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Abstract

Efficient allocation of network resources is a highly desirable goal, with applications of interest
ranging from bandwidth allocation in unicast/multicast services on the internet, to power
allocation in a wireless interference networks and spectrum allocation for cellular networks.
In this thesis, we consider such network problems in the presence of strategic decision-makers
and solve the various mechanism design and game theoretical problems that arise from it.

In the first four chapters, we present single-shot incentive mechanisms for strategic agents,
geared towards the above applications, such that the outcome produced at any Nash equilib-
rium is socially efficient. The focus in the first three chapters is on developing a systematic
approach to designing such mechanisms such that various applications that differ qualitatively
can be combined under the same design umbrella. Our approach models each application with
its own network allocation constraints. Additionally, the design ensures that the mechanism
contract only promises feasible allocation regardless of what messages agents choose i.e., the
allocation through the mechanism cannot violate the network constraints. To this end we
introduce a new radial allocation scheme. The benefit from this design criterion is that it al-
lows the mechanism to be played off-equilibrium e.g., when agents are still learning the Nash
equilibrium.

Chapter 4 focuses on resolving two separate issues that most mechanisms in the Nash im-
plementation literature overlook. The first is the distributed-ness of communication between
agents — the message chosen by an agent is assumed to be observed only by that agent’s neigh-
bors on a communication graph (typical mechanism design model assumes that the messages
are broadcasted). We demonstrate analytically that the distributed-ness of communication
increases the dimensionality of the message space to the order of the average degree of the
communication graph. The second issue is that of providing theoretical guarantees on how

the one-shot Nash equilibrium can be learnt when agents only possess information about their



own utilities and not that of others. We provide positive convergence guarantees for the entire
class of adaptive best-response learning dynamics. These are a set of strategies where actions
are myopic and depend on the recent history of observed actions. The guarantee provided is
such that agents do not need to coordinate with their strategies in order to converge. Resolv-
ing both the issues simultaneously further increases the dimensionality of the message space
to the order of number of agents.

In Chapter 5, we consider a Bayesian model with uncertainty in agents’ utilities. The ob-
jective of the mechanism designer is to achieve fairer allocation than the socially efficient one.
We provide sufficient conditions on the fair allocation objective such that a truthful mech-
anism exists. The results are provided separately for Bayesian and dominant strategy incen-
tive compatibility. Through a concrete example of demand-side management in smart grids
we demonstrate numerically, the gains in fairness of the allocation as well as taxes collected
through our method.

Chapter 6 considers infinite-horizon dynamic games of asymmetric information and de-
velops a dynamic programming style characterization for calculating a subset of all perfect
Bayesian equilibria (PBE). This subset of PBEs are rich enough to exhibit signaling behav-
ior, which is also demonstrated through numerical analysis. The motivation for this work is
the possible deployment of this equilibria characterization technique in designing dynamic
mechanisms for systems where direct mechanisms are not desired, for instance due to privacy

considerations.
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Introduction

Human beings, viewed as behaving systems,
are quite simple. The apparent complexity of
our behavior over time is largely a reflection of
the complexity of the environment in which we

find ourselves.

(Herbert Simon, The Sciences of the Artificial)

As machines behave in the manner dictated, predicting outcomes for a well-designed system
where machines are the decision makers is straightforward. This is not the case when the
decision-makers in the system are human beings. Predicting how human beings behave is a
complex, and as yet not fully understood, phenomenon which is typically investigated in the
field of Decision Theory. One well-accepted model for human behavior is rationality.

Predicting outcomes in systems with multiple rational decision-makers is an even more
complex task as each rational decision-maker acts in anticipation of how the other decision
makers will act. For this reason, analysis of such systems is done via the study of Games with
appropriately defined notion(s) of Equilibrium. With a set notion for analysis, a natural next
step in development is design. Designing a system with multiple human decision-makers is
studied in the field of Mechanism Design.

'The framework of Mechanism design aims to bridge the informational gap between a de-
signer, who wishes to achieve “efficient” allocation and rational agents, who posses private
information relevant to determining the efficient allocation. This thesis focuses on designing
mechanisms for a networked system of agents where the designer is interested in accommo-
dating, apart from the main objective of eflicient allocation, certain allocative, informational

and learning constraints imposed by the network.



Motivating Design Principles

'The motivation for designing mechanisms with inbuilt network constraints are listed below.
In the subsequent section on contributions, the various motivations below are matched to
problems - each presented in a different chapter later.

Unless mentioned otherwise, the solution concept used is Nash equilibrium and of interest
is the design of full implementation mechanisms i.e., no inefficient Nash equilibria.

In the seminal paper [Ma99], necessary and sufficient conditions for Nash implementation
(with three or more agents) are provided. Thus a complete characterization exists of the social
choice functions (SCF) that are Nash implementable. Furthermore, for the SCFs that are
Nash implementable, the constructive proof even suggests a “canonical” mechanism. How-
ever, this “canonical” mechanism involves a huge communication cost - each agent is required
to quote every agent’s preference, which is impractical in real world settings. Another imprac-
tical aspect of the proposed mechanism is that it leads agents to play a modulo game'.

Our motivation stems from designing Nash implementation mechanisms, for specific ap-
plications, that are more structured and that can surpass the above criticisms of the “canonical”

mechanism. Specific considerations are listed below.

(a) Reduction in the Communication overhead

A significant part of the literature on network protocols is interested in the Network

Utility Maximization (NUM) problem. These problems aim to solve
N
mngvz(a:) st. € X, (0.1)
i1

which is similar to the Utilitarian Social Welfare maximization problems in Economics,
except for the allocative constraint £ € X, imposed by the network. In the mechanism
design model for this objective, the private information possessed by agents is the utility

function v;(-), which usually is a function from a subset of a Euclidean space to R.

In such models, the use of direct mechanisms (such as the VCG mechanism) is prohibitive

as it would require agents to communicate an entire function to the designer. Thus it is

1A game where each agent quotes an integer and the outcome is decided based on the remainder of the sum
of the quotes, modulo N (the number of agents).



(b)

preferable to design mechanisms aimed at achieving the efficient allocation defined above
which require agents to communicate “less” with the designer, e.g. itis preferable to quote

a vector of real numbers than a function whose domain is a Euclidean space.

Systematic Design

It is not surprising that design with the above mentioned reduction in communication
is typically tuned to the allocative constraints imposed by the network (feasible set X
in (0.1) above). 'The presented mechanisms in the literature reveal a case-by-case ap-
proach. One important motivation of this thesis is the unification of the design principles

concerned with various instances of X.

Depicted in Fig. 1, 2 and 3 are three such examples. The first two arise from the prob-
lem of bandwidth allocation between pairs of transmitters and receivers, where the data
flow is restricted by capacity on the various links of the network. Fig. 1 and 2 consist
of 4 pairs of receivers and transmitters: T1-R1, T1-R2, T2-R3, T2-R4. A unicast net-
work is one where at each link the constraint on data flow is through the summation
of data over each pair that uses that link. This means that the constraint on link AB is
T1 + T2 + T3 + T4 < cap, Where cap is the capacity of link AB. A multirate/multicast
network is one where the constraint is through the summation over transmitters of only
the maximum data flowing from each transmitter. This means that the constraint on link
AB in the multirate/multicast network is max{z;, o} + max{zs, 24} < cap. Sucha
protocol requires that on each link, for each transmitter, only one connection be setup -
corresponding to the receiver who receives the highest quality data. Lower quality data
can then be generated, at fixed nodes, by sampling higher quality data, so that the lim-
ited bandwidth on the links can be saved. Finally, the model depicted in Fig. 3 is that of
power allocation on a wireless network with local interference. For instance, the power
allocated to agent 1 causes interference to agent 2 (and vice-versa) since they are both

part of the same neighborhood N;.

These problems represent different aspects of allocation models - public and private goods.
Through a systematic design one hopes to combine both these aspects into the same

design framework.
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Figure 1.: A network that imposes “unicast” constraints
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Figure 3.: A public goods network with local interference



(c)

Informational constraints on messaging

'The principle framework of Mechanism Design is such that it assumes the existence of
central entity capable of communicating with each agent. Thus most mechanisms in
literature define the contract (e.g., allocation and tax) such that messages from all agents
need to be collected centrally in order to determine any agents’ outcome. This is akin
to assuming a broadcast structure of communication between agents, where an alternate
interpretation is that agents broadcast their message to all other agents and then each
agent can calculate their outcome by evaluating the prespecified contract at the overall
message profile. What happens if certain channels of communication between agents
are broken? For instance, Fig. 4 depicts a system with four agents where only four out
of the six possible communication channels are still active. Agent 1 cannot send his/her
message to agent 3 and vice-versa. Similarly, agent 1 cannot send his/her message to
agent 4 and vice-versa. If a mechanism can be designed that obeys such a non-centralized

communication structure, then it will be more robust.

'The motivation for looking into a distributed communication structure whilst designing
mechanisms comes from the literature on distributed optimization that aims to address
similar informational constraints between non-strategic agents with private information
and a designer interested in allocating efficiently, where the efficient allocation depends

on the said private information.

Learning of Nash equilibrium

Difterent models in mechanism design literature assume different extent of rationality
for the agents. A more sophisticated model may assume fully rational agents who are
prone to strategizing over long time horizons. This would mean that the outcome of
repeated interaction of such agents is analyzed through the concept of dynamic games.
On the other hand, a simpler model may assume rational agents who strategize only over
a single time period, whereas for repeated interactions an appropriate model for their
behavior is through a class of learning strategies, such as Bayesian learning. A simpler
model would be one where agents are not rational and simply obey the command of the

designer. As one moves from a sophisticated model to a compliant one, lesser practical



Figure 4.: How does restricted communication affect design?

scenarios are covered under the design paradigm and thus the guarantees that can be
provided for practical applications reduce. On the other hand, the design space at the
designer’s disposal increases. Owing to this trade-off (Fig. 5), one may be inclined to
investigate an appropriate model that leaves enough room for design but is capable of
providing robust enough guarantees for applications in the real world. We describe the

motivation behind one such framework below.

ophistication & Guarantees

Fully Fully

Compliant Strategic

Agents Agents

n
Design Choices

Good enough guarantee and
large enough design space

Figure 5.: Range of modeling and their trade-offs.



(e)

'The perfect information solution concept of Nash equilibrium is used in mechanism de-
sign, even in systems where agents are practically not expected to be fully informed about
other agents’ private utilities. The common justification for use of Nash equilibrium in
such cases is that it can be learned by repeated play and appropriate adjustment of strate-

gies over time.

Learning guarantees i.e., theoretically proven convergence of a specific learning dynamics
or a class of learning dynamics, is provided largely on a case-by-case basis. In most cases,

learning guarantees are provided for a specific and model-tailored learning dynamic.

Another important motivation in this thesis is to design mechanisms with the design
constraint of guaranteed convergence for a (large enough) class of learning dynamics

that is not necessarily tailored to the model.

A slightly different motivation in this regard is also to design mechanisms that are “learn-
ing ready”. For network problems with complicated allocative constraints, and where
learning guarantees are in general difficult to provide, can there exist mechanisms that
are at least conducive to repeated play that aims to learn the Nash equilibrium. A mech-
anism can be said to be conducive to learning if the allocation function designed by the
mechanism designer produces feasible allocation, i.e., £(m) € X, V m. This is a crucial
consideration for network problems with allocative constraints since these constraints
(e.g., imposed by the capacity of a link) are Aard and absolutely cannot be violated in the

short run.

Designing beyond maximization of utilitarian social welfare

While many resource allocation problems are designed with NUM as their objective,
there are problems of practical interest where the designer, for a variety of social reasons,
may be interested in accommodating fairness in allocation even at the cost of utilitarian
efficiency. Here fairness refers to a more equitable distribution of resources i.e., avoiding
a situation where most of the resources end up in the hands of a few. In this case, a basic
question to ask is whether there exist mechanisms that implement the fairness-aware

efficient allocation? And if so, to what extent can fairness be accommodated?

There is a scarcity of results in mechanism design literature, with the objective of fair



allocation. The prevalence of NUM type objective over fairness has strong mathematical
foundations. The main reason is that for NUM, in models with additively separable taxes,
an agent’s individual utility can be aligned?® directly with the overall social objective, so
that when an agent maximizes his/her net utility they are simultaneously maximizing the
overall social objective. The VCG mechanism is the most prominent example of this. The
NUM problem gives the allocation function as &(f) = argmax,, >, v(z, ;). For
any agent ¢, his/her utility v(z; ;) is determined by the allocation z and their private type
g;. For quoted message profile ¢ = (@) e, the utility of any agent 7 is v(Z(¢); 6;) —
ti(¢), where VCG taxes t;(¢) = — 3=, v(2(); ¢;)+ fi(d—:) precisely create a situation
such that the user performs social objective maximization whilst maximizing self utility.
As soon as one moves away from the NUM objective, due to the social and individual
objectives not aligning with each other, basic design techniques like VCG mechanism
are not useful. This is one of the main reasons why there are significantly fewer results

on fairness in the mechanism design literature.

A second, more subtle, reason for investigating fairness in mechanism design is that with
fairer allocation one expects there to be lesser variation in the utility of agents (derived
from the allocation). It is thus natural to investigate whether this leads to lesser variation
in the tax paid by agents. Such an outcome is desirable for many reasons, the prime
among which is that due to implicit budgetary restrictions, a mechanism that realizes

high tax variation may be considered impractical.

Overview of this thesis

Mechanism Design

Chapters 1, 2 and 3 consider the NUM objective with allocative constraints and present effi-
cient mechanisms that accommodate restrictions consistent with motivations (a), (b), and a
part of (d). Chapter 1 considers the general unicast network, which is a version of the private
goods allocation problem. Chapter 2 considers the multirate/multicast network which pos-

sesses the qualitative properties of both types - private goods and public goods - of allocation

2'through appropriate taxation



problems. This dual nature comes about due the unique nature of the network constraints in
multirate/multicast. Finally, in Chapter 3, the unified and systematic approach developed in
Chapters 1 and 2 is used to design mechanisms for any network with linear allocative con-
straints - even those that fall outside of unicast and multicast. The general approach applies
to local interference power transmission problem depicted in Fig. 3. The mechanisms in these
three chapters are all “learning-ready” in the sense that the allocation function is always feasi-
ble w.r.t. the allocative constraints - even off-equilibrium.

Chapter 4 considers the classical Walrasian (with money) and Lindahl allocation problems
and presents efficient mechanisms that are consistent with motivations (a), (c) and (d). Com-
munication between agents is restricted to a connected graph and the learning guarantees are
provided for a subclass of adaptive strategies called adaptive best-response dynamics.

Chapter 5 considers mechanism design for fair allocation and is consistent with motivation
(e). For two different cases, existence of dominant strategy incentive compatible and Bayesian
strategy incentive compatible mechanisms are shown. The net effect on the outcome (fairness
in allocation and taxes) is numerically analyzed through a concrete example of demand-side

power management in smart grids.

Dynamic Games

Finally, Chapter 6 moves away from the theme of Mechanism design. It considers the prob-
lem of systematic evaluation of perfect Bayesian equilibria (PBE) in infinite horizon dynamic
games with asymmetric information. While existence of PBE is guaranteed, till date there
is no simplified characterization/algorithm of how to find one (or all). Technically, going
by the definition, one has to solve a hugely complicated inter-temporal fixed point equation
in strategies and beliefs to find the PBEs of a game. We propose a single-shot fixed-point
equation in (one round) strategy along with a forward recursive construction to evaluate a
subset of PBEs with “less complex” strategies i.e., where agents are not required to maintain
ever-increasing history of observations. Furthermore, these equilibria are appealing because
they exhibit signaling behavior.

'The motivation for this work is the possible deployment of the systematic evaluation tech-

nique for designing dynamic mechanisms in systems where direct mechanisms are not desir-
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Part I.

Mechanism Design
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Chapter 1.

A Practical Mechanism for Network Utility
Maximization for Unicast Flows on the
Internet

In this chapter we consider the scenario of unicast service on the Internet where a network
operator wishes to allocate rates among strategic users in a way that maximizes overall user
satisfaction while respecting capacity constraints on every link in the network. In particular,
we construct two mechanisms that fully implement social welfare maximizing allocation in
Nash equilibria (NE) for the above scenario when agents’ utilities are their private informa-
tion. We assume that the agents are strategic and thus the mechanism contract induces a
game among the agents. The emphasis of this work is on full implementation which means
that for the game induced by the mechanism, the allocation at all NE is the social welfare
maximizing allocation and thus no extraneous/unwanted equilibria are created, as is the case
in general mechanism design. The constructed mechanisms are amenable to learning, an es-
sential requirement when using NE as a solution concept. This is achieved by ensuring that

they result in feasible allocations on and off equilibrium and are budget balanced.

1. Introduction

As Internet applications become ubiquitous, there is a strong need for efficient usage of net-

work resources currently at our disposal. Due to limited information capacity of network con-

12



nections, each user can only be afforded lesser and lesser data-rate as the Internet becomes
more congested. A typical way to ensure efficient allocation, especially in case of users with
heterogeneous preferences (such as on the Internet), is via markets. Charging for services will
distinguish between essential and non-essential usage for various types of agents.

When people are required to pay for services, it is natural to assume that they will be utility-
maximizing, i.e., strategic. The designer should take this behavior into account and design
protocols with the appropriate incentives in place, or else the design may lead to highly inefli-
cient allocation of network resources. The appropriate theoretical framework for solving such
problems is Mechanism Design or Implementation Theory. At the core of this framework
is the solution to the information elicitation problem, where a designer — despite lacking full
information required to implement a goal (such as network utility maximization) — is able to
produce the right allocation by asking agents to make choices under appropriate incentives.
Mechanism design has been studied extensively for market problems like implementation of
Walrasian and Lindahl allocations [Hu79; GrLe77], and in auctions and bilateral trade con-
tracts. In general mechanism design, it is required that at least one Nash equilibrium (NE)
of the induced game is efficient [GaNaGu08a; GaNaGu08b; BoKrSt15; Kr09; HuRe06]. In
this chapter our focus is on full Nash implementation, which puts more stringent constraints
by requiring that all NE of the induced game must result in efficient allocation [Ja01].

Network utility maximization (NUM) or social welfare maximization are interchangeable
terms in our context, and refer to allocation of data-rates subject to system constraints such
that sum of utilities of all the agents in the system is maximized. We consider the unicast flow
model on the Internet. In this set up, pairs of source and destination nodes are connected via
links of a network where each link can be servicing multiple routes at the same time. This
creates simultaneous (coupled) congestion on all links.

