar

(
1

MXMY

∑
i,j

∑
k ̸=i

1TV
UXY X̃

(u, Xi, Yj, Xk)

)

=
1

M2
XM

2
Y

V ar

(∑
i,j

∑
k ̸=i

1TV
UXY X̃

(u, Xi, Yj, Xk)

)

=
1

M2
XM

2
Y

V ar

(∑
j

∑
i

∑
k ̸=i

Qj
ik

)

=
1

M2
XM

2
Y

V ar

(∑
j

∑
i

∑
k<i

Qj
ik +Qj

ki

)

=
1

M2
XM

2
Y

V ar

(∑
j

∑
i

∑
k<i

J j
i,k

)
, (3.166)

where J j
i,k , Qj

ik + Qj
ki, k < i. One can show that J j

i,k’s are identically pairwise

independent random variables. Therefore, the V ar
(
NX(X

MX × Y MY , VUXY X̃)
)
can

be written as

V ar
(
NX(X

MX × Y MY , VUXY X̃)
)
=

1

M2
XM

2
Y

∑
j

∑
i

∑
k<i

V ar
(
J j
i,k

)
≤ 1

2MY

V ar
(
J1
2,1

)
.

(3.167)

To find the variance of J1
2,1, let us consider the following two cases for VUXY X̃ :

• VUXY X̃ is a symmetric distribution, i.e., VUXY X̃ = VUX̃Y X . In this case Q1
12 =

Q1
21, therefore,

J1
2,1 =

 2 with probability p ≈ 2−n[IV (X∧Y |U)+IV (X̃∧XY |U)]

0 with probability 1− p
,

and the variance is upper bounded by

V ar(J1
2,1) ≤ E(J1

2,1
2
) = 4× 2−n[IV (X∧Y |U)+IV (X̃∧XY |Y )], (3.168)

• VUXY X̃ is not a symmetric distribution. In this case, if Qj
ik = 1 ⇒ Qj

ki = 0.
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Therefore,

P
(
J1
2,1 = 1

)
= P

(
Q1

12 = 1 or Q1
21 = 1

)
= P

(
Q1

12 = 1
)
+ P

(
Q1

21 = 1
)

≤ 2× 2−n[IV (X∧Y |U)+IV (X̃∧XY |U)],

(3.169)

therefore,

V ar(J1
2,1) ≤ E(J1

2,1
2
) = 2× 2−n[IV (X∧Y |U)+IV (X̃∧XY |U)]. (3.170)

By combining the results in (3.167)-(3.169), it can be concluded that

V ar
(
NX(X

MX × Y MY , VUXY X̃

)
≤ 2−n[IV (X∧Y |U)+IV (X̃∧XY |U)+RY −3δ]. (3.171)

Similarly, it can be shown that

V ar
(
NY (X

MX × Y MY , VUXY Ỹ )
)
≤ 2−n[IV (X∧Y |U)+IV (Ỹ ∧Y X|U)+RX−3δ]. (3.172)

By definingRjl
ik , 1TV

UXY X̃
(u, Xi, Yj, Xk, Yl), the variance ofNXY (X

MX×Y MY , VUXY X̃Ỹ )
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can be upper-bounded as follows

V ar
(
NXY (X

MX × Y MY , VUXY X̃Ỹ )
)

= V ar

 1

MXMY

∑
i,j

∑
k ̸=i
l ̸=j

1TV
UXY X̃Ỹ

(u, Xi, Yj, Xk, Yl)



=
1

M2
XM

2
Y

V ar

∑
i,j

∑
k ̸=i
l ̸=j

1TV
UXY X̃Ỹ

(u, Xi, Yj, Xk, Yl)


=

1

M2
XM

2
Y

V ar

(∑
i

∑
j

∑
k ̸=i

∑
l ̸=j

Rjl
ik

)

=
1

M2
XM

2
Y

V ar

(∑
i

∑
j

∑
k<i

∑
l ̸=j

{
Rjl

ik +Rjl
ki +Rlj

ik +Rlj
ki

})

=
1

M2
XM

2
Y

V ar

(∑
i

∑
j

∑
k<i

∑
j<l

Sj,l
i,k

)
, (3.173)

where Sj,l
i,k , Rjl

ik + Rjl
ki + Rlj

ik + Rlj
ki, k < i, l < j. It is easy to check that Sj,l

i,k’s are

identically pairwise independent random variables. Therefore, the V ar (NXY (.)) can

be written as

V ar
(
NXY (X

MX × Y MY , VUXY X̃Ỹ )
)
=

1

M2
XM

2
Y

∑
i

∑
j

∑
k<i

∑
l<j

V ar
(
Sj,l
i,k

)
≤ 1

4
V ar

(
S1,2
1,2

)
. (3.174)

By using a similar argument to (3.168)-(3.169), the variance of To find the variance

of S1,2
1,2 ,can be upper bounded by

V ar
(
S1,2
1,2

)
≤ 16× 2−n[IV (X∧Y |U)+IV (X̃∧Ỹ |U)+IV (X̃Ỹ ∧XY |U)−4δ], (3.175)
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and therefore,

V ar
(
NXY (X

MX × Y MY , VUXY X̃Ỹ )
)
≤ 4× 2−n[IV (X∧Y |U)+IV (X̃∧Ỹ |U)+IV (X̃Ỹ ∧XY |U)−4δ].

(3.176)

Now, by using the Chebychev’s inequality, we can obtain the following

P
(∣∣NU(X

MX × Y MY , VUXY )− E
(
NU(X

MX × Y MY , VUXY )
)∣∣ ≥ 22nδ for some VUXY

)
≤
∑
VUXY

P
(∣∣NU(X

MX × Y MY , VUXY )− E
(
NU(X

MX × Y MY , VUXY )
)∣∣ ≥ 22nδ

)
≤
∑
VUXY

V ar
(
NU(X

MX × Y MY , VUXY )
)

24nδ

≤
∑
V

2−n[FU (V )+RX+RY +2δ] ≤ 2−nδ. (3.177)

Similarly, it can be shown that

P

 ∣∣NX(X
MX × Y MY , VUXY X̃)− ENX(X

MX × Y MY , VUXY X̃)
∣∣ ≥ 22nδ

for some VUXY X̃

 ≤ 2−nδ

(3.178)

P

 ∣∣NY (X
MX × Y MY , VUXY Ỹ )− ENY (X

MX × Y MY , VUXY Ỹ )
∣∣ ≥ 22nδ

for some VUXY Ỹ

 ≤ 2−nδ

(3.179)

P

 ∣∣NXY (X
MX × Y MY , VUXY X̃Ỹ )− ENXY (X

MX × Y MY , VUXY X̃Ỹ )
∣∣ ≥ 22nδ

for some VUXY X̃Ỹ

 ≤ 2−nδ

(3.180)

Now, by using the result of Lemma 3.2.1 and Markov’s inequality, it can be concluded
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that

P
(
ΛX(X

MX×MY , VUXY X̃X̂) ≥ 2−n(EX
S (VUXY X̃X̂)−5δ) for some VUXY X̃X̂

)
≤

∑
VUXY X̃X̂

P
(
ΛX(X

MX×MY , VUXY X̃X̂) ≥ 2−n(EX
S (VUXY Ỹ Ŷ )−5δ)

)
≤

∑
VUXY X̃X̂

E
(
ΛX(X

MX×MY , VUXY X̃X̂)
)

2−n(EX
S (VUXY X̃X̂)−5δ)

≤
∑

VUXY X̃Ỹ X̂Ŷ

2−nδ ≤ 2−n δ
2 .

(3.181)

Similarly,

P
(
ΛY (X

MX × Y MY , VUXY Ỹ Ŷ ) ≥ 2−n(EY
S (VUXY Ỹ Ŷ )−5δ) for some VUXY Ỹ Ŷ

)
≤ 2−n δ

2 ,

(3.182)

and

P

 ΛXY (X
MX × Y MY , VUXY X̃Ỹ X̂Ŷ ) ≥ 2−n(EXY

S (VUXY X̃Ỹ X̂Ŷ )−7δ)

for some VUXY X̃Ỹ X̂Ŷ

 ≤ 2−n δ
2 . (3.183)

Therefore, with probability > 1− 7× 2−n δ
2 , a code C = CX × CY from random code

ensemble satisfies the conditions given in the lemma.

Proof. (Lemma 3.2.3) Let Cr
X = {x1,x2, ...,xMX

} and Cr
Y = {y1,y2, ...,yMY

} be

the collections of codewords whose existence is asserted in Lemma 3.2.1. Let us define

Π(Cr
X × Cr

Y ) ,
∑

VUXY X̃Ỹ

{
NU(C

r
X × Cr

Y , VUXY )2
n[FU (VUXY )−6δ]

+NX(C
r
X × Cr

Y , VUXY X̃)2
n[FX(VUXY X̃)−6δ]

+NY (C
r
X × Cr

Y , VUXY Ỹ )2
n[FY (VUXY Ỹ )−6δ]

+NXY (C
r
X × Cr

Y , VUXY X̃Ỹ )2
n[FXY (VUXY X̃Ỹ )−6δ]

}
(3.184)

≤
∑

VUXY X̃Ỹ

4× 2−nδ <
1

2
(3.185)
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For Cr = Cr
X ×Cr

Y , and the sequence u defined in random coding packing lemma, we

define

LU(C
r, VUXY , i, j) , 1TVUXY

(u,xi,yj), (3.186)

LX(C
r, VUXY X̃ , i, j) ,

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk), (3.187)

LY (C
r, VUXY Ỹ , i, j) ,

∑
l ̸=j

1TV
UXY Ỹ

(u,xi,yj,yl), (3.188)

LXY (C
r, VUXY X̃Ỹ , i, j) ,

∑
k ̸=i

∑
l ̸=j

1TV
UXY X̃Ỹ

(u,xi,yj,xk,yl). (3.189)

By definition of Nα, (3.184) can be written as

Π(Cr) =
1

MX

MX∑
i=1

G(i), for α = U,X, Y,XY, (3.190)

where G(i) is defined as follows:

G(i) , 1

MY

MY∑
j=1

∑
VUXY X̃Ỹ

{
LU(C

r, VUXY , i, j)2
n[FU (VUXY )−6δ]

+LX(C
r, VUXY X̃ , i, j)2

n[FX(VUXY X̃)−6δ]

+LX(C
r, VUXY Ỹ , i, j)2

n[FY (VUXY Ỹ )−6δ]

+LXY (C
r, VUXY X̃Ỹ , i, j)2

n[FXY (VUXY X̃Ỹ )−6δ]
}
. (3.191)

By using (3.185), we see that the average of G(i) over Cr
X is upper bounded by 1

2
,

therefore, there must exist M̂X ≥ MX

2
codewords, xi ∈ Cr

X , for which

G(i) < 1. (3.192)

Let us call this set of codewords as Cex
X . Without loss of generality, we assume Cex

X

contains the first M̂X sequences of Cr
X , i.e., C

ex
X = {x1,x2, ...,xM̂X

}. Consider the
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multiuser code Cex
1 , Cex

X × CY . By definition of Lα, α = U,X, Y,XY ,

Lα(C
ex
1 , V, i, j) ≤ Lα(C

r, V, i, j) ∀ (xi.yj) ∈ Cex
1 . (3.193)

By combining (3.192) and (3.193), we conclude that for all i ∈ {1, 2, ..., M̂X}

1

MY

MY∑
j=1

∑
VUXY X̃Ỹ

{
LU(C

ex
1 , VUXY , i, j)2

n[FU (VUXY )−6δ]

+LX(C
ex
1 , VUXY X̃ , i, j)2

n[FX(VUXY X̃)−6δ]

+LX(C
ex
1 , VUXY Ỹ , i, j)2

n[FY (VUXY Ỹ )−6δ]

+LXY (C
ex
1 , VUXY X̃Ỹ , i, j)2

n[FXY (VUXY X̃Ỹ )−6δ]
}
< 1, (3.194)

which results in

MY∑
j=1

∑
VUXY X̃Ỹ

{
LU(C

ex
1 , VUXY , i, j)2

n[FU (VUXY )−RY −6δ]

+LX(C
ex
1 , VUXY X̃ , i, j)2

n[FX(VUXY X̃)−RY −6δ]

+LX(C
ex
1 , VUXY Ỹ , i, j)2

n[FY (VUXY Ỹ )−RY −6δ]

+LXY (C
ex
1 , VUXY X̃Ỹ , i, j)2

n[FXY (VUXY X̃Ỹ )−RY −6δ]
}
< 1. (3.195)

Since all terms in the summation are non-negative, we conclude that

Lα(C
ex
1 , V, i, j)2−n[Fα(V )−RY −6δ] < 1 (3.196)

for all i ∈ {1, 2, ..., M̂X}, j ∈ {1, 2, ...,MY }, all V ∈ P(U × X × Y × X × Y), and all

α = U,X, Y,XY . Therefore,

Lα(C
ex
1 , V, i, j) < 2−n[Fα(V )−RY −6δ]. (3.197)
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On the other hand, (3.185) can also be written as

Π(Cr) =
1

MY

MY∑
j=1

H(j), for α = U,X, Y,XY, (3.198)

where H(j) is defined as

H(j) , 1

MX

MX∑
i=1

∑
VUXY X̃Ỹ

{
LU(C

r, VUXY , i, j)2
n[FU (VUXY )−6δ]

+LX(C
r, VUXY X̃ , i, j)2

n[FX(VUXY X̃)−6δ]

+LX(C
r, VUXY Ỹ , i, j)2

n[FY (VUXY Ỹ )−6δ]

+LXY (C
r, VUXY X̃Ỹ , i, j)2

n[FXY (VUXY X̃Ỹ )−6δ]
}
. (3.199)

By a similar argument as we did before, we can show that there exist M̂Y ≥ MY

2

codewords, yj ∈ Cr
Y , for which

H(j) < 1. (3.200)

Let us call this set of codewords as Cex
Y . Without loss of generality, we assume Cex

Y

contains the first M̂Y sequences of Cr
Y , i.e., C

ex
Y = {y1,y2, ...,yM̂Y

}. Consider the

multiuser code Cex
2 , CX × Cex

Y . By definition of Lα, α = U,X, Y,XY , we have

Lα(C
ex
2 , V, i, j) ≤ Lα(C

r, V, i, j) ∀ (xi.yj) ∈ Cex
2 . (3.201)

By a similar argument as we did before, we can show that

Lα(C
ex
2 , V, i, j) < 2−n[Fα(V )−RX−6δ]. (3.202)

for all i ∈ {1, 2, ...,MX}, j ∈ {1, 2, ..., M̂Y }, all V ∈ P(U × X × Y × X × Y), and all

α = U,X, Y,XY .

By combining (3.197) and (3.202), we conclude that, there exists a multiuser code
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Cex = C∗
X × C∗

Y with M∗
X ×M∗

Y messages

M∗
X ≥ 2n(RX−δ)

2
, M∗

Y ≥ 2n(RY −δ)

2
, M∗

X ×M∗
Y ≥ 2n(RX+RY −2δ)

2
(3.203)

such that for any pair of messages (xi,yj) ∈ Cex, all V ∈ P(U × X × Y × X × Y),

and all α = U,X, Y,XY ,

Lα(C
ex, V, i, j) < 2−n[Fα(V )−min{RX ,RY }−6δ]. (3.204)

It is easy to check that

Π(Cex) ≤ 2× Π(Cr) < 1, (3.205)

therefore, Cex, satisfies all the constraints in (3.74a)-(3.74d).

Here, by method of expurgation, we end up with a code with a similar average

bound as we had for the original code. However, all pairs of codewords in the new

code also satisfy (3.75a)-(3.75d). Therefore, we did not lose anything in terms of

average performance, however, as we will see in Theorem 3.2.1, we would end up with

a tighter bound since we have more constraints on any particular pair of codewords

in our codebook pair.

Proof. (Theorem 3.2.1) Let us do random coding. Fix any U , PXY U ∈ Pn(X ×Y×

U) such that X − U − Y , RX ≥ 0, RY ≥ 0 , δ > 0, and u ∈ TPU
. Define MX , MY

such that

2n(RX−δ) ≤ MX ≤ 2nRX 2n(RY −δ) ≤ MY ≤ 2nRY

Let XMX ,
(
X1, X2, ..., XMX

)
and Y MY ,

(
Y1, Y2, ..., YMY

)
be independent random

variables, where Xis are uniformly distributed on TPX|U (u), and Yjs are uniformly

distributed on TPY |U (u).

Upper bound: By taking expectation over (3.57), applying Lemma 3.2.1, and using

the continuity of information measures, we get the desired upper bound.
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Lower bound: By taking expectation over (3.59), applying Lemma 3.2.1, we get

Ee(C,W ) ≥
∑

VUXY X̃Z
∈Vr

X,n

2−n(EL
X+4δ)

1− ∑
VUXY X̃X̂Z :

VUXY X̂Z=VUXY X̃Z

2−n(IV (X̂∧XY X̃Z|U)−Rx−7δ)



+
∑

VUXY Ỹ Z
∈Vr

Y,n

2−n(EL
Y +4δ)

1− ∑
VUXY Ỹ Ŷ Z :

VUXY Ŷ Z=VUXY Ỹ Z

2−n(IV (Ŷ ∧XY Ỹ Z|U)−RY −7δ)



+
∑

VUXY X̃Ỹ Z
∈Vr

XY,n

2−n(EL
XY +4δ)

1− ∑
VUXY X̃X̂Ỹ Ŷ Z :

VUXY X̂Ŷ Z=VUXY X̃Ỹ Z

2−n(IV (X̂Ŷ ∧XY X̃Ỹ Z|U)−RX−RY −7δ)


(3.206)

Toward further simplification of this expression, we use the following lemma.

Lemma 3.4.3.

min
VUXY X̃X̂Z :

VUXY X̂Z=VUXY X̃Z

IV (X̂ ∧XY X̃Z|U) = IV (X̃ ∧XY Z|U) (3.207)

Proof. Note that, for any VUXY X̃X̂Z ,

IV (X̂ ∧XY X̃Z|U) = IV (X̂ ∧XY Z|U) + IV (X̃ ∧ X̂|UXY Z), (3.208)

therefore,

min
VUXY X̃X̂Z :

VUXY X̂Z=VUXY X̃Z

IV (X̂ ∧XY X̃Z|U) ≥ IV (X̂ ∧XY Z|U) = IV (X̃ ∧XY Z|U).

(3.209)
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Now, consider V ∗
UXX̃X̂Y Z

defined as

V ∗
UXY X̃X̂Z

(u, x, y, x̃, x̂, z) = VX̃|UXY Z(x̃|u, x, y, z)VX̃|UXY Z(x̂|u, x, y, z)VUXY Z(u, x, y, z).

(3.210)

Note that V ∗
UXX̂Y Z

= V ∗
UXX̃Y Z

, and X̃ − (U,X, Y, Z)− X̂. Therefore,

IV ∗(X̂ ∧XY X̃Z|U) = IV (X̂ ∧XY Z|U) = IV (X̃ ∧XY Z|U). (3.211)

By combining (3.209) and (3.211), the proof is complete.

Using the above lemma, the average probability of error can be bounded from

below as

P̄e ≥
∑

VUXY X̃Z∈Vr
X,n

I(X̃∧XY Z|U)>RX+12δ

2−nEL
X +

∑
VUXY Ỹ Z∈Vr

Y,n

I(Ỹ ∧XY Z|U)>RY +12δ

2−nEL
Y

+
∑

VUXY X̃Ỹ Z∈Vr
XY,n

IV (X̃Ỹ ∧XY |U)+IV (X̃∧Ỹ |U)>
RX+RY +14δ

2−nEL
XY (3.212)

Using the continuity argument, the lower bound on the average error probability

follows.

Proof. (Theorem 3.2.2) As was done in Theorem 3.1.1 for the point-to-point case,

here, we will obtain higher error exponents for almost all codes by removing certain

types from the constraint sets Vr
X , Vr

Y and Vr
XY . Let us define the sets of n-types V t

X ,
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V t
X and V t

XY as follows:

V t
X,n ,


VUXY X̃ : VXU = VX̃U = PXU , VY U = PY U

FU(VUXY ), FU(VUX̃Y ) ≤ RX +RY

FX(VUXY X̃) ≤ RX +RY

 (3.213)

V t
Y,n ,


VUXY Ỹ : VXU = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUXỸ ) ≤ RX +RY

FY (VUXY Ỹ ) ≤ RX +RY

 (3.214)

V t
XY,n ,

 VUXY X̃Ỹ : VUXY X̃ , VUXỸ X̃ ∈ V t
X , VUXY Ỹ , VUX̃Y Ỹ ∈ V t

Y

FXY (VUXY X̃Ỹ ), FXY (VUX̃Y XỸ ) ≤ RX +RY

 (3.215)

Lemma 3.4.4. Let C = CX × CY be one of the multiuser codes whose existence is

asserted in the Typical random coding packing lemma. The following hold:

If VUXY X̃ ∈ (V t
X,n)

c ⇒ NX(C, VUXY X̃) = 0, (3.216)

If VUXY Ỹ ∈ (V t
Y,n)

c ⇒ NY (C, VUXY Ỹ ) = 0, (3.217)

If VUXY X̃Ỹ ∈ (V t
XY,n)

c ⇒ NXY (C, VUXY X̃Ỹ ) = 0. (3.218)

Proof. Consider VUXY X̃ ∈ (V t
X,n)

c. If VXU ̸= PXU or VX̃U ̸= PXU or VY U ̸= PY U , it is

clear that

NX(C, VUXY X̃) = 0. (3.219)

Now, let us assume FU(VUXY ) > RX + RY + 3δ. In this case, by using (3.72a), we

conclude that

NU(C, VUXY ) < 2−n(RX+RY ) ⇒
MX∑
i=1

MY∑
j=1

1TVUXY
(u,xi,yj) < 1

⇒
MX∑
i=1

MY∑
j=1

1TVUXY
(u,xi,yj) = 0, (3.220)
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and as a result, NU(C, VUXY ) = 0. Now, note that

NX(C, VUXY X̃) =
1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk)

≤ 1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

1TVUXY
(u,xi,yj)

= 2nRXNU(C, VUXY ) = 0, (3.221)

therefore, NX(C, VUXY X̃) = 0. Similarly, if FU(VUX̃Y ) > RX +RY + 3δ,

NU(C, VUX̃Y ) < 2−n(RX+RY ) ⇒
MX∑
i=1

MY∑
j=1

1TV
UX̃Y

(u,xi,yj) < 1

⇒
MX∑
i=1

MY∑
j=1

1TV
UX̃Y

(u,xi,yj) = 0, (3.222)

and as a result, NU(CX , CY , VUX̃Y ) = 0. Also, note that

NX(C, VUXY X̃) =
1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

1TV
UXY X̃

(u,xi,yj,xk)

≤ 1

MXMY

MX∑
i=1

MY∑
j=1

∑
k ̸=i

1TV
UX̃Y

(u,xk,yj) = 0, (3.223)

therefore, NX(C, VUXY X̃) = 0. If FX(VUXY X̃) > RX +RY +5δ, by the property of the

code derived in Lemma 3.2.2, we observe that NX(CX , CY , VUXY X̃) = 0. Similarly,

by doing a similar argument, it can be concluded that

If VUXY Ỹ ∈ (V t
Y,n)

c ⇒ NY (C, VUXY Ỹ ) = 0, (3.224)

and

If VUXY X̃Ỹ ∈ (V t
XY,n)

c ⇒ NXY (C, VUXY X̃Ỹ ) = 0. (3.225)
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Upper bound: We will follow the techniques used in Theorem 3.2.1 to provide lower

and upper bounds on the average probability of error of almost all codes in the random

coding ensemble. For this, we will use the results of Lemma 3.2.3. Consider any

typical two-user code C = CX ×CY whose existence was established in Lemma 3.2.2.

Applying (3.57) on C, and using the continuity argument, we conclude that

e(C,W ) ≤
∑

VUXY X̃Z∈Vr
X,n∩V

t
X,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)+|IV (X̃∧XY Z|U)−RX |+−5δ]

+
∑

VUXY Ỹ Z∈Vr
Y,n∩V

t
Y,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)+|IV (Ỹ ∧XY Z|U)−RY |+−5δ]

+
∑

VUXY X̃Ỹ Z

∈Vr
XY,n∩V

t
XY,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)+|IV (X̃∧Ỹ |U)+IV (X̃Ỹ ∧XY Z|U)−RX−RY |+−5δ]

≤ 2−n[ET (RX ,RY ,W,PUXY )−6δ] (3.226)

whenever n ≥ n1(|Z|, |X |, |Y|, |U|, δ), where ET (RX , RY ,W, PXY U) is defined in the

statement of the theorem.

Lower bound: In the following, we obtain a lower bound on the average error

probability of code C = CX ×CY . Applying (3.59) on C, then using (a) Lemma 3.2.2

and (b) the fact that for V /∈ V t
X,n, we have AX

i,j ≥ 0, and similar such facts about
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AY and AXY , we get

e(C,W ) ≥
∑

VUXY X̃Z

∈Vr
X,n∩V

t
X,n

2−n(EL
X+4δ)

∣∣∣∣∣∣∣∣1−
∑

VUXY X̃X̂Z :
VUXY X̂Z=VUXY X̃Z

2−n(IV (X̂∧XY X̃Z|U)−Rx−7δ)

∣∣∣∣∣∣∣∣
+

+
∑

VUXY Ỹ Z

∈Vr
Y,n∩V

t
Y,n

2−n(EL
Y +4δ)

∣∣∣∣∣∣∣∣1−
∑

VUXY Ỹ Ŷ Z :
VUXY Ŷ Z=VUXY Ỹ Z

2−n(IV (Ŷ ∧XY Ỹ Z|U)−RY −7δ)

∣∣∣∣∣∣∣∣
+

+
∑

VUXY X̃Ỹ Z

∈Vr
XY,n∩V

t
XY,n

2−n(EL
XY +4δ)

∣∣∣∣∣∣∣∣1−
∑

VUXY X̃X̂Ỹ Ŷ Z :
VUXY X̂Ŷ Z=VUXY X̃Ỹ Z

2−n(IV (X̂Ŷ ∧XY X̃Ỹ Z|U)−RX−RY −7δ)

∣∣∣∣∣∣∣∣
+

(3.227)

This expression can be simplified as follows.

e(C,W ) ≥
∑

VUXY X̃Z∈Vr
X,n∩V

t
X,n

I(X̃∧XY Z|U)>RX+12δ

2−nEL
X +

∑
VUXY Ỹ Z∈Vr

Y,n∩V
t
Y,n

I(Ỹ ∧XY Z|U)>RY +12δ

2−nEL
Y

+
∑

VUXY X̃Ỹ Z∈Vr
XY,n∩V

t
XY,n

IV (X̃Ỹ ∧XY |U)+IV (X̃∧Ỹ |U)>RX+RY +14δ

2−nEL
XY (3.228)

Using the continuity argument, the lower bound on the average error probability

follows.

Proof. (Theorem 3.2.3) Fix U , PXY U ∈ Pn(X ×Y ×U) with X −U − Y , RX ≥ 0,

RY ≥ 0, δ > 0, and u ∈ TPU
. Let C∗ = C∗

X×C∗
Y be the multiuser code whose existence

is asserted in Lemma 3.2.3. Taking into account the given u, the α-decoding yields

the decoding sets

Dij = {z : α(u,xi,yj, z) ≤ α(u,xk,yl, z) for all (k, l) ̸= (i, j)}.
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Let us define the collection of n-types Vx
X,n, Vx

Y,n and Vx
XY,n as follows:

Vx
X,n ,


VUXY X̃ : VXU = VX̃U = PXU , VY U = PY U

FU(VUXY ), FU(VUX̃Y ) ≤ min{RX , RY }

FX(VUXY X̃) ≤ min{RX , RY }

 (3.229)

Vx
Y,n ,


VUXY Ỹ : VXU = PXU , VY U = VỸ U = PY U

FU(VUXY ), FU(VUXỸ ) ≤ min{RX , RY }

FY (VUXY Ỹ ) ≤ min{RX , RY }

 (3.230)

Vx
XY,n ,

 VUXY X̃Ỹ : VUXY X̃ , VUXỸ X̃ ∈ Vx
X , VUXY Ỹ , VUX̃Y Ỹ ∈ Vx

Y

FXY (VUXY X̃Ỹ ), FXY (VUX̃Y XỸ ) ≤ min{RX , RY }

 (3.231)

Lemma 3.4.5. For the multiuser code C∗ = C∗
X × C∗

Y , the following holds:

If VUXY X̃ ∈ (Vx
X,n)

c ⇒ NX(C
∗, VUXY X̃) = 0, (3.232)

If VUXY Ỹ ∈ (Vx
Y,n)

c ⇒ NY (C
∗, VUXY Ỹ ) = 0, (3.233)

If VUXY X̃Ỹ ∈ (Vx
XY,n)

c ⇒ NXY (C
∗, VUXY X̃Ỹ ) = 0. (3.234)

Proof. The proof is very similar to the proof of lemma 3.4.4.

The average error probability of C∗ can be obtained as follows in a similar way

that used in the proof of Theorem 3.2.1 and Theorem 3.2.2.

e(C∗,W ) ≤
∑

VUXY X̃Z∈Vr
X,n∩V

x
X,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)−3δ]

+
∑

VUXY Ỹ Z∈Vr
Y,n∩V

x
Y,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)−3δ]

+
∑

VUXY X̃Ỹ Z
∈Vr

XY,n∩V
x
XY,n

2−n[D(VZ|XY U ||W |VXY U )+IV (X∧Y |U)−3δ]. (3.235)

Now using the continuity argument the statement of the theorem follows.
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Proof. (Theorem 3.2.4) For any VUXY X̃Z ∈ Vr
X ,

HV (XY |ZU) ≥ HV (X̃Y |ZU), (3.236)

therefore, by subtracting HV (Y |ZU) form both sides of (3.236), we can conclude that

HV (X|U)− IV (X ∧ Y Z|U) ≥ HV (X̃|U)− IV (X̃ ∧ Y Z|U), (3.237)

Since VXU = VX̃U = PXU , the last inequality is equivalent to

IV (X ∧ Y Z|U) ≤ IV (X̃ ∧ Y Z|U). (3.238)

Since IV (X̃ ∧XY Z|U) ≥ IV (X̃ ∧ Y Z|U), it can be seen that for any VUXY X̃Z ∈ Vr
X

IV (X̃ ∧XY Z|U) ≥ IV (X ∧ Y Z|U). (3.239)

Moreover, since

Vr
X ⊆ {VUXY X̃Z : VUXY Z ∈ V(PUXY )} (3.240)

it can be easily concluded that

Er
X(RX , RY ,W, PXY U) ≥ ELiu

rX (RX , RY ,W, PXY U).

Similarly, for any VUXY Ỹ Z ∈ Vr
Y ,

HV (XY |ZU) ≥ HV (XỸ |ZU). (3.241)

By using the fact that, VY U = VỸ U = PY U , it can be concluded that

IV (Ỹ ∧XY Z|U) ≥ IV (Y ∧XZ|U). (3.242)

86



Since

Vr
Y ⊆ {VUXY Ỹ Z : VUXY Z ∈ V(PUXY )} , (3.243)

we conclude that

Er
Y (RX , RY ,W, PXY U) ≥ ELiu

rY (RX , RY ,W, PXY U). (3.244)

Similarly, we can conclude that, for any VUXY X̃Ỹ Z ∈ Vr
XY ,

IV (X̃Ỹ ∧XY Z|U) + I(X̃ ∧ Ỹ |U) ≥ IV (XY ∧ Z|U) + I(X ∧ Y |U). (3.245)

Since

Vr
XY ⊆ {VUXY X̃Ỹ Z : VUXY Z ∈ V(PUXY )} , (3.246)

it can be concluded that

Er
XY (RX , RY ,W, PXY U) ≥ ELiu

rXY (RX , RY ,W, PXY U). (3.247)

By combining (3.4.2), (3.244) and (3.247), we conclude that (3.90a) holds. Similarly,

we can prove that (3.90b) and (3.90c) hold.
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CHAPTER 4

Typicality Graphs and Their Properties

The concept of typicality and typical sequences is central to information theory.

It has been used to develop computable performance limits for several communication

problems. In studying the performance of channel block codes for discrete memoryless

channels, it is observed that the composition of the codewords play a crucial role. In

particular, to obtain upper and lower bounds on the reliability of the channel, the

method of types not only simplifies the derivation of the bounds but also provides

us more with intuition about the system. In the study of an arbitrary channel, it

has been shown that it is sufficient to study constant composition codes, the codes

for which all codewords have a similar composition. The idea behind the method

of types is to partition the codewords of an arbitrary code into classes according to

their composition. The error event is then partitioned into its intersections with these

type classes, and the error probability can be obtained by adding up the probabilities

of these intersections. In [16], it is shown that the number of type classes grows

polynomially as a function of the blocklength, implying that the error probability has

the same exponential asymptotics as the largest one among the probabilities of these

intersections. In other words, one of the types plays a crucial role in determining

the performance of the code. Note that to obtain an upper bound on the reliability

function of the channel, we need to study the performance of the best code. It

is observed that for the best code, the composition which dominates the error event

must be a dominant type of the code. Otherwise, one can eliminate all codewords with
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this particular composition, and the resulting code, which has the same transmission

rate, outperforms the best code, which causes a contradiction. Therefore, to obtain an

upper bound on the reliability function of a DMC, we need to study the compositions

that can be a dominant type of the best code. In particular, we need to answer

the following question: “At a fixed transmission rate, R, which composition is the

dominant type of the best code?,” or as a more general question, one might ask “At a

fixed transmission rate, R, which compositions can potentially be the dominant type

of an arbitrary code?”. For single user codes, the answer to this question is straight

forward, and it is clear that as long as the number of sequences of type P is larger

than the number of codewords in the code, P can be a dominant type of the code.

Therefore, P could be a dominant type of a code of rate R, if and only if H(P ) ≥ R.

Now, consider any (n,MX ,MY ) code C. Suppose all the messages of any source

are equiprobable and the sources are sending data independently. Assuming these

conditions, all MXMY pairs are occuring with the same probability. Thus, at the

input of the channel, all possible MXMY (an exponentially increasing function of n)

pairs of input sequences can be observed. However, we also know that the number of

possible joint types on X ×Y is a polynomial function of n of degree at most equal to

|X ||Y| [16]. Thus, for at least one joint type, the number of pairs of sequences in the

multi user code, sharing that particular type, should be an exponential function of n

with the rate almost equal to the rate of the multi user code, C. We call the subcode

consisting of these pairs of sequences as a dominant subcode of C. As a result, we

obtain:

Fact 4.0.1. Fix any δ > 0, n ≥ n1(|X |, |Y|, |Z|, δ). For any multi user code, C, with

parameters (n, 2nRX ,2nRY ), there exists a joint composition PXY ∈ Pn(X × Y) such

that

R(C,PXY ) ≥ RX +RY − 3δ, (4.1)

where R(C,PXY ) is defined in (5.1). Any joint composition satisfying (4.1) is called

a dominant joint type of C.
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Hence, for any multi-user code, there must exist at least one joint type which

dominates the codebook. The dominant type of the best code plays a crucial role in

determining its performance. Therefore, to obtain an upper bound on the reliability

function of a DM-MAC, we need to characterize the possible dominant joint compo-

sitions of multi-user codes at certain transmission rate pair. In particular, we can ask

the following question: “For a multiuser code, with rate pair (RX , RY ), which joint

types can be its dominant type?” As shown in chapter 5, the answer to this question

helps us to characterize tighter upper bounds on the error exponent of multiple access

channels.

Consider a pair of correlated discrete memoryless information sources X and Y

characterized by a generic joint distribution pXY defined on the product of two finite

sets X × Y . A length n X-sequence xn is typical if the empirical histogram of xn is

close to pX . A pair of length n sequences (xn, yn) ∈ X n × Yn is said to be jointly

typical if the empirical joint histogram of (xn, yn) is close to the joint distribution

pXY . The set of all jointly typical sequence pairs is called the typical set of pXY .

Given a sequence length n, the typical set can be represented in terms of the

following undirected, bipartite graph. The left vertices of the graph are all the typical

X-sequences, and the right vertices are all the typical Y -sequences. In according

with the properties of typical sets, there are (approximately) 2nH(X) left vertices and

2nH(Y ) right vertices. A left vertex is connected to a right vertex through an edge

if the corresponding X and Y -sequences are jointly typical. From the properties of

joint typicality, we know that the number of edges in this graph is roughly 2nH(X,Y ).

Additionally, every left vertex (a typical X-sequence) has degree roughly equal to

2nH(Y |X), i.e., it is jointly typical with 2nH(Y |X) Y -sequences. Similarly, each right

vertex has degree roughly equal to 2nH(X|Y ).

In this chapter, we formally characterize the typicality graph and look at some

subgraph containment problems. In particular, we answer three questions concerning

the typicality graph:

• When can we find subgraphs such that the left and right vertices of the subgraph

90



have specified degrees, say R′
X and R′

Y , respectively ?

• What is the maximum size of subgraphs that are complete, i.e., every left vertex

is connected to every right vertex? One of the main contributions of this chapter

is providing a sharp answer to this question.

• If we create a subgraph by randomly picking a specified number of left and

right vertices, what is the probability that this subgraph has far fewer edges

than expected?

These questions arise in a variety of multiuser communication problems. Trans-

mitting correlated information over a multiple-access channel (MAC) [42] and commu-

nicating over a MAC with feedback [48], are two problems in which the first question

plays an important role. The techniques used to answer the second question will be

applied in the following chapter to develop tighter upper bounds on the error ex-

ponents of discrete memoryless multiple-access channels. The third question arises

within the context of transmitting correlated information over a broadcast channel

[11]. Moreover, the evaluation of performance limits of a multiuser communication

problem can be thought of as characterizing certain properties of typicality graphs of

random variables associated with the problem.

4.1 Preliminaries

In this section, we provide a concise review of some of the results available in the

literature on typical sequences, δ-typical sets and their properties [16].

Definition 4.1.1. A sequence xn ∈ X n is X-typical with constant δ if

1.
∣∣ 1
n
N(a|xn)− PX(a)

∣∣ ≤ δ, ∀a ∈ X

2. No a ∈ X with PX(a) = 0 occurs in xn.

The set of such sequences is denoted by T n
δ (PX) or T

n
δ (X), when the distribution being

used is unambiguous.
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Definition 4.1.2. Given a conditional distribution PY |X , a sequence yn ∈ Yn is

conditionally PY |X-typical with xn ∈ X n with constant δ if

1.
∣∣ 1
n
N(a, b|xn, yn)− 1

n
N(a|xn)PY |X(b|a)

∣∣ ≤ δ, ∀a ∈ X , b ∈ Y .

2. N(a, b|xn, yn) = 0 whenever PY |X(b|a) = 0.

The set of such sequences is denoted T n
δ (PY |X |xn) or T n

δ (Y |xn), when the distribution

being used is unambiguous.

We will repeatedly use the following results, which we state below as facts:

Fact 4.1.1. [16, Lemma 2.10]

(a) If xn ∈ T n
δ (X) and yn ∈ T n

δ′(Y |xn), then (xn, yn) ∈ T n
δ+δ′(X,Y ) and yn ∈

T n
(δ+δ′)|X |(Y ). 1

(b) If xn ∈ T n
δ (X) and (xn, yn) ∈ T n

ϵ (X, Y ), then yn ∈ T n
δ+ϵ(Y |xn).

Fact 4.1.2. [16, Lemma 2.13] 2: There exists a sequence ϵn → 0 depending only on

|X | and |Y| such that for every joint distribution PX · PY |X on X × Y,

∣∣∣∣ 1n log |T n(X)| −H(X)

∣∣∣∣ ≤ ϵn∣∣∣∣ 1n log |T n(Y |xn)| −H(Y |X)

∣∣∣∣ ≤ ϵn, ∀xn ∈ T n(X).

(4.2)

The next fact deals with the continuity of entropy with respect to probability

distributions.

Fact 4.1.3. [16, Lemma 2.7] If P and Q are two distributions on X such that

∑
x∈X

|P (x)−Q(x)| ≤ ϵ ≤ 1

2
(4.3)

then

|H(P )−H(Q)| ≤ −ϵ log
ϵ

|X |
(4.4)

1The typical sets are with respect to distributions PX , PY |X and PXY , respectively.
2The constants of the typical sets for each n, when suppressed, are understood to be some δn

with δn → 0 and
√
n · δn → ∞ (delta convention).
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4.2 Typicality graphs

Definition 4.2.1. For any any joint distribution PX · PY |X on X ,×Y, and any

ϵ1n, ϵ2n, λn → 0, the sequence of typicality graphs Gn(ϵ1n, ϵ2n, λn) is defined as follows:

for every n, Gn is a bipartite graph, with its left vertices consisting of all xn ∈ T n
ϵ1n

(X)

and the right vertices consisting of all yn ∈ T n
ϵ2n

(Y ). A vertex on the left (say x̃n) is

connected to a vertex on the right (say ỹn) iff (x̃n, ỹn) ∈ T n
λn
(X, Y ).

Remark 4.2.1. Henceforth, we will assume that the sequences ϵ1n, ϵ2n, λn satisfy the

‘delta convention’ [16, Convention 2.11], i.e.,

ϵ1n → 0,
√
n · ϵ1n → ∞ as n → ∞

with similar conditions for ϵ2n and λn as well. The delta convention ensures that the

typical sets have ‘large probability’.

We will use the notation VX(.), VY (.) to denote the vertex sets of any bipartite

graph. Some properties of the typicality graph are:

1. From Fact 4.1.2, we know that for any sequence of typicality graphs {Gn}, the

cardinality of the vertex sets satisfies∣∣∣∣ 1n log |VX(Gn)| −H(X)

∣∣∣∣ ≤ ϵn,

∣∣∣∣1n log |VY (Gn)| −H(Y )

∣∣∣∣ ≤ ϵn (4.5)

for some sequence ϵn → 0.

2. The degree of each each vertex i ∈ VX(Gn) and j ∈ VY (Gn) satisfies

degree(xn) ≤ 2n(H(Y |X)+ϵn), ∀xn ∈ VX(Gn)

degree(yn) ≤ 2n(H(X|Y )+ϵn), ∀yn ∈ VY (Gn) (4.6)

for some ϵn → 0.

The second property gives upper bounds on the degree of each vertex in the typicality

graph. Since, we have not imposed any relationships between the typicality constants
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ϵ1n, ϵ2n and λn, in general, it cannot be assumed that the degree of every X-vertex

(resp. Y -vertex) is close to 2nH(Y |X) (resp. 2nH(X|Y )). However, such an assertion

holds for almost every vertex in Gn . Specifically, we can show that the above degree

conditions hold for a subgraph with exponentially the same size as Gn.