'The goal of NUM for unicast networks has been central to resource allocation research for
a long time. A number of works focus on aspects of complexity or distributed algorithms
(see [SaTa02; KaTa06]) in the absence of strategic-ness. For the cases where strategic-ness is
considered, the design specifics hinge on the solution concept employed for the model; exam-
ples of which are NE, Bayesian NE, dominant strategy (or ex-post), competitive equilibrium
etc. In the seminal work [KeMaTa98], a mechanism for general unicast was designed with

competitive equilibrium as the solution concept. This was modified to get a Nash implemen-
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tation mechanism for the case of single-link unicast in [YaHa05; MaBa04]. A mechanism for
unicast was developed in [JaWal0] with the property that at least one NE is efficient, but full
implementation was not guaranteed. In [KaTe14], full implementation in NE was achieved,
but the allocation was not feasible off equilibrium, thus making the mechanism inappropriate
for practical implementation. Finally, VCG mechanisms [Kr09; BoKrSt15; GaNaGu08a] ap-
plied to NUM problems can yield dominant strategy implementation. However VCG mech-
anism require that agents broadcast messages that belong to their type space. This implies
that when agents’ private information is their entire valuation function, the corresponding
messages have to be functions themselves, thus rendering this type of mechanism impractical
due to excessive communication requirements on the Internet. A modification arising out of
this requirement has been dealt with in [JoTs09; YaHa07], where one-dimensional messages
are required per user. However, the problem of extraneous equilibria still persists and having
message space too small can make learning NE impossible (see [Jo86]).

In this chapter, design was undertaken not only with the primary objective of full Nash
implementation in mind but also practicality of using such a mechanism. This was dealt-with
in two ways. Firstly, the dimension of message space was kept linear in number of agents
so that the mechanism is scalable on a large network. Secondly, the concept of proportional
allocation (first introduced in [KeMaTa98; YaHa05; MaBa04] for a single link) was gener-
alized to an allocation function that a/ways produces feasible allocation, thereby making the
mechanism amenable to pre-game learning in a real-world setting. To see why feasibility off
equilibrium is so important, recall that using NE implicitly requires agents in the system to
be able to calculate it first. This however requires complete information for every agent in the
system, which isn't justified in a physically and informationally decentralized system like the
Internet. Use of NE in such cases can be justified since it has been empirically observed that
agents dynamically learn the NE by playing the game repeatedly and coordinating as time
goes on. During each time step in this dynamic process, agents broadcast their messages, and
the mechanism allocates resources and taxes them accordingly. Thus, it is imperative that al-
location of resources can be done throughout this process before equilibrium is reached, and

this requires a mechanism that is feasible off equilibrium!
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2. Centralised Problem

Consider a set N' = {1,2,..., N}, of N of Internet agents (an agent is considered a pair
of source and destination users) that communicate over pre-specified routes on the Internet.
Each agent ¢ € N, communicates at an information rate £; € R, (non-negative real num-

bers). Agents’ valuation for an overall rate allocation ¢ = (z;);cy € RY, is
1"11(:1:) = ’Ui(ZEi) V1 c N (11)

where v; : R, — R, for all = € N. This indicates that agent #’s satisfaction only depends
on its own information rate allocation z;. Due to capacity constraints on the utilized links,
allocation to agents is constrained by a number of inequality constraints. It is assumed that
although some agents may share information content (e.g., watch the same video stream), a
separate data stream is transmitted for each agent. This transmission technique is referred to
as unicast service. Each agent has a pre-determined route, £; for agent ¢, which is the set of
links that agent ¢ uses for his communication, and £ = U;eprL; is the set of all available links.
We also define the sets of agents utilizing link I € Las N* = {s € N' |l € L;}. Finally, for
any agent 7 and link [, we denote L; = |£;| and N* = |N.

'The network administrator is interested in maximizing the social welfare (or network utility)

under the link capacity constraints. This centralized problem is

max »  v;(z;) (1.2a)
©ien
and Y diz; < ViecL (1.20)
JENT

Constraints in (1.2¢) are the inequality constraints on allocation, which can be interpreted as
capacity constraint for every link I € £, in the network. In this interpretation o} would be
representative of the QoS requirement of agent 5 combined with the specific architecture on

link I. As an example, o} = for all links [ € L}, where €, represents the packet

RJ(]. — Gé)
error probability for link [ for a packet encoded with channel coding rate R;.

An instance of the Unicast network is depicted in Fig. 6, with four agents (pairs of receivers
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Figure 6.: An instance of the Unicast network

and transmitters): T1-R1, T1-R2, T2-R3, T2-R4. For simplicity assume that aé- =1 forall
J,1. For all four agents, their data passes through the link AB and thus the constraint imposed
by link AB is 1 + 2 + 3 + 4 < cap, where c4p is the capacity of the link. Similarly, since
link BC is used only by agents T1-R1, T1-R2 and T2-R3, the constraint imposed by it is

Z; + z2 + 23 < Ccpe-

2.1. Assumptions

Following are assumptions on problem (1.2).

(A1) For all agents, v;(-) € V;, where the sets V; are arbitrary subsets of Vj, the set of strictly
increasing, strictly concave, twice differentiable functions Ry — R with continuous

second derivative.

(A2) v}(0) is finite V ¢ € N. 'This implies that v}(z) is finite V 2 and V z, since v;(-)’s are

concave.
(A3) There are at least two agents on each linki.e. N' > 2,V 1 € L.

(A4) 'The optimal solution of (1.2) has at least two non-zero components at each link i.e. if
S(z) = {i e N |z; > 0} and S(z) := S(z) N N then we assume |S'(z*)| > 2 V
1 € L. (where z* solves (1.2))

In addition, the coefficients in (1.2¢) are all strictly positive, i.e. aé- >0VjeN,LVIeL.
Also, for well-posedness of the problem we take ¢t >0 V1 € L.
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Assumption (A1) is made in order for the centralized problem to have a unique solution
and for this solution to be characterized by the KKT conditions. (A2) is a mild technical
assumption that is required in the proof of Lemma 3.7. Assumption (A3) is made in order to
avoid situations where there is a link constraint involving only one agent. Such case requires
special handling in the design of the mechanism (since in such a case there is no contention
at the link), and deviates from the basic idea that we want to communicate. Finally (A4) is
related to (A3) and is made to simplify the exposition of the proposed mechanism, without

having to define corner cases that are of minor importance.

2.2. Necessary and Sufficient Optimality conditions

We can write the following four KKT conditions, which are generally necessary, but in our
case (due to all constraints being affine and strict concavity of v;) they will also be sufficient.
For optimal primal-dual solution (z*, A*) we have

(a) Primal Feasibility: z* satisfies (1.2b) and (1.2c).

(b) Dual Feasibility: Af >0 VIe L.

(c) Complimentary Slackness:

N( X odas-d) =0 vier (1.3)
JENT!
(d) Stationarity:
vi(z})=> Aol ViEN st zi>0 (1.4)
leL;
vi(z}) < D Al ViEN st zi=0 (1.5)
leL;

2.3. Taxation and Budget Balance

'The designer’s task is to ensure the above optimum allocation is made. This clearly requires the
knowledge of v; even when constraints (1.2b) and (1.2¢) are completely known. The premise
of the problem, however, is that we are dealing with agents who are s¢rategic and for whom,
their valuation functions {v;(-)}» is their private information. One way forward for the de-

signer could be to simply ask each agent to report their private information and announce the
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solution of (1.2), with reported functions in place of v;, for allocation. Apart from the fact
that asking to report a function creates a practical communication problem, the main prob-
lem with this is that the agents could report untruthfully and end up getting a strictly better
allocation (e.g., by reporting a v; which has higher derivative than original at every point).
In mechanism design terminology, the allocation function arising out of (1.2) isn't even par-
tially implementable!. Restricting ourselves to a certain class of utility functions (quasi-linear
utilities), provides the additional flexibility of penalising agents for reporting untruthfully by
imposing taxes/subsidies. In this way, another related problem is created which is imple-
mentable, and which is equivalent to (1.2) as far as allocation is concerned. This leads us to
the following additional assumption about agents’ utilities:

(AS5) All agents have quasi-linear utilities, i.e. the overall utility functions can be expressed

as

ui(:z:,t) = vi(a:i) —t; VieN (1.6)

where we have introduced taxes (or subsidies) t = (¢;)¥; € R¥. Taxes affect utilities linearly
and overall utility itself is valuation after adjustment for taxes (total monetary representation
of one’s state of happiness).

With taxation in the model, there are two reformulations of the NUM problem. One where
taxes paid by agents go to the owner of the network (separate entity) and one where taxes are
redistributed amongst agents who collectively own the network. It is easy to show that due to
quasi-linear utilities the rate allocation problem is still same as (1.2). In addition, the first case
would require that sum of taxes (which is the revenue for the network owner) be non-negative
so that the owner of the network willingly participates. The second case would require that
sum of taxes be zero. Henceforth we will refer to these reformulations as weak and strong
budget balance, respectively.

In Section 3, we present a mechanism that fully implements (1.2) in Nash Equilibria (NE)
with weak budget balance, while in Section 4 we will modify our mechanism to obtain strong

budget balance.

'This can be deduced from the revelation principle. Indeed if there was a mechanism that even partially im-
plements the allocation function arising out of (1.2), then there would exist also a truthful implementation.
However, as shown with the above example, such an implementation will always fail.
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3. Mechanism with Weak Budget Balance

We define a mechanism, in a way that doesn't require knowledge of {v;(-)}; whose game-
form has NE in pure strategies where corresponding allocation for any NE is 2*, the unique
optimizer of (1.2). In addition, agents are weakly better-oft at NE than not participating at
all.

Information assumptions  Assume that v;(+) is private information for agent ¢ and nobody
else knows it?. Let Z. be the set of common information between all agents, containing the in-
formation about full rationality of each agent. Finally, let Z; be the knowledge of the designer,
containing the information about constraints (1.2b), (1.2¢), the fact that V; C Vo, Vi € N.

3.1. Mechanism

Formally, we have an environment set V = X;cpVi. We have seen from KKT, how each
element of V can be mapped to an allocation £* which maximises social welfare for that utility
profile. In addition we also want tax to satisfy > ;cp-t; > 0. The designer defines a message
space S; for each agent 2 € N. Denote S = x,cnS; as the set of message profiles. The
designer also announces the contract h : S — RY x R that maps every message profile into
an allocation vector and a tax vector. The designer then asks every agent ¢ € N to choose a
message from the set S;, based on which allocations (and taxes) are made.

Specifically, agent ¢ reports message s; = (y;,0:), Bi = (P})icc,. This includes their de-
mand for the good and the “price”, for each constraint they are involved in, that they believe ev-
eryone should pay. This means S; = R, x R¥*. The mapping s — (h;(5)) = (hsi(5), hes(s))
Vi € N is as follows.

If the received demand vectorisy = (1, . .., yn) = Otheallocationisz = (z1,...,zZy) =
0. Otherwise it is evaluated by first generating a scaling factor 7

— i l
r=minr, (1.7)

This is a realistic assumption, however, formally the use of Nash equilibrium as the solution concept requires
complete information assumption amongst agents. Here we appeal to pre-game learning as a real-life tech-
nique for going from private to complete information.
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!

° if |S'(y)] > 2

T sty - fw) i Sy = {3 (1.8)
o0 if |S'(y)| =0

. : . . :
with fi(y;) = m Using above quantities, the allocation and taxes are

hoi(s) =Ti =7y, hei(s)=ti= ) t (1.9)
leL;
t)=zialp , + (ol - 9. + nd', (B} - ) (cl -y a§mj>, (1.10)
JENE

where 7 is a sufficiently small positive constant (formally chosen in the proof of Lemma 3.7).
For any link I € £; we define

P Y= 2k (1.11)

NI V'~ Yamw

The quantity ' , is calculated by averaging the quoted prices for link [ over all agents other
than 7 who use that link (note that due to assumption (A3) every link has at least 2 agents).
The interpretation of prices p} in this mechanism is closely related to agent 5’s willingness to
pay for consuming resource on link [. Since we have the problem of information elicitation
for each agent’s type (v;), quoting of prices and demand is used as a way of eliciting v;(z;) by
comparing it appropriately with prices.

The quantity h, ;(s) creates allocation by dilating/shrinking a given demand vector y on to
one of the hyperplanes defined by the constraints in (1.2c), specifically, that hyperplane for
which the corresponding allocation is the closest to origin (this can also happen to be at the
intersection of multiple hyperplanes). The demand y is dilated/shrunk to the boundary of the
feasible region defined by constraints in (1.2b), (1.2c). Additionally, the separate definition
for 7t when |S'(y)| < 1 is to ensure that there are no equilibria with |S*(y)| < 1. This is
required since we are only dealing with achieving solutions® to (1.2) which satisfy (A4).

'The mechanism induces a one-shot game G, played by agents in A/, with action set (S;);en

$Note that for the given allocation function, |S*(y)| = 0, 1 is equivalent to |S*(z)| = 0, 1.
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and utility
ﬁi(S) = ’Ui(ZEi) — ti = ’Ui(hz’i(S)) — ht,i(S) V1 - N (112)

3.2. Results

Theorem 3.1 (Full Implementation). For game G, there is a unique allocation, x, corresponding to
all NE. Moreover, T = x*, the maximiser of (1.2). In addition, individual rationality is satisfied

for all agents.

'The theorem will be proved by a sequence of results, in which we will characterise all candi-
date NE of G by necessary conditions until we are left with only one family of NE candidates,
each of whom gives allocation £ = z*. We will then show that there indeed exist NE in pure

strategies for G. Finally, individual rationality will be checked.

Lemma 3.2 (Primal Feasibility). For any action profile s = (y, P) of game G, constraints (1.2b)
and (1.2¢) are satisfied for corresponding allocation h,(s).

Proof. Please see Appendix 6.1 at the end of this chapter. O

Feasibility of allocation for action profiles is a direct consequence of using projections of
demand y on to the feasible region. In the next result we will see that all agents using a link
quote the same price for it at NE. This is brought about by the 2™ tax term (pt—p* ;). Agents

are penalized (with higher taxes) just for quoting a different price than average, at each link.

Lemma 3.3. At any NE s = (y, P) of G, price for any link, is same for all agents, i.e., pt=p'V
i € N, V1 € L (denote the common price at any link 1 by p*).

Proof. Please see Appendix 6.2 at the end of this chapter. O

With Lemma 3.3, we need only refer (in terms of prices) to the common price vector
p = (p")iee at NE. In fact we can identify each NE candidate profile s = (y, P) with
s = (y,p). We will later see how p will take the place of dual variables A when we compare

equilibrium conditions with KKT conditions, hence we identify the following condition as

dual feasibility.

Lemma 3.4 (Dual Feasibility). p* >0 VIe L.
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Proof. Please see Appendix 6.3 at the end of this chapter. O

Following is the property that solidifies the notion of prices as dual variables, since here we
claim that inactive constraints do not contribute to payment at NE. This notion is very similar
to the centralised problem, where if we know certain constraints to be inactive at the optimum
then the same problem without these constraints would be equivalent to the original. The 3rd
term in the tax function facilitates this property by charging extra taxes for inactive constraints
when the agent is quoting higher prices than the average of remaining ones, thereby driving

prices down.

Lemma 3.5 (Complimentary Slackness). Az any NE s = (y, p) of game G, allocation T satisfies

pl( > aﬁc:z:k—cl> =0 VIeL (1.13)
keN?
Proof. Please see Appendix 6.4 at the end of this chapter. O]

Lemma 3.6 (Stationarity). A¢ any NE s = (y,p) of game G, and corresponding allocation, T, we

have
vi(z;)= > plal VieEN if z;>0 (1.14)
leL;
vi(z;) < > plal VieEN if z;=0 (1.15)
leL;
Proof. Please see Appendix 6.5 at the end of this chapter. O

Collecting above results, we see that every NE satisfies the KKT conditions. Therefore we
have necessary conditions on the NE up to the point of having unique allocation. In the next

Lemma we will verify the existence of the equilibria that we have claimed.

Lemma 3.7 (Existence). For the game G, there exists equilibria s = (y, P), where price vectors
are same for each agent i.e. s = (Y, p) and corresponding allocation-price pair (z, p) satisfy KKT
with A = p.

Proof. Please see Appendix 6.6 at the end of this chapter. [
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Lemma 3.8 (Individual Rationality). 4 any NE s = (y, p) of G, with corresponding allocation

T, we have

u;(z,t) > u;(0,0) Vi €N and > t; > 0. (1.16)
1EN

Proof: Please see Appendix 6.7 at the end of this chapter. O

All the Lemmas together complete the proof to Theorem 3.1, see Appendix 6.8.

3.3. Comments

Several comments are in order regarding the selection of the proportional allocation mecha-
nism and in particular (1.8). If we use “pure” proportional allocation i.e. same expression for
r! for |S'(y)| > 2 and < 1, then irrespective of optimal solution of (1.2), for game G the
“stationarity” property will not be satisfied for equilibria with |S*(y)| < 1. Thus the mecha-
nism will result in additional extraneous equilibria. For this reason we tweak the expression
for ! when |S'(y)| < 1, so that we can eliminate these extraneous equilibria - irrespective of
the solution of (1.2). With this tweak in the expression for !, all KKT conditions become
necessary for all equilibria regardless of the value of |S*(y)|. This however creates a problem
in the proof of existence of equilibria. In particular, if 2* was such that it had links where
|S'(z*)| = 1 then in our allocation this would require y at NE such that [S*(y)| = 1. In this
case the 7! used would be lower than what the proportional allocation requires (see second
sub-case in (1.8)) and we actually would have the problem of possibly not having any y that

creates £* as allocation. Hence we have used (A4) to eliminate this case.

4. Mechanism with Strong Budget Balance

In this case we have the agents in N/, who are the owners as well as users that wish to allocate
network resources amongst themselves in a way that maximises social welfare. Taxes facilitate
efficient redistribution of an already available good. Here we will say that the mechanism fully
implements maximising social welfare allocation if in addition to the previous conditions, we

also have strong budget balance. To design a mechanism in this formulation, we have to find
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a way of redistributing the total tax paid by all the agents. From the last section, at NE total

tax paid was

B=3 (fﬂi > aﬁﬂ) =r> (yi > aﬁp’) (1.17)
1EN leL; ieN leL,

since all other tax terms were zero at NE. We will redistribute taxes by modifying tax function

for each agent in such a way that additional terms only use messages from other agents. This

way, our NE calculations will be in line with Section 3, since deviations by an agent wouldn’t

affect his utility through this additional term. In view of this, we can express B as follows

l

B=ry (T gy X alw), (1.18)

1EN “IeL; JENN{i}

where each term of the outer summation depends only on demands of agents other than 3.
'This means that each term in the parenthesis (scaled by the factor r) can now be used as the
desired additional (negative) tax for user 7. Observe, however, that » depends on each y;. In
lieu of this, the mechanism works by asking for an additional signal p, from every agent and
imposing an additional tax of (p; — 7)?, thereby essentially ensuring that all agents agree on
the value of r (via p;’s) at NE. Finally, we use p_; (defined similarly to (1.11)) as a proxy for
7 in (1.18) - just like we did with p" ;.