Theorem 4.2.1. Every sequence of typicality graphs Gn(ϵ1n, ϵ2n, λn) has a sequence

of subgraphs An(ϵ1n, ϵ2n, λn) satisfying the following properties for some δn → 0.

1. The vertex set sizes |VX(An)| and |VY (An)|, denoted θnX and θnY , respectively,

satisfy ∣∣∣∣ 1n log θnX −H(X)

∣∣∣∣ ≤ δn,

∣∣∣∣ 1n log θnY −H(Y )

∣∣∣∣ ≤ δn ∀n

2. The degree of each X-vertex xn, denoted θ
′n(xn) satisfies∣∣∣∣1n log θ

′n(xn)−H(Y |X)

∣∣∣∣ ≤ δn ∀xn ∈ VX(An).

3. The degree of each Y -vertex yn, denoted θ
′n(yn), satisfies∣∣∣∣ 1n log θ

′n(yn)−H(X|Y )

∣∣∣∣ ≤ δn ∀yn ∈ VY (An).

Proof. The proof is provided in section 4.4

4.3 Sub-graphs contained in typicality graphs

In this section, we study the subgraphs contained in a sequence of typicality

graphs.

4.3.1 Subgraphs of general degree

Definition 4.3.1. A sequence of typicality graphs Gn(ϵ1n, ϵ2n, λn) is said to contain

a sequence of subgraphs Γn of rates (RX , RY , R
′
X , R

′
Y ) if for each n, there exists a

sequence δn → 0 such that
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1. The vertex sets of the subgraphs have sizes (denoted ∆n
X and ∆n

Y ) that satisfy∣∣∣∣1n log∆n
X −RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1n log∆n
Y −RY

∣∣∣∣ ≤ δn, ∀n. (4.7)

2. The degree of each vertex xn in VX(Γn), denoted ∆
′n(xn) satisfies∣∣∣∣ 1n log∆

′n(xn)−R′
Y

∣∣∣∣ ≤ δn, ∀xn ∈ VX(Γn), ∀n. (4.8)

3. The degree of each vertex yn in the VY (Γn), denoted ∆
′n(yn) satisfies∣∣∣∣1n log∆

′n(yn)−R′
X

∣∣∣∣ ≤ δn, ∀yn ∈ VY (Γn), ∀n. (4.9)

The following theorem gives a characterization of the rate-tuple of a sequence of

subgraphs in the sequence of typicality graphs of PXY .

Theorem 4.3.1. Let Gn(ϵ1n, ϵ2n, λn) be a sequence of typicality graphs of PXY . Define

R , {(RX , RY , R
′
X , R

′
Y ) : Gn contains subgraphs of rates (RX , RY , R

′
X , R

′
Y )}

(4.10)

Then,

R ⊇

(RX , RY , R
′
X , R

′
Y ) :

RX +R′
Y = RY +R′

X ,

RX ≤ H(X|U), RY ≤ H(Y |U), R′
X ≤ H(X|Y U),

R′
Y ≤ H(Y |XU) for some PU |XY

 .

(4.11)

Proof. The proof is provided in Section 4.4.

4.3.2 Nearly complete subgraphs

A complete bipartite graph is one in which each vertex of the first set is connected

with every vertex on the other set. We next consider a specific class of subgraphs,
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namely nearly complete subgraphs. For this class of subgraphs, we have a converse

result that fully characterizes the set of nearly complete subgraphs present in any

typicality graph.

Definition 4.3.2. A sequence of typicality graphs Gn(ϵ1n, ϵ2n, λn) is said to contain

a sequence of nearly complete subgraphs Γn(ϵ1n, ϵ2n, λn) of rates (RX , RY ) if for each

n, there exists a sequence δn → 0 such that

1. The sizes of the vertex sets of the subgraphs, denoted ∆n
X and ∆n

Y , satisfy∣∣∣∣1n log∆n
X −RX

∣∣∣∣ ≤ δn,

∣∣∣∣ 1n log∆n
Y −RY

∣∣∣∣ ≤ δn, ∀n. (4.12)

2. The degree of each vertex xn in the X-set, denoted ∆
′n(xn) satisfies

1

n
log∆

′n(xn) ≥ RY − δn, ∀xn ∈ VX(Γn), ∀n. (4.13)

3. The degree of each vertex yn in the Y -set, denoted ∆
′n(xn) satisfies

1

n
log∆

′n(yn) ≥ RX − δn, ∀yn ∈ VY (Γn), ∀n. (4.14)

Theorem 4.3.2. Let Gn(ϵ1n, ϵ2n, λn) be a sequence of typicality graphs for PXY . De-

fine

R ,

(RX , RY ) :
Gn(ϵ1n, ϵ2n, λn) contains nearly complete subgraphs

of rates (RX , RY )

 , (4.15)

Then,

R ⊇ {(RX , RY ) : RX ≤ H(X|U), RY ≤ H(Y |U) for some PU |XY s.t. X − U − Y }, 3

(4.16)

and for all sequences of nearly complete subgraphs of Gn such that the sequence δn

(in Definition 4.3.2) converges to 0 faster than 1/ log n (more precisely, δn = o( 1
logn

)

3X,U, Y form a Markov chain, in that order.
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or limn→∞ δn log n = 0), the rates of the subgraph (RX , RY ) satisfy

RX ≤ H(X|U), RY ≤ H(Y |U) for some PU |XY s.t. X − U − Y

Proof. The proof is provided in Section 4.4.

4.3.3 Nearly Empty Subgraphs

So far, we have discussed properties of subgraphs of the typicality graph Gn such

as the containment of nearly complete subgraphs and subgraphs of general degree.

Now, we turn our attention to the presence of nearly empty subgraphs in the typicality

graph. Our approach towards this problem differs slightly from the approach we took

in Sections 4.3.1 and 4.3.2. While in previous sections we characterized the subgraphs

based on the degrees of their vertices, in this section we characterize nearly empty

subgraphs by the total number of edges present in such graphs. In this section, we

take a different approach than the one used in previous sections and analyze the

probability that a randomly chosen subgraph of the typicality graph has far fewer

edges than expected. In particular, we focus on the case of a random subgraph with

no edges.

Consider a pair (X, Y ) of discrete memoryless stationary correlated sources with

finite alphabets X and Y respectively. Suppose we sample 2nR1 sequences from

the typical set of X, T n
ϵ1n

(X), independently with replacement and similarly sam-

ple 2nR2 sequences from the typical set of Y , T n
ϵ2n

(Y ). The underlying typicality

graph Gn(ϵ1n, ϵ2n, λn) induces a bipartite graph on these 2nR1 + 2nR2 sequences. We

provide a characterization of the probability that this graph is sparser than expected.

This characterization is obtained using a version of Suen’s inequalities [34] and the

Lovasz local lemma [7] listed below.

Lemma 4.3.1. [34] Let Ii ∈ Be(pi), i ∈ I be a family of Bernoulli random variables.

Their dependency graph L is formed in the following manner. Denote the random

variable Ii by a vertex i and join vertices i and j by an edge if the corresponding ran-
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dom variables are dependent. Let X =
∑

i E(Ii) and Γ = E(X) =
∑

i pi. Moreover,

write i ∼ j if (i, j) is an edge in the dependency graph L and let Θ = 1
2

∑
i

∑
j∼i E(IiIj)

and θ = maxi
∑

j∼i pj. Then, Suen’s inequalities state that for any 0 ≤ a ≤ 1,

P (X ≤ aΓ) ≤ exp

{
−min

(
(1− a)2

Γ2

8Θ + 2Γ
, (1− a)

Γ

6θ

)}
(4.17)

Putting a = 0, this can be further tightened to

P (X = 0) ≤ exp

{
−min

(
Γ2

8Θ
,
Γ

2
,
Γ

6θ

)}
(4.18)

Lemma 4.3.2. [7] Let L be the dependency graph for events ε1, . . . , εn in a probability

space and let E(L) be the edge set of L. Suppose there exists xi ∈ [0, 1], 1 ≤ i ≤ n

such that

P (εi) ≤ xi

∏
(i,j)∈E(L)

(1− xj). (4.19)

Then, we have

P (∩n
i=1εi) ≥

n∏
i=1

(1− xi). (4.20)

Another version of the local lemma is as given below. Let ϕ(x), 0 ≤ x ≤ e−1 be the

smallest root of the equation ϕ(x) = exϕ(x). With definitions of Γ and θ as in Lemma

4.3.1 and defining τ , maxi P (εi), we have

P (∩n
i=1εi) ≥ exp {−Γϕ(θ + τ)} (4.21)

With these preliminaries, we are ready to state the main result of this section.

Theorem 4.3.3. Suppose X and Y are correlated finite alphabet memoryless random

variables with joint distribution p(x, y). Let ϵ1n, ϵ2n, λn satisfy the ‘delta convention’

and R1, R2 be any positive real numbers such that R1 + R2 > I(X;Y ). Let CX be a

collection of 2nR1 sequences picked independently and with replacement from T n
ϵ1n

(X)
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and let CY be defined similarly. Let U be the cardinality of the set

U , {(xn, yn) ∈ CX × CY : (xn, yn) ∈ T n
λn
(X, Y )} (4.22)

Assume, without loss of generality that R1 ≥ R2. Then, for any γ ≥ 0, we have

lim
n→∞

1

n
log log

[
P
(
E(U)− U

E(U)
≥ e−nγ

)]−1

≥

 R1 +R2 − I(X;Y )− γ if R1 < I(X;Y )

R2 − γ if R1 ≥ I(X;Y )
(4.23)

Setting γ = 0 in the above equation gives us

lim
n→∞

1

n
log log

1

P(U = 0)
≥ min (R2, R1 +R2 − I(X;Y )) (4.24)

This inequality holds with equality when R2 ≤ R1 ≤ I(X;Y ).

Proof. The proof is provided in Section 4.4.

4.4 Proof of Theorems

Proof. (Theorem 4.2.1) The vertex sets VX(Gn) and VY (Gn) are the ϵ1n-typical and

ϵ2n-typical sets of PX and PY , respectively. To define the subgraphs An, we would

like to choose the sequences with type PX and PY , respectively as the vertex sets of

the subgraph, with an edge connecting two sequences if they have joint type PXY .

However, the values taken by the joint pmfs PXY , PX , PY may be any real number

between 0 and 1, whereas the joint type of two n-sequences is always a rational

number(with denominator n). Therefore, we choose the subgraph An as follows:

• For each n, approximate the values of PXY to rational numbers with denomi-

nator n to obtain pmf P̃XY , respectively. Clearly, P̃XY is a valid joint type of

length n and the maximum approximation error is bounded by 1
n
. In fact, for
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all sufficiently large n:

|PXY (x, y)− P̃XY (x, y)| <
1

n
<<

1√
n
< λn ∀(x, y), (4.25)

where the last inequality follows from the delta convention. Using Fact 4.1.1,

we also have

|PX(x)− P̃X(x)| < |Y| · 1
n
<<

1√
n
< ϵ1n (4.26)

|PY (y)− P̃Y (y)| < |X | · 1
n
<<

1√
n
< ϵ2n (4.27)

• The left vertex set of An is T n
0 (P̃X), i.e., the set of xn sequences with type

P̃X . The right vertex set of An is T n
0 (P̃Y )- the set of yn sequences with type

P̃Y . A vertex in VX(An), say an is connected to a vertex in VY (An), say bn iff

(an, bn) ∈ T n
0 (P̃X,Y ), i.e., (a

n, bn) have joint type P̃XY .

From (4.25),(4.26) and (4.27), we have

T n
0 (P̃X) ⊂ T n

ϵ1n
(PX), T n

0 (P̃Y ) ⊂ T n
ϵ2n

(PY ), T n
0 (P̃X,Y ) ⊂ T n

λn
(PX,Y ). (4.28)

Hence An is a subgraph of Gn, as required. From [16, Lemma 2.3], we have∣∣∣∣ 1n log |T n
0 (P̃X)| −H(P̃X)

∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1n log |T n
0 (P̃Y )| −H(P̃Y )

∣∣∣∣ ≤ δ2n ∀n, (4.29)

where δ1n = (n + 1)−|X | and δ2n = (n + 1)−|Y|. Fact 4.1.3 establishes the continuity

of entropy with respect to the probability distribution. Using Fact 4.1.3 along with

(4.25),(4.26) and (4.27), we obtain∣∣∣∣ 1n log |T n
0 (P̃X)| −H(PX)

∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1n log |T n
0 (P̃Y )| −H(PY )

∣∣∣∣ ≤ δ2n ∀n, (4.30)

where we have reused δ1n, δ2n with some abuse of notation. This proves the first

property.
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We now note that xn ∈ VX(An) = T n
0 (P̃X) and yn ∈ T n

0 (P̃Y |X |xn) implies a)

(xn, yn) ∈ T n
0 (P̃X,Y ) and b) yn ∈ T n

0 (P̃Y ) = VY (An) (Fact 4.1.1). This implies

degree(xn) ≥ |T n
0 (P̃Y |X |xn)|,∀xn ∈ VX(An). (4.31)

From [16, Lemma 2.5], we know that

|T n
0 (P̃Y |X)| ≥ 2n(H(P̃Y |X)−δ3n) (4.32)

where δ3n = |X ||Y| log(n+1)
n

. In the above, H(P̃Y |X) stands for H(Y |X) computed

under the joint distribution P̃XY . Combining this with (4.31), we get a lower bound

on the degree of each xn ∈ VX(An):

degree(xn) ≥ 2n(H(P̃Y |X)−δ3n) (4.33)

From (4.25) and (4.26), one can deduce that ∀x, y

|PY |X(y|x)− P̃Y |X(y|x)| < γn

for some γn → 0. Combining this with Fact 4.1.3, (4.33) can be written as

degree(xn) ≥ 2n(H(PY |X)−δ3n), (4.34)

where we reuse the symbol δ3n.

Furthermore, (4.6) gives an upper bound on the degree of each vertex in Gn.

Hence we have∣∣∣∣ 1n log θ
′n(xn)−H(Y |X)

∣∣∣∣ ≤ max(δ3n, ϵn) ∀xn ∈ VX(An) (4.35)

Similarly, we can bound the degree of each vertex in VY (An) as∣∣∣∣ 1n log θ
′n(yn)−H(X|Y )

∣∣∣∣ ≤ max(δ4n, ϵn) ∀yn ∈ VY (An) (4.36)
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Finally, we can set δn = max(δ1n, δ2n, δ3n, δ4n, ϵn) to complete the proof of the propo-

sition.

Proof. (Theorem 4.3.1) The proof is along the same lines as the proof of Theo-

rem 4.2.1), but we will repeat it for completeness. For every n, we shall demonstrate

the existence of a subgraph Γn with the required rates contained within An(ϵ1n, ϵ2n, λn)

(An is the subgraph specified by Theorem 4.2.1).

Definition of Γn. Consider any conditional distribution PU |XY . This fixes the

joint distribution PXY U = PXY PU |XY . We construct Γn as follows.

• For each n, approximate the values of PUXY to rational numbers with denomi-

nator n to obtain pmf P̃UXY , respectively. Clearly P̃UXY is a valid joint type of

length n and the maximum approximation error is bounded by 1
n
. By marginal-

izing the joint pmf, for all x, y we also have

|PXY (x, y)− P̃XY (x, y)| < |U| · 1
n
<<

1√
n
< λn, (4.37a)

|PX(x)− P̃X(x)| < |Y| · |U| · 1
n
<<

1√
n
< ϵ1n (4.37b)

|PY (y)− P̃Y (y)| < |X | · |U| · 1
n
<<

1√
n
< ϵ2n, (4.37c)

where the last inequality in each equation follows from the delta convention.

Furthermore, for all u

|PU(u)− P̃U(u)| < |Y| · |X | · 1
n
. (4.38)

• Pick any length n sequence un with type P̃U , i.e., un ∈ T n
0 (P̃U). Consider

a bipartite graph Γn with X-vertices consisting of all xn ∈ T n
0 (P̃X|U |un), Y -

vertices consisting of all yn ∈ T n
0 (P̃Y |U |un). In other words, having fixed un,

the X-vertex sets and Y -vertex sets consist of all length n sequences having

conditional type P̃X|U and P̃Y |U , respectively. Vertices xn ∈ VX(Γn) and yn ∈
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VY (Γn) are connected in Γn iff (xn, yn) ∈ T n
0 (P̃XY |U |un), i.e., if they have the

conditional joint type PXY |U given un.

First, let us verify that Γn is a subgraph of Gn. From Fact 4.1.1, if un ∈ T n
0 (P̃U) and

xn ∈ T n
0 (P̃X|U |un), then (xn, un) ∈ T n

0 (P̃X,U). Consequently, x
n ∈ T n

0 (P̃X). Similarly,

all yn ∈ T n
0 (P̃Y |U |un) belong to T n

0 (P̃Y ). On the same lines, if un ∈ T n
0 (P̃U) and

(xn, yn) ∈ T n
0 (P̃XY |U |un), then (xn, yn, un) ∈ T n

0 (P̃X,Y,U). This implies (xn, yn) ∈

T n
0 (P̃X,Y ). Furthermore, from (4.37a),(4.37b) and (4.37c), we know

T n
0 (P̃X) ⊂ T n

ϵ1n
(PX) = VX(Gn), T n

0 (P̃Y ) ⊂ T n
ϵ2n

(PY ) = VY (Gn) and

T n
0 (P̃X,Y ) ⊂ T n

λn
(PX,Y ). (4.39)

Hence, for all sufficiently large n, Γn is a subgraph of the typicality graph Gn.

Properties of Γn. From [16, Lemma 2.3], we have∣∣∣∣ 1n log |T n
0 (P̃X|U |un)| −H(P̃X|U)

∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1n log |T n
0 (P̃Y |U |un)| −H(P̃Y |U)

∣∣∣∣ ≤ δ2n ∀n,

(4.40)

where δ1n = (n+1)−|X ||U| and δ2n = (n+1)−|Y||U|. Using (4.37b), (4.37c) with (4.38),

we know that P̃X|U , P̃Y |U are close to PX|U , PY |U , respectively. Using Fact 4.1.3, we

know that the entropies H(P̃X|U), H(P̃Y |U) must close to H(PX|U), H(PY |U), respec-

tively. Thus, we can write (4.40) as (reusing δ1n, δ2n)∣∣∣∣ 1n log |T n
0 (P̃X|U |un)| −H(PX|U)

∣∣∣∣ ≤ δ1n,

∣∣∣∣ 1n log |T n
0 (P̃Y |U |un)| −H(PY |U)

∣∣∣∣ ≤ δ2n ∀n,

(4.41)

Thus, the vertex sets of Γn have rates RX = H(X|U) and RY = H(Y |U), as required.

Using Fact 4.1.1, for any xn ∈ VX(Γn), every yn ∈ T n
0 (P̃Y |XU |xn, un) will satisfy

a) (xn, yn) ∈ T n
0 (P̃X,Y |U |un) and b) yn ∈ T n

0 (P̃Y |U |un). Hence

degree(xn) ≥ |T n
0 (P̃Y |XU |xn, un)| ≥ 2n(H(P̃Y |XU )−δ3n), (4.42)

where δ3n = |X ||Y||U| log(n+1)
n

. We can also upper bound the degree of xn by noting
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that xn ∈ T n
0 (P̃X|U |un) and (xn, yn) ∈ T n

0 (P̃X,Y |U |un) implies yn ∈ T n
0 (P̃Y |XU |xn, un).

From [16, Lemma 2.5],

|T n
0 (P̃Y |XU |xn, un)| ≤ 2nH(P̃Y |XU ).

Combining this with (4.42), we have∣∣∣∣1n log∆
′n(xn)−H(P̃Y |XU)

∣∣∣∣ ≤ δ3n, ∀xn ∈ VX(Γn), ∀n. (4.43)

In a similar fashion, we can show that∣∣∣∣ 1n log∆
′n(yn)−H(P̃X|Y U)

∣∣∣∣ ≤ δ4n, ∀yn ∈ VY (Γn), ∀n. (4.44)

Since the distributions P̃Y |XU and P̃X|Y U are close to PY |XU and PX|Y U , respectively,

Fact 3 enables us to replace H(P̃Y |XU), H(P̃X|Y U) with H(PY |XU), H(PX|Y U), respec-

tively in the two preceding equations.

Taking δn = max(δ1n, δ2n, δ3n, δ4n), we have shown the existence of a sequence

of subgraphs Γn with rates (H(X|U), H(Y |U), H(Y |XU), H(X|Y U)). Since we can

simply exclude edges from Γn to obtain subgraphs with smaller rates, it is clear that

all rate tuples characterized by(RX , RY , R
′
X , R

′
Y ) :

RX +R′
Y = RY +R′

X

RX ≤ H(X|U), RY ≤ H(Y |U),

R′
X ≤ H(X|Y U), R′

Y ≤ H(Y |XU)

 (4.45)

are achievable for every conditional distribution PU |XY . Note that the first equality

results from the fixed number of edges, regardless of whether they are counted from

the left or right side.

Proof. (Theorem 4.3.2) The first part of the theorem follows directly from The-

orem 4.3.1 by choosing PU |XY such that X − U − Y form a Markov chain. We

now prove the converse under the stated assumption that the sequence δn satisfies
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limn→∞ δn log n = 0.

Suppose that a sequence of typicality graphs Gn(ϵ1n, ϵ2n, λn) contains nearly com-

plete subgraphs Γn of rates RX , RY . The total number of edges in Γn can be lower

bounded as

|Edges(Γn)| ≥ ∆n
X · minimum degree of a vertex in VX(Γn)

≥ ∆n
X · 2n(RY −δn)

≥ ∆n
X · 2n(RY −δn)∆n

Y · 2−n(RY +δn)

= ∆n
X ·∆n

Y · 2−2nδn .

(4.46)

Each of these edges represent a pair (xn, yn) that is jointly λn-typical with respect to

the distribution PXY . In other words, each of these pairs (xn, yn) belongs to a joint

type [16] that is ‘close’ to PXY . Since the number of joint types of a pair of sequences

of length n is at most (n + 1)|X ||Y|, the number of edges belonging to the dominant

joint type, say P̄XY satisfies

|Edges(Γn) having joint type P̄XY | ≥
∆n

X ·∆n
Y 2

−2nδn

(n+ 1)|X ||Y| . (4.47)

Define a subgraph An of Γn consisting only of the edges having joint type P̄XY . A

word about the notation used in the sequel: We will use i, j to index the vertices in

VX(Γn), VY (Γn), respectively. Thus i ∈ {1, . . . ,∆n
X} and j ∈ {1, . . . ,∆n

Y }. The actual

sequences corresponding to these vertices will be denoted xn(i), yn(j) etc. Using this

notation,

An , {(i, j) : i ∈ VX(Γn), j ∈ VY (Γn) s.t. (x
n(i), yn(j)) has joint type P̄XY } (4.48)

From (4.47),

|An| ≥
∆n

X ·∆n
Y 2

−2nδn

(n+ 1)|X ||Y| (4.49)

We will prove the converse result using a series of lemmas concerning An. Some of
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the lemmas are similar to those required to prove Theorem 5.3.2. We only sketch the

proofs of such lemmas, referring the reader to Chapter 5 for details.

Define random variables X ′n, Y ′n with pmf

P ((X ′n, Y ′n) = (xn(i), yn(j)) =
1

|An|
, if (i, j) ∈ An. (4.50)

Lemma 4.4.1. I(X ′n ∧ Y ′n) ≤ 2nδn + |X ||Y| log(n+ 1).

Proof. Follow steps similar to the proof of Lemma 5.6.2, using (4.49) to lower bound

the size of An.

Let us apply Lemma 5.6.3 to random variablesX ′n and Y ′n. Lemma 4.4.1 indicates

σ = 2nδn + |X ||Y| log(n+ 1), and δ shall be specified later. Hence, for some

k ≤ 2σ

δ
=

2(nδn + |X ||Y| log(n+ 1))

δ
, (4.51)

there exist x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk such that

I(X ′
t ∧ Y ′

t |X ′
t1
= x̄t1 , Y

′
t1
= ȳt1 , ..., X

′
tk
= x̄tk , Y

′
tk
= ȳtk) ≤ δ for t = 1, 2, ..., n.

(4.52)

We now define a subgraph of An consisting of all edges (X ′n, Y ′n) that have

X ′
t1
= x̄t1 , Y

′
t1
= ȳt1 , ..., X

′
tk
= x̄tk , Y

′
tk
= ȳtk

The subgraph denoted as Ān is given by: 4

Ān , {(i, j) ∈ An : X ′
t1
(i) = x̄t1 , Y

′
t1
(j) = ȳt1 , ..., X

′
tk
(i) = x̄tk , Y

′
tk
(j) = ȳtk}. (4.53)

On the same lines as Lemma 5.6.4, we have

|Ān| ≥ (
δ

|X ||Y|(2σ − δ)
)k|An|. (4.54)

4The heirarchy of subgraphs is Gn ⊃ Γn ⊃ An ⊃ Ān
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Let us define random variables X̄n, Ȳ n on X n resp. Yn by

P((X̄n, Ȳ n) = (xn(i), yn(j)) =
1

|Ān|
if (i, j) ∈ Ān. (4.55)

If we denote X̄n = (X̄1, ..., X̄n), Y
n = (Ȳ1, ..., Ȳn), the Fano-distribution of the graph

Ān induces a distribution PX̄t,Ȳt
on the random variables X̄tȲt, t = 1, . . . , n. One can

show that

P(X̄t = x, Ȳt = y) (4.56)

= P(X ′
t = x, Ȳ ′

t = y|X ′
t1
(i) = x̄t1 , Y

′
t1
(j) = ȳt1 , ..., X

′
tk
(i) = x̄tk , Y

′
tk
(j) = ȳtk), ∀t.

Using (4.56) in Lemma 5.6.4, we get the bound I(X̄t ∧ Ȳt) < δ. Applying Pinsker’s

inequality for I-divergences [24], we have

∑
x,y

|P(X̄t = x, Ȳt = y)− P(X̄t = x)P(Ȳt = y)| ≤ 2δ1/2, 1 ≤ t ≤ n. (4.57)

Also define

C̄(i) = {(i, j) : (i, j) ∈ Ān, 1 ≤ j ≤ ∆n
Y }, (4.58a)

B̄(j) = {(i, j) : (i, j) ∈ Ān, 1 ≤ i ≤ ∆n
X}. (4.58b)

We are now ready to present the final lemma required to complete the proof of the

converse.

Lemma 4.4.2.

RX ≤ 1

n

n∑
t=1

H(X̄t|Ȳt) + δ1n (4.59a)

RY ≤ 1

n

n∑
t=1

H(Ȳt|X̄t) + δ2n (4.59b)

RX +RY ≤ 1

n

n∑
t=1

H(X̄tȲt) + +δ3n (4.59c)
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for some δ1n, δ2n, δ3n → 0 and the distributions of the RV’s are determined by the

Fano-distribution on the codewords {(xn(i), yn(j)) : (i, j) ∈ Ān}.

Proof. We use a strong converse result for non-stationary discrete memoryless chan-

nels, found in [1]. Consider a DMC with input At and output Bt (t = 1, . . . , n), with

average error probability λ (0 ≤ λ < 1). The result states that the size of the message

set M is upper-bounded as

logM <
n∑

t=1

I(At ∧Bt) +
3

1− λ
|A|n1/2, (4.60)

where the distributions of the RV’s are determined by the Fano-distribution on the

codewords.

We apply the above result to three noiseless DMCs (Bt = At, λ = 0) as follows.

Fix Ȳ n = yn(j) for some j ∈ Ān and let the input be X̄t, t = 1, · · · , n. Then, from

(4.60) we have

log |B̄(j)| ≤
n∑

t=1

H(X̄t|Ȳt = yt(j)) + 3|X |n1/2. (4.61)

Similarly,

log |C̄(i)| ≤
n∑

t=1

H(Ȳt|X̄t = xt(i)) + 3|Y|n1/2, (4.62)

log |Ān| ≤
n∑

t=1

H(X̄tȲt) + 3|X ||Y|n1/2. (4.63)

Noting that P(Ȳt = y) = |Ā|−1
∑

(i,j)∈Ān
1{yt(j)=y}, we can sum both sides of (4.61)

over all (i, j) ∈ Ān to obtain

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| ≤
n∑

t=1

H(X̄t|Ȳt) + 3|X |n1/2. (4.64)

Define

B∗ , 2−2nδn

n

∆n
X

(n+ 1)|X ||Y|

(
δ

|X ||Y|(2σ − δ)

)k

. (4.65)
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Then,

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| = |Ān|−1
∑
j

|B̄(j)| log |B̄(j)|

≥ |Ān|−1
∑

j:|B̄(j)|≥B∗

|B̄(j)| log |B̄(j)|

≥ |Ān|−1 log(B∗)
∑

j:|B̄(j)|≥B∗

|B̄(j)|

≥ |Ān|−1 log(B∗)(|Ān| −∆n
YB

∗). (4.66)

Combining (4.54), (4.49) and the definition of B∗, we also have

∆n
YB

∗ ≤ 1

n
|Ān|. (4.67)

Therefore, (4.66) can be written as

|Ān|−1
∑

(i,j)∈Ān

log |B̄(j)| ≥ |Ān|−1 log(B∗)

(
|Ān| −

1

n
|Ān|

)
(4.68)

= (1− 1

n
) log

(
2−2nδn

n

∆n
X

(n+ 1)|X ||Y| (
δ

|X ||Y|(2σ − δ)
)k
)
.

Using (4.64) in the above we have

log∆n
X ≤ n

n− 1

(
n∑

t=1

H(X̄t|Ȳt) + 3|X |n1/2

)
+ 2nδn + log n+ |X ||Y| log(n+ 1)

+ k log(
|X ||Y|2σ

δ
) (4.69)

Analogously,

log∆n
Y ≤ n

n− 1

(
n∑

t=1

H(Ȳt|X̄t) + 3|Y|n1/2

)
+ 2nδn + log n+ |X ||Y| log(n+ 1)

+ k log(
|X ||Y|2σ

δ
) (4.70)
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Next, we find an upper bound for log∆n
X∆

n
Y . From (4.54), we get

log |Ān| ≥ log |An|+ k log(
δ

|X ||Y|(2σ − δ)
)

≥ log |An|+ k log(
δ

|X ||Y|2σ
)

= log |An| − k log(
2σ

δ
)− k log(|X ||Y|)

(a)

≥ log(∆n
X∆

n
Y )− |X ||Y| log(n+ 1)− 2nδn − k log(

|X ||Y|2σ
δ

), (4.71)

where (a) is obtained by using (4.49). Using (4.63), the above inequality becomes

log(∆n
X∆

n
Y ) ≤

n∑
t=1

H(X̄tȲt) + 3|X ||Y|n1/2 + |X ||Y| log(n+ 1) + 2nδn + k log(
2σ

δ
)

+ k log(|X ||Y|). (4.72)

Using the lower bounds on the sizes of ∆X ,∆Y from 4.3.2, we can rewrite (4.69),(4.70)

and (4.72) as

RX − δn ≤ 1

n− 1

n∑
t=1

H(X̄t|Ȳt) + 3|X | n
1/2

n− 1
+ 2δn +

log n+ |X ||Y| log(n+ 1)

n

+
k

n
log(

2|X ||Y|σ
δ

), (4.73a)

RY − δn ≤ 1

n− 1

n∑
t=1

H(Ȳt|X̄t) + 3|Y| n
1/2

n− 1
+ 2δn +

log n+ |X ||Y| log(n+ 1)

n

+
k

n
log(

2|X ||Y|σ
δ

), (4.73b)

RX +RY − 2δn ≤ 1

n

n∑
t=1

H(X̄tȲt) + 3|X ||Y| n
1/2

n− 1
+ |X ||Y| log(n+ 1)

n
+ 2δn

+
k

n
log(

2|X ||Y|σ
δ

). (4.73c)

For our proof, we would like all the terms on the right hand side of the above equations

(except the entropies) to converge to 0 as n → ∞. This will happen if

k

n
log(

2σ

δ
) → 0.
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Recall from Lemma 4.4.1 that σ = 2nδn + |X ||Y| log(n + 1) and k < 2σ
δ
. Hence we

need to choose δ such that

2σ

nδ
log(

2σ

δ
) ∼

δn +
logn
n

δ
(log(nδn + log n)− log δ) → 0. (4.74)

From our assumption in the beginning, we have δn log n → 0. By setting

δ = (δn log n)
1/2 (4.75)

(4.74) becomes asymptotically equal to

δ
1/2
n

(log n)1/2
[
log(nδn + log n)− log(δ1/2n )− log log n

]
. (4.76)

We separately consider each of the terms in the equation above

1. If log(nδn + log n) ∼ log(nδn) for large n, then

δ
1/2
n

(log n)1/2
log(nδn + log n) ∼ δ

1/2
n

(log n)1/2
log(nδn) =

δ
1/2
n

(log n)1/2
[log n+ log δn]

= (δn log n)
1/2 +

δ
1/2
n log δn
(log n)1/2

→ 0, since δn → 0.

(4.77)

If log(nδn + log n) ∼ log(log n) for large n, then

δ
1/2
n

(log n)1/2
log(nδn + log n) ∼ δ

1/2
n

(log n)1/2
log(log n) → 0. (4.78)

2. δ
1/2
n

(logn)1/2
log(δ

1/2
n ) → 0 because x log x → 0 when x → 0.

3. δ
1/2
n

(logn)1/2
log log n = (δn log n)

1/2 log logn
logn

→ 0.

Hence, the term in (4.76) converges to 0 as n → ∞, completing the proof of the

lemma.
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We can rewrite Lemma 4.4.2 using new variables X̄, Ȳ , Q, where Q = t ∈ {1, ..., n}

with probability 1
n
and PX̄Ȳ |Q=t = PX̄tȲt

. Therefore, we now have (for all sufficiently

large n),

RX ≤ H(X̄|Ȳ , Q) + δ1n (4.79a)

RY ≤ H(Ȳ |X̄,Q) + δ2n (4.79b)

RX +RY ≤ H(X̄, Ȳ |Q) + δ3n, (4.79c)

for some δ1n, δ2n, δ3n → 0.

Finally, using (4.57), we also have

|P(X̄ = x, Ȳ = y|Q = t)− P(X̄ = x|Q = t)P(Ȳ = y|Q = t)|

= |P(X̄t = x, Ȳt = y)− P(X̄t = x)P(Ȳt = y)|

≤ 2δ1/2 = 2(δn log n)
1/4 → 0 as n → ∞.

(4.80)

In other words, for all t, X̄t, Ȳt are almost independent for large n. Consequently,

using the continuity of mutual information with respect to the joint distribution,

Lemma 4.4.2 holds with for any joint distribution PQPX̄|QPȲ |Q such that the marginal

on (X̄, Ȳ ) is PX̄Ȳ . Recall that PX̄Ȳ is the dominant joint type that is λn-close to

PXY . Using suitable continuity arguments, we can now argue that Lemma 4.4.2

holds for any joint distribution PQPX|QPY |Q such that the marginal on (X,Y ) is

PXY , completing the proof of the converse.

Proof. (Theorem 4.3.3) Let Xn(i) and Y n(j) denote the ith and jth codewords in

the random codebooks CX and CY respectively. For 1 ≤ i ≤ 2nR1 and 1 ≤ j ≤ 2nR2 ,

define the indicator random variables

Uij ,

 1 if (Xn(i), Y n(j)) ∈ T n
λn
(X, Y )

0 else
(4.81)
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The cardinality of the set U is then

U =
2nR1∑
i=1

2nR2∑
j=1

Uij (4.82)

We derive upper bounds on the probability of the lower tail of U using Suen’s in-

equality. To do this, we first set up the dependency graph of the indicator ran-

dom variables Uij. The vertex set of the graph is indexed by the ordered pair

(i, j), 1 ≤ i ≤ 2nR1 , 1 ≤ j ≤ 2nR2 . From the nature of the random experiment, it

is clear that the indicator random variables Uij and Ui′j′ are independent if and only

if i ̸= i′ and j ̸= j′. Thus, each vertex (i, j) is connected to exactly 2nR1+2nR2−2 ver-

tices of the form (i, j′), j′ ̸= j or (i′, j), i′ ̸= i. If vertices (i, j) and (k, l) are connected,

we denote it by (i, j) ∼ (k, l).

In order to estimate Γ,Θ and θ as defined in Lemma 4.3.1, define the following

quantities. Let αij , P(Uij = 1) and β{ij}{kl} , E(UijUkl) where (i, j) ∼ (k, l). Using

Fact 4.1.1 and Fact 4.1.2, uniform bounds can be derived for these quantities as

α , 2−n(I(X;Y )+ϵ3n) ≤ αij ≤ 2−n(I(X;Y )−ϵ3n) , α
′

(4.83)

where ϵ3n is a continuous positive function of ϵ1n, ϵ2n and λn that goes to 0 as n → ∞.

Similarly, a uniform bound on β{ij}{kl} can be derived as

2−2n(I(X;Y )+2ϵ4n) ≤ β{ij}{kl} ≤ 2−2n(I(X;Y )−2ϵ4n) , β (4.84)

where ϵ4n is a continuous positive function of ϵ1n, ϵ2n and λn that goes to 0 as n → ∞.

The quantities involved in Suen’s inequality can now be estimated.

Γ , E(U) ≥ 2n(R1+R2)α (4.85)

Θ , 1

2

∑
(i,j)

∑
(k,l)∼(i,j)

E(UijUkl) ≤
1

2
2n(R1+R2)(2nR1 + 2nR2 − 2)β (4.86)

θ , max
(i,j)

∑
(k,l)∼(i,j)

E(Ukl) ≤ (2nR1 + 2nR2 − 2)α
′

(4.87)
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Substituting these bounds into equations (4.18) and (4.17) proves the claims made in

equations (4.23) and (4.24) of Theorem 4.3.3.

A lower bound on the probability of the empty induced random subgraph can

be derived by employing the Lovasz local lemma on the 2n(R1+R2) events {Uij =

1}, 1 ≤ i ≤ 2nR1 , 1 ≤ j ≤ 2nR2 . Symmetry considerations imply that all xi can be

set identically to x in Lemma 4.3.2. Then, the Lovasz lemma states that if there

exists x ∈ [0, 1] such that α ≤ P(Uij = 1) ≤ x(1 − x)(2
nR1+2nR2−2), then P(U =

0) ≥ (1 − x)2
n(R1+R2) . It is easy to verify that for such an x to exist, we need

R2 ≤ R1 < I(X;Y ) and if so, x = 2−nR1 satisfies the condition. Therefore, we

have

P(U = 0) ≥ exp
(
−
(
2nR2 + 1

))
R2 ≤ R1 < I(X;Y ) (4.88)

We can derive a similar bound using the second version of the local lemma given in

Lemma 4.3.2. While Γ and θ are same as estimated earlier, τ = max(i,j) P(Uij = 1) is

upper bounded by α
′
as defined in equation (4.83). Hence,

P(U = 0) ≥ exp (−Γϕ(θ + τ)) . (4.89)

Under the same assumption R2 ≤ R1 < I(X;Y ), θ + τ ≤ (2nR1 + 2nR2 − 2)α
′ → 0

as n → ∞ and hence ϕ(θ + τ) → 1. Combining equations (4.88) and (4.89), taking

logarithms and letting n → ∞, we get

lim
n→∞

1

n
log log

1

P (U = 0)
≤ min (R2, R1 +R2 − I(X;Y )) . (4.90)

Comparing this to equation (4.24) shows that this expression is asymptotically tight

in the regime R2 ≤ R1 < I(X;Y ).
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CHAPTER 5

Upper Bounds on the Error Exponent of

Multiple-Access Channels

In this chapter, we develop two new upper bounds on the reliability function of

DM-MACs. Towards this goal, we first revisit the point-to-point case and examine

the techniques used for obtaining the upper bounds on the optimum error exponent.

The techniques employed to obtain the sphere packing bound can be broadly classified

into three categories. The first is known as the Gallager technique [28]. Although

this yields expressions for the error exponents that are computationally easier to

evaluate than others, the expressions themselves are much more difficult to interpret.

The Method of Types technique, introduced by Csiszar [14], comprises the second

category. This technique uses more intuitive expressions for the error exponents in

terms of the optimization of an objective function involving information quantities

over probability distributions. It results in a sphere packing bound for the average

probability of error and is more amenable for multi-user channels. The third category

consists of the Strong Converse technique, introduced by Csiszar-Korner [16]. This

technique results in an expression identical to the result of the Method of Types

technique. The only difference between the two is that the third technique results in

a sphere packing bound for the maximal probability of error, and not the average.

However, in point to point scenario, by purging the worst half of the codewords in

any codebook, it can be easily shown that the average and maximal performance are
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the same at any transmission rate. As a result, the sphere packing bound derived

by using the strong converse technique is as strong as the one obtained by using the

method of types technique.

In developing our first sphere packing bound for multiple-access channels, we use

a technique very similar to the method of types technique. We start by partitioning

the error event into its intersection with disjoint type classes. Following, the error

probability of the code can be obtained by adding up the probabilities of these inter-

sections. By deriving lower bounds on the probability of these sets, a lower bound on

the average probability of error can be obtained. The result of this step is a sphere

packing bound which is identical to the well-known sphere packing bound derived by

Haroutunian [33]. Our approach provides more intuition than Haroutunian’s result.

Based on this intuition, and using some properties of typicality graphs, we can obtain

a sphere packing bound outperforming Haroutunian’s result especially at high rates.

In developing the second sphere packing bound for DM-MACs, we introduce a

new technique for deriving the sphere packing exponent for point-to-point channels by

using a strong converse theorem for codes with a specified dominant composition. The

new converse theorem not only determines a lower bound on the error probability of

an individual codeword, but also provides a lower bound on the number of codewords

with that error probability. Using this converse theorem, we directly derive the well

known sphere packing bound for the average probability of error for DMCs without

the elimination of codewords as the final step. Toward extending this technique to

MACs, we start by deriving a strong converse theorem for codes with a particular

input joint empirical distribution. By using this theorem and the technique developed

for point-to-point channels [16], we develop a tighter sphere packing bound for the

average error exponent of DM-MACs.

It is possible to derive a new upper bound on the maximal error exponent for

multiple-access channels by studying the Bhattacharyya distance distribution of multi-

user codes. This bound, called the minimum distance bound, is deriven by establish-

ing a link between the minimum Bhattacharyya distance and maximal probability

of decoding error; the upper bound on the Bhattacharyya distance can then be used
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to infer the lower bound on the probability of decoding error. At zero rate pair,

this upper bound has a similar structure to the partial expurgated bound derived in

Chapter 3. However, the two bounds are not necessarily equal. By using a conjecture

about the structure of typicality graphs, we derive a tighter minimum distance bound

for the maximal error exponent. Later on in this chapter, we study the relationship

between average and maximal error probabilities for a two user (DM) MAC and de-

velop a method to obtain new bounds on the average/maximal error exponent by

using known bounds on the maximal/average error exponent. It is observed that at

zero rate, the bounds on average error exponent are valid bounds on the maximal

error exponent and vice versa. As a result, the comparison between the conjectured

minimum distance bound and the expurgated bound is indeed a valid comparison at

zero rate. By comparing these bounds at zero rate, it is shown that the expurgated

and the conjectured minimum distance bound are tight bounds at rate zero.