The message space S; for agent i is Ry x R} x R, with s; = (v;,ps, p;). The designer

announces the contract b : S — ]Rf x RY where the only difference from before is in taxes.

hei(s) =t = > ti+((pi — 1) (1.19)
leLl;
= =l
! 1,0ld P—iDP_; !
t; =t N1 Z o Y;.
JENN\{:}

where ¢, 7 are small enough positive constants. Here § ; is as defined in (1.11) and p_;
similarly.

The only term in 4; that is affected by p; is —((p; — 7)?, so all the Lemmas from Section 3
will be valid with minor modifications. In addition p; will all be equal to 7 at NE* thus proving

the main result of full implementation (arguing similarly as before) as well as strong budget

“Please see the proof in Appendix 6.9 at the end of this chapter.
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balance at NE°. Since we are only redistributing money, individual rationality continues to
hold in this mechanism.
Among the lemmas from the previous section, only the proof of existence requires a non-

trivial modification®.

5. Summary and Comments

An important future research direction is to explicitly design a mechanism that is amenable to
learning. This can be done by undertaking design in a way that makes a large class of learning
(dynamic) algorithms stable. In such a case, each agent may chose his own learning strategy
from this class independently of others. This way bounded rationality within learning can be
explicitly modelled by creating an appropriate class whilst respecting strategic-ness of agents
by not dictating how they should perform learning (i.e. without fixing the learning algorithm).

Mechanism design along these lines can be seen in [HeMal2] for the case of Walrasian and

Lindahl allocations and [Ch02] for Lindahl allocation.

SPlease see the proof in Appendix 6.11 at the end of this chapter.
6Please see the proof of existence in Appendix 6.10 at the end of this chapter.
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6. Appendix

6.1. Proof of Lemma 3.2

Proof: Constraint (1.2b) is clearly always satisfied. For y = 0, constraint (1.2¢) is also clearly
satisfied. We will now show (1.2¢) is satisfied for any y # 0. In that case 7 < 400 (since
there exists at least one link ¢ with [S9(y)| > 1 and thus 7? < +00). Now, for any link I,
we have the following two cases. If |S'(y)| = 0 then the allocation to agents on that link is
clearly zero (since z; = ry; and y; = 0), so (1.2c) for those links is satisfied. If [S*(y)| > 1

we have

Yookzi=r ) oy, <r' S aly; (1.20)
JEN! je/\/l JENT
<—F—>a Y= c (1.21)

ZJEN’ o 795 jent

where the first inequality holds because 7 is the minimum of all 7s. The second inequality
will be equality if | S*(y)| > 2 and will be strict only if | S*(y)| = 1 (see second sub-case in eq.
(1.8)). O

6.2. Proof of Lemma 3.3

Proof. Suppose there exist a link g for which prices (p});eare at equilibrium are not all equal.
Clearly then there is an agent j € N? for whom p? > p? ; (this can be seen from eq. (1.11)).
We will show that this agent can deviate by only reducing price for link g and be strictly better
off, thereby contradicting the equilibrium condition.

Take the deviation by agent 7, where p;q = p < pj and his demand remains the same.
Then the difference between utilities for agent 7 after and before deviation would arise only

because of change in taxes (since allocations haven't changed for any agent) and moreover the

difference would only arise from tax terms corresponding to link g (refer to (1.9)). We'll have

Aty = — (P —p%;)? —np’; (05" — pL)(cF — > ojy)
keN4

26



+ 0t (05— 7,)(c — ) afm) + () - 77, (1:228)

kENQ
= (p? - p°;) [nP*, (c* - kZAj[ ofzi) + (pf — 57,) | (1.22b)
— eN4 N——
>0 >0
>0 by Lemma 3.2
>0 (1.22¢)

which shows that the above deviation is a profitable one.
Hence at equilibrium, for any link, the price quoted for that link by any user using that link

is the same, we denote the common price vector by p = (p')c..- O]

6.3. Proof of Lemma 3.4

Progf: ‘This is also by design, since any agent 1 is asked to select a price vector in R [

6.4. Proof of Lemma 3.5

Proof: Suppose there is alink g for which at NE 37, ye 0z < ¢?and p? > 0. Again, we will
show that deviation makes any agent j € N better off. Take the deviation p’? = p? —¢ >0

and no deviation in the demand. We can write the difference after and before deviation as

At = —(p? — p?)? — np*(p? — p)(c? =) i)

keNd
+np(p" —p)(c! = ) afm) + (07— p) (1.23)
keNd
S Al = —(—ef P ()~ Y adm) + 0= e et npi(e— 3 aduy))
kEN? keN
(1.24)
So if we take € such that

min { np? (¢ — > oqzi), D } >e>0 (1.25)

—~— kEN ~~

>0 >0

>0

then A#; > 0. Taking such an € is possible because LHS above is positive. O
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6.5. Proof of Lemma 3.6

Proof: Atany NE s, agent ¢s utility 4;(s;, s_;) = vi(he,i(S;, S—i)) — (S, 5—;) as a function
of his message s; = (y;, p;), with s_; fixed, should have a global maximum at s; = (y;, p).
'This would mean that if this function was differentiable w.r.t. y; at s;, the partial derivatives
w.r.t. Y. at s; should be 0. However, since our allocation dilates/shrinks demand vector ¥’ on
to the feasible region, it could be the case that increasing and decreasing y; gives allocations
lying on different hyperplanes, meaning that the transformation from y' to z' is different on
both sides of y; and therefore 4; may not be differentiable w.r.t ; at y;. The important thing
here however is to notice that right and left derivatives exist, it’s just that they may not be
equal. Hence we can take derivatives on both sides of y; as (noting that derivative of the other

two terms in utility will be zero due Lemma 3.3)

= [vi(z) - Y Pt | 22| (1.26)
y; yilys ( (@) lezg:i 0y; yilys

=|v(z:)— > po - . (1.27)
oy; yity; ( ( ) zezc:i ) ovy; yity;

We will first show that dz; /0y, term above (for either equation) is always positive. If y = 0
then clearly this is true, because if agent z demands y; = € > 0 while y _; = 0 then z; > 0 (in
fact the allocation is indeed differentiable at y = 0). If y # 0 then from (1.9), we can write

ozr; O(ry; 0 or?
_ Oz _ (ry):r+yi8;:?"q+yi3;

= 1.28
Oy; Oy; (1.28)

B:

where r = 9.
From here on there are 3 cases: (A) 2 ¢ N9 (B1) 1 € N9 & |S%(y)| > 2 and (B2) 2 € N?
& [S%(y)| = 1. (Note that |S?(y)| = 0 isn't possible if = ¢ and y # 0)
(A) Here clearly 0r?/0y; = 0, and this makes § = r? > 0.
(B1) Here we can calculate 8 as
p- ) PORCHT (1.29)

¢ jenn{iy

which is positive because |S(y)| > 2, so there is at least one positive term in the summation.
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(B2) In this case we could have S9(y) = {7} # {¢} or S%(y) = {i}. In the first case,
argument is same as (A). So take S%(y) = {3} and r? = ¢?/(aly;) — f9(y:)-

b= —fily) -y, 2L®) _ 4@ w)

— 3 1.30
dy; dy; al(y; + 1) (1.30

So we have B > 0 in all cases.

Now there are two further cases, the first term on RHS in both equations in (1.26) is
positive or negative. If it’s positive, then we can see from the first equation in (1.26) that
by increasing y; from y; (and therefore z from z;) agent % can increase his pay-off, which
contradicts equilibrium. Now similarly consider the first term in (1.26) to be negative, then
from the second equation in (1.26), agent ¢ can reduce y; from y; to get a better pay-off. But

the downward deviation in y; is only possible if y; > 0 (& z; > 0). So we conclude that

vi(z)= > plal, VieN if z;>0 (1.31)
leL;

vi(z;) < Z plal, VieN if z;=0. (1.32)
leL;

O

6.6. Proof of Lemma 3.7

Proof: 'The proof is completed in two parts. Firstly we will check that for every  that can be a
possible solution to (1.2) (while satisfying the assumptions, specifically (A4)) there is indeed
atleastone y € RY such that the allocation corresponding to y is z. (However we do not need
to check the same for prices and Lagrange multipliers () since there it is straightforward).
Secondly we will check that for the claimed NE s = (y, P), there are no unilateral deviation
that are profitable.

In lieu of (A4), the optimal z* is such that |S*(z*)| > 2 for all links; also it is clear that
z* is on the boundary of the feasible region defined by (1.2b) and (1.2¢). For this, any vector
y which is a scalar multiple of z* will give allocation z*. This completes the first part of the
proof.

Now we will check for profitable deviations. For this we want to show that at any action

29



profile where corresponding allocation is * and prices are equal and equal to A*, is a NE.
Note that by construction, @;(s) is continuous w.r.t. ;. Our approach would be to check first
and second order conditions for local maximum at the claimed NE points. In this process we
will ensure that at any point where the gradient is 0, the Hessian is negative definite. With
this we know that all extremum points are local maxima, which can only happen if there is
one maximum.

First we will show that without the gradient being zero, there cannot be a local extremum
(this needs to be shown here separately since 4;(s) is only piecewise differentiable w.r.t. s;).

Gradient of the utility function is

Vi, = 6“",<8“;'> (1.33)
ayi apl leL;

Components in the gradient are

o1i; , 1.1 <3$i> S 1 025
= | VilZi) — op_; N2 P \p; — D) |~ Q; (1.34)
v~ (e ) (5) oo (- 3 e
o1, _ _
5 = 2P —PL) =P =) ajmy), VIEL (1.35)

Since 4, is differentiable w.r.t. p! (at all points), that component of the gradient indeed has to

be 0 at a local extremum. Which implies equal prices and complimentary slackness properties

aﬁi _ I\ %
. <vi(xz) > aipl) ( ) (1.36)

lel; ayi

and we can write

Note that in the proof of Lemma 3.6, we have shown that 8 = % > 0 always. So at the
points of non-differentiability, § will have a jump discontinuity, however it will be positive
on either side. It is then clear that without v(z;) = Y ;c., olp’, there cannot be a local
extremum.

Going towards checking first and second order conditions at claimed NE points, we clearly
have price derivatives (see (1.35)) equal to 0 at equilibrium, due to Lemmas 3.3 and 3.5. Now
the second term in (1.34) is always zero at equilibrium (due to common prices). So if z; > 0

at equilibrium then the 1st term is also zero as well (due to Stationarity) and if z; = 0 (&
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y; = 0) the 1st term is either negative, making the whole derivative negative (this is fine since
downward deviation isn’t possible from y; = 0), or equal to zero. For the remaining of the
proof we will consider the case where the first order derivatives are equal to zero and consider
second order derivatives.

Second order partial derivatives are

824, 84, 0%, , 0T
= = —2 = =0 = ]
= plop! U oplopk U ogloy, (z}, % ayz>
(1.37a)

821 (a%i> , <8:1:¢>2
Uyy = 5 olpt + U (Ti
W ay? ( lezgl 2 ) oy? (z:) 0y;

—n . Py(pl — Bl < Zaja‘%). (1.37b)

leL; ]ENZ

'These derivatives will give us a Hessian H of size (L;41) x (L;+1), where 1st row and column
represent y; and subsequent rows and columns represent p!’s for different I's. We want H to
be negative definite at equilibrium. Now, 1st and 3rd terms in u,, are zero at equilibrium,
and the 2nd term is strictly negative due to strict concavity of v;. This along with u,, = —2
tells us that all diagonal entries in H are negative. Also notice that because of u;, = 0, all
oft-diagonal entries other than the ones in first row and column are zero. Finally, note that
due to assumption (A2), all prices are finite at equilibrium and so u,, will be finite. We will
show that roots of the characteristic polynomial of H (i.e. its eigenvalues) all become negative
if 7 is chosen sufficiently small. Here again, we use (A4). Since we only want to deal with
NE which satisfies |S'(y)| > 2 VI, in the following it is inherently assumed that we will be
working with r that has the form defined in the first sub-case of (1.8).

For this, we take a generic matrix A = {a;;}, which is similar in structure to H and has
the same dependence on |y| as H. So entries in A are

a

an =~ a; =a;=0 YV i,5>1, i#£] (1.38)
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b1

|yl

where @ > 0 (and we don't care about the sign of b;’s). The parameters a, b; may not be

aii:—2 a1, = Q1 =N V2S’L§Lz—|—1 (139)

completely independent of y but since the absolute value of ¢ has been taken out of the scaling,
their values are bounded. Magnitude of b;’s are bounded from above and a is bounded away
from zero.

We can explicitly calculate | A — AI| and write the characteristic equation as

QM) = <—|ya|2 — A) (—2— )%

o D (—1)02

+1n e (—2- ) =0 (1.40)

So —2 is a repeated eigenvalue, L; — 1 times. The equation for the remaining two roots can

be written as

a C
—— = A (-2-2 2 — = 1.41
( Pk >( 2T e =0 (14D

Necessary and sufficient conditions for both roots of this quadratic to be negative are

2 c
<2+a2> >0 4>, (1.42)
i i i

first of which is always true, since @ > 0. The second one can be ensured by making 7 small
enough, since a is bounded away from zero and magnitude of C is bounded from above.
Hence we have shown the Hessian H to be negative definite for 7 chosen to be small

enough. O

6.7. Proof of Lemma 3.8

Proof Because of Lemma 3.3, the only non-zero term in ¢; at equilibrium is z; Yy, alp',
which is clearly non-negative. Hence 3;cpr t; > 0 atequilibrium. This is the seller’s individual
rationality condition.

Now if z; = 0 then we know from Lemma 3.3 and (1.9) that ¢; = 0 and so (1.16) is evident.
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Now take z; > 0 and define the function

f(z)=vi(z) —z > oiph. (1.43)

leL;
Note that f(0) = u,(0,0) and f(z;) = ui(z,t), the utility at equilibrium. Since f'(z;) =0
(Lemma 3.6), we see that V0 < y < z;, f'(y) > O since f strictly concave (because of v;).
'This clearly tells us f(z;) > f(0). O

6.8. Proof of Theorem 3.1

Proof: We know that the four KKT conditions produce a unique solution z* (and correspond-
ing A*). For the game G, from Lemmas 3.2-3.6 we can see that at any NE, allocation z and
prices p satisfy the same conditions as the four KKT conditions and hence they give a unique
T = z*, as long as (A4) is satisfied. So we have that the allocation is * across all NE. This

combined with individual rationality Lemma 3.8, proves Theorem 3.1. O

6.9. Proofthat p;, = r,Vi € N atNE

Proof: Suppose not, i.e. assume 3 j € N such that p; # 7. In this case agent j can deviate
with only changing p; = 7 (which also means r is the same as before deviation, since demand
y doesn’t change). It’s easy to see that this is a profitable deviation, since change in utility of

agent J will be only through the term involving p;.

A= —C(p; — 72+ C(p; — 7)* = L(p; —7)* > 0. (1.44)

O

6.10. Outline of proof of NE existence in Section 4

Proof: Now we verify the existence of equilibria. The arguments here will be similar to the
ones in the proof of Lemma 3.7. First order conditions can again be shown to be satisfied,
the only difference is that here we will also use p; = r at equilibrium. The Hessian H here,

for agent ¢, will be of order (L; + 2) x (L; + 2) where 1st, 2nd row and column represent
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Vi, p; respectively whereas the remaining rows and columns represent p!’s. The generic matrix

A ={a;;} for H will then be

ay = —‘;‘2 — C‘yd“l Q12 = Qo1 = —C‘ye‘z (1.45)
Gi=ai=0 YV 4,5>1, i4] (1.46)

G = —2, a5 = —2, (1.47)

ay; = a; = nl)’iy’l <1< L; (1.48)

where a, d, e > 0. Writing the characteristic equation we will again get that —2 is a repeated

eigenvalue, L; times. And the equation for remaining two roots is

d 2a
A+ A (2 + = +¢ ) + ( — s
ly2 Tyl |y|2 Iyl4

C
—0 (1.49)
Iyl4 Iyl2>

Necessary and sufhicient conditions for the roots of above quadratic to be negative are again
that coefficient of A and the constant term are both positive. Coeflicient of A is clearly positive,
and the constant term can also be made positive by choosing ¢,  small enough, irrespective
of sign of C. Hence here also we get NE for all y (along a fixed direction) for ¢, 7 chosen to
be small enough. O

6.11. Proof of Strong Budget Balance at NE

Progf. We now know that price vectors are equal at equilibrium for all agents and so we can

write

Z t,; = Z T; (Z aipl> T Z _Nl 1 Z aé-yj (150)

ieN ieN leL; lel; JENW {1}
!
p
= > ti=> > (a: alp' — N1 > aé-ag) (1.51)
ieN iEN IEL; JENN{i}
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Consider the coeflicient of zj for any agent k in the above expression

Z oot — Z ' o _Z bt — plaj, (Nl—l) —0
&P Nl —1 k| — &P N1 g )

IELy, iENN{k} IEL),

which proves the claim.
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Chapter 2.

Mechanism Design for Resource
Allocation in Networks with Intergroup
Competition and Intragroup Sharing

We consider a network where strategic agents, who are contesting for allocation of resources,
are divided into fixed groups. The network control protocol is such that within each group
agents get to share the resource and across groups they contest for it. A prototypical example
is the allocation of data rate on a network with multicast/multirate architecture. Compared to
the unicast architecture (which is a special case), the multicast/multirate architecture can result
in substantial bandwidth savings. However, design of a market mechanism in such a scenario
requires dealing with both private and public good problems as opposed to just private goods
in unicast.