The chapter is organized as follows: Some preliminaries are introduced in Sec-

tion 5.1. Two sphere packing bounds on the average probability of error for DM-

MACs are studied in Section 5.2 and 5.3. Another central result of this chapter is a

minimum distance bound for the maximal error exponent for MAC, obtained in Sec-

tion 5.4. In Section 5.4.1, by using a conjecture about the structure of the typicality

graph, a tighter minimum distance bound is derived and shown to be tight at zero

rate. In Section 5.5, by using a known upper bound on the maximum error exponent

function, we derive an upper bound on the average error exponent function and vice

versa. The proof of some of these results are given in Section 5.6 .

5.1 Preliminaries

Definition 5.1.1. For a multi user code C = CX × CY with codewords of length n,

and for any joint composition PXY ∈ Pn(X × Y), we define the PXY -rate of C as

R(C,PXY ) ,
1

n
log |C ∩ TPXY

|. (5.1)
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Definition 5.1.2. For a specified channel W : X × Y → Z, the Bhattacharyya

distance between the channel input letter pairs (x, y), and (x̃, ỹ) is defined by

dB
(
(x, y), (x̃, ỹ)

)
, − log

(∑
z∈Z

√
W (z|x, y)W (z|x̃, ỹ)

)
. (5.2)

A channel for which dB
(
(x, y), (x̃, ỹ)

)
̸= ∞ for all (x, y) and (x̃, ỹ), is called as an indi-

visible channel. An indivisible channel for which the matrix A(i,j),(k,l) = 2sdB
(
(i,j),(k,l)

)
is nonnegative-definite for all s > 0 is called a nonnegative-definite channel.

For a block channel W n, the normalized Bhattacharyya distance between two channel

input block pairs (x,y), and (x̃, ỹ) is given by:

dB
(
(x,y), (x̃, ỹ)

)
= − 1

n
log
( ∑
z∈Zn

√
W n(z|x,y)W n(z|x̃, ỹ)

)
. (5.3)

If W n is a memoryless channel, it can be easily shown that the Bhattacharyya distance

between two pairs of codewords (x,y) and (x̃, ỹ), with joint empirical distribution

PXY X̃Ỹ , is

dB
(
(x,y), (x̃, ỹ)

)
=
∑
x,x̃∈X
y,ỹ∈Y

PXY X̃Ỹ (x, y, x̃, ỹ)dB
(
(x, y), (x̃, ỹ)

)
. (5.4)

As it can be seen from (5.4), for a fixed channel, the Bhattacharyya distance be-

tween two pairs of codewords depends only on their joint composition. The minimum

Bhattacharyya distance for a code C is defined as:

dB(C) , min
(x,y),(x̃,ỹ)∈C
(x,y)̸=(x̃,ỹ)

dB
(
(x,y), (x̃, ỹ)

)
. (5.5)

For a fixed rate pair (RX , RY ) and blocklength n, the best possible minimum distance

is defined as

d∗B
(
RX , RY , n

)
, max

C
dB(C), (5.6)

where the maximum is over all multi user codes with parameters (n, 2nRX , 2nRY ).
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Finally, we define

d∗B(RX , RY ) , lim sup
n→∞

d∗B
(
RX , RY , n

)
. (5.7)

Note that since any multi-user code with repeated codewords has at least two identical

codeword pairs, it can be concluded that the minimum distance for such a code is equal

to zero. Therefore, in order to find an upper bound for the best possible minimum

distance, d∗B(RX , RY ), we only need to concentrate on codes without repetition.

For a fixed joint composition PXY ∈ Pn(X × Y), using the structure of Bhat-

tacharyya distance function, we can define spheres in TPXY
. For any (x,y) ∈ TPXY

,

the sphere about (x,y), of radius r, is given by

S ,
{
(x̃, ỹ) : dB

(
(x,y), (x̃, ỹ)

)
≤ r
}
.

Every point, (x,y) ∈ TPXY
, is surrounded by a set consisting of all pairs with which it

shares some given joint type VXY X̃Ỹ . Basically, any pair of sequences, (x̃, ỹ) ∈ TPXY
,

sharing a common joint type with some given pair of sequences, (x,y) ∈ TPXY
, belongs

to the surface of a sphere with center (x,y) and radius r = dB
(
(x,y), (x̃, ỹ)

)
. The

set of these pairs is called a spherical collection about (x,y) defined by Px,y,x̃,ỹ.

5.2 Sphere Packing Bound on the Average Error

Exponent (Method of Types Technique)

The focal point of this section is an upper (sphere packing) bound for the aver-

age error exponent for discrete memoryless multiple access channels. To obtain this

bound, we use the method of types. Using the method of types, Csiszar [14] derived

a sphere packing bound for the average error exponent of discrete memoryless chan-

nels. The idea behind the method of types is to partition the n-length sequences into

classes according to their empirical distribution. In [14], the average error probability

of the code is partitioned into its intersection with the type classes, and the probabil-

ity of error is obtained by adding up the probabilities of the intersections. Since the
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number of type classes grows polynomially with n, the average probability of error

has the same exponent as the largest among the probabilities of the above intersec-

tions. The second key idea of the method of types is that sequences of the same

type have the same probability under a memoryless channel. Therefore, to bound

the probabilities of intersections, it is sufficient to bound their cardinalities. Toward

extending this technique to MACs, we follow a two-step approach. First, we derive

a lower bound on the average error probability for a multi-user code with a specified

dominant joint composition. Since the dominant joint type for an arbitrary two-user

code is unknown, to obtain a lower bound on the error probability of the best code,

we need to minimize the aforementioned lower bound over all possible joint input

distributions. The result of this step is a sphere packing bound for the average error

exponent identical to the Haroutunian’s result [33]. As the second step, we use the

properties of typicality graphs to restrict the set of possible dominant joint compo-

sitions. Since the minimization is taken over a smaller set, the new sphere packing

bound is tighter than Haroutunian’s result.

Theorem 5.2.1. For any RX , RY ≥ 0, δ > 0 and any DM-MAC, W : X × Y → Z,

every (n,MX ,MY ) code, C, with a dominant type P n
XY ∈ Pn(X × Y) and rate pair

satisfying

1

n
logMX ≥ RX + δ (5.8a)

1

n
logMY ≥ RY + δ, (5.8b)

has average probability of error

e(C,W ) ≥ 1

2
e−n[ET

sp(RX ,RY ,W,Pn
XY )+δ], (5.9)

where

ET
sp (RX , RY ,W, P n

XY ) , min
VZ|XY

D
(
VZ|XY ||W |P n

XY

)
. (5.10)
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Here, the minimization is over all possible conditional distributions VZ|XY : X ×Y →

Z, which satisfy at least one of the following conditions

IV (X ∧ Z|Y ) ≤ RX (5.11a)

IV (Y ∧ Z|X) ≤ RY (5.11b)

IV (XY ∧ Z) ≤ RX +RY , (5.11c)

and all mutual informations are calculated based on P n
XY (x, y)VZ|XY (z|x, y).

Proof. The proof is provided in section 5.6.1.

In theorem 5.2.1, we have obtained a sphere packing bound on the average error

exponent for a multiuser code with a certain dominant type. For an arbitrary code,

the dominant joint type in unknown. However, using the properties of the typicality

graph obtained in Chapter 4, the necessary and sufficient condition for a joint type

to be a dominant type of a code with certain parameters is known. By combining

the result of theorem 5.2.1 and the result of Chapter 4, we can obtain the following

sphere packing bound for any multiuser code:

Theorem 5.2.2. For any RX , RY ≥ 0, δ > 0 and any DM-MAC, W : X × Y → Z,

every (n,MX ,MY ) code, C, with

1

n
logMX ≥ RX + δ (5.12a)

1

n
logMY ≥ RY + δ, (5.12b)

has average probability of error

e(C,W ) ≥ 1

2
e−n[ET

sp(RX ,RY ,W )+δ], (5.13)

where

ET
sp (RX , RY ,W ) , max

PXY ∈B(RX ,RY )
ET

sp (RX , RY ,W, PXY ) . (5.14)
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where B(RX , RY ) is defined as follows:

B(RX , RY ) ,

 PXY ∈ P(X × Y) : RX ≤ H (X|U) , RY ≤ H (Y |U)

X − U − Y for some U ∈ {1, 2, 3, 4}

 (5.15)

5.3 Sphere Packing Bound on the Average Error

Exponent (Strong Converse Technique)

5.3.1 Point to Point Case

The main result of this section is an upper (sphere packing) bound for the average

error exponent for discrete memoryless channels. By using the strong converse theo-

rem for DMCs and applying the method of types idea, the authors in [16] derived a

sphere packing bound on the maximal error exponent. For point to point transmission

systems, it is unimportant whether we work with average or maximal errors. As a

result, for all transmission rates, the sphere packing bound of [16] is an upper bound

on the average error exponent of DMCs. In this section, we use an approach very

similar to [16]. First, we obtain a strong converse theorem for codes with a specified

good dominant composition, meaning most of the codewords with this dominant com-

position have small error probability. This strong converse theorem is a generalized

version of the well-known converse theorem for discrete memoryless channels in the

sense that it not only determines a lower bound for the error probability of the indi-

vidual codewords, but also provides a lower bound on the number of codewords with

that error probability. Since we are using a stronger converse theorem, we can obtain

a sphere packing bound on the average probability of error without expurgating any

codeword.

Definition 5.3.1. For any discrete memoryless channel, W , for any joint distribution

P ∈ P(X ), any 0 ≤ λ < 1, and any (n,M) code, C, define

EW (C,P, λ) ,
{
xi ∈ C : W n(Di|xi) ≥

1− λ

2
,xi ∈ TP

}
. (5.16)
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Theorem 5.3.1. Consider any (n,M) code C. For every P ∗ ∈ Pn(X ) and every

0 ≤ λ < 1, the condition |EW (C,P ∗, λ)| ≥ 1
(n+1)|X|

(
1− 2λ

1+λ

)
M implies

1

n
logM ≤ I(P ∗,W ) + ϵn(λ, |X |). (5.17)

Here, ϵn → 0 as n → ∞.

Proof. The proof is provided in Section 5.6.

Fact 5.3.1. (Sphere Packing Bound) For any R ≥ 0, δ > 0 and any discrete

memoryless channel, W : X → Z, every (n,M) code, C, with

1

n
logM ≥ R + δ (5.18)

has average probability of error

e(C,W ) ≥ 1

2
e−n[Esp(R,W )(1+δ)+δ], (5.19)

where

Esp(R,W ) , max
P∈P(X )

min
V :I(P,V )≤R

D(V ||W |P ). (5.20)

Proof. The proof is provided in Section 5.6.

5.3.2 MAC Case

The main result of this section is a lower (sphere packing) bound for the average

error probability of a DM-MAC. To state the new bound we need an intermediate

result that has the form of a strong converse for the MAC. We state this result here

and relegate the proof to Section 5.6.

Definition 5.3.2. For any DM-MAC, W , for any joint distribution P ∈ P(X ×Y),

any 0 ≤ λ < 1, and any (n,MX ,MY ) code, C, define

EW (C,P, λ) ,
{
(xi,yj) ∈ C : W (Dij|xi,yj) ≥

1− λ

2
, (xi,yj) ∈ TP

}
. (5.21)
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Theorem 5.3.2. Fix 0 ≤ λ < 1. Consider any (n,MX ,MY ) code C. For every

P n
XY ∈ Pn(X × Y), such that |EW (C,P n

XY , λ)| ≥ 1
(n+1)|X||Y|

(
1− 2λ

1+λ

)
MXMY , the

following holds

(
1

n
logMX ,

1

n
logMY

)
∈ Cn

W (P n
XY ) (5.22)

where Cn
W (P ) is defined as the closure of the set of all (R1, R2) pairs satisfying

RX ≤ I(X ∧ Z|Y U) + ϵn, (5.23a)

RY ≤ I(Y ∧ Z|XU) + ϵn, (5.23b)

RX +RY ≤ I(XY ∧ Z|U) + ϵn, (5.23c)

for some choice of random variables U defined on {1, 2, 3, 4}, and joint distribution

p(u)p(x|u)p(y|u)W (z|x, y), with marginal distribution p(x, y) = P n(x, y). Here, ϵn →

0 as n → ∞.

Proof. The proof is provided in Section 5.6.

We further define CW (P )
(
the limiting version of the sets Cn

W (P )
)
as the closure

of the set of all (RX , RY ) pairs satisfying

RX ≤ I(X ∧ Z|Y U), (5.24a)

RY ≤ I(Y ∧ Z|XU), (5.24b)

RX +RY ≤ I(XY ∧ Z|U), (5.24c)

for some choice of random variables U defined on {1, 2, 3, 4}, and joint distribution

p(u)p(x|u)p(y|u)W (z|x, y), with marginal distribution p(x, y) = P (x, y).

Theorem 5.3.3. (Sphere Packing Bound) For any RX , RY ≥ 0, δ > 0 and any
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DM-MAC, W : X × Y → Z, every (n,MX ,MY ) code, C, with

1

n
logMX ≥ RX + δ (5.25a)

1

n
logMY ≥ RY + δ, (5.25b)

has average probability of error

e(C,W ) ≥ 1

2
e−n[Esp(RX ,RY ,W )(1+δ)+δ], (5.26)

where

Esp(RX , RY ,W ) , max
PXY ∈P(X×Y)

min
V :(RX ,RY )/∈CV (PXY )

D(V ||W |PXY ). (5.27)

Proof. The proof is provided in Section 5.6.

5.4 A Minimum Distance on the Maximal Error

Exponent

In this section, we present an upper (minimum distance) bound for the maximal

error exponent for a DM-MAC. The idea behind the derivation of this bound is the

connection between the minimum distance of the code and the maximal probability

of decoding error. Intuitively, the closer the codewords are, the more confusion exists

in decoding. An arbitrary channel, W (·|·, ·), is used to define the Bhattacharyya

distance. To derive an upper bound on the error exponent at rate (RX , RY ), we

need to show that for any code with parameter (RX , RY ), there exist at least two

pairs of codewords which are very close to each other in terms of Bhattacharyya

distance. In other words, we need to find an upper bound on the minimum distance

of codes with parameter
(
n, 2nRX , 2nRY

)
. Consider any arbitrary multi-user code, C,

with parameters
(
n, 2nRX , 2nRY

)
with a dominant joint type PXY . We concentrate

on the dominant subset corresponding PXY , i.e. all codeword pairs sharing PXY as
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their joint type. We study the minimum distance of this subset and in particular

we prove that there exist at least two pairs of codewords at a certain Bhattacharrya

distance. As a result, we find an upper bound for the minimum distance of this

subset of the code. Clearly, this bound is still a valid upper bound for the minimum

distance of the original multi user code. To obtain this upper bound, we show that

there exist a spherical collection about a pair of sequences, not necessarily codeword

pairs, with exponentially many codeword pairs on it. Intuitively, since exponentially

many codeword pairs are located on this spherical collection, all of these pairs cannot

be far from each other. We study the distance structure of this collection, and find

the average distance of this subset. It can be concluded that there must exist at

least two pairs of codewords with distance at most as large as the average distance

previously found. Next, by relating the maximal error probability of code to its

minimum distance, we derive a lower bound on the maximal error probability of any

multiuser code satisfying some rate constraints.

In Theorem 5.6.1, we derive an upper bound on the minimum distance of all multi

user codes with certain rate pair. In Theorem 5.6.2, we show the connection between

the maximal probability of error to the upper bound we derive in Theorem 5.6.1.

Finally, by combining these results, in the following theorem, we end up with the

main result of this section.

Theorem 5.4.1. For any indivisible nonnegative-definite channel, W , the maximal

error reliability function, E∗
m(RX , RY ), satisfies

E∗
m(RX , RY ) ≤ EU(RX , RY ,W ). (5.28)

where EU(RX , RY ,W ) is defined as

EU(RX , RY ,W ) , max
PUXY

min
β=X,Y,XY

Eβ
U(RX , RY ,W, PXY U). (5.29)

The maximum is taken over all PUXY ∈ P(U × X × Y) such that X − U − Y , and

RX ≤ H(X|U) and RY ≤ H(Y |U). The functions Eβ
U(RX , RY ,W, PXY U) are defined
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as follows:

EX
U (RX , RY ,W, PXY U) , min

VXX̃X̂Y Z∈VU
X

D(VZ|X̃Y ||W |PXY ) + I(X̂ ∧ Z|X̃Y ),

EY
U (RX , RY ,W, PXY U) , min

VXY Ỹ Ŷ Z∈VU
Y

D(VZ|XỸ ||W |PXY ) + I(Ŷ ∧ Z|XỸ ),

EXY
U (RX , RY ,W, PXY U) , min

VXY X̃Ỹ X̂Ŷ Z∈VU
XY

D(VZ|X̃Ỹ ||W |PXY ) + I(X̂Ŷ ∧ Z|X̃Ỹ ).

(5.30)

where

VU
X ,

{
VXX̃X̂Y Z : VX̃Y = VX̂Y = VXY = PXY , X̂ −XY − X̃

VX̃|XY = VX̂|XY , I(X ∧ X̃|Y ) = I(X ∧ X̂|Y ) ≤ RX ,

α(VX̂Y Z) < α(VX̃Y Z)
}
, (5.31)

VU
Y ,

{
VXY Ỹ Ŷ Z : VXỸ = VXŶ = VXY = PXY , Ŷ −XY − Ỹ

VỸ |XY = VŶ |XY , I(Y ∧ Ỹ |X) = I(Y ∧ Ŷ |X) ≤ RY ,

α(VXŶ Z) < α(VXỸ Z)
}
, (5.32)

VU
XY ,

{
VXY X̃Ỹ X̂Ŷ Z : VX̃Ỹ = VX̂Ŷ = VXY = PXY , X̂Ŷ −XY − X̃Ỹ

VX̃Ỹ |XY = VX̂Ŷ |XY , I(XY ∧ X̃Ỹ ) = I(XY ∧ X̂Ŷ ) ≤ RX +RY ,

α(VX̂Ŷ Z) < α(VX̃Ỹ Z)
}
. (5.33)

Proof. The proof is provided in Section 5.6.

5.4.1 A Conjectured Tighter Upper Bound

Conjecture 5.4.1. For all sequences of nearly complete subgraphs of a particular

type graph TPXY
, the rates of the subgraph (RX , RY ) satisfy

RX ≤ H(X|U), RY ≤ H(Y |U) (5.34)
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for some PU |XY such that X − U − Y . Moreover, there exists u ∈ TPU
such that the

intersection of the fully connected subgraph with TPXY |U (u) has the rate (RX , RY ).

Based on the result of the previous lemma, and by following a similar argument

as proof of Theorem 5.4.1 , we can conclude the following result:

Theorem 5.4.2. For any indivisible nonnegative-definite channel, W , the maximal

error reliability function, E∗
m(RX , RY ), satisfies

E∗
m(RX , RY ) ≤ EC(RX , RY ,W ). (5.35)

where EC(RX , RY ,W ) is defined as

max
PUXY

min
β=X,Y,XY

Eβ
C(RX , RY ,W, PXY U) (5.36)

The maximum is taken over all PUXY ∈ P(U × X × Y) such that X − U − Y , and

RX ≤ H(X|U) and RY ≤ H(Y |U). The functions Eβ
C(RX , RY ,W, PXY U) are defined

as follows:

EX
C (RX , RY ,W, PXY U) , min

VXX̃X̂Y Z∈VC
X

D(VZ|UX̃Y ||W |VUX̃Y ) + I(X̂ ∧ Z|UX̃Y ),

EY
C (RX , RY ,W, PXY U) , min

VXY Ỹ Ŷ Z∈VC
Y

D(VZ|UXỸ ||W |VUXỸ ) + I(Ŷ ∧ Z|UXỸ ),

EXY
C (RX , RY ,W, PXY U) , min

VXY X̃Ỹ X̂Ŷ Z∈VC
XY

D(VZ|UX̃Ỹ ||W |VUX̃Ỹ ) + I(X̂Ŷ ∧ Z|UX̃Ỹ ).

(5.37)
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where

VC
X ,

{
VUXX̃X̂Y Z : VUX̃Y = VUX̂Y = VUXY = PUXY ,

X̂ − UXY − X̃ , VX̃|XY U = VX̂|XY U ,

I(X ∧ X̃|Y U) = I(X ∧ X̂|Y U) ≤ RX , α(VUX̂Y Z) < α(VUX̃Y Z)
}

(5.38)

VC
Y ,

{
VUXY Ỹ Ŷ Z : VUXỸ = VUXŶ = VUXY = PUXY ,

Ŷ − UXY − Ỹ , VỸ |XY U = VŶ |XY U ,

I(Y ∧ Ỹ |UX) = I(Y ∧ Ŷ |UX) ≤ RY , α(VUXŶ Z) < α(VUXỸ Z)
}

(5.39)

VC
XY ,

{
VUXY X̃Ỹ X̂Ŷ Z : VUX̃Ỹ = VUX̂Ŷ = VUXY = PUXY ,

X̂Ŷ − UXY − X̃Ỹ VX̃Ỹ |UXY = VX̂Ŷ |UXY ,

I(XY ∧ X̃Ỹ |U) = I(XY ∧ X̂Ŷ |U) ≤ RX +RY , α(VUX̂Ŷ Z) < α(VUX̃Ỹ Z)
}

(5.40)

Let us focus on the case where both codebooks have rate zero, RX = RY = 0.

Any VUXX̃X̂Y ∈ VC
X satisfies the following:

X − UY − X̃, X − UY − X̂, (5.41)

therefore, any VUXX̃X̂Y Z ∈ VC
X can be written as

PX|UPX|UPX|UPY |UPUVZ|UXY X̃X̂ . (5.42)

Similarly, any VUXY Ỹ Ŷ ∈ VC
Y can be written as

PX|UPY |UPY |UPY |UPUVZ|UXY Ỹ Ŷ , (5.43)

and any VUXY X̃Ỹ X̂Ŷ ∈ VC
XY can be written as

PX|UPY |UPX|UPY |UPX|UPY |UPUVZ|UXY X̃Ỹ X̂Ŷ . (5.44)
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Hence, EX
C , EY

C , and EXY
C would be equal to

EX
C (0, 0, PXY U) = min

VZ|UXY X̃PX|UPX|UPY |UPU :

α(VUX̃Y Z)<α(VUXY Z)

D(VZ|UXY ||W |VUXY ) + I(X̃ ∧ Z|UXY ),

(5.45)

EY
C (0, 0, PXY U) = min

VZ|UXY Ỹ PX|UPY |UPY |UPU :

α(VUXỸ Z)<α(VUXY Z)

D(VZ|UXY ||W |VUXY ) + I(Ỹ ∧ Z|UXY ),

(5.46)

EXY
C (0, 0, PXY U) = min

VZ|UXY X̃Ỹ PX|UPY |UPX|UPY |UPU :

α(VUX̃Ỹ Z)<α(VUXY Z)

D(VZ|UXY ||W |VUXY )+

I(X̃Ỹ ∧ Z|UXY ). (5.47)

Theorem 5.4.3. At rate RX = RY = 0,

EC(0, 0, PXY U) = Eβ(0, 0,W, PXY U), for β ∈ {ex, T} (5.48)

where Eβ(RX , RY ,W, PXY U) for β ∈ {ex, T} are defined in Chapter 3.

5.5 The Maximal Error Exponent vs. The Aver-

age Error Exponent

In point to point communication systems, one can show that a lower/upper bound

for the maximal error probability of the best code is also a lower/upper bound on

the average probability of error for such a code. This is not the case in multiuser

communications. For example, it has been shown that for multiuser channels, in

general, the maximal error capacity region is smaller than the average error capacity

region [18]. The minimum distance bound, we obtained in the previous section, is

a valid bounds for the maximal error exponent, but not the average. On the other

hand, all the known lower bounds in [38][41][40][39], are only valid for the average error

exponent, not the maximal. As a result, despite of the point to point case, comparing
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these upper and lower bounds does not give us any information about how good these

bounds are. In the following, we illustrate an approach that derives a lower/upper

bound on the average/maximal error exponent by using a known lower/upper bound

for the maximal/average error exponent.

Theorem 5.5.1. Fix any DM-MAC W : X × Y → Z, RX ≥ 0, RY ≥ 0. The

following inequalities hold

E∗
av (RX , RY )−R ≤ E∗

m (RX , RY ) ≤ E∗
av (RX , RY ) ≤ E∗

m (RX , RY ) +R, (5.49)

where R = min{RX , RY }.

Proof. The proof is provided in Section 5.6.

Corollary 5.5.1. If min{RX , RY } = 0, i.e., RX = 0 or RY = 0,

E∗
m(RX , RY ) = E∗

av(RX , RY ) (5.50)

Corollary 5.5.2. Fix any DM-MAC W : X × Y → Z, RX ≥ 0, RY ≥ 0. Assume

that the maximal reliability function is bounded as follows:

EL
m (RX , RY ) ≤ E∗

m (RX , RY ) ≤ EU
m (RX , RY ) , (5.51)

therefore, the average reliability function can be bounded by

EL
m (RX , RY ) ≤ E∗

av (RX , RY ) ≤ EU
m (RX , RY ) +R, (5.52)

where R = min{RX , RY }. Similarly, if the average reliability function is bounded as

follows:

EL
av (RX , RY ) ≤ E∗

av (RX , RY ) ≤ EU
av (RX , RY ) , (5.53)

it can be concluded that the maximal reliability function satisfies the following con-

straint

EL
av (RX , RY )−R ≤ E∗

m (RX , RY ) ≤ EU
av (RX , RY ) . (5.54)
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5.6 Proof of Theorems

5.6.1 Proof of Theorem 5.2.1

For a given MAC, W : X × Y → Z, and a multi user code C = CX × CY , where

CX = { xi ∈ X n : i = 1, ...,MX} and CY = { yj ∈ Yn : j = 1, ...,MY }, with

decoding sets Dij ⊂ Zn, the average error probability can be written as

e (C,W ) =
1

MXMY

MX∑
i=1

MY∑
j=1

W n
(
Dc

ij|xi,xj

)
(5.55)

=
1

MXMY

∑
PXY

MXY

MXY

∑
(i,j)∈CXY

W n
(
Dc

ij|xi,xj

)
(5.56)

where CXY is the set of all codewords pairs sharing fix joint composition PXY , i.e.,

CXY = (CX × CY ) ∩ TPXY
. The cardinality of this set is shown by MXY , and RXY

denotes the rate of this set, i.e., RXY = 1
n
logMXY . For a fixed pair (i, j), TV (xi,xj)s

are disjoint subsets of Zn for different conditional types V : X × Y → Z. Therefore,

the average error probability of the code can be written as

e (C,W ) =
1

MXMY

∑
PXY

MXY

MXY

∑
(i,j)∈CXY

∑
V

W n
(
Dc

ij ∩ TV (xi,yj) |xi,yj

)
=

1

MXMY

∑
PXY

MXY

∑
V

1

MXY

∑
(i,j)∈CXY

W n (TV (xi,yj) |i, j)
|Dc

ij ∩ TV (xi,yj) |
|TV (xi,yj) |

=
1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )

1− 1

MXY

∑
(i,j)∈CXY

|Dij ∩ TV (xi,yj) |
|TV (xi,yj) |


≥ 1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )

1− 1

MXY

∑
(i,j)∈CXY

|Dij ∩ TV (xi,yj) |
2nH(Z|X,Y )
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=
1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )

[
1− 1

MXY

|
∪

(i,j)∈CXY
Dij ∩ TV (xi,yj) |

2nH(Z|X,Y )

]

≥ 1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )

[
1− 1

MXY

|TZ |
2nH(Z|X,Y )

]

≥ 1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )

[
1− 1

MXY

2nH(Z)

2nH(Z|X,Y )

]
=

1

MXMY

∑
PXY

MXY

∑
V

2−nD(V ||W |PXY )
[
1− 2−n[RXY −IV (XY ∧Z)]

]
. (5.57)

By defining

V XY
bad = {V : RXY ≥ IV (XY ∧ Z)}, (5.58)

the average error probability of the code can be further lower bounded by

e (C,W ) ≥ 1

MXMY

∑
PXY

MXY

∑
V ∈V XY

bad

1

2
2−nD(V ||W |PXY )

≥ 1

MXMY

∑
PXY

MXY

2
2
−n[min

V ∈V XY
bad

D(V ||W |PXY )]

=
1

MXMY

∑
PXY

1

2
2
−n[min

V ∈V XY
bad

D(V ||W |PXY )−RXY ]

≥ 1

2MXMY

2
−n[minPXY

min
V ∈V XY

bad
D(V ||W |PXY )−RXY ]

. (5.59)

Thus,

e (C,W ) ≥ 1

2
2
−n[minPXY

min
V ∈V XY

bad
D(V ||W |PXY )+RX+RY −RXY ]

(5.60)

133



On the other hand, by using the fact thatDc
ij ⊆

∪
j′
∪

i′ ̸=iDi′j′ , the average probability

of error can be lower bounded by

e (C,W ) =
1

MXMY

MX∑
i=1

MY∑
j=1

W n
(
Dc

ij|xi,yj

)
≥ 1

MY

MY∑
j=1

1

MX

MX∑
i=1

W n

(∪
j′

∪
i′ ̸=i

Di′j′|xi,yj

)

=
1

MXMY

∑
PXY

∑
i

∑
j:(i,j)∈CXY

∑
V

W n (Dc
i ∩ TV (xi,yj) |xi,yj)

=
1

MXMY

∑
PXY

∑
V

2−nD(V ||W |PXY )
∑
i

∑
j:(i,j)∈CXY

|Dc
i ∩ TV (xi,yj) |
|TV (xi,yj) |

=
∑
PXY

∑
V

2−nD(V ||W |PXY ) 1

MXMY

∑
i

∑
j:(i,j)∈CXY

[
1− |Di ∩ TV (xi,yj) |

|TV (xi,yj) |

]

=
∑
PXY

∑
V

2−nD(V ||W |PXY ) MXY

MXMY

1− 1

MXY

∑
i

∑
j:(i,j)∈CXY

|Di ∩ TV (xi,yj) |
|TV (xi,yj) |


≥
∑
PXY

∑
V

2−nD(V ||W |PXY ) MXY

MXMY

[
1− 1

MXY

MX∑
i=1

MY∑
j=1

|Di ∩ TV (xi,yj) |
|TV (xi,yj) |

]

≥
∑
PXY

∑
V

2−nD(V ||W |PXY ) MXY

MXMY

[
1− 1

MXY

MY∑
j=1

MX∑
i=1

|Di ∩ TV (xi,yj) |
2nH(Z|X,Y )

]

≥
∑
PXY

∑
V

2−nD(V ||W |PXY ) MXY

MXMY

[
1− 1

MXY

MY∑
j=1

2nH(Z,X|Y )

2nH(Z|X,Y )

]

≥
∑
PXY

∑
V

2−nD(V ||W |PXY ) MXY

MXMY

[
1− 2−n[RXY −RY −IV (Z∧X|Y )]

]
. (5.61)

By defining

V X
bad , {V : RXY −RY ≥ IV (Z ∧X|Y )}, (5.62)
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and using (5.61), it can be concluded that

e (C,W ) ≥ 1

MXMY

∑
PXY

MXY

∑
V ∈V X

bad

1

2
2−nD(V ||W |PXY )

≥ 1

MXMY

∑
PXY

MXY

2
2
−n[min

V ∈V X
bad

D(V ||W |PXY )]

=
1

MXMY

∑
PXY

1

2
2
−n[min

V ∈V X
bad

D(V ||W |PXY )−RXY ]

≥ 1

2MXMY

2
−n[minPXY

min
V ∈V X

bad
D(V ||W |PXY )−RXY ]

. (5.63)

Therefore, the average error probability can be lower bounded by

e (C,W ) ≥ 1

2
2
−n[minPXY

min
V ∈V X

bad
D(V ||W |PXY )+RX+RY −RXY ]

. (5.64)

Similarly, it can be shown that

e (C,W ) ≥ 1

2
2
−n[minPXY

min
V ∈V Y

bad
D(V ||W |PXY )+RX+RY −RXY ]

, (5.65)

where

V Y
bad = {V : RXY −RX ≥ IV (Z ∧ Y |X)}. (5.66)

By combining (5.60), (5.60), (5.60), we conclude that

e (C,W ) ≥ 1

2
2
−n[minPXY

min
V ∈V X

bad
∪V Y

bad
∪V XY

bad
D(V ||W |PXY )+RX+RY −RXY ]

. (5.67)

Equivalently, for the exponent of e (C,W ), which is denoted by E (C,W ), can be

upper bounded by

E (C,W ) ≤ min
PXY

min
V ∈V X

bad∪V
Y
bad∪V

XY
bad

D (V ∥W |PXY ) +RX +RY −RXY . (5.68)
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By defining Vbad , V X
bad ∪ V Y

bad ∪ V XY
bad , the previous inequality can be simplified to

E (C,W ) ≤ max
C

min
PXY

min
V ∈Vbad

D (V ∥W |PXY ) +RX +RY −RXY (5.69)

= max
R∈R

min
PXY

min
V ∈Vbad

D (V ∥W |PXY ) +RX +RY −RXY (5.70)

Where R is a vector with elements R (C,PXY ) and R is the set of all possible vectors

R. The last equality follows from the fact that E (C,W ) is only a function of RXY s.

By using the fact that P n
XY is a dominant type of the code, we conclude that

E (C,W ) ≤ max
R∈R

min
V ∈Vbad

D (V ∥W |P n
XY ) +RX +RY −R(C,P n

XY ) (5.71)

= max
R∈R

min
V ∈Vbad

D (V ∥W |P n
XY ) . (5.72)

since this expression does not depend on R, we conclude that

E (C,W ) ≤ min
V ∈Vbad

D (V ∥W |P n
XY ) , (5.73)

where

Vbad = {V : IV (XY ∧ Z) ≤ RX +RY or IV (Y ∧ Z|X) ≤ RY or IV (X ∧ Z|Y ) ≤ RX}

(5.74)

5.6.2 Proof of Theorem 5.3.1

Our approach makes use of Agustin’s [1] strong converse theorem for one-way

channels which is stated in the following:

Lemma 5.6.1. [1]: For a (n,M, λ) code {(xi, Di) : 1 ≤ i ≤ M} and a non-stationary

DMC (Wt)
∞
t=1

logM <
n∑

t=1

I(Xt ∧ Zt) +
3

1− λ
|X |n1/2, (5.75)

where the distribution of the RV’s are determined by the Fano-distribution on the

codewords.
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Consider any P ∗ ∈ Pn(X ), such that |EW (C,P ∗, λ)| ≥ 1
(n+1)|X|

(
1− 2λ

1+λ

)
M . The

code EW (C,P ∗, λ) is an
(
n, |EW (C,P ∗, λ)|, 1+λ

2

)
code. Let us define λ′ , 1+λ

2
. There-

fore, by the result of Lemma 5.6.1, we conclude that

log (|EW (C,P ∗, λ)|) <
n∑

t=1

I(Xt ∧ Zt) +
3

1− λ′ |X |
√
n, (5.76)

where the distribution of RV’s are determined by the Fano-distribution on the code-

words. By using the lower bound on the size of EW (C,P ∗, λ), it can be concluded

that

1

n
logM ≤ 1

n

n∑
t=1

I(Xt ∧ Zt) +
3|X |

(1− λ′)
√
n
+ |X | log(n+ 1)

n
+

1

n
log

(
1 + λ

1− λ

)
.

(5.77)

The last three terms on the right hand side of (5.77) are approaching zero for suffi-

ciently large n. Let us focus on the first term. In the following, we prove that the

first term is bounded from above by:

1

n

n∑
t=1

I(Xt ∧ Zt) ≤ I(P ∗,W ). (5.78)

First, note that

1

n

n∑
t=1

I(Xt ∧ Zt) =
1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)P(Zt = z|Xt = x) log

(
P(Zt = z|Xt = x)

P(Zt = z)

)

=
1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)W (z|x) log
(

W (z|x)
P(Zt = z)

)

=
∑
x∈X

∑
z∈Z

W (z|x) log(W (z|x)) 1
n

n∑
t=1

P(Xt = x)

− 1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)W (z|x) log(P(Zt = z))
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=
∑
x∈X

∑
z∈Z

P ∗(x)W (z|x) log(W (z|x))

− 1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)W (z|x) log(P(Zt = z)). (5.79)

The last equality holds because EW (C,P ∗, λ) is a constant composition code with

composition P ∗. The second term in (5.79) can be written as

1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)W (z|x) log(P(Zt = z))

=
∑
z∈Z

1

n

n∑
t=1

(
log

(∑
x′∈X

P(Xt = x′)W (z|x′)

)∑
x∈X

P(Xt = x)W (z|x)

)
(5.80)

In the right hand side of (5.80), the summands are of the form of u log(u), which is

a convex function of u. Thus,

1

n

n∑
t=1

∑
x∈X

∑
z∈Z

P(Xt = x)W (z|x) log(P(Zt = z))

≥
∑
z∈Z

(
log

(
1

n

n∑
t=1

∑
x′∈X

P(Xt = x′)W (z|x′)

)
1

n

n∑
t=1

∑
x∈X

P(Xt = x)W (z|x)

)

=
∑
z∈Z

(
log

(∑
x′∈X

1

n

n∑
t=1

P(Xt = x′)W (z|x′)

)∑
x∈X

1

n

n∑
i=1

P(Xt = x)W (z|x)

)

=
∑
z∈Z

(
log

(∑
x′∈X

P ∗(x′)W (z|x′)

)∑
x∈X

P ∗(x)W (z|x)

)
. (5.81)

Finally, by combining (5.79) and (5.81), it can be concluded that

1

n

n∑
t=1

I(Xt ∧ Zt) ≤
∑
x∈X

∑
z∈Z

P ∗(x)W (z|x) log(W (z|x))

−
∑
x∈X

∑
z∈Z

P ∗(x)W (z|x) log

(∑
x′∈X

P ∗(x′)W (z|x′)

)
= I(P ∗,W ), (5.82)
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which completes the proof.

5.6.3 Proof of Fact 5.3.1

Since code C is an (n,M) code, it can be concluded that it must have at least

a dominant type, P ∗ ∈ Pn(X ). Consider an arbitrary discrete memoryless channel

V : X → Z, such that R > I(P ∗, V ). Choose λ̄ < 1 satisfying

1 + λ̄

2
> 1− δ

2
. (5.83)

Since P ∗ is a dominant type of code C,

|C ∩ TP ∗ | ≥ 1

(n+ 1)|X |M. (5.84)

On the other hand, since R > I(P ∗, V ), it can be concluded from Theorem 5.3.1 that

∣∣EV (C,P ∗, λ̄)
∣∣ < 1

(n+ 1)|X |

(
1− 2λ̄

1 + λ̄

)
M. (5.85)

By combining (5.84) and (5.85), it can be concluded that

∣∣DV (C,P
∗, λ̄)

∣∣ ≥ 1

(n+ 1)|X |

(
2λ̄

1 + λ̄

)
M, (5.86)

where DV (C,P
n
XY , λ̄) is defined as

DV (C,P
∗, λ̄) , (C ∩ TP ∗) / EV (C,P ∗, λ̄) =

{
xi ∈ C ∩ TP ∗ : V (Dc

i |xi) >
1 + λ̄

2

}
.

(5.87)
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By combining (5.83), (5.87) and using the same method as Csiszar in [16, pp. 167],

we have

W n(Dc
i |xi) ≥ exp

{
−

D(V ||W |P ∗) + h(1− δ
2
)

1− δ
2

}
≥ 1

2
exp {−nD(V ||W |P ∗)(1 + δ)} for all xi ∈ DV (C,P

∗, λ̄), (5.88)

for small enough δ satisfying h(1− δ
2
) < 1− δ

2
. The average error probability of the

code C over the channel W can be written as

e(C,W ) =
1

M

M∑
i=1

MY∑
j=1

W n(Dc
i |xi)

≥ 1

M

∑
i:

xi∈DV (C,P ∗,λ̄)

1

2
exp {−nD(V ||W |P ∗)(1 + δ)}

≥ 1

(n+ 1)|X |

(
λ̄

1 + λ̄

)
exp {−nD(V ||W |P ∗)(1 + δ)}. (5.89)

Since the inequality (5.89) holds for all V : X → Z satisfying I(P ∗, V ) < R, it can

be concluded that

e(C,W ) ≥ max
V :I(P ∗,V )<R

exp {−n[D(V ||W |P ∗)(1 + δ) + δ]}

= exp {−n[ min
V :I(P ∗,V )<R

D(V ||W |P ∗)(1 + δ) + δ]}, (5.90)

for sufficiently large n. As we mentioned earlier, P ∗ is any dominant type of the code.

We can further lower bound the average error probability as follows

e(C,W ) ≥ min
P ∗∈Pn(X )

exp {−n[ min
V :I(P ∗,V )<R

D(V ||W |P ∗)(1 + δ) + δ]}

≥ min
P∈P(X )

exp {−n[ min
V :I(P,V )<R

D(V ||W |P )(1 + δ) + δ]}, (5.91)

where the last inequality follows by a continuity argument.
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5.6.4 Proof of Theorem 5.3.2

The basic idea of the proof is wringing technique which was used for the first

time, by Ahlswede [2]. Consider any P n
XY ∈ Pn(X ×Y), such that |EW (C,P n

XY , λ)| ≥
1

(n+1)|X||Y| (1− 2λ
1+λ

)MXMY . Let A contains all codewords pairs with joint composition

P n
XY , and with small probability error:

Ā ,
{
(i, j) : W (Dij|xi,yj) ≥

1− λ

2
, (xi,yj) ∈ TPn

XY

}
. (5.92)

Since |Ā| = |EW (C,P n
XY , λ)|, we conclude that

|Ā| ≥ 1

(n+ 1)|X ||Y|

(
1− 2λ

1 + λ

)
MXMY . (5.93)

Define

C̄(i) =
{
(i, j) : (i, j) ∈ Ā, 1 ≤ j ≤ MY

}
(5.94a)

B̄(j) =
{
(i, j) : (i, j) ∈ Ā, 1 ≤ i ≤ MX

}
. (5.94b)

Consider the subcode
{
(xi,yj, Dij) : (i, j) ∈ Ā

}
and define random variables X̄n, Ȳ n

P
(
(X̄n, Ȳ n) = (xi,yj)

)
=

1

|Ā|
if (i, j) ∈ Ā. (5.95)

Lemma 5.6.2. For random variables X̄n, Ȳ n defined in (5.95), the mutual informa-

tion satisfies the following inequality:

I(X̄n ∧ Ȳ n) ≤ − log

(
1− 2λ

1 + λ

)
+ |X ||Y| log(n+ 1). (5.96)

Proof. This is a generalization of the proof by Dueck in [19]. Note that

H(Ȳ n|X̄n) = H(X̄n, Ȳ n)−H(X̄n) = log |Ā| −H(X̄n) ≥ log |Ā| − log(MX). (5.97)
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By (5.93), we conclude that

H(Ȳ n|X̄n) ≥ logMY + log

(
1− 2λ

1 + λ

)
− |X ||Y| log(n+ 1). (5.98)

Finally,

I(X̄n ∧ Ȳ n) = H(Ȳ n)−H(Ȳ n|X̄n) ≤ logMY −H(Ȳ n|X̄n)

≤ − log

(
1− 2λ

1 + λ

)
+ |X ||Y| log(n+ 1), (5.99)

which concludes the proof.