'The mechanism proposed in this work ensures that social welfare maximizing allocation on
such a network is realized at all Nash equilibria (NE) i.e., full implementation in NE. In ad-
dition it is individually rational, i.e., agents have an incentive to participate in the mechanism.
'The mechanism, which is constructed in a quasi-systematic way starting from the dual of the
centralized problem, has a number of useful properties. Specifically, due to a novel allocation
scheme, namely “radial projection’, the proposed mechanism results in feasible allocation even
off equilibrium. This is a practical necessity for any realistic mechanism since agents have to
“learn” the NE through a dynamic process. Finally, it is shown how strong budget balance

at equilibrium can be achieved with a minimal increase in message space as an add-on to a
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Tx

Rx
1 + To + T3
R3)| =
Figure 7.: Network with “unicast” architecture
Tx Rx
max{z;, Zo} max{zTy, o} + T3 _.
T2 Al s
max{zs,z4} max{zy, s}
+ max{zs, T4} o

Figure 8.: Network with “multicast/multirate” architecture

weakly budget balanced mechanism.

1. Introduction

Design of mechanisms that fully implement Walrasian and Lindahl allocations in Nash equi-
librium (NE) have been extensively studied in the literature, e.g. [GrLe77; Hu79; Ti89;
PoWe89; Hu94; MaSj02]. These two ubiquitous examples present two different aspects in
market design - private and public goods, respectively. Recently, generalizing the original con-
tributions described above, a number of works addressed the problem of full implementation
in NE of social utility maximization under linear inequality constraints [MaBa04; StLe06;
JaWa10; KaTel4; BhKaChGul4; SiAn15]. In the area of computer/communication net-
works, the prototypical example of this problem is the allocation of rate (bandwidth) in a

“unicast” network architecture on the Internet, as depicted in Fig. 7. In this context, an agent

37



is a receiver (e.g., {Ri}i—1 234 in Fig. 7), who communicates with his respective transmitter
via a fixed route consisting of links (e.g., R2 communicates with T1 via the route consisting
of the T1-A, A-B, B-C, C-R2 links, whereas R3 communicates with T2 via the T2-A, A-B,
B-C, C-R3 links). The scenario depicted in Fig. 7 is such that receivers R1, R2 request the
same data (e.g., the same movie), which is transmitted by transmitter T1. Similarly R3, R4
request the same data which is transmitted by transmitter T2. The term “unicast” refers to the
fact that the network establishes separate connections for each agent in each link (even when
agents communicate the same content), and thus each agent loads each link with the amount
of bandwidth it is allocated. The inequality constraints quantify the capacity constraints at
each link (e.g., in link A-B, ; + 22 + 23 + =4 < cap, where cap is the capacity of link
A-B and z;s are the allocated rates for the four agents sharing this link). Thus the unicast
problem is a pure private goods problem with one good (i.e., rate) to be allocated and multiple
constraints on the same good (i.e., one capacity constraint per link).

There are however a number of interesting problems in economics and engineering that
do not fit the above general model, as they involve agents forming groups and entail inter-
group competition and intragroup sharing. We present this class of problems in the context
of communication networks and in particular for the problem of rate allocation in a “multi-
cast/multirate” architecture on the Internet, as depicted in Fig. 8. The model considered in
this chapter is such that for each receiver there is exactly one transmitter who communicates
with it, whereas for each transmitter there can be multiple receivers who communicate with it.
Similarly to the unicast scenario, an agent is a receiver. Agents form multicast groups based
on the content they communicate (e.g., {R1, R2} form a group and so do agents {R3, R4}). At
the same time, agents within a group may request different bandwidth for the same content,
where this differentiation is due to different quality of service requested by the users within a
group, such as in high- vs standard-definition video. In the multicast protocol, in each link
only a single connection is established for each multicast group carrying the corresponding
content at the highest requested rate. 'This is motivated by the fact that any lower-quality con-
tent can always be derived from the higher-quality content and thus there is no need to further
load the link other than with the highest rate (e.g., agents R1, R2, R3, R4 all communicate
via link A-B, but only two distinct contents are transmitted on it, resulting in a capacity con-

straint of the form max{z;, 22} + max{zs, s} < cap). Such a unique architecture makes
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the multicast/multirate allocation problem qualitatively different from the unicast since there
is sharing of bandwidth as well as competition for it.

A second motivating scenario comes from the provision of data-security on server farms.
Consider multiple server farms, each hosting data for several companies. Data security at
each server farm is provided by simultaneous use of different security products out of a set £
of possible products. Due to different companies having different security needs, for any com-
pany % in server farm k achieving security level zy; requires a profile {a},;Zz; e of quantities
of different security products', where a; are positive constants denoting the effectiveness of
product ! for company 7 on server farm k. However, since at each server farm the effectiveness
of the security product is not additive, the quantity of any security product required at a server
farm is dictated only by the maximum quantity/quality of that security product demanded
amongst companies in that farm. Finally, allocation of security products among server farms
is constrained by the limited quantity of each security product being available.

Looking at the structure of both these problems, one sees both a private and a public goods
aspect of market design in them. Referring to the multicast problem, due to the capacity
constraints on the links of the network, allocation of rate for one content implies that such rate
cannot be allocated to agents sharing this link, who have requested a different content - this
is the private good aspect resulting in intergroup competition. On the other hand for agents
requesting the same content, since the allocation via the capacity constraint is dictated only
by the highest rate from that group, others in the group can be allocated additional rate (up
to the maximum requested in that group on that link) without having to affect anybody else’s
allocation - this is the public goods aspect resulting in intragroup sharing and the inevitable
“free-rider” problem [MaWhGr95, sec. 11.C], albeit in a problem where consumption is still
private.

The goal of this chapter is to design appropriate incentives, through allocation and taxes,
such that when acting strategically i.e. at NE, the corresponding allocation to agents is effi-
cient. This efficient allocation is the solution to a convex optimization problem: maximization
of sum of agents’ utilities subject to network multicast constraints. The taxes imposed by the

mechanism refer to actual money paid by agents and not to virtual signals, as may be the

IThe final security level can be thought of as being achieved by use of different security products via a Leontief-
like production function [MaWhGr95, p. 49].
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case in works on distributed optimization. Therefore our model assumes the presence of an
authority capable of collecting taxes from the agents or disbursing subsidies to the agents (as
dictated by the mechanism).

For the problem of designing a mechanism that leads to a single-shot game, the well-
accepted measure of complexity is the dimensionality of the message space of the proposed
mechanism. Similar to some of the works mentioned earlier, the mechanism presented here
requires agents to communicate via announcing relatively “small” signals, which only consist
of demands and prices. However, contrary to some of the earlier works in communications,
such as [JaWa10; YaHa07; JoTs09], the work here ensures full implementation of social wel-
fare maximizing allocation, so the designer can guarantee that only the most efficient outcome
will be reached and no other. This is the first contribution of this work. Note that we avoid
using direct mechanisms (see [NiRoTaVa07; B6KrSt15] for definition) since for this prob-
lem agents’ private information is their utility function and it would be impractical to ask
agents to quote entire functions. This also means that we do not use such terms as “incentive
compatibility” and “truth-telling” as they apply only to direct mechanisms.

In addition to the stated goal of getting optimal allocations at all Nash equilibria (NE) and
ensuring individual rationality (IR), the mechanism presented here has two auxiliary prop-
erties. 'The first auxiliary property, and the second contribution of this work, is to achieve
feasibility on and off equilibrium via a “radial projection” allocation function. This property im-
plies that the contract promises to allocate rates to agents in such a way that the link capacity
constraints are never violated, contrary to the works in [StLe06; KaTel4; KaTel3b; ShTel2].
While, clearly, feasibility is satisfied by definition at NE, the proposed mechanism achieves it
even off equilibrium. Oft-equilibrium feasibility has much deeper implications in the context
of networks as described below. The use of NE as a solution concept in the implementation
literature can lead to problems in practice since calculation of NE requires full information on
part of the agents (which may not happen on an informationally and physically decentralized
system like the Internet). Thus the justification for using NE (even for single shot games) is
that for certain classes of learning dynamics, repeated play with the mechanism will ensure
that the NE is “learned” eventually. Since information capacity constraints on a network are
hard constraints and cannot be violated at any cost (in the short run), the above “learning” jus-

tification is applicable only when allocation is feasible throughout the learning process. Hence
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oft-equilibrium feasibility becomes a necessity and the mechanism presented in this work is
“learning ready” in that respect.

Regarding the specific technique used to achieve off-equilibrium feasibility, radial projec-
tion refers to agents’ demands being converted into allocations by scaling of the overall de-
mand vector to the boundary of the feasible region defined by the capacity constraints. This
allocation method subsumes as a special case the allocation function introduced in [MaBa04;
YaHa05] for communication on a single-link unicast network, and for stochastic control of
networks in [KeMaTa98] (readers may be refer to [SiAn15] for a full implementation mech-
anism that uses a similar allocation concept in the unicast problem).

'The second auxiliary property of the proposed mechanism and the final contribution of this
work is to demonstrate how strong budget balance (SBB) at NE can be added to the non-
budget balanced mechanism with the exchange of an extra signal (see Section 4). This is in
contrast to [KaTel3b], where significant effort has been made to ensure budget balance off
equilibrium for feasible allocations, while feasibility itself isn't ensured off equilibrium. With
the proposed modification, achieving SBB at NE becomes a relatively straightforward task.
This is to be contrasted with the mechanisms proposed in [YaHa07; JoTs09] where SBB
becomes a very difficult property to guarantee.

'The relevant literature on mechanism design is discussed below.

The earliest unicast mechanisms were inspired by the seminal work [KeMaTa98], which
presents a mechanism with competitive equilibrium as the solution concept. Mechanism de-
sign work for unicast network include [MaBa03; MaBa04; JoTs04; YaHa05; JaWa10], and
specifically, Nash implementation for general unicast has been studied in [StLe06; KaTel4;
SiAn15]. In all the above works, the network structure is assumed to be fixed; alternately [Ne09]
studies the relay problem where agents own links and can price the data going through them.

Mechanism design has also been studied for power allocation problems in wireless networks.
These are public goods problems, since the quality of service achieved by any agent depends
not only on his signal strength but also that of neighboring agents due to interference from
surrounding transmissions (see [HoGal2; ShTel2; AlIBoHoPo13b]).

Readers may refer to [Ch02; HeMal2] for mechanisms designed to fully implement Wal-
rasian and Lindahl allocations that are guaranteed to converge to the NE with a large class of

learning dynamics. Both [Ch02; HeMal2] rely on the off-equilibrium properties - specifically
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that of the best response correspondence - to ensure a “learning” property in their mechanism.
Authors in [BhKaChGu14] ensure that their mechanism induces a best response correspon-
dence that has a partial truth-telling property: the allocation and price (z;, p;) quoted by agent
1, in her best response, are related to her utility v,(+) as p; = vi(z;) (even if z; isn't equal to
the optimal allocation 7).

In multicast/multirate models without strategic agents, researchers have argued for different
optimality criteria. One example is the max-min fairness for multicast used in [RuKuTo099;
GrSrTo01; SaTa99; SaTa02]. On the other hand, the works in [KaSaTa01; KaTa06] have
used integer and convex programming to get decentralized algorithms that maximize the sum
of utilities. Stoenescu et al [StLiTe07] propose a realization algorithm which converges to
optimal allocation.

The remainder of this chapter is structured as follows: in Section 2, the centralized problem
that we wish to implement is stated and its solution is characterized. In Section 3, the mech-
anism is described and its properties are derived for the weak budget balance (WBB) case.
'This mechanism is modified in Section 4 to include strong budget balance at NE. Section 5

discusses the relevant literature and some salient features of the mechanism.

2. Centralized Problem

For concreteness, the exposition follows the prototypical example of rate allocation in a mul-
ticast/multirate network architecture on the Internet. The system consists of a set N of Inter-
net agents who communicate over a fixed multicast network. Each agent here is considered
as a pair of source and destination users and the agents are divided into disjoint multicast
groups based on the content that they communicate. The set of agents is described as N' =
{(k,7) | k € K,1 € Gi}, where the set of multicast groups is denoted by £ = {1,2,..., K}
and within a group k € K, the set of agents is denoted by G, = {1,...,Gx}. We use the
notation k% instead of (k, ¢) to denote a generic agent.

We denote by zx; > 0 the rate allocated to an agent k% and it refers to the data-rate that
agent k¢ communicates with (with the data content being the same as that of any other agent
from group k). Thus the overall allocation for the system is a vector £ = (Z;)y;cp Of rates

allocated to all the agents.

42



Agents’ have private valuation and thus for any agent &z, the valuation for allocation z; is
Vki (T ) where vg; (1) - Ry — R.

'The multicast network consists of links through which agents’ data is transmitted from
source to destination. The route Ly, of agent k1 is the set of links that agent k¢ uses for his
communication, and £ = Ug;enLii is the set of all available links. We denote by A/ ! the set
of agents utilizing a link I € £ and it is defined as N = {ki € N' | | € Ly;}. Also we
define G C Gy, to be the set of agents from group k who use link I and K' to be the set of
groups that have at least one agent that uses link [ i.e. K!' ={k € K | G} # 0}.

Finally, the cardinality of all the sets defined above are denoted as follows N = |[N|, K =
KI, Gi = Guly I = |£), L = L, G = G| and N' = [N,

In addition to group-wise ordering of agents, we also introduce a combined group and link-
wise ordering of agents®. For group k and link [, any agent k%, can be identified by the index

g% (%), where the mapping is defined as
ki gi(i) where 1<gl(i) <Gk, VIE L. (2.1)

The above mapping is defined so that it preserves the original ordering i.e. V 4,7 € Gi and
i > j we have g,(¢) > g¢i(j). Note that with this requirement the mapping is uniquely
defined. For instance, if group k has four agents {k1, k2, k3, k4} and only agents k1, k3, k4

use a particular link [ then

k1l gi(1) =1, k3 gi(3) =2, k4 gi(4) = 3. (2.2)

'The network administrator is interested in maximizing the social welfare under the link

capacity constraints. This centralized problem is

mwax Z Z 'Uki(mki) (CPO)

kek 1€Gy

st. T >0 VEkieN Iy)

2Given previous definitions, this reindexing is somewhat redundant; however, it will be used in the following
to make the exposition clearer.
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and )~ ma;{aﬁcjzz:kj} <cdVvieL. (Iy)
ekt 1€%

Constraints I, are the inequality constraints on allocation and represent the capacity con-
straint for every link [ € £, in the network. Here a}; are constants that represent the quality
of service requirement of agent k7 combined with the specific architecture on link {. So in
order for agent kj to receive an actual data-rate of z; the bandwidth spent on link [ is o} k-

As an example, a; = for all links I € Ly;, where € represents the packet error

1
Rij(1-¢};)
probability for link I for a packet encoded with channel coding rate Ry;. Observe that due
to the multicast/multirate architecture, only the maximum rate of each group k at each link

enters the capacity constraints.

2.1. Assumptions

'The analysis will be done under the following assumptions.

(A1) For all agents, vg;(-) € Vi, where the sets Vg, are arbitrary subsets of Vg, the set of
all strictly increasing, strictly concave, twice differentiable functions Ry — R with

continuous second derivative.

(A2) v,;(0) is finite V k2 € N. 'This also implies that v}, (z) is finite and bounded V k7 and

V z € R, since vg;’s are concave.
(A3) Every link has at least two groups that use itie. K' > 2 V1 € L.

(A4) 'The optimal solution of the centralized problem is such that for every link there are at
least 2 groups such that each has at least one non-zero component, i.e. if $t(z) := {k €
K' | 34 € Gl st zy; > 0} then the assumption says |S'(z*)| > 2 VI € L (where
z* is the optimal solution of (CPy)).

In addition, the coefficients are all strictly positive, i.e. ak; > 0 V1 € Ly;, V ki € N. Also,
for well-posedness of the problem we take ¢! >0 V1 € L.

Assumption (Al) is made in order for the centralized problem to have a unique solu-
tion at the boundary of the feasible region and for this solution to be precisely character-

ized by the KKT conditions. (A2) is a mild technical assumption that is required in the

44



proof of Lemma 3.7. Assumption (A3) is made in order to avoid situations where there is a
link/constraint involving only one multicast group. Such a case requires special handling in
the design of the mechanism (since in such a case there is no contention at that link), and
destructs from the basic idea that we want to communicate. Finally (A4) is related to (A3)
and is made in order to simplify the exposition of the proposed mechanism, without having
to define corner cases that are of minor importance. One can state a number of mild suffi-
cient conditions on the original optimization problem (CPy) such that (A4) is satisfied. For

instance if the optimal solution z* = (:1:21) N is such that z}; > 0 for every agent kt then

ki€

assumption (A4) is satisfied. Furthermore, this can be ensured by considering utility functions

such that vy,;(0) is sufficiently large.

2.2. Necessary and Sufficient Optimality conditions

Under the stated assumptions, (CPp) is a convex optimization problem. Following are the
necessary KKT conditions for optimality, which under the stated assumptions are also suffi-
cient (due to the strict concavity of vg;(-)). For this the centralized problem is first rewritten
by restating the capacity constraints in a different form

max » | > Vki(Zki) (CP)

)

kek icGy
st. T >0 VEkieN (Cy)
and ZmigclVlEE (Cy)
kek!
and alz <mk Viegl, kcK, lcL. (Cs)

'The capacity constraints have been rewritten with the introduction of new variables. The
virtual variables m} € R represent the weighted maximum requirement of group & on link
[. It’s easy to see that the solution of (CP) is the same as the solution of the original (CPy)
as far as optimal z is concerned. We introduce A, p, v as the dual variables corresponding
to constraints Cs, Cs and Cj, respectively. The KKT conditions are stated without explicitly
referring to Vg;’s and just using the fact that v, > 0 and v§;z5, = 0 V ki € N. Note that

with the assumptions above, the KKT conditions below will give rise to a unique z* as the
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optimizer for (CP).
KKT conditions:

a) Primal Feasibility:

Ty, >0 Vkice N

Smbt<d Vier;
kekt

bl <ml Viegl, kek, leL.

b) Dual Feasibility: A\; >0 Vi€ L; uk;, >0 Vkie Nl e L.

¢) Complimentary Slackness:

A;‘(Z m;*—cl> —0ViecL,

kekt

uh (cdhiah, —ml) =0 Viegl, ke k!, le L.

d) Stationarity:

v (25;) = Z ,ufci*aﬁﬂ. Vkie N if z,>0
€Ly

V(zh) < O ptr ol Vkie N if zi, =0
€Ly

and

=YW VEeeK, leL
ieGl

(2.32)
(2.3b)

(2.3¢)

(2.4a)

(2.4b)

(2.52)

(2.5b)

(2.6)

Looking at (2.4b), ut.” will be non-zero only if ot ,z}; = mL”, so each ut,” can be interpreted

as the “price” paid only by those agents who receive maximum weighted allocation in group k&

at a given link [. Consequently, from (2.6), A} is the sum of u};" over those agents in group &

that get maximum allocation within the group and it is the same for all groups. A} can then

be interpreted as the common total price per unit of rate that each group is subject to at link

L.
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3. A mechanism with weak budget balance

In this section, we consider the case of weak budget balance, i.e., the taxes t; of all agents
at equilibrium satisfy >p;cp tes > 0. Note that the taxes used in the model refer to actual
money paid by agents and not virtual signals, as may be the case in other works on distributed

optimization.

3.1. Mechanism

'The designer designs and announces the message space Sg; for each agent k7 € N. The agents
pick their message simultaneously and broadcast it. Based on the message profile received
8 = (Ski)picp- the designer allocates rate T = (Tis);cp a8 Ths = hg;(s). Similarly, the
designer levies a tax (or subsidy) on each agent t = (tx:)y;cp a5 tei = hi;(s). The proposed
mechanism is described below by defining the sets Sy; and functions (h%;(-), A%, (+)), for each
ki€ N.

'This gives rise to a one-shot game

6 = (N, (Sus) e (B0)) ey ) (2.7)

played by all the agents in A/, where action sets are (Sk;)kicp and utilities are given by
Uri(8) = Vri(Thi) — thi = Vri(hEi(8)) — RLi(s), VkieN. (2.8)

'The resource allocation problem (CP) would be fully implemented in NE, if the outcomes (all
possible NE) of this game produce allocation £* and all agents in N are better-oft participating
in the mechanism than opting out (getting 0 allocation and taxes).

Message Space. 'The designer asks each agent to report a message Sg; = (Ys, Qri) Where
Qri = (*Qui, 2Qr:) with 'Qp; = (1Q§“i>leﬁki and 2Qy; = (2(1;”)166“; also for convenience
denote gL, = (1qf”<, 2qfu»>. 'The message sg; includes a proxy for agent k%’s demand for the rate,
Yri € Ry, and two “prices” 1¢}. € R, 2qk; € R, foreachlinkl € Ly, thatagent ki is involved
in. For each agent k7 and each link [, the first price 1, relates to the constraint ok, zx; < mk,
while the second price ?qy relates to the constraint o, ;zx; < mj, where kj is the agent from

group k on link [ which can be identified by the index g (z) + 1 (see the group and link-wise
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indexing notation defined in (2.1)). As it turns out, our methodology makes quoting two
prices necessary, as will be shown later. An intuitive explanation for the need of two prices is
provided in the Discussion paragraphs after the tax definition in (2.13) and (2.14). From the
above definitions, the message space for agent ki is Sp; = R, x R3*. For received messages
s = (Ski)rien = (¥, Q) = ((Yrs)rien, (Qri)ricnr) the contract hy;(s) = (hg.(s), hii(s)) has

an allocation component AZ,(-) and a tax component® hi,(-) and is defined for each ki € N/

as follows.
Allocation function. If the received demand vector is ¥ = (y11,.-.,Yxcx) = O then the
allocation is £ = (Z11,...,Zxg,) = 0 (also set m = 0). Otherwise it is evaluated by

radially projecting the demand vector y on the boundary of the feasibility region as depicted

in Fig. 9 for a two-group single-link case. More formally, the allocation function hf,(s) creates

T21

A

T12

T11

Figure 9.: Radial projection allocation for a single-link multicast/multirate network with 2
multicast groups K = {1, 2} with a total of 3 agents i.e. N' = {11,12,21}. Capac-
ity constraint is max{z1, Z12} + 21 < 1. For demand y allocation  is just the
projection of y onto the feasible set boundary (first sub-case of (2.9¢) applies here).

allocation by first creating proxies n}, € R, for the weighted maximum at each link for each

3 All utilities in this work are assumed to be quasi-linear.
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group as follows
n, £ max {aye}, VkeK', lelL. (2.92)
iegl

Then intermediate variables m} s are created by dilating/shrinking n}’s on to one of the hyper-
planes defined by the second set of constraints in C, specifically, that hyperplane for which
the corresponding m}’s are the closest to origin (this could also be at the intersection of mul-

tiple hyperplanes). This is done through the introduction of a scaling factor r as follows

r = min 7 (2.9b)
ieL
c z
_° if 1St (y)| > 2
S 1S*(y)|
— — fHY(n}), if S'(y) =1k
s ) ()= {5}
7, 1 c d
N 9
£ = T (299)

Finally allocation zy; is calculated by dilating/shrinking yy; by the same factor.

hi(s) =i =Tyr Vi€ N, (2.102)
mi2rnl, VkcK, 1cL. (2.10b)

In other words, the contract dilates/shrinks n}, to the boundary of the feasible region defined
by the capacity constraints and then allocations within a group are made proportionally. Since
all the ajs are positive, this means that all constraints in C; are satisfied for the allocation
automatically, as shown later. In the above description of the allocation function, the separate
definition for 7 when |S'(y)| < 2 is to ensure (as it will be shown later) that there are no
equilibria with allocation z*, where |S'(z*)| < 2.

Tax function. For the taxes, we first define total prices, w}, @', for any link I and group
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ke Kl as

wL2 Y g, w2 T 2 Wiy (2.11)
i€Gl k'eKN\{k}
where @' , is well-defined due to assumption (A3). The tax is defined as the sum of taxes for

each constraint in an agent’s route

hi(s) =t = > th, VEiEN, (2.12)
€Ly
and each component ¢ is defined as follows. If G%, > 2 then consider agents kj and ke from
group k and on link [ who can be identified by the index g.(z) — 1 and g% (z) + 1 (mod G%),
respectively. Then,

tl = xkzaéf‘lllq (QQLi - 1q§ce)2 + (wi - u_’l—k)Q + UQQLj(l‘IIZn - 2QIlcj)(m;c - a;cﬂki)
+ {fwl_k(wi - wl—k)(cl - Z mgc’)) (2.13)
ket

where 7, £ are sufficiently small positive constants (whose selection is outlined in the proof of
Lemma 3.7). If G}, = 1 then

thi = e @ + (wj, — @ 4)° + 0T (Mg — D) (Ml — i)
+ &t (w), —w' ) — > my). (2.14)
k'eKct

Discussion. The need for two prices is mainly a technical necessity (an unavoidable corner
case whenever an inequality constraint involves only one user) and can be explained as follows.
When there is a constraint involving at least two agents, then it suffices to ask each agent to
quote a single price for it. The price quoted by agent k7 would be used is used in two places
in (2.13): it would determine the price paid by agent k1 in his first tax term (this way agent k2
does not control both his price and (indirectly) his allocation) and it will also be used in the
fourth term of agent’s k7 taxes to make sure the complementary slackness condition is satisfied.
Similarly for the price quoted by user k2. However, for the problem at hand, constraints (C3)

(ak;zr; < mk) involve only one agent, ki, per constraint. This changes things because this
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quoted price cannot be used both in his first and fourth tax terms! This necessitates that users
quote two prices as follows. We require agent k1, to quote a price !¢}, that will be used in his
fourth tax term to make sure the complementary slackness condition is satisfied. Clearly we
cannot use the same quoted price for his first tax term (this would violate the condition that
the same agent cannot control both his price and quantity). So we ask agent kj to quote a
price 2g}; that is paid by agent k% (first term in ¢};). These two prices, *qj;, *q;; (the second
price quoted by kj and the first price quoted by ki) are thus used as a proxy for the same

quantity: the optimal Lagrange multiplier u}," corresponding to the constraint ak;zx; < ml.

It should now be clear what the role of the other tax terms is. The second and third terms
(%q¢t, — qb.)?, (wh — @' ,)? are introduced to incentivize agents to quote same prices. For
instance, the term (2¢}; — qt,)? drives agent ki to quote 2q; such that it matches g, - both
are a proxy for the optimal Lagrange multiplier uk.", as explained above (for the k7, k4 pair
of agents). Similarly, the purpose of the term (w}, — @' ;)? is to tax every agent from group
k additionally (in a smooth manner) if the total group price w}, = Yicg! lgL; doesnt match
with the average of group price @' , for other groups. This will drive agents to quote g;’s
such that the two match and if the group price for all groups match with the average of others,
then indeed all group prices are the same (as required by (2.6) in KKT). To satisty the com-
plimentary slackness conditions at NE we introduce the fourth and fifth terms which charge
agent k7 higher taxes if they quote non-zero prices for inactive constraints. This necessarily
requires using an agent’s own quoted price (i.e. price g}, for agent ki).

Finally, below we show that all tax terms except the first tax term are zero at NE and ¢}, =
2qt ;= pt.”, where ut ™ is the optimal Lagrange multiplier (see (2.4b), (2.5a)). Consequently,
the total tax paid by agent k7 at NE is t; = z}; Yep,, 0hibiks = zhvii(zh;) (see (2.52)).
'The price paid by agent k¢ at NE is the true marginal valuation v;,(z};) of agent k¢ and thus
the mechanism ensures fairness of taxes paid by agents in the sense that it they are exactly
what expected in a free market.

Readers may refer to [Hu79; Ch02] for mechanisms with small message spaces which use
similar technique for taxation in Nash implementing mechanisms for Lindahl correspondence
(public goods).

‘There are two levels of interactions that this mechanism is dealing with, one among groups
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for allocation of maximum rate on each link and a second within each group. Agents contest
tor allocation that makes full use of the fact that from within a group only maximum at each
link will give rise to a positive price on that link. At any link [ and group k, total price w}, is the
sum of prices quoted by all the agents in the group at link [. The quantity @'  is calculated
by averaging the total prices for link [ over all other groups than k. Quoting of prices and
demand is used as a way of eliciting v,;(Zx;) by comparing it appropriately with prices. In
this vein, we do not wish to influence @' , with prices quoted by groups whose agents aren't

using the link at all, since the price then essentially doesn’t contain any information.

3.2. Results

'The basic result of this section is summarized in the following theorem.

Theorem 3.1 (Full Implementation). For game O, there is a unique allocation, T, corresponding fo
all NE. Moreover, T = x*, the maximizer of (CP). In addition, individual rationality is satisfied

Jfor all agents and so is weak budget balance.

'The theorem is proved by a sequence of results, in which all candidate NE of & are charac-
terized by necessary conditions until only one family of NE candidates is left. Subsequently,
the existence of NE in pure strategies for & is shown, and that all NE result in allocation

z = z*. Finally, individual rationality and WBB will be checked.

Lemma 3.2 (Primal Feasibility). For any action profile s = (y, Q) of game &, constraints Cy, C
and Cs of (CP) are satisfied at the corresponding allocation.

Proof. Please see Appendix 6.1 at the end of this chapter. O]

Feasibility of allocation for action profiles is a direct consequence of the radial projection
allocation function. Next, it is shown that all groups, using a link, quote the same total price
w}, for that link at any equilibrium. This is brought about by the 3™ tax term 3, (w}, — w' ;).
This is a way of threatening agents with higher taxes just for quoting a different price than

average, at each link.

Lemma 3.3. At any NE s = (y, Q) of &, for any link | € L we have

wh=w" Vkekh (2.15)
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Also, for any group k and link | such that G%c > 2 if we take any agents i,e € Q,lc where agent ke
can be identified by the index gl,(¢) + 1 then at equilibrium we will have °gl,; = qt., (which will
be denoted as p',,).

Proof. Please see Appendix 6.2 at the end of this chapter. [

With Lemma 3.3, equilibria can now be referred to in terms of the common total price
vector P rather than the two different total price vectors '@, and ?Q). In particular, any NE
s = (y,Q) with Q = (*Q, 2Q) can be characterized as s = (y, P) with P = (Py;)ien and
Pri = (pii)lE»Cki.

Later it will become clear how p; and w' take the place of dual variables u}; and A;, re-
spectively, when we compare equilibrium conditions with KKT conditions, hence we identify

the following condition as dual feasibility.
Lemma 3.4 (Dual Feasibility). p}, > 0,w' >0 Vie G, Vke Kland Vi€ L.

Proof- 'This is by design, since agents are only allowed to quote non-negative prices and that

w' is the sum of such prices. O]

Following is the property that solidifies the notion of prices as dual variables, since the claim
here is that inactive constraints do not contribute to payment at equilibrium. This notion is
very similar to the centralized problem, where if we know certain constraints to be inactive
at the optimum then the same problem without these constraints would be equivalent to the
original. The 4™ and 5% terms in the tax function facilitate this by charging extra taxes for
inactive constraints where the agent is quoting higher prices than the average of remaining

ones, thereby driving prices down.

Lemma 3.5 (Complimentary Slackness). A¢any NE s = (y, P) of game & with corresponding
allocation T, for any agent 1 € g,lc, group k € KCt and link | € L we have

w! (Z mi — cl> =0, ok (aﬁcimki — mﬁc) =0. (2.16)

keK!

Proof. Please see Appendix 6.3 at the end of this chapter. O
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Lemma 3.6 (Stationarity). A¢any NE s = (y, P) of game &, and corresponding allocation T, we

have
V(i) = D Pt VEIEN if T >0 (2.17a)
lELk;
V(@) < D Phiot; VEIEN if T =0 (2.17b)
lELys
and
w'=>"pi; VkeK, €L (2.18)
i€GL
Proof. Please see Appendix 6.4 at the end of this chapter. OJ

Collecting the results of the above lemmas, we can conclude that every NE profile satisfies
the KKT conditions of the (CP). This means there are now necessary conditions on the NE up
to the point of having unique allocation (since KKT for (CP) is satisfied by a unique optimal

z). In the next Lemma we verify the existence of the equilibria that we have claimed.
Lemma 3.7 (Existence). For the game ®, there exists an equilibrium.
Proof. Please see Appendix 6.5 at the end of this chapter. O]

Several comments are in order regarding the selection of the radial projection allocation
function and in particular (2.9¢). If one uses “pure” radial projection i.e. same expression
for vt for |S'(y)| > 2 and < 1, then irrespective of the optimal solution of (CP), for game
® the “stationarity” property will not be satisfied at equilibria with [S*(y)| < 1. Thus the
mechanism will result in additional extraneous equilibria. This is the reason why we tweak the
expression for 7 when |S*(y)| < 1, so as to eliminate these extraneous equilibria - irrespective
of the solution of (CP). With this tweak in the expression for r!, all KKT conditions become
necessary for all equilibria regardless of the value of |S*(y)|. This however creates a problem
in the proof of existence of equilibria. In particular, if £* was such that it had links where
|S*(z*)| = 1 then with modified radial projection allocation this would require y at NE such
that |S*(y)| = 1. In this case the 7' used would be lower than what the radial projection
requires (see second sub-case in (2.9¢)) and we actually would have the problem of possibly

not having any y that creates £* as allocation. Hence we have used (A4) to eliminate this case.
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Lemma 3.8 (Individual Rationality and WBB). Arany NE s = (y, P) of ®, with corresponding

allocation © and taxes t, we have

and > i > 0. (2.20)
kieN
Proof. Please see Appendix 6.6 at the end of this chapter. O

With all the Lemmas characterizing NE in the same way as KK'T conditions (and individual

rationality), we can compare them to prove Theorem 3.1.

Proof of Theorem 3.1. We know that the four KKT conditions produce a unique solution z*
(and corresponding A*). For the game &, if NE exist, then from Lemmas 3.2-3.6 we can
see that at any NE, allocation = and prices p satisfy the same conditions as the four KKT
conditions and hence they give a unique £ = z*, as long as (A5) is satisfied. We conclude that
the allocation is £* across all NE. Existence of the claimed NE is established in Lemma 3.7.

'This combined with individual rationality Lemma 3.8, proves Theorem 3.1. O

4. A mechanism with Strong Budget Balance

We now present a modification of the previous mechanism that in addition to previous results
also ensures strong budget balance (SBB) at NE i.e. Y p;cp tri = 0.

For creating a mechanism in this formulation, the main difference with the previous section,
is that the designer has to find a way of redistributing the total tax paid by all the agents. In

the last section it was shown that the total payment made at the equilibrium is

B= ) (mki ) aécipgci) =r . (yki > aiii”ii) ’ (2.21)
kieN l€Ly: kieN l€Ly;

since all other tax terms are zero at equilibrium. The method here, following in the spirit

of [Hu79], is to redistribute taxes by modifying the tax function for each agent only using

messages from other agents. This has the advantage of keeping equilibrium calculations in line

with the previous mechanism, since deviations by an agent wouldn't affect his utility through
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this additional term. In view of this, an alternate expression for B is

B=r) ( 2 1_ o agc’jpgc'jyk'i> ) (2.22)
kieEN \lE€Ly; k' jeEN\{ki}

where each term of the outermost summation depends only on demands of agents other than
the k1™ one. This means that each term in the parenthesis (scaled by the factor 7) can now be
used as the desired additional tax for user k7. Observe however that in our mechanism, each
agent’s demand affects the factor 7 as well. So, if all agents can agree on value of 7 then that
signal can be used to create the term that facilitates budget balance.

In lieu of this, the mechanism here works by asking for an additional signal pg; from every
agent and imposing an additional tax of (px; — 7)?, thereby essentially ensuring that all agents
agree on the value of 7 (via p;’s) at equilibrium. Finally, p_x; (see (2.26)) is used as a proxy

for 7 in (2.22) - somewhat similar to how @' ;s were used in the third term of (2.13).

4.1. Mechanism

The actions set for agent ki is now Sg; = R, x R3* x R, where an action is of the form
Ski = (Yri, Qri, Pri)- The allocation and tax function announced by the designer are exactly

as in the previous case, with the only exception that the tax for any agent k% is now defined as

hii(s) =t = Clow — T)° + D e (2.23)

leLy;

If G, > 2, then again using agents kj and ke as described after (2.12), we have

L = xkiaéciqulcj + Cap — 'ah)’ + (wh — w0, )* + 77245@'(1‘111@ - ZQLj)(mgc — O Tk:)

_ _ P—ki
+ &t (w), — @t ) — > mb) - N1 S o qye; (2.24)
kleKt k'jeN\{ki}

where agent k'7' is an agent from group k' on link  who can be identified by the index g, (5) —
1,if G4, > 2 and ¢, 7, € are small enough positive constants. However if G}, = 1 we would

ol !
use W 4 instead of g,
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Similarly for Gi = 1, we have

thy = Tl Wy, + (w), — Wh,)* + ' ("qh — @'y) (M, — o Thi)

+ et (wh — @' ) - S mh) - Pki ST dhldhayky. (2.25)

1 _
Kext N =1 jenmqmiy
In addition to previous definitions,
_ 1
P-ki = 37 Yo by (2.26)
T R EN\{ki}

Denote the corresponding game by &. The implications of these modifications are discussed

in the results section below.