The next lemma is Ahlswede’s version of the ‘wringing’ technique. Roughly speak-

ing, if it is known that the mutual information between two random sequences is

small, then the lemma gives an upper bound on the per-letter mutual information

terms (conditioned on some values).

Lemma 5.6.3. [5] Let Xn, Y n be RV’s with values in X n, Yn resp. and assume

that

I(Xn ∧ Y n) ≤ σ (5.100)

Then, for any 0 < δ < σ there exist t1, t2, ..., tk ∈ {1, ..., n} where 0 ≤ k < 2σ
δ

such

that for some x̄t1 , ȳt1 , x̄t2 , ȳt2,

..., x̄tk , ȳtk

I(Xt ∧ Yt|Xt1 = x̄t1 , Yt1 = ȳt1 , ..., Xtk = x̄tk , Ytk = ȳtk) ≤ δ for t = 1, 2, ..., n,

(5.101)

and

P(Xt1 = x̄t1 , Yt1 = ȳt1 , ..., Xtk = x̄tk , Ytk = ȳtk) ≥
(

δ

|X ||Y|(2σ − δ)

)k

. (5.102)

Proof. The proof is provided in [5].
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Consider the subcode {(xi,yj, Dij) : (i, j) ∈ A}, where

A ,
{
(i, j) ∈ Ā : (xi)tl = x̄tl , (yj)tl = ȳtl 1 ≤ l ≤ k

}
(5.103)

and define

C(i) = {(i, j) : (i, j) ∈ A, 1 ≤ j ≤ MY } (5.104a)

B(j) = {(i, j) : (i, j) ∈ A, 1 ≤ i ≤ MX} . (5.104b)

Lemma 5.6.4. The subcode {(xi,yj, Dij) : (i, j) ∈ A} is a subcode with maximal er-

ror probability of at most 1+λ
2
, and

|A| ≥
(

δ

|X ||Y|(2σ − δ)

)k

|Ā|. (5.105)

Moreover,

∑
x,y

|P(Xt = x, Yt = y)− P(Xt = x)P(Yt = y)| ≤ 2δ1/2, (5.106)

where Xn = (X1, ..., Xn), Y n = (Y1, ..., Yn) are distributed according to the Fano-

distribution of the subcode {(xi,yj, Dij) : (i, j) ∈ A}.

Proof. Since A ⊂ Ā, the maximal probability of error for the corresponding code is

at most 1+λ
2
. The second part of Lemma 5.6.3, immediately yields (5.105). On the
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other hand,

PĀ(X̄t = x, Ȳt = y|x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk)

=
PĀ(X̄t = x, Ȳt = y, x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk)

PĀ(x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk)

=
NĀ(X̄t = x, Ȳt = y, x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk)

NA(x̄t1 , ȳt1 , x̄t2 , ȳt2 , ..., x̄tk , ȳtk)

=
NA(Xt = x, Yt = y)

|A|

= PA(Xt = x, Yt = y). (5.107)

Therefore, by the first part of Lemma 5.6.3, we conclude that

IA(Xt ∧ Yt) ≤ δ, for 1 ≤ t ≤ n. (5.108)

Since IA(Xt ∧ Yt) is an I-divergence, Pinsker’s inequality implies [24]

∑
x,y

|P(Xt = x, Yt = y)− P(Xt = x)P(Yt = y)| ≤ 2δ1/2, for t = 1, 2, ..., n.

(5.109)

Now, let us define random variables Xn, Y n on X n, Yn respectively by

Pr((Xn, Y n) = (xi,yj)) =
1

|A|
if (i, j) ∈ A. (5.110)

Lemma 5.6.5. For any 0 ≤ λ < 1, any (n,MX ,MY ) code C , {(xi,yj, Dij) :

1 ≤ i ≤ MX , 1 ≤ j ≤ MY } any MAC, W , and any P n
XY ∈ Pn(X × Y) satisfying
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|EW (C,P n
XY , λ)| ≥ 1

(n+1)|X||Y|

(
1− 2λ

1+λ

)
MXMY ,the following holds

logMX ≤
n∑

t=1

I(Xt ∧ Zt|Yt) + c1(λ)n
1/2 + c1k log(

2σ

δ
),

logMY ≤
n∑

t=1

I(Yt ∧ Zt|Xt) + c2(λ)n
1/2 + c2k log(

2σ

δ
),

log (MXMY ) ≤
n∑

t=1

I(XtYt ∧ Zt) + c3(λ)n
1/2 + c3k log(

2σ

δ
),

where the distributions of the RV’s are determined by the Fano-distribution on the

codewords {(xi,yj) : (i, j) ∈ A}. Here, ci(λ) and ci are suitable functions of λ.

Proof. For any fixed j, consider (n, |B(j)|) code {(xi, Dij) : (i, j) ∈ B(j)}. For channel

W , any pair of codewords in this code has probability of error at most equal to 1+λ
2
.

Let us define λ′ , 1+λ
2
. It follows from lemma 5.6.1 that

log |B(j)| ≤
n∑

t=1

I(Xt ∧ Zt|Yt = (yj)t) +
3

1− λ′ |X |n1/2. (5.111)

Similarly, it can be shown that

log |C(i)| ≤
n∑

t=1

I(Yt ∧ Zt|Xt = (xi)t) +
3

1− λ′ |Y|n1/2, (5.112)

log |A| ≤
n∑

t=1

I(XtYt ∧ Zt) +
3

1− λ′ |X ||Y|n1/2. (5.113)

Since P(Yt = y) =
∑

(i,j)∈A 1{yjt=y}

|A| ,

1

|A|
∑

(i,j)∈A

log |B(j)| ≤
∑

(i,j)∈A

n∑
t=1

I(Xt ∧ Zt|Yt = (yj)t)

∑
y 1{(yj)t=y}

|A|
+

3

1− λ′ |X |n1/2

=
n∑

t=1

∑
y

I(Xt ∧ Zt|Yt = y)P(Yt = y) +
3

1− λ′ |X |n1/2

=
n∑

t=1

I(Xt ∧ Zt|Yt) +
3

1− λ′ |X |n1/2. (5.114)
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The left hand side of (5.114) can be lower-bounded as follows

1

|A|
∑

(i,j)∈A

log |B(j)| = 1

|A|
∑
j

|B(j)| log |B(j)|

≥ 1

|A|
∑

j:|B(j)|≥B∗

|B(j)| log |B(j)|

≥ 1

|A|
log(B∗)

∑
j:|B(j)|≥B∗

|B(j)|

≥ |A| −MYB
∗

|A|
log(B∗), (5.115)

where λ∗ and B∗ are defined as follows

λ∗ , 2λ

1 + λ
, (5.116)

B∗ , 1− λ∗

n

MX

(n+ 1)|X ||Y|

(
δ

|X ||Y|(2σ − δ)

)k

. (5.117)

By using (5.93) and the result of Lemma 5.6.4, it can be concluded that

MYB
∗ ≤ 1

n
|A|. (5.118)

Therefore,

1

|A|
∑

(i,j)∈A

log |B(j)| ≥
|A| − 1

n
|A|

|A|
log(B∗)

= (1− 1

n
) log

(
1− λ∗

n

MX

(n+ 1)|X ||Y|

(
δ

|X ||Y|(2σ − δ)

)k
)
.

(5.119)
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By (5.114), (5.119)

logMX ≤ (1 +
2

n
)

(
n∑

t=1

I(Xt ∧ Zt|Yt) +
3

1− λ′ |X |n1/2

)
− log(1− λ∗) + log n+ |X ||Y| log(n+ 1)

+ k log

(
|X ||Y|2σ

δ

)
≤

n∑
t=1

I(Xt ∧ Zt|Yt) + c1(λ
′)n1/2 + c1k log(

2σ

δ
) + 2|Z|. (5.120)

Analogously,

logMY ≤
n∑

t=1

I(Yt ∧ Zt|Xt) + c2(λ
′)n1/2 + c2k log(

2σ

δ
) + 2|Z|. (5.121)

To find an upper bound for log (MXMY ), we first try to find a lower bound on the

log |A|. By Lemma 5.6.4

log |A| ≥ log |Ā|+ k log

(
δ

|X ||Y|(2σ − δ)

)
≥ log |Ā|+ k log

(
δ

|X ||Y|2σ

)
= log |Ā| − k log

(
2σ

δ

)
− k log (|X ||Y|)

≥ log(MXMY )− |X ||Y| log(n+ 1) + log

(
1− 2λ

1 + λ

)
− k log

(
2σ

δ

)
− k log (|X ||Y|) . (5.122)

Therefore,

log(MXMY ) ≤ log |A|+ c3k log(
2σ

δ
) + |X ||Y| log(n+ 1) + k log (|X ||Y|)

− log

(
1− 2λ

1 + λ

)
.

(5.123)
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Using (5.113),

log (MXMY ) ≤
n∑

t=1

I(XtYt∧Zt)+c3(λ
′)n1/2+c3k log(

2σ

δ
)+|X ||Y| log(n+1). (5.124)

Note that, in general Xt and Yt are not independent. In the following, we prove

that they are nearly independent. In the following, we combine (5.96) and the result

of Lemma 5.6.4. For an (n,MX ,MY ) code {(xi,yj, Dij) : 1 ≤ i ≤ MX , 1 ≤ j ≤

MY } which has the particular property mentioned in Theorem 5.3.2, define Ā, A

as defined before. Apply Lemma 5.6.4 with parameter δ = n−1/2. By using σ =

− log
(
1− 2λ

1+λ

)
+ |X ||Y| log(n+ 1), we conclude that

k ≤ 2σ

δ
= 2

√
n

(
− log

(
1− 2λ

1 + λ

)
+ |X ||Y| log(n+ 1)

)
∼ O(

√
n log n), (5.125)

and ∣∣P(Xt = x, Yt = y)− P(Xt = x)P(Yt = y)
∣∣ ≤ 2n−1/4, (5.126)

for any x ∈ X , y ∈ Y , and t = 1, ..., n. By dividing both sides of equations (5.120),

(5.121) and (5.124) by n, and defining appropriate functions, the following can be

concluded

1

n
logMX ≤ 1

n

n∑
t=1

I(Xt ∧ Zt|Yt) + C(λ)
o(n)

n
, (5.127a)

1

n
logMY ≤ 1

n

n∑
t=1

I(Yt ∧ Zt|Xt) + C(λ)
o(n)

n
, (5.127b)

1

n
log (MXMY ) ≤

1

n

n∑
t=1

I(XtYt ∧ Zt) + C(λ)
o(n)

n
. (5.127c)

The expressions in (5.127a)-(5.127c) are the averages of the mutual informations

calculated at the empirical distributions in the column t of the mentioned subcode. We

can rewrite these equations with the new random variable U , where U is distributed

uniformly on {1, 2, ..., n}. Using the same method as Cover [13, pp. 402], we obtain
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the result. The only thing remained to be found is the distribution under which we

calculate the mutual informations. However, by (5.126)

|P(XU = x, YU = y|U = u)− P(XU = x|U = u)P(YU = y|U = u)|

= |P(Xu = x, Yu = y)− P(Xu = x)P(Yu = y)| ≤ 2n−1/4. (5.128)

Using the continuity of conditional mutual information with respect to distributions,

and by using the idea of [6, pp. 722], we conclude that, if two distributions are close,

the conditional mutual informations, calculated based on them, cannot be too far.

More precisely, we can say that there exists a sequence {δn}∞n=1, δn → 0 as n → ∞,

such that,

1

n
logMX ≤ 1

n

n∑
t=1

I(Xt ∧ Zt|Yt, U) + C(λ)
o(n)

n
+ δn, (5.129a)

1

n
logMY ≤ 1

n

n∑
t=1

I(Yt ∧ Zt|Xt, U) + C(λ)
o(n)

n
+ δn, (5.129b)

1

n
log (MXMY ) ≤

1

n

n∑
t=1

I(XtYt ∧ Zt|U) + C(λ)
o(n)

n
+ δn. (5.129c)

By defining new random variables X , XU , Y , YU and Z , ZU , whose distribu-

tions depend on U in the same way as the distributions of Xt, Yt and Zt depend on

t, (5.129a)-(5.129c) can be written as

1

n
logMX ≤ I(X ∧ Z|Y, U) + C(λ)

o(n)

n
+ δn, (5.130a)

1

n
logMY ≤ I(Y ∧ Z|X,U) + C(λ)

o(n)

n
+ δn, (5.130b)

1

n
log (MXMY ) ≤ I(XY ∧ Z|U) + C(λ)

o(n)

n
+ δn. (5.130c)

Here, the mutual informations are calculated based on p(u)p(x|u)p(y|u)W (z|x, y). On
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the other hand, the joint probability distribution of X and Y is

P(X = x, Y = y) =
∑

(i,j)∈A

P (X(W1) = x, Y (W2) = y,W1 = i,W2 = j)

=
∑

(i,j)∈A

P (X(i) = x, Y (j) = y)P(i, j)

=
1

|A|
∑

(i,j)∈A

P (X(i) = x, Y (j) = y)

=
1

|A|
∑

(i,j)∈A

1

n

n∑
u=1

1{Xu(i) = x, Yu(j) = y}. (5.131)

However, all codeword pairs have the same joint type P n
XY , hence,

n∑
u=1

1{Xu(i) = x, Yu(j) = y} = nP n
XY (x, y). (5.132)

By combining (5.131) and (5.132), it can be concluded that

P(X = x, Y = y) = P n
XY (x, y). (5.133)

Finally, we can conclude that

P (u, x, y, z) = p(u)p(x|u)p(y|u)W (z|x, y), (5.134)

in which the marginal distribution of X and Y is P n
XY (x, y).

The cardinality bound on the time-sharing random variable, U , is the consequence

of Carathéodory’s theorem on the convex set [21], [32], [13].

5.6.5 Proof of Theorem 5.3.3

To show the result, we must first prove the following theorem:
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Lemma 5.6.6. For any fixed P ∈ P(X × Y), rate pair (RX , RY ),

lim
n→∞

min
V ∈Dn(P )

D(V ||W |P ) = min
V ∈D(P )

D(V ||W |P ), (5.135)

where

D(P ) , {V : (RX , RY ) /∈ CV (P )}

Dn(P ) , {V : (RX , RY ) /∈ Cn
V (P )} . (5.136)

Proof. Define αn , minV ∈Dn(P )D(V ||W |P ), and α∗ , minV ∈D(P )D(V ||W |P ). More-

over, suppose α∗ is achieved by V ∗. Since {αn}∞n=1 is a decreasing sequence and it

is bounded from below (αn ≥ α∗), therefore it has a limit. Suppose the limit is not

equal to α∗. Therefore, there exist a δ > 0, such that for infinitely many n,

|αn − α∗| ≥ δ. (5.137)

Hence, for infinitely many n,

D(V ||W |P )− α∗ ≥ δ ∀ V ∈ Dn(P ) (5.138)

which implies that V ∗ cannot belong to Dn(P ) for infinitely many n, i.e., for infinitely

many n,

(RX , RY ) ∈ Cn
V ∗(P ). (5.139)

Since V ∗ ∈ D(P ),

(RX , RY ) /∈ CV ∗(P ). (5.140)

Therefore Cn
V ∗(P ) cannot converge to CV ∗(P ), which is a contradiction.

Since C is an (n,MX =,MY ) multi-user code, it can be concluded that it must
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have at least a dominant type, P n
XY ∈ Pn(X × Y). Consider an arbitrary DM-MAC

V : X × Y → Z, such that (RX , RY ) /∈ Cn
V (P

n
XY ). By Theorem 5.3.2, for channel V ,

C cannot be an (n,MX ,MY , λ)-code for any 0 ≤ λ < 1. Choose λ̄ < 1 satisfying

1 + λ̄

2
> 1− δ

2
. (5.141)

Since P n
XY is a dominant type of code C,

∣∣C ∩ TPn
XY

∣∣ ≥ 1

(n+ 1)|X ||Y|MXMY . (5.142)

On the other hand, since (RX , RY ) /∈ Cn
V (P

n
XY ), it can be concluded that

∣∣EV (C,P n
XY , λ̄)

∣∣ < 1

(n+ 1)|X ||Y|

(
1− 2λ̄

1 + λ̄

)
MXMY . (5.143)

By combining (5.142) and (5.143), it can be concluded that

∣∣DV (C,P
n
XY , λ̄)

∣∣ ≥ 1

(n+ 1)|X ||Y|

(
2λ̄

1 + λ̄

)
MXMY , (5.144)

where DV (C,P
n
XY , λ̄) is defined as

DV (C,P
n
XY , λ̄) ,

(
C ∩ TPn

XY

)
/ EV (C,P n

XY , λ̄)

=
{
(xi,yj) ∈ C ∩ TPn

XY
: V (Dc

ij|xi,yj) >
1 + λ̄

2

}
. (5.145)

By combining (5.141), (5.145) and using the same method as Csiszar in [16, pp. 167],

we have

W n(Dc
ij|xi,yj) ≥ exp

{
−

D(V ||W |P n
XY ) + h(1− δ

2
)

1− δ
2

}
≥ 1

2
exp {−nD(V ||W |P n

XY )(1 + δ)} for all (xi,yj) ∈ DV (C,P
n
XY , λ̄),

(5.146)

for small enough δ satisfying h(1− δ
2
) < 1− δ

2
. The average error probability of the
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code C over the channel W can be written as

e(C,W ) =
1

MXMY

MX∑
i=1

MY∑
j=1

W n(Dc
ij|xi,yj)

≥ 1

MXMY

∑
i,j:

(xi,yj)∈DV (C,Pn
XY ,λ̄)

1

2
exp {−nD(V ||W |P n

XY )(1 + δ)}

≥ 1

(n+ 1)|X ||Y|

(
λ̄

1 + λ̄

)
exp {−nD(V ||W |P n

XY )(1 + δ)}. (5.147)

Since the inequality (5.147) holds for all V : X × Y → Z satisfying (RX , RY ) /∈

Cn
V (P

n
XY ), it can be concluded that

e(C,W ) ≥ max
V :(RX ,RY )/∈Cn

V (Pn
XY )

exp {−n[D(V ||W |P n
XY )(1 + δ) + δ]}

= exp {−n[ min
V :(RX ,RY )/∈Cn

V (Pn
XY )

D(V ||W |P n
XY )(1 + δ) + δ]},

≥ min
PXY ∈P(X×Y):

exp {−n[ min
V :(RX ,RY )/∈Cn

V (PXY )
D(V ||W |PXY )(1 + δ) + δ]},

(5.148)

for sufficiently large n. Using Lemma 5.6.6, we conclude that for sufficiently large n,

e(C,W ) ≥ min
PXY ∈P(X×Y)

exp {−n[ min
V :(RX ,RY )/∈CV (PXY )

D(V ||W |PXY )(1 + δ) + δ]},

(5.149)

which completes the proof.