4.2. Results

'This new mechanism will also fully implement (CP). The only term in G, that is affected by
Pri is —(pr; — 7)?, so all the Lemmas from Section 3 are valid with minor modifications and
the main result will follow using the same line of argumentation as for Theorem 3.1. Note
here that, terms in Uy; affected by 1qL;, 2q:.’s are the same as before but for yy; there is a new

term —(px; — r)? which is affected by it.

Theorem 4.1 (Full Implementation with SBB). For game &, there is a unique allocation, ,
corresponding to all NE. Moreover, T = T*, the maximizer of (CP), where individual rationality
is satisfied for all agents in N. Also, SBB is satisfied at all NE.

For economy of exposition, in the following, we only provide detailed proofs for the new
properties of this mechanism, while we outline the proofs for the properties that are similar

to those in the WBB mechanism.

* Primal Feasibility - Since allocation function is the same as before, this result holds here

as well.

* Equal Prices at equilibrium - This was proved by taking price deviations only and keep-
ing other parameters of the signal constant, so the same argument works here as well

(noting that no new price related terms have been added in the new mechanism).
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Before moving on to other results, we show that a common py;’s emerges at equilibrium.
Lemma 4.2. At any NE s = (y, P, p) of game &g, we have py; =1 YV ki € N.
Proof- Please see Appendix 6.7 at the end of this chapter. O]

Note however that although pi, are same for all k7 at any equilibrium, that common value,
7, will be different across equilibria. This is obvious since magnitude of vector y changes across
equilibria.

Now we continue with other properties from Section 3.
* Dual Feasibility - This is obvious here as well.

* Complimentary Slackness - This was proved by taking only price deviations and hence

the same argument works here as well.

* Stationarity - Compared to the WBB case, the additional term in the derivative is

! = 1 -2 li - ’rl - 7 (227)
OYpi Inew Yy lod C(pk ) Yy
——

VA T

The claim is, as before, that if T} is positive, agent k¢ can increase y;,, from yx; to be
better-off. However agent k¢ has to ensure that he deviates with pj; simultaneously
to make it equal to 7/, so that the contribution of the T5 term to the derivative above
continues to be zero. The only thing left to notice here is that the change in pj, is such
that not only the term T is zero but also that the contribution of term —¢(p},; — 7')?
to the utility is zero before and after deviation - so this deviation doesn’t change other

partial derivatives. Similar argument also works when T} is negative and we get the

stationarity property here as well.

With the above properties, unique allocation z* at all equilibria is guaranteed, and, as before,
the prices are equal to A*.
Existence of equilibria is verified in Appendix 6.8 at the end of this chapter. The arguments

used are similar to the ones in the proof of Lemma 3.7.
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* Individual Rationality - This is obvious in here because money from the previous case
is only being redistributed here, so if the mechanism there was individually rational it

will be here too.

Lemma 4.3 (Strong Budget Balance). A7 any NE s = (y, P, p) of game &g, with corresponding

faxes {tki}ki@\/, we have Y picn tis = 0.
Proof. Please see Appendix 6.9 at the end of this chapter. O

Proof of Theorem 4.1. By the preceding properties, at all equilibria the allocation is z* and
prices A*. Then SBB and individual rationality provide the desired full implementation. [

5. Summary and Comments

In this chapter, we present a mechanism that fully implements the sum of utilities maxi-
mizing allocation for agents who share data on a multicast/multirate network. The scope of
application of this model goes beyond just data provision on networks. Another example (as
mentioned in the Introduction) is the provision of security products for server farms. The
design also encompasses two important auxiliary properties: off-equilibrium feasibility of al-
location (using the radial projection function) and SBB at NE. In addition the overall size of
the message space is linear in the number of agents, N.

'The work in [KaTe13b] is similar to the work in this chapter except for two things. Firstly,
the mechanism doesn't posses the off-equilibrium feasibility property and secondly there are
instances of the centralized problem where the claimed NE profiles do indeed have profitable
unilateral deviations, thereby contradicting the full implementation claim.

In the spirit of some recent works [Ch02; HeMa12] for Walrasian and Lindahl allocations,
the main continuation of this work would be to design the allocation/tax functions where in
addition to full implementation, convergence of certain classes of learning algorithms is also
taken as a design objective. This way we can convert our “learning ready” mechanism into
a guaranteed learning mechanism. Designing so that the ensuing game is a potential game
or a super-modular game is too stringent for this problem. But the design technique used

in [HeMal2], namely contractive best response correspondence, is slightly relaxed. Basic
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design parameters like the structure of the message space (consisting of demands and prices)
can be kept the same in this case.

Another future direction, from an engineering perspective, can be to impose additional
constraints on the mechanism design so that the messages in the resulting mechanism can
be exchanged in a distributed manner and can possibly eliminate the need for a centralized
coordinator to collect all quoted message and impose allocation and taxes. Naturally, such a
development would require the assumption that even without the presence of a centralized
coordinator agents will pay the taxes that the mechanism contract requires and that allocation
(as defined by the mechanism) can be effected.

For the mechanism defined in this chapter the communication structure is as follows. The
prices gt.,%g,, can be communicated only locally within group k and link . The quantity
W' , requires communication between groups and for this a leader can be designated from
each group, who will communicate with the other leaders. Calculating the allocation poses
other issues. The leader of group k on link [ can also calculate n}, = max;cg! {ak.yr;} and
communicate it with other groups on link [ to calculate 7* and then communication is needed

across links to get 7 = min;e . 7.

60



6. Appendix

6.1. Proof of Lemma 3.2

Proof. Constraint C; is clearly always satisfied. For y = 0 we have £ = 0 and m = 0, so
constraints Cy and Cj are also clearly satisfied. Next we show Cs and Cj are satisfied for any
y # 0 as demand. Firstly r < +00, since there exists at least one link d with |S%(y)| > 1 and
thus 7¢ < +00. Now, for any link [, there are the following two cases. If | S'(y)| = 0, then
the allocation for all agents in N* is zero (along with the corresponding m.’s), so Cy and Cs
for those links is satisfied. If |S'(y)| > 1 then

z
Zmﬁc:anfcgrlancgcilanc:cl (2.28)

kek! ket ket > kerct M kekt

where the first inequality holds because 7 is the minimum of all 7*s. The second inequality is
equality if |S*(y)| > 2 and is strict only if | S*(y)| = 1 (see second sub-case in (2.9¢)). For Cs,
take any agent k% and link [ € Ly;

Qb Thi = To Yk < TNE = M) (2.29)
where the inequality holds because n), is the maximum over o, yx;’s forall i € G. O

6.2. Proof of Lemma 3.3

Proof. First we show the second part of the lemma, so suppose there are agents 7, e € G}, as
above, for whom 2¢L; # ¢L,. If agent ki deviates with 2¢}," = g}, then we can write the
difference in agent k#’s utility after and before deviation by just comparing tax for link [ (since

allocation and tax for other links don’t change)
Aty = (g’ — ') + Cah — '6k)’ = (i — '0i)’ > 0 (2.30)

which means that the deviation was profitable. This gives us the second part of the lemma.
(In addition to defining ¢}, = qt, = pl, when G, > 2, we will also denote *qL;, = wl, = pk,

when G = {7}).
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For the first part, suppose there is a link [ for which (w}, )z are not all equal, at equilibrium.
Clearly then there is a group k € K'! for which w}, > @', (this can be seen from (2.11)). We
will show that some agent ¢ € G}, can deviate by reducing price g}, and be strictly better off,
thereby contradicting the equilibrium condition. First we take the case when the group & is
such that G}, > 2 and then G, = 1.

Since w} > w', we must have w} > 0 and since w, = 2iegl 1gL; there must be an agent

_1

i € Gt for whom g%, > 0. Take deviation by this agent k4 as 1qk,” = gL, — € > 0, for which

we can write the difference in utility, just as before, as

ATy = —€” + 2¢(wy, — W',) + nepl;(my, — afzw:) + e (¢ — > my,)
keict

= e — e+ 2wl — 0L + npl(ml - abiz) + €Tl (¢ — 3 mh)) = e(~¢ +a)
kek!

(2.31)

where a > 0 because of Lemma 3.2 and the fact that wi > @' ,. So by taking € such that
min {a,'q.;} > € > 0, the above deviation will be a profitable one for agent k1. This gives
the result for G}, > 2.

For Gt = 1, say G. = {1}, we have that ¢,; = w} > @' ,. This again means that 1., > 0

and we take the deviation g%, = gk, — € > 0 and get

Aly; = e< — e+ 2(w, — W) + nwt (M, — ajzr) + €W, (- D mi)) (2.32)
kek!

Following the same argument as above we will get our result here as well. O

6.3. Proof of Lemma 3.5

Proof. Suppose there is a link { for which w* > 0 and S0 mi, < ¢!, Take any group
k € K'and an agent ¢ € G} such that !qi, = p,, > O (there is such an agent because

wh = Yicg! g, > 0). Take the deviation 1¢}," = 'q},; — € > 0 and we get (using same
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arguments as in (2.31) and noting that w}, = @' , = w')

Ay, = e( — €+ NP (M, — olTri) +HEWH( — > mL)) =¢(—€+a). (2.33)

keKt

>0 by Lemma 3.2

where a > 0 due to Lemma 3.2 and the assumption that w'(c" — S ycx: mk) > 0. This gives
us that w!(c! — e mk) = 0 foralll € £ at equilibrium.
Now suppose there is an agent ki for whom g}, = pi, > 0 and o},z; < mk. Same as

before, we take the deviation gL, = 1¢}, — € > 0,

AUy, =€ (—e +npk,(mh — aiﬂ-xki)) =€¢(—€e+a) (2.34)

where a > 0 by assumption. This gives us that p},(m} — ak,zx;) = 0 for all k2 € N and
l € L, at equilibrium. O

6.4. Proof of Lemma 3.6

Proof: (2.18) is true by construction since we defined w}, = Yiegt p; and by Lemma 3.3 we
have p}, = '¢}; and w}, = w'.

Atany NE, agent ks utility in the game U;(s') = vii(hE,(s"))—ht,(s") as a function of his
message Sy; = (Yii, Qki)> With s_g; fixed, should have a global maximum at sx; = (Ys, Pri)-
'This would mean that if this function was differentiable w.r.t. y;,; at s, the partial derivatives
w.r.t. y; at s should be 0. However, since our allocation dilates/shrinks demand vector ¥’ on
to the feasible region, it could be the case that increasing and decreasing y;,; gives allocations
lying on different hyperplanes, meaning that the transformation from y' to z’ is different on
both sides of yi; and therefore we conclude that %; could be non-differentiable w.r.t y;, at
s. Important thing here however is to notice that right and left derivatives exist, it’s just that
they may not be equal. Hence we can take derivatives on both sides of y; as (noting that

derivative of the other terms in utility involving z; or involving m} will be zero due Lemma

3.3)

O,

OYr

(2.35a)

1€Lys Yki ly, Lyns

o / L 1\ Oz,
) = | Upi(Ths) — Z Dri Oy B
Yyt Yks
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~
Uk

2.35b
OYr ( )

Vs TYRi

oz},

= (”;ci(xki) - Z pgciagci> ) fc

y;cﬁyki lELy; Yk
We will first show that the 8zx;/0yx; term above (for either equation) is always positive. If
y = 0 then clearly this is true, because if any agent k¢ demands y;; > € while y_z;, = 0 then
clearly z; > 0 (in fact the allocation is differentiable at y = 0). If y # 0 from (2.10a), we

can write

0zr;  O(TYs) or or?
e e =7 —|— i = 'f‘q + i
OYri OYri Y OYri Yr OYri

B (2.36)

where r = 9.

From here we divide our arguments into following cases: (A) ki ¢ N (& 1 ¢ Gi); (B)
ki € N, i ¢ argmax ege{og;yx; } and (C) ki € N9, 1 € arg max;cga{aj;yx; }-

(A) For this clearly 87¢/0yy; = 0 and this makes 8 = 7? > 0.

(B) Since value of 77 depends only on the value of (1} )xcxe, and in this case changes in yg;
don’t affect n§ we can see that 877/8y;; = 0 and so 8 = r? > 0.

(C) We divide this case into two cases: |S9(y)| > 2 or |S¥(y)| = 1. If |S9(y)| > 2 then

ord c? onj
= ’l"q =+ i = T’q + o k . (237)
P Y OYr Y ( (PCkoeka n20)2> OYg;
Now gyii is either af; or 0. If it is 0 then 8 = 79 > 0. Otherwise we have
q)2
B = (r%) S ol (2.38)

ko€K9\{k}

which is positive because |S9(y)| > 2, since then there is at least one positive term in the
summation. For |S9(y)| = 1, we will consider S¢(y) = {k}; else in case SU(y) = {ko} #

{k}, taking the derivative would give the same expression as above. For S4(y) = {k} we will

get

q q g 1 q
P J N SR N i (2.3%)
ng ni(ng+1) n; ng + 1 ng + 1
or? on;
B=r g o (2.39b)
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ond . . . p
where 5 is either 0 or of;. Ifitis O then § = r¢ > 0 and if it is af; then we have § =
Yki

(r2)?

Hence we have 8 > 0 in all cases.

Referring to (2.35), there are two possibilities, the first term on RHS in both equations in
(2.35) is positive or negative. If it’s positive, then we can see from (2.35a) that by increasing
Yp; from vy, (and therefore z}, from ;) agent k% can increase his pay-off, which contradicts
equilibrium. Now similarly consider the first term in RHS of (2.35) to be negative, then from
(2.35b), agent ki can reduce yj,; from yy; to get a better pay-off. But the downward deviation
in y;,; is only possible if y; > 0 (& zx; > 0). Hence we conclude (2.17a), (2.17b) from the

statement of this lemma. O]

6.5. Proof of Lemma 3.7

Proof. We will show that s = (y, @) is a NE of the game &, where for each agent ki € N,
Yri = pz;,; (for any p > 0) and

1Q§ci = ,“ici* and 2‘121 = #Le*, (2.40)

where agent ke is the one identified by index g} (¢) + 1. Here z*, u* are the primal-dual
variables that satisfy the KKT conditions of (CP).
Define the function f : Sy; — R as follows

F(Ske) = i (Shsr S—ki) (2.41a)
= Uki (hzi(S;ciJ S—k‘i)) - h’?ci(s;ci; S—ki)- (241b)

'The above claim will be shown in two steps: In Step 1 we show that message s results in
allocation z* and additionally we have V f(sx;) = 0. In Step 2 we show that for any agent
k%, unilateral deviations from sy; are not strictly profitable.

Step 1. Assumption (A4) implies that with y = pz*, while calculating allocation (hzi(s)) "
sub-case 1 in eq. (2.9¢) will be valid. This is turn implies that A*(s) = z*. Thus, message
y = pz* produces allocation z*. Now, using the complimentary slackness property of KKT
and the fact that in the claimed NE above, we have for any ki € N, ¢}, = ¢}, = put.",

it can be easily shown that the partial derivative of f w.r.t. 1g}; evaluated at the point sg; is
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zero and the same is true for the partial derivative w.r.t 2¢};. Finally using the stationarity
condition in KKT we deduce that the partial derivative of f w.r.t. yx; evaluated at the point
Sk; is zero. 'Thus, V f(sx;) = 0.

Step 2. We now check for profitable deviations. This task is accomplished in two steps.
In Step 2a, we show that any interior local extrema §;, = (ﬂki, i 2“17”‘) of f(-) satisfies
V f(5k:) = 0. Furthermore, we show that any interior local extrema 3j; produces allocation
h*(8k:, S_:) and prices that satisfy the KKT conditions as z*, u*. In Step 2b, using Step
2a, we show that all interior local extrema are local maxima. As a result of this and using
the fact that by construction, f(s};) is continuous w.r.t. s};, we conclude that f(-) can have
only a single local maximum and this is also the global maximum. This is because all local
extrema are necessarily characterized by V f(8x;) = 0 (Step 2a) and there cannot be multiple
local maxima in the interior without a local minima between them. Furthermore, using this
argument we know that this global maximizer has to be in the interior. Finally, using the fact
that V f(sg;) = 0 (Step 1) we conclude that this maximizer is sg;. In other words, agent k2
cannot be strictly better off by unilaterally deviating from s;. As this is checked for any agent
ki € N, we conclude that above mentioned message s = (y, Q) is a NE.

Step 2a. First we will show that without the gradient being zero, there cannot be a local
extremum. Note that by construction, f(s};) is continuous w.r.t. s},. Since f(-) is differen-
tiable w.r.t. 1gt.,2g}. variables (at all points), derivatives w.r.t. these indeed have to be 0 at
any interior local extremum. This implies equal prices and complimentary slackness properties

(using arguments from respective proofs) and for the remaining term we can write

:yj; = | vpi(@rs) — lgﬁ oD (gi:) : (2.42)
Note that in the proof of Lemma 3.6, we have shown that g = % > 0 always. So at the
points of non-difterentiability, 8 will have a jump discontinuity, however it will be positive on
either side. It is then clear that without satisfying v},;(Zx:) = Yicf,, Ok;Pki, there cannot be a
local extremum. This implies that V f(5;) = 0 at any interior local extremum. Furthermore,
KKT conditions must be satisfied at the corresponding allocation h®(3y;, S_ki) and prices

p*, A*. For this note that 'g}, = 2g}, (where kj is the agent with index g} (z) — 1) and
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from (2.40) we know that *qj ; = ph.”. Thus 1gt, = ub.” and similarly 24t = wl_* (where ke
is the agent with index g} (¢) 4 1). This combined with v};(Zk;) = Yier,, @kiPh; from above,
implies that KKT is satisfied at the local extrema.

Step 2b. The Hessian H of f(-) w.r.t. s}, is of size (2Lg; + 1) X (2Lg; + 1), where the 1st
row and column represent y;,, and the two subsequent sets of Ly; rows and columns represent
{'q. Vier,, and {2¢%, Vier,.. We want H (evaluated at any local extremum) to be negative
definite. Looking at the diagonal entries, and using what we have derived in the previous

paragraph, it can be calculated that the only non-zero entries at any local extrema are negative

o ®f . _®f  %f _ . 4 (63:1“')2
flqlq — 31qf“61qu — 2, f2q2q — azqfﬂazqu — 2, fyy Pr— ayil — 'Ukz(xkz) ayki (due tO

strict concavity of vg;). Also notice that all off-diagonal entries, except the first Ly; + 1 in the

first row and column, are zero. Finally, note that due to assumption (A2), all prices are finite

at local extremum and so the aforementioned non-zero entries

S N P O Leat 2.43
Fray 84}, OUri 7%\ S gy, T By SO k’eZ}Cl OYri 24

are finite. We now show that the roots of the characteristic polynomial of H (i.e. its eigenval-
ues) all become negative for 1, £ chosen to be sufficiently small.

For this, we take a generic matrix Ag, which is similar in structure to H and whose entries

A

0 D
(—=2)IL,,. In this case we know that eigenvalues of A and D together will give us all the

have the same dependence on |y| as H. So Ay is of the form Ay = where D =

eigenvalues of Ag. Clearly eigenvalues of D are —2 repeated Ly, times, so all that we now

need to do is check whether all eigenvalues of A are negative. Entries in A are a1; = e

ai; =a; =0Ve,5 >1,1# janday; = —2,a1; = aix = 77b|i;|1 V2 <1< Ly + 1.
where a > 0 (and we don't care about the sign of b;s). The factor of 7 in front of a;1, ay; is to
be taken as max (7, £), but since we can set either of them we take it simply as 7 here. The
parameters a, b; may not be completely independent of y but since the absolute value of y has
been taken out of the scaling, their values are bounded. Magnitude of b;’s are bounded from

above and a is bounded away from zero.
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We can explicitly calculate |A — AI| and write the characteristic equation as

QW) = (- =) (2= Ay

o Y (—1)%?

e (—2 — A"t =0, (2.44)

So —2 is a repeated eigenvalue, Ly, — 1 times. The equation for the remaining two roots can

be written as

-y [yl

Necessary and sufficient conditions for both roots of this quadratic to be negative are

( a4 —/\> (—2—)\)+n2£:0. (2.45)

2 C
<2 + a2> >0, % +7°—5 >0, (2.46)
Y| Y| Y|

the first of which is always true, since @ > 0. The second one can be ensured by making 7
small enough, since a is bounded away from zero and the magnitude of C' is bounded from
above.

Hence the Hessian H is shown to be negative definite for  chosen to be small enough. [

6.6. Proof of Lemma 3.8

Proof: Because of Lemma 3.3, the only non-zero term in t; (see (2.12)) at equilibrium is
Thi Yo1er,; Okile» Which is clearly non-negative. Hence Y ;e tki > 0 at equilibrium.
Now if z; = 0 then we know from Lemma 3.3 and (2.12) that ¢;; = 0 and so (2.19) is

evident. Now take z; > 0 and define the function

f(2) = viil2) =z 3 P (2.47)

€Ly

Note that f(0) = u;(0,0) and f(zx;) = uri(z, t), the utility at equilibrium. Since f'(z;) =
0 (Lemma 3.6), we see that V 0 < y < Zx;, f'(y) > O since f strictly concave (because of
Ug;). This clearly implies f(zx;) > f(0). O
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6.7. Proof of Lemma 4.2

Proof: Suppose not, i.e. assume 3 kj € N such that pg; # 7. In this case agent kj can
deviate with only changing p;; = r (which also means 7 is the same as before deviation, since
demand y doesn't change). It’s easy to see that this is a profitable deviation, since change in

utility of agent k7 will be only through the term involving py;.

Aty = —((ph; — 7)° + C(prs — 7)* = C(pr; — 7)° > 0. (2.48)

O

6.8. Proof of Existence in Section 4

Proof. First order conditions can again be shown to be satisfied, the only difference is that
here we will also use p; = 7 at local extremum. The Hessian H for any agent k% here will be
of order (2Ly; +2) X (2Lg; +2) where 1st, 2nd row and column represent yx;, p; respectively

whereas the remaining rows and columns represent 1g.;’s and 2¢¢.’s. The generic matrix Ay

A
for H will then be of the form Ay = where D = (—2)I;,, and matrix A, of order
0
(Ly; + 2) x (Ly; + 2), has elements a1, = i Cﬁ, @12 = a1 = —(p5, G = a5 =0
Vi,7 >1,%1# J,00 = —2,a; = —2,and ay; = a;; = ﬂbfy_‘l V3 <1 < Ly + 2.

where a,d,e > 0. As before, it will be shown that all eigenvalues of A are negative (since
that is clearly true for D). Writing the characteristic equation, it is the case again that —2 is

a repeated eigenvalue, Ly; times. And the equation for remaining two roots is

a d 2a 2d E C
)\2+)\<2++C>+< + ¢y G+
ly[2 -yl ly[2 -yl |yl |y

) =0 (2.49)

Necessary and sufhicient conditions for the roots of above quadratic to be negative are again
that coefficient of A and the constant term are both positive. Coefficient of A is clearly pos-
itive, and the constant term can also be made positive by choosing ¢, 7 (& ) small enough,

irrespective of sign of C. O
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6.9. Proof of Lemma 4.3

Proof: Terms 2, 3,4 and 5 in (2.24) and (2.25) are zero at equilibrium and so we can write (at

equilibrium)
1
Z tei = Z Tki <Z aﬁciPii) =T Z N1 Z aé:'j'p;c’j’yk'j’ (2.50a)
kieN kieN l€Lks 1€ELK; k'5'eNT\{ki}
1
— Z Z (mkiaéﬂ'péﬂ‘_ ]v’li_ Z ai/j/péc/jlmk/j/> . (250b)
kieN 1€Ly; K5 e N\ {ki}

'The coeflicient of zy; for any agent k¢ in the above is

1
2 (aécipici TN 1 ) agcipgci> =0 (2.51)

IEL; k5 e NP\ {ki}

which proves the claim. O]
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Chapter 3.

A General Mechanism Design
Methodology for Social Utility
Maximization with Linear Constraints

Social utility maximization refers to the process of allocating resources in such a way that
the sum of agents’ utilities is maximized under the system constraints. Such allocation arises
in several problems in the general area of communications, including unicast (and multicast
multi-rate) service on the Internet, as well as in applications with (local) public goods, such as
power allocation in wireless networks, spectrum allocation, etc. Mechanisms that implement
such allocations in Nash equilibrium have also been studied but either they do not possess full
implementation property, or are given in a case-by-case fashion, thus obscuring fundamental
understanding of these problems.

In this chapter we propose a unified methodology for creating mechanisms that fully im-
plement, in Nash equilibria, social utility maximizing functions arising in various contexts
where the constraints are convex. The construction of the mechanism is done in a systematic
way by considering the dual optimization problem. In addition to the required properties of
efficiency and individual rationality that such mechanisms ought to satisfy, three additional
design goals are the focus of this chapter: a) the size of the message space scaling linearly
with the number of agents (even if agents’ types are entire valuation functions), b) allocation
being feasible on and off equilibrium, and ¢) strong budget balance at equilibrium and also off

equilibrium whenever demand is feasible.
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1. Introduction

In the general area of communications, a number of decentralized resource allocation prob-
lems have been studied in the context of mechanism design. Such problems include unicast
service on the Internet [YaHa05], [MaBa04], [KaTe13a], multi-rate multicast service on the
Internet [KaTel3b], [SiAn13], power allocation in wireless networks [ShTel2], [Hal2a],
[ZhGul1], spectrum allocation [HuBeHo06a] and pricing in a peer-to-peer network [Ne09].
'The mechanism design framework is both appropriate and useful in the above problems since
these problems are motivated by the designer’s desire to allocate resources efficiently in the
presence of strategic agents who possess private information about their level of satisfaction
from the allocation.

Usually mechanism design solutions define a contract such that the induced game has at
least one equilibrium (Nash, Bayesian Nash, dominant strategy, etc) that corresponds to the
desired allocation. This is usually obtained with direcs mechanisms by appealing to the reve-
lation principle [B6KrSt15] [GaNaGu08a]. The drawbacks of these direct approaches is that
they require agents to quote their types (which may be entire valuation functions) and that
the induced game may have other extraneous equilibria that are not efficient. In this chapter,
the focus is on full Nash implementation. Without going into a formal definition, full Nash
implementation refers to the design of contracts such that only the designer’s most preferred
outcome is realized as a result of interaction between strategic agents (i.e. at Nash equilibria
(NE)), as opposed to general mechanism design, where other less preferred outcomes are also
possible. Thus implementation is more stringent and is capable of producing better allocations.
Readers may refer to [Ja01] for a survey on implementation theory.

Concentrating on those proposed solutions in the literature that guarantee full Nash imple-
mentation, one observes a fragmented and case-by-case approach. One may ask how funda-
mentally different are for example the problems of unicast service on the Internet, multicast
multi-rate service on the Internet, power allocation in wireless networks, etc, to justify a sep-
arately designed mechanism for each case. Alternatively, one may ask what are the common
features in all these problems that can lead to a unified mechanism design approach. These
questions provide the motivation for the work presented in this chapter.

In particular, our starting point is to state a class of problems as social utility maximization
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under linear inequality/equality constraints. We then proceed by characterizing their solution
through Karush-Kuhn-Tucker (KKT) conditions. Analyzing the dual optimization problem
is essential in our approach, because it hints at how the taxation part of the mechanism should
be designed. Subsequently we define a general mechanism and show that it results in full Nash
implementation when the agents’ valuation functions are their private information'. Since
the application domain of interest is in the area of communications, we give special emphasis
on the size of the message space (as a consequence, VCG-type mechanisms, see [Kr09, Sec-
tion 5.3], [B6KrSt15, Chapter 5], [ShLe09, Chapter 10], [GaNaGu08a], [GaNaGu08b], are
inappropriate since they require quoting of types, which are entire valuation function in this
set-up). A notable exception is the work [JoTs09, Section 5] and [YaHa07] that adapts VCG
for a small message space (one dimensional message per user) and guarantees oft-equilibrium
teasibility. However in their work, full implementation can’t be guaranteed and there is possi-
bility of extraneous equilibria. In this chapter, the message space scales linearly with number
of agents so that the proposed mechanism is scalable.

In addition to the stated goal of getting optimal allocations at all Nash equilibria, there are
other auxiliary properties that are sought in a mechanism. An important such property is indi-
vidual rationality; this requires that agents are weakly better off at NE than not participating
in the mechanism at all. The purpose of this is to ensure that agents are willing to sign the
contract in the first place. Another important property is strong budget balance (SBB) at NE.
'This requires that at NE, the total monetary transfer between agents (assuming quasi-linear
utility functions) is zero. The unified mechanism proposed in this work possesses both these
properties.

Finally, a mechanism may be endowed with auxiliary properties off equilibrium. These are
meant to improve the applicability in practical settings. For instance, the NE is interpreted
as the convergent outcome when agents in the system “learn” the game by playing it repeat-
edly, which implies that during this process the messages (and thus allocations and taxes) are

oft equilibrium. In our opinion, the most important auxiliary property is feasibility of allo-

1Use of Nash equilibrium as a solution concept itself requires some justification, since it applies only to games
with complete information. This issue is discussed further in Section 5. However, in this work we accept the
justification given by Reichelstein and Reiter in [ReRe88] and Groves and Ledyard in [GrLe77] based on
the second interpretation of Nash equilibrium as the fixed point of an (possibly myopic) adjustment process,
[Na50].
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cation on and off equilibrium. This property is essential whenever the system constraints are
hard constraints on resources and cannot be violated by any means. For instance, the con-
tract should not promise rate allocations to agents that ever violate the capacity constraints
of the network links because such a contract would be practically invalid since it promises
something that can never be achieved. Note that, at equilibrium the allocation has to satisfy
the constraints by definition, so feasibility always holds at NE. Another auxiliary property is
SBB oft equilibrium. Similarly this property guarantees that in a practical situation where
a dynamic learning process converges to NE, each step of this process leaves a zero balance.
One of the main features of the work in this chapter is that the allocation scheme is designed
to guarantee both feasibility off equilibrium and SBB oft equilibrium whenever demand is
feasible. Specifically, feasibility is achieved by utilizing proportional allocation. Proportional
allocation refers to the idea of using agents’ demands to create their allocation by projecting
their overall demand vector back down to the boundary of the feasible region whenever it
is outside of it. This way everyone receives allocation that is proportional to their original
demand. This allocation method generalizes the idea of proportional allocation that was in-
troduced in mechanism design framework by [MaBa04], [ YaHa05] for unicast network with
one capacity constraint and for stochastic control of networks in [KeMaTa98], as well as by
the authors in [SiAn14b], [SiAn13].

The main contributions of this work are summarized as follows.

* A unified framework is proposed for full implementation (in NE) mechanism design

in social utility maximization problems with convex constraints.

* The proposed mechanism has small message space (although agents’ types are entire

valuation functions) and is scalable.
* 'The proposed mechanism is individually rational and strongly budget balanced at NE.

* The proposed mechanism lends itself to practical implementation (through learning
algorithms) because allocation is feasible even off equilibrium (and is strongly budget

balanced off equilibrium when demand is feasible).

The rest of the chapter is structured as follows. In Section 2 we describe three examples

relevant in communications and formulate the general centralized allocation problem that we
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wish to implement. In Section 3 we describe the proposed mechanism. Section 4 contains
all the proofs of full implementation. Section 5 contains oft-equilibrium results and discusses
their relevance. Finally in Section 6 we conclude with a discussion of important generaliza-

tions of this set-up.

2. Motivation and Centralized Problem

In this section we start by describing various important resource allocation problems that arise
in communications and to which our generalized methodology applies (in Section 6 we discuss
generalizations that will help solve an even larger class of problems than the ones described
below). After the examples, we define a general centralized optimization problem, (CP), that
covers all the examples. Following that we state general assumptions on (CP) (some additional

technical assumptions will be made in Section 4).

2.1. Interesting Resource allocation problems in Communications
Unicast Transmission on the Internet

Consider agents on the Internet from set N' = {1,..., N}, where each agent ¢ € N is a pair
of source and destination that communicate via a pre-decided route consisting of links in £,.
All the agents together communicate on the network consisting of links in £ = U;cx £;. Since
each link in the network has a limited capacity, this results in constraints on the information
rate allocated to each agent. Considering a scenario where agents have (concave) utility func-
tions/profiles {v;(-) }icp that measure the satisfaction received by agents for various allocated

rates, we can write the social utility optimization problem as

max > vi(x;) (CP,)
meRf ieN
st. Yy alz; <d VIeL (3.1)
1ENT

In the above N' £ {4 € N | I € L;} is the set of agents present on link I, ¢! is the capacity of
link [ and o are positive weights meant to differentiate between true information rate z; and

its imposition on capacity of the links of the network through coding rate, packet error etc.
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The above feasible set is a polytope in the first quadrant of RY and is created by faces
that have outward normal vectors pointing away from the origin. For the details of a full

implementation mechanism specifically for the unicast problem readers may refer to [JaWa10],

[KaTel3a], [SiAn14b].

Public Goods

In contrast to the private consumption problem above, there are public goods problems where
the resources are shared directly between agents instead of sharing via constraints. The uni-
cast problem was a scenario where allocation of rate to one agent on a link would imply less
available rate for other agents on the link (because of the capacity constraint) - the rate allo-
cation thus is private in this case. In contrast to this, if there is a resource allocation problem
where two or more agents can simultaneously use the same resource then it will be classified
as a public goods problem. A well-studied example of this kind is the wireless transmission
with interference, in which the power level of each agent affects any other agent through the
signal-to-interference-and-noise ratio (SINR).

Here we consider a simplified scalar version of the public goods problem for a system of

agents from the set AV in the following form

max 2 v;(z) (CPy)
st. TEX, (3.2)

where X is a convex subset of R ;. Note that the argument for all utility functions is the same;
since there is one public good being simultaneously used by all the agents (for which = marks

the usage level). We rewrite such a problem in the constrained form

max vi(T; CPp
gGRf & ( ) ( pb)
st. T1 =T9=ZT3—=...=2pN (333)
s.t. 1 €X. (3.3b)

'The treatment when z is a vector is not very difterent and we discuss this in the generalizations
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at the end. Implementation for the public goods problem is the most studied of all the ex-
amples in this chapter, see [GrLe77], [Hu79], [Ch02]. The distinction from private goods is
that generally public goods problems require handling the “free-rider” problem [MaWhGr95,
Section 11.C].

Local Public Goods

Another important resource allocation problem in communications is the local public goods
problem. The basic idea of direct sharing of resources is same as above but in here the sharing
is only among agents locally. So there are local groups of agents for whom the allocation has
to be the same, but this common allocation can be different from one group to the next. If
we divide the set of agents into disjoint local groups: N' = Uy, then the centralized

problem can be written as

max » . > vi(zx) (CPyy)

K
TERL peK ieN:

st. TpE X, VEkEK, (3.4)

with (X% )rex being convex subsets of R;. As before, we would restate it as

max > > vi(z:) (CPyyp)

2€RY keK ieN;
s.t. Z;=1z; Vi,9€ Nk, Vkek (35?1)
s.t. 2, € X for some J € N, VEk € K. (3.5b)

Local public goods problems are relevant in those network settings where there is direct inter-
action between local agents. Wireless transmission is an example of this, each agent affects
and is affected by other agents’ transmission through interference (SINR) and it is reasonable
to assume that this effect is only local and that agents situated far enough (either spatially
or in the frequency domain) will not affect each other. Readers may refer to [ShTel2] for a

specific mechanism for the local public goods problem.
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2.2. General Centralized Problem

Here we state the generic form of the centralized optimization problem that we wish to fully
implement. The resource allocation problem is defined for a system with agents indexed in
the set N' = {1,2,..., N}, who have utility functions {v;(-) }icn- The objective is to find
the optimum allocation of a single infinitely divisible good that maximizes the sum of utilities
subject to constraints on the system. The allocation made to agents will be denoted by the
vector € RY, with &; being the allocation to agent ¢. The centralized optimization problem

that we consider is

max »  v;(z;) (CP)
TN
s.t. xT€ RJX (C)
st. Alz<¢ VIEL where 4, € RY ¢, > 0. (Cy)
The set L = {1,2,..., L} indexes all the constraints and A;, ¢; are all parameters of the

optimization problem. It is easy to see that the above set-up covers equality constraints (such
as from the public goods example), since we can always write z; = ... = Ty as T; > To >
.2 Iy > T,

Denote by C C RY the above feasible set. Note that C is a polytope in the first quadrant
of R¥, possibly of a lower dimension than N (due to equality constraints). For convenience,
we denote by L; the set of constraints that involve agent %, i.e. £; = {l € L | Aj;; # 0} with
L; £ |L;]. Conversely, define N'* as the set of agents involved at link  i.e. N' = {1 € N |
1 € £;} with N 2 |NVY.