5.6.6 Proof of Theorem 5.4.1

Theorem 5.6.1. For any nonnegative-definite channel, W , the minimum distance of

any multiuser code, C = CX × CY , with rate pair (RX , RY ) satisfies

dB(C) ≤ EM(RX , RY ,W ), (5.150)
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where EM(RX , RY ,W ) is defined as

EM(RX , RY ,W ) , max
PUXY

min
β=X,Y,XY

Eβ
U,1(RX , RY ,W, PXY U). (5.151)

The maximum is taken over all PUXY ∈ P(U × X × Y) such that X − U − Y , and

RX ≤ H(X|U) and RY ≤ H(Y |U). The functions Eβ
M(RX , RY ,W, PXY U) are defined

as follows:

EX
M(RX , RY ,W, PXY U) , min

VXX̃X̂Y ∈VM
X

EdW
(
(X̂, Y ), (X̃, Y )

)
,

EY
M(RX , RY ,W, PXY U) , min

VXY Ỹ Ŷ ∈VM
Y

EdW
(
(X, Ŷ ), (X, Ỹ )

)
,

EXY
M (RX , RY ,W, PXY U) , min

VXY X̃Ỹ X̂Ŷ ∈VM
XY

EdW
(
(X̂, Ŷ ), (X̃, Ỹ )

)
. (5.152)

where

VM
X ,

{
VXX̃X̂Y : VX̃Y = VX̂Y = VXY = PXY , X̂ −XY − X̃

VX̃|XY = VX̂|XY , I(X ∧ X̃|Y ) = I(X ∧ X̂|Y ) ≤ RX

}
, (5.153)

VM
Y ,

{
VXY Ỹ Ŷ : VXỸ = VXŶ = VXY = PXY , Ŷ −XY − Ỹ

VỸ |XY = VŶ |XY , I(Y ∧ Ỹ |X) = I(Y ∧ Ŷ |X) ≤ RY

}
, (5.154)

VM
XY ,

{
VXY X̃Ỹ X̂Ŷ : VX̃Ỹ = VX̂Ŷ = VXY = PXY , X̂Ŷ −XY − X̃Ỹ

VX̃Ỹ |XY = VX̂Ŷ |XY , I(XY ∧ X̃Ỹ ) = I(XY ∧ X̂Ŷ ) ≤ RX +RY

}
. (5.155)

Proof. Consider any joint composition VXY X̃Ỹ ∈ Pn (X × Y × X × Y) with marginal

distributions VXY = VX̃Ỹ = PXY . In the following lemma, we find the average number

of pairs of codewords in a spherical collection defined by joint type VXY X̃Ỹ about an

arbitrary pair of sequences (x,y) ∈ TPXY
. For such (x,y), which is not necessarily a

pair of codewords, let us define the following sets:

• AX(x,y) ,
{
(x, ỹ) ∈ C : (x,y,x, ỹ) ∈ TVXY X̃Ỹ

}
• AY (x,y) ,

{
(x̃,y) ∈ C : (x,y, x̃,y) ∈ TVXY X̃Ỹ

}
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• AXY (x,y) ,
{
(x̃, ỹ) ∈ C : (x,y, x̃, ỹ) ∈ TVXY X̃Ỹ

}
Note that, if x /∈ CX or X ̸= X̃, the first set would be empty. Similarly, if y /∈ CY or

Y ̸= Ỹ , the second one would be an empty set.

Lemma 5.6.7. Consider the multi-user code, C with a dominant joint type PXY .

Additionally, consider any distribution VXY X̃Ỹ ∈ P
(
(X × Y)2

)
, satisfying VXY =

VX̃Ỹ = PXY . Then, there exists a pair of sequences (x,y) ∈ TPXY
such that

|AXY (x,y)| ≥ exp{n[RX +RY − I(X̃Ỹ ∧XY )]}. (5.156)

Also, for any distribution VXY X̃ ∈ P
(
X ×Y ×X

)
satisfying VXY = VX̃Y = PXY , and

any y ∈ CY ∩ TPY
, there exists a x ∈ TPX

, such that (x,y) ∈ TPXY
, and

|AY (x,y)| ≥ exp{n[RX − I(X̃ ∧X|Y )]}. (5.157)

Similarly, for any distribution VXY Ỹ ∈ P
(
X ×Y ×Y

)
satisfying VXY = VXỸ = PXY ,

and any x ∈ CX ∩ TPX
, there exists a sequence y ∈ TPY

such that (x,y) ∈ TPXY
, and

|AX(x,y)| ≥ exp{n[RY − I(Ỹ ∧ Y |X)]}. (5.158)

Proof. For a fixed VXY X̃Ỹ , let us study the spherical collection consisting of all pairs of

codewords sharing composition VXY X̃Ỹ with some arbitrary pair of sequences in TPXY
.

Consider such spherical collection for every pair of sequences. Since each of the code-

word pairs shares joint composition VXY X̃Ỹ with exp{H(X̃Ỹ |XY )} pair of sequences,

it must belong to exp{H(X̃Ỹ |XY )} different spherical collections. Therefore,

∑
(x,y)∈TPXY

|AXY (x,y)| ≈ exp{n[RX +RY +H(X̃Ỹ |XY )]}

Hence, by dividing both sides of the previous equality by |TPXY
|, we conclude that

1

|TPXY
|

∑
(x,y)∈TPXY

|AXY (x,y)| ≈ 2n[RX+RY −I(X̃Ỹ ∧XY )].
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Thus, there must exist a pair of sequence, (x,y) ∈ TPXY
, with

|AXY (x,y)| ' exp{n[RX +RY − I(X̃Ỹ ∧XY )]}. (5.159)

By a similar argument, we can conclude (5.157) and (5.158).

Lemma 5.6.8. Fix ϵ > 0. Let W be a nonnegative-definite channel. Let C = CX×CY

be any multi-user code with dominant composition nPXY and rate pair (RX , RY ).

Consider any distribution VXY X̃Ỹ ∈ P(X × Y × X × Y) satisfying the following

constraints:

• VXY = VX̃Ỹ = PXY

• IV (XY ∧ X̃Ỹ ) ≤ RX +RY − ϵ,

Then, C has two pairs of codewords, (x̃, ỹ) and (x̂, ŷ), such that

dB
(
(x̃, ỹ), (x̂, ŷ)

)
≤ (1 + ϵ)EdB

(
(X̃, Ỹ ), (X̂, Ŷ ))

)
, (5.160)

where the expectation is calculated based on VXY X̃Ỹ X̂Ŷ ∈ P((X × Y)3) satisfying

• VXY = VX̃Ỹ = VX̂Ŷ = PXY

• X̃Ỹ −XY − X̂Ŷ

• VX̃Ỹ |XY = VX̂Ŷ |XY

• IV (XY ∧ X̃Ỹ ) ≤ RX +RY − ϵ.

Moreover, for any VXY X̃ ∈ P(X × Y × X ) satisfying the following constraints:

• VXY = VX̃Y = PXY

• IV (X ∧ X̃|Y ) ≤ RX − ϵ,

C has two pairs of codewords, (x̃,y) and (x̂,y), such that

dB
(
(x̃,y), (x̂,y)

)
≤ (1 + ϵ)EdB

(
(X̃, Y ), (X̂, Y ))

)
, (5.161)
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where the expectation is calculated based on VXY X̃X̂ ∈ P(X × Y × X × X ) satisfying

• VXY = VX̃Y = VX̂Y = PXY

• X̃ −XY − X̂

• VX̃|XY = VX̂|XY

• IV (X ∧ X̃|Y ) ≤ RX − ϵ.

Similarly, for any VXY Ỹ ∈ P(X × Y × Y) satisfying the following constraints:

• VXY = VỸ = PXY

• IV (Y ∧ Ỹ |X) ≤ RY − ϵ.

C has two pairs of codewords, (x, ỹ) and (x, ŷ), such that

dB
(
(x, ỹ), (x, ŷ)

)
≤ (1 + ϵ)EdB

(
(X, Ỹ ), (X, Ŷ ))

)
, (5.162)

where the expectation is calculated based on VXY Ỹ Ŷ ∈ P(X × Y × Y × Y) satisfying

• VXY = VXỸ = VXŶ = PXY

• Ỹ −XY − Ŷ

• VỸ |XY = VŶ |XY

• IV (Y ∧ Ỹ |X) ≤ RY − ϵ.

Proof. Consider the joint type VXY X̃Ỹ for which we have the following properties

• VXY = VX̃Ỹ = PXY .

• I(X̃Ỹ ∧XY ) ≤ RX +RY − δ.

For the moment, let us assume that X ̸= X̃ and Y ̸= Ỹ . Let us choose (x,y) ∈ TPXY

whose existence is asserted in the previous lemma. Let us call the spherical collection

about (x,y) ∈ TPXY
, which is defined by VXY X̃Ỹ , as SXY . Also, call the cardinality

157



of this set by TXY , i.e. |SXY | = TXY . From this point, we are going to study the

distance structure of the pairs of codewords that lie in SXY . Since we have so many

codewords in this spherical collection, they cannot be far from one another. First, we

calculate the average distance between any two pairs in this spherical collection. The

average distance is given by

dXY
av =

1

TXY (TXY − 1)
dtot

where dtot is obtained by adding up all unordered distances between any two not

necessarily distinct pairs of codewords in SXY . In the other words, dtot is defined as

dXY
tot =

∑
(x̂,ŷ)∈SXY

∑
(x̃,ỹ)∈SXY

dB
(
(x̂, ŷ), (x̃, ỹ)

)
where (x̃, ỹ) and (x̂, ŷ) are not necessarily distinct pairs. Therefore,

dXY
av =

1

n

1

TXY (TXY − 1)

∑
(x̂,ŷ),

(x̃,ỹ)∈SXY

∑
i,k∈X
j,l∈Y

nx̂ŷx̃ỹ(i, j, k, l)dB
(
(i, j), (k, l)

)

where nx̂ŷx̃ỹ(i, j, k, l) , nPx̂ŷx̃ỹ(i, j, k, l), and Px̂ŷx̃ỹ is the joint composition of (x̂, ŷ)

and (x̃, ỹ). Furthermore, define the variable nx̂ŷx̃ỹ(i, j, k, l|p) as follows:

nx̂ŷx̃ỹ(i, j, k, l|p) =

1 if (x̂)p = i, (ŷ)p = j, (x̃)p = k, (ỹ)p = l

0 otherwise

Hence, the average distance can be written as

dXY
av =

1

n

1

TXY (TXY − 1)

∑
p

∑
(x̂,ŷ),

(x̃,ỹ)∈SXY

∑
i,k∈X
j,l∈Y

nx̂ŷx̃ỹ(i, j, k, l|p)dB
(
(i, j), (k, l)

)

Let T(i,j)|p be the number of (x,y) ∈ SXY with (x)p = i, and (y)p = j. It can be
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shown that the previous can be written as

dXY
av =

1

n

TXY

TXY − 1

∑
p

∑
i,k∈X
j,l∈Y

T(i,j)|pT(k,l)|p

T 2
XY

dB
(
(i, j), (k, l)

)
.

Moreover, Let us define λ(i,j)|p as the fraction of the pairs in SXY with an (i, j) in

their p-th component, i.e.,

λ(i,j)|p ,
T(i,j)|p

TXY

. (5.163)

Therefore, dXY
av can be written as

dXY
av =

1

n

TXY

TXY − 1

∑
p

∑
i,k∈X
j,l∈Y

λ(i,j)|pλ(k,l)|pdB
(
(i, j), (k, l)

)
. (5.164)

In general, λ is an unknown function. However, it must satisfy the following equality

∑
i∈X ,j∈Y

λ(i,j)|p = 1 for all p. (5.165)

For the center of the sphere, (x,y), we define γ(i,j)|p as

γ(i,j)|p =

1 if (x)p = i, (y)p = j

0 otherwise

.

On the other hand, a valid λ must satisfy the following constraint:

∑
p

λ(i,j)|pγ(k,l)|p = nXY X̃Ỹ (k, l, i, j) (5.166)

for all i, k ∈ X and all j, l ∈ Y . Therefore, we can upper bound dav with

dXY
av ≤ 1

n

TXY

TXY − 1
max

λ

∑
p

∑
i,k∈X
j,l∈Y

λ(i,j)|pλ(k,l)|pdB
(
(i, j), (k, l)

)
. (5.167)

where the maximization is taken over all λ satisfying (5.165) and (5.166). In the
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following lemma, we will find the maximum.

Lemma 5.6.9. Suppose that W is a nonnegative-definite channel. The average dis-

tance between the TXY pairs of codewords in the spherical collection, defined by joint

composition VXY X̃Ỹ , satisfies

dXY
av ≤ TXY

TXY − 1

∑
i,k∈X
j,l∈Y

∑
r∈X ,
s∈Y

fXY

(
(i, j), (k, l), (r, s)

)
. (5.168)

where fXY

(
(i, j), (k, l), (r, s)

)
is defined as

fXY

(
(i, j), (k, l), (r, s)

)
, nXY X̃Ỹ (r, s, i, j)nXY X̃Ỹ (r, s, k, l)

n.nXY (r, s)
dB
(
(i, j), (k, l)

)
.(5.169)

Proof. Let

λ∗
(i,j)|p =

∑
k∈X ,l∈Y

nXY X̃Ỹ (k, l, i, j)

nXY (k, l)
γ(k,l)|p (5.170)

We are going to prove that λ∗ achieves the maximum. It is easy to clarify that λ∗

satisfies (5.165) and (5.166). Moreover, for all λ satisfying (5.165) and (5.166),

∑
p

λ∗
(i,j)|pλ(k,l)|p =

∑
r∈X ,s∈Y

nXY X̃Ỹ (r, s, i, j)

nXY (r, s)

∑
p

γ(r,s)|pλ(k,l)|p

=
∑

r∈X ,s∈Y

nXY X̃Ỹ (r, s, i, j)nXY X̃Ỹ (r, s, k, l)

n.nXY (r, s)
(5.171)

By assuming that the channel is nonnegative definite, and by using a similar

argument as [10, Lemma 6], we can show that λ∗ achieves the maximum. Substituting

this value for λ completes the proof.

Now, let us fix a joint type VXY X̃ ∈ Pn(X×Y×X ) for which we have the following

properties

• VXY = VX̃Y = PXY

• I(X̃ ∧X|Y ) ≤ RX − δ
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Let us choose any y ∈ CY ∩ TPY
. By Lemma 5.6.7, there exists a sequence x ∈ TPX

such that (x,y) ∈ TPXY
, and the spherical collection about (x,y), defined by VXY X̃

has many pairs of codewords. Let us call such a sphere as SY . Assume that |SY | = TY .

We denote the average distance between any two pairs of codeword belonging to this

spherical collection by dYav. Using a similar argument to the one in Lemma 5.6.9, it

can be shown that dYav is bounded from above by

dYav ≤
TY

TY − 1

∑
i,k∈X

∑
r∈X ,s∈Y

fY
(
i, k, (r, s)

)
. (5.172)

where fY
(
i, k, (r, s)

)
is defined as

fY
(
i, k, (r, s)

)
, nXY X̃(r, s, i)nXY X̃(r, s, k)

n.nXY (r, s)
dB
(
(i, j), (k, j)

)
. (5.173)

Similarly, let’s fix a joint type VXY Ỹ ∈ Pn(X ×Y×Y) for which we have the following

properties

• VXY = VXỸ = PXY

• I(Ỹ ∧ Y |X) ≤ RY − δ

Choose any x ∈ CX∩TPX
. By Lemma 5.6.7, there exist a sequence y ∈ TPY

such that

(x,y) ∈ TPXY
and the spherical collection about (x,y) defined by VXY Ỹ has many

pairs of codewords. Let us call such a sphere as SX . Assume that |SX | = TX . We

denote the average distance between any two pairs of codewords belonging to this

spherical collection by dXav. By doing a similar argument as we did before, we can find

an upper bound on the dXav. It can be easily shown that

dXav ≤
TX

TX − 1

∑
j,l∈Y

∑
r∈X ,s∈Y

fX
(
j, l, (r, s)

)
. (5.174)

where fX
(
j, l, (r, s)

)
is defined as

fX
(
j, l, (r, s)

)
, nXY Ỹ (r, s, j)nXY Ỹ (r, s, l)

n.nXY (r, s)
dB
(
(i, j), (i, l)

)
. (5.175)
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As a result, it can be concluded that for any VXY X̃Ỹ satisfying the aforementioned

constraints, there exists a pair of sequences (x,y) ∈ TPXY
, such that the spherical

collection about (x,y) and defined by VXY X̃Ỹ has exponential many codeword pairs

around. Therefore, for sufficiently large n,

TXY

TXY − 1
≤ 1 + ϵ (5.176)

Therefore by substituting this upper bound, and by simplifying the result of Lemma

5.6.8, we observe that

dXY
av ≤ (1 + ϵ)EdB

(
(X̃, Ỹ ), (X̂, Ŷ ))

)
(5.177)

The expectation is calculated based on VX̃Ỹ |XY VX̃Ỹ |XY VXY . Since the average dis-

tance between the pairs in SXY is greater than some number, there must exist at

least two pairs of codewords in SXY satisfying the same constraints. By a similar

argument, we can show the correctness of the second and third part of the theorem.

Lemma 5.6.10. For β = X,Y,XY , the following quantities are equivalent

Eβ
M(RX , RY ,W, PXY U) = Eβ

U(RX , RY ,W, PXY U), (5.178)

where Eβ
Us and Eβ

Ms are defined in (5.30) and (5.152).

Proof. The proof is a generalized version of the result of [15].

Theorem 5.6.2. For any indivisible channel

E∗
m(RX , RY ) ≤ d∗B(RX , RY ), (5.179)

where E∗
m(RX , RY ) is the maximal error reliability function at rate pair (RX , RY ).
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Proof. The proof is very similar to [10].

Therefore, by combining the result of Theorem 5.6.1 and Theorem 5.6.2, the result

of Theorem 5.4.1 is concluded.

5.6.7 Proof of Theorem 5.5.1

Without loss of generality, let us assume RX ≤ RY . The average error probability

of any code is always less than or equal to its maximal probability of error. As a

result,

E∗
m (RX , RY ) ≤ E∗

av (RX , RY ) . (5.180)

On the hand, for any δ > 0 and sufficiently large n, there exists an (n,RX , RY ) code,

C = CX × CY , satisfying the following inequality

e(C,W ) ≤ 2−n(E∗
av(RX ,RY )−δ), (5.181)

which can be written as

1

MY

MY∑
j=1

{
1

MX

MX∑
i=1

eij(C,W )

}
≤ 2−n(E∗

av(RX ,RY )−δ). (5.182)

It can be concluded that, for M∗
Y ≥ MY

2
codewords in CY , the following holds

1

MX

MX∑
i=1

eij(C,W ) ≤ 2× 2−n(E∗
av(RX ,RY )−δ), for all j = 1, 2, ...,M∗

Y . (5.183)

Here, without loss of generality, we assumed that these codewords are the first M∗
Y

codewords in CY . By using (5.183), it can be concluded that

eij(C,W ) ≤ 2× 2−n(E∗
av(RX ,RY )−RX−δ), for all j = 1, 2, ...,M∗

Y , i = 1, 2, ...,MX ,

(5.184)

163



and therefore

em(C
∗,W ) ≤ 2× 2−n(E∗

av(RX ,RY )−RX−δ), (5.185)

where

C∗ , {(xi,yj) : i = 1, 2, ...,MX , j = 1, 2, ...,M∗
Y } . (5.186)

Note that,

em(C
∗,W ) ≥ 2−n(E∗

m(RX ,RY −δ)+δ) ≥ 2−n(E∗
m(RX ,RY )+2δ). (5.187)

By combining (5.185) and (5.187), we conclude that

E∗
m (RX , RY ) ≥ E∗

av (RX , RY )−RX . (5.188)

Similarly, it can be shown that

E∗
av (RX , RY ) ≤ E∗

m (RX , RY ) +RX . (5.189)

164



CHAPTER 6

Conclusions

This work addresses the problem of communication over a multiple-access channel

(MAC) without feedback in the discrete memoryless setting. We consider the error

exponents for this channel model and obtain upper and lower bounds on the channel

reliability function.

In Chapter 3, we study a unified framework to obtain all known lower bounds

(random coding, typical random coding and expurgated bound) on the reliability

function of a point-to-point discrete memoryless channel. We show that the typical

random coding bound is the typical performance of the constant composition code

ensemble. By using a similar idea with a two-user discrete memoryless multiple-

access channel, we derive three lower bounds on the reliability function. The first

one (random coding) is identical to the best known lower bound on the reliability

function of DM-MAC. We also showed that the random coding bound is the average

performance of the constant composition code ensemble. The second bound (typical

random coding) is the typical performance of the constant composition code ensemble.

To derive the third bound (expurgated), we eliminate some of the codewords from

the codebook with a larger rate. This is the first bound of its type that explicitly

uses the method of expurgation in a multi-user transmission system. We show that

the exponent of the typical random coding and expurgated bounds are greater than

or equal to the exponent of the known random coding bounds for all rate pairs.

By numerical evaluation of the random coding and the expurgated bounds for a
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simple symmetric MAC, we show that, at low rates, the expurgated bound is strictly

larger. We also show that all these bounds can be universally obtained for all discrete

memoryless MACs with given input and output alphabets.

To obtain upper bounds on the reliability function for DM-MACs, in Chapter 4,

we formally characterize the typicality graph and look at some subgraph containment

problems. In particular, we answer three questions concerning the typicality graph:

• When can we find subgraphs such that the left and right vertices of the subgraph

have specified degrees, say R′
X and R′

Y , respectively ?

• What is the maximum size of subgraphs that are complete, i.e., every left vertex

is connected to every right vertex? One main contribution of this chapter is to

provide a complete answer to this question.

• If we create a subgraph by randomly picking a specified number of left and

right vertices, what is the probability that this subgraph has far fewer edges

than expected?

Finally, in Chapter 5, two new upper bounds on the error exponent of a two-

user discrete memoryless (DM) multiple-access channel (MAC) are derived. The first

bound (sphere packing) is an upper bound on the average error exponent and is

the first bound of this type that explicitly imposes independence of the users’ input

distributions (conditioned on the time-sharing auxiliary variable) and, thus, results

in a tighter sphere-packing exponent when compared to the tightest known exponent

derived by Haroutunian. The second bound (minimum distance) is an upper bound

on the maximal error exponent, not the average. To obtain this bound, we first derive

an upper bound on the minimum Bhattacharyya distance between codeword pairs.

For a certain large class of two-user (DM) MAC, an upper bound on the maximal

error exponent is derived as a consequence of the upper bound on Bhattacharyya

distance. Using a conjecture about the structure of the multi-user code, a tighter

minimum distance bound for the maximal error exponent is derived and shown to

be tight at zero rates. Finally, the relationship between average and maximal error
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probabilities for a two user (DM) MAC is studied. As a result, a method to derive

new bounds on the average/maximal error exponent by using known bounds on the

maximal/average error exponent is obtained.
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