2.3. Assumptions

Stated below are the assumptions on (CP) some of which restrict the environment {v; }icn
and some the constraint set C. Some additional technical assumptions will be introduced later

to handle the degenerate cases.

(A1) Foranyt € N, v;(-)is astrictly concave and continuously double differentiable function
R, — R.
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'The purpose of strict concavity is to have a (CP) whose solution can be described sufficiently

by the KKT conditions (note that monotonicity is not assumed).

(A2) The optimal solution z* is bounded such that z* € x¥ , (d;, D) for some 0 < d; < D,
with d = (d;)., € C being arbitrarily close to 0 and D being large enough.

'This assumption is used to eliminate corner cases of (CP), since they usually require special
treatment and make the exposition unnecessarily convoluted. Note that we can always select
a point d € C that is arbitrarily close to 0 because of assumption (A3) below.

The next two assumptions restrict the constraint set C.
(A3) The vector 0 € C, i.e. £ = 0 is feasible.

Since we are considering problems where all the variables z; have a physical interpretation,
it is natural to consider a constraint set whereby every agent getting 0 allocation is feasible.

Note that this also explains the choice ¢; > 0.

(A4) For any constraint [ € £ in (C,) there are two distinct 2, j € N such that A;;, A;; # 0.
This can also be stated as N' > 2V [ € £ where N' is as defined after (CP).

'This ensures that there is indeed competition for all the constraints that could possibly be
active at optimum. Again this is used to avoid special treatment of corner cases.

Denote by V, the set of all possible functions {v;(-) }ica that satisfy the above assumptions.
'Then V, will be the environment for our mechanism design problem.

We will also make an assumption on the overall utility of agents in the system.

(A5) Apart from the valuation part v;(z;) there is linear taxation component as well that

affects agents’ utilities. So overall utility of agent ¢ is

’U.i(fll, t) = ’Ui(ZEi) — ti. (36)

2.4. KKT conditions

'The Lagrangian for the optimization problem (CP) is

L(z, A p) = > vi(z) — > N (AZTZIJ — cl) + > iz (3.7)

1eN lec 1EN
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Due to assumption (A2), we can state the KKT conditions only in terms of A* and not involve
p ) y

*

.
1. Primavr FeasiBiLiTy: z* € C.
2. Duar FeasisiLity: Foralll € £, A > 0.

3. CoMPLIMENTARY SLACKNESS: Foralll € L,

A (Alz —a)=o0. (3.8)
4. STATIONARITY: Forall ¢ € N,
vi(z}) = > Au)j. (3.9)
leL

We will see later that taxation will help us in achieving these KK'T conditions when agents
play the induced game from the mechanism. For that it will be important to think of the

Lagrange multipliers above as “prices” where there will be one price per constraint.

3. Mechanism

In this section we describe the proposed mechanism. Description of the mechanism is di-
vided into two parts - allocation and taxes. A mechanism in the Hurwicz-Reiter framework
consists of an environment, an outcome space, a (centralized) correspondence between the
environment and the outcome space, a message space and a contract from the message space
to the outcome space. In our case the environment is set V; of all possible valuation functions
{v:(*)}iew- The outcome space is the Cartesian product of the set of all possible allocations
and taxes, which is the set C x RY C Rf x R¥. The correspondence between V, and C
is provided implicitly by the centralized problem (CP), where for each {v;(-)}icn we get an
optimal allocation z* by solving (CP) (explicitly one can solve KKT to define z*, together
with corresponding Lagrange multipliers). This leaves the designer with the task of designing

the message space and the contract.
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'The message space for our mechanism is S = X;epS; with S; = (d;, +00) X RT where
messages from agents are of the form s; = (y;, p;) with p; = (pl)icr, and the total message
is denoted by s = (s;)ien = (¥, P) with y = (¥i)iexy and P = (p;)ien- The message
si = (¥i,p:) is to be interpreted as follows: y; is the level of demand from agent ¢ and p;
is the vector of prices that he believes everyone else should pay for the respective constraints.
The contract b : S — REY x RN will specify allocation and taxes for all agents based on the
message S, i.e., h(s) = (hs:(5), hei(S));cp

'This contract along with agents’ utilities will give rise to a one-shot game
6 = (N, Xien'Si, {Uikien) (3.10)
between agents in A where action sets are S; and utilities are
Ui(s) = ui(z,t) = vi(xi) — ti = vi(hei(S)) — hei(s). (3.11)

Information assumptions We assume that for any agent ¢, v;(-) is his private information.
The mechanism designer doesn’t know {v;(+) }ienxr but knows the set V, to which they be-
long. Also the constraints (C;) and (C,) in (CP) (along with the assumptions) are common
knowledge i.e. known to agents and the mechanism designer.

We say that the mechanism fully implements the centralized problem (CP) if all Nash
equilibria of the induced game & correspond to the unique allocation z* - solution of (CP),
and additionally individual rationality is satisfied i.e. agents are weakly better-off participating

in the contract at equilibrium than not participating at all.

3.1. Allocation

We first describe the allocation in the case where the constraints in (Cy) do not have any
effective degeneracy i.e. equality constraints. This distinction is based on whether the feasible
set C has a proper interior or not. Clearly when there are no equality constraints, the constraint
set will have an interior.

For allocation in this case, we first choose a point 8 in the interior of the feasible set such
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Figure 10.: An illustration of the allocation for N = 2

that
6 c int(C) N %, (0,d;) (3.12)

Note that we can guarantee the existence of 6 since by assumption (A3), 0 € C and clearly C
being intersection of half-planes, is a convex set. Since d can be made arbitrarily close to 0,
the same holds for 8 as well.

Before formally defining the allocation, we define it informally with the help of Fig. 10.
For any demand y € S, & x¥, (d;, +00), the allocation z will be equal to y if y is inside
the feasibility region C. Otherwise the allocation will be the intersection point between the
boundary of the feasibility region C and the line joining 6 with y (that intersection point which
lies between € and y). 'The figure shows two different possible ¥’s and their corresponding
allocation z. The shaded region represents that part of C that can never be allocated. Note
that since ||d||, ||6|| & O this is a very small region and thus it doesn't significantly affect the
generality of results presented in this chapter. Also this can be seen as a partial justification
for why assumption (A2) was needed.

Formally, in case of feasibility set C not having any degeneracy, for a demand y € S, the
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allocation z generated by the contract is

fyec
.- 1Y y (3.13)

Y if y¢cC,

where ¥ is the point on the boundary of C which is also on the line joining 8 with y. Explicitly,

if the above intersection happens on the hyperplane F; = {4z = ¢;} then we can express

Yo as
cl——14f9

40 1

Yo— 0 =0ap(y—6) with oy =

'The above allocation mapping is an extension of generalized proportional allocation idea (see
[SiAn13] and [SiAn14b]), but modified in accordance with the generality of the problem (CP)
and also so that points in the interior of C are covered as well. It is easy to verify in above
that for y ¢ C, because of the way proportional allocation is defined, the expression for aq
above is well-defined and positive. Also, if one extends the definition of y to the boundary
i.e y € OC then it is easy to see that yp = y and og = 1.

Another useful explicit way of defining ay is as follows.

= ATHT yieg (3.15)
A (y-9)

oo = min o) with o
1L

a6>0

In the above, ¢, — A6 > 0 for alll € L (because § € int(C)), but A (y — 8) might be
positive, negative or zero (since we are considering all [ € £ and not restricting ourselves to
appropriate regions as before). The purpose of taking minimum of @, over positive ones is to
find the “innermost” (or closest) constraint to 8 in the (positive) direction of y — 6.

Now we turn our attention to the case of degenerate feasible set. Since we are mainly
interested in dealing with problems of (local) public goods nature, we define an alternate
characterization of the constraint set only for those cases®. We can rewrite constraints from

(Cy) to explicitly account for equalities. For this consider disjoint sets of agents (N%)kexc,
where I = {1, ..., K}, such that N' = U N, and the partition (Ny )xex of N serves the

This generalizes in a straightforward way.
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purpose of grouping agents by locality. Thus the rewritten constraints are

T, =Z; Vi,jENk,VkE}C (C2a)
Alz<g VicLCL, (Cas)

where £ is the subset of original constraints - the ones remaining after equality constraints
have been separated. Without stating formally, we assume that the constraints in (Cy;,) do not
introduce any further degeneracy. Now one can consider a further refinement of above to state
the constraints only in terms of free variables and thus containing only inequality constraints.
For this define Z = (z;, )rcx Wwhere ji represents the agent with lowest index from N, (to
make the representation unique). Clearly this is exactly the set of free variables from above
and we can rewrite (Cy) as

Alz<c¢ VieL, (Cse)

with 4; € RX being derived from A; by using (Cs,) explicitly. Recall that from assumption
(A4) we had at least 2 agents on each constraint, in cases such as above we extend that to have
at least 2 agents per constraint in the above definition. We denote by C C R¥ the effective
polytope in the Z—space, created by the constraints in (Ca,).

Coming back to allocation, for demand y € S, we first create modified demand § €

x ¥ (d;, +00) C RE as follows:

1
Je=- > ¥ VEEK, (3.17)
kieNG
i.e. averaging quoted ¥’s from each group to get one representative demand. Then propor-
tional allocation, as above, is performed on § and the feasibility set C to get T € C (note

that 8 - the restriction of 8 to appropriate coordinates, will be used in place of §). This proxy

allocation Z is finally converted back, using (Ca,), to get z € C.
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3.2. Taxes

For any agent ¢, we define his tax t; as

ti= >t (3.182)
leL;
t; = Auzip ; + (pi - 1521')2 +np;p; (Cl - Asz)2 (3.18b)
_ 1
P2 T S pé, (3.18¢)
JEN?
J#i

With 7 > 0 being a positive constant.

In the results section we will see how the various terms in the tax above represent different
KKT conditions. Note for example the price-taking nature that A;;z;p" ; induces; here the
agent is supposed to pay for his allocation but the price at which he has to pay is decided by

others.

4. Equilibrium Results

In this section we state and prove lemmas that will give us the desired full implementation
property for the mechanism defined in Section 3. Later in this section, the presented mecha-
nism will be modified slightly to get an additional property of SBB at NE.

'The main result of full implementation would require us to prove that all pure strategy NE
of game & result in allocation z* - the unique solution of (CP), and to show individual ra-
tionality. The method for proving this result is as follows: firstly we show (Lemmas 4.1-4.5)
that for any pure strategy NE the corresponding allocation and quoted prices must satisfy the
KKT conditions from Section 2.4. Since by assumptions KKT conditions are both necessary
and sufficient, this would mean that if pure strategy NE exist (unique or multiple), the corre-
sponding allocation would have to be the solution of (CP) with quoted prices as the optimal
Lagrange multipliers. Then we show existence (in Lemma 4.6) by explicitly writing out the
messages that achieve the solution of (CP) and showing that there are no profitable unilateral
deviations from those. Finally individual rationality will be shown (in Lemma 4.7).

For Lemma 4.5, we would need to distinguish between various cases arising from the gen-
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eral form of (CP). We will make specific assumptions when necessary.

Lemma 4.1 (Primal Feasibility). For any message s = (y, P) € S with corresponding allocation

z, we have T € C i.e. allocation is always feasible.

Proof. Consider the case where C doesn’t consist of equality constraints i.e. is not degenerate.
For y € C, feasibility of allocation z is obvious. For y ¢ C, the allocation is chosen on the
boundary of C, hence it is feasible as well (note that C is closed).

In case when C is degenerate, the dummy allocation 7 is feasible w.r.t. C using the above
argument. But since the allocation z is produced from Z whilst satisfying the equality con-

straints, this means that z satisfies both the inequality and equality constraints and hence is

feasible. O

Lemma 4.2 (Equal Prices). At any NE s = (y, P) of the game &,V | € L and¥ 1 € N, we

have pt = pl i.e. all agents on a constraint quote the same price for that constraint.
Proof. Please see Appendix 7.1 at the end of this chapter. O

Since we have shown that there is a common price p' for any constraint | € £, here onwards
we can refer only to p's instead of p’s. Here onwards, whenever we refer to quoted price P,

it is to be interpreted as (p')ic..
Lemma 4.3 (Dual Feasibility). Foranyl € L, p* > 0.
Proof: 'This is obvious since quoted prices are all non-negative. O]

Lemma 4.4 (Complimentary Slackness). Forany NE s = (y, P) of game & with corresponding

allocation T, we have for anyl € L
1 T _
P (cl — A :z:) =0 (3.19)

Proof. Please see Appendix 7.2 at the end of this chapter. O

Next we have the lemma for the stationarity property from KKT. For this we have to make

assumptions on the feasible set C.
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(A6)
A eRE, viel (3.20)

where A; was defined in (Cs,) (Section 3.1).

The above clearly translates into A; € RY VI € L in case there is no degeneracy. But when
there is degeneracy, the above assumption states that the effective polytope C in the Z—space

has faces whose outward normals are pointing away from the origin.

Lemma 4.5 (Stationarity). Az any NE s = (y, P) of game & with corresponding allocation ,
we have for any agent i € N,

vi(z) = Y Aup’ (3.21)
leL;
Proof. Please see Appendix 7.3 at the end of this chapter. O

This completes the necessary part of our proof. The argument in the previous Lemmas
applied to pure strategy NE if there exited any. Now we will prove the existence of pure

strategy NE which will give the optimal allocation z*.

Lemma 4.6 (Existence). For game &, there exists NE s = (y, P) € S such that the corresponding
allocation T and prices (p')ic . satisfy the KKT conditions as * and (A} )ic, respectively.

Proof. Please see Appendix 7.4 at the end of this chapter. O

Lemma 4.7 (Individual Rationality). For any NE s = (y, P) of game & with corresponding

allocation T and taxes t, we have for any 1 € N
u;(z,t) > u;(0,0) (3.22)
Proof: Recall that u;(z,t) = v;(z;) — t;. For any agent 1 € N, define

fz) 2 vi(2) —z ) Aup (3.23)

leL;

Note that ui(O, 0) = ’Uz’(O) = f(O) and at NE ’U,i(fE, t) = ’Ui(flfi) —Z; Zleﬁi Alipl = f(ZEz)

(also recall that except the first term, all other tax terms go to zero at NE, refer (3.18b)).
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By stationarity property we know f'(z;) = vi(z;) — Yz, Aup' = 0 and by assumption
(A1) it is clear that f(-) is strictly concave. Therefore f'(y) > 0 for 0 < y < z; and we can
claim by mean value theorem that f(z;) > f(0). O

Theorem 4.8 (Full Implementation). A/ Nash equilibria s = (y, P) of the game & have the same
corresponding allocation x. Furthermore, this allocation is identical to the unique solution of (CP)

i.e. T = x*. Also, all agents are weakly better-off at equilibrium than by not participating at all.

Proof: 'Thus from Lemma 4.6 there exists at least one pure strategy NE. From Lemma 4.1-4.5,
allocation z at any NE has to satisfy KKT conditions and knowing that KKT conditions are
necessary and sufficient for optimality, it is clear that £ = z*. Finally, individual rationality

was shown in Lemma 4.7 and with this we have our full implementation result. O]

4.1. Strong Budget Balance (at equilibrium)

In this section we present a modification in the above mechanism so that in addition to above
properties we also have SBB, i.e., > ;cp t; = 0 at those equilibria where y € C.

'The message space and allocation z is exactly same as before, the only modification will be to
the taxes. Whenever the quoted demand is feasible, we have = y. So from (3.18a), (3.18b)

and previous lemmas we can write total tax at NE as

2 L= 0 6= 0 =) ) Awwp (324)
1EN 1EN IEL; leL 1eN? lEL eN?

To achieve SBB, our approach is to redistribute the above total tax amongst all the agents so
that the amount of money received by an agent will not be controlled by that agenti.e. it will be
only a function of ¥, p quoted by other agents. This will ensure that strategic decisions are still
same as before and thus we would continue to have all the previous properties (Lemmas 4.1-
4.6). Furthermore, we will redistribute taxes per constraint. So for any constraint I € L,
S ient t will be redistributed only amongst agents in N*. After appropriately redistributing
the taxes, we will check individual rationality at equilibrium once again since the total tax paid
by an agent might have a different value now. The reason we present SBB as a side result is

that one can always use such a redistribution technique and thus SBB generally reduces to
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appropriate algebraic manipulation and can usually be added later on in the mechanism (for
problems of these types).
Let T} be the new tax where analogously the old tax (from (3.18b)) was t.. Then the total

tax for any agent % is T; = Y;c, T}. From above discussion, what we want is
S ( 329
J#1
for any 1 € N and [ € £;. The function f! will be defined below.
For | € L such that N' > 3, in case where A;; > 0V ¢ € N, we have

1 i
I gl _]
fi = fi,1 = 7]\” > Z Aljyj <p_i - N J_ 1> (3.26)
JEN?
J#
when there are negative coefficients in Aj;, we can define f! in the same manner as above,
except that coefficients for those j that are involved in an equality constraint will be (scaled)?
Alj instead of A;;.
For I € L such that N* = 2 (assuming N* = {1, 7}), we divide the redistribution into 2

cases: first we consider the case Aj;, A;; > 0, for this we have

fi = fiy = Ay} (3.27)

If the coefficients A;; are not positive then we are essentially into the degenerate case, where
|Aii| = | Ai;| = 1 with opposite signs. For this we have f/ = f}, = 0 and same for agent j.

With the modified tax we will denote the new game as &'.

Lemma 4.9 (Strong Budget Balance at NE). For the game &', at all NE s = (y, P) where
y € C we have

Y Ti=3 > Ti=0 (SBB)

1EN 1EN IEL;

Proof. Please see Appendix 7.5 at the end of this chapter. O

After this, we have to check individual rationality. In cases when there is no degeneracy in

3the scaling factor being the inverse of the number of agents on ! that are involved in constraints that make
their allocation equal.
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C, due to assumption (A6), A;; > 0V 1, 4. This means that with f! we have redistributed taxes
by paying agents back, thus the redistribution is indeed non-negative (can be seen explicitly
from (3.26) and (3.27)). 'Thus if the NE was individually rational without this redistribution,
it will continue to be so now.

For the cases involving degeneracy, for links associated with equality constraints the redis-
tribution is zero. So individual rationality isn't affected. For other links, individual rationality
follows from the argument in the previous paragraph after noting that effectively A;; were

used in place of A;; for defining f} (and by (A6), A, > 0).

5. Off-equilibrium Results

In this section we discuss (and prove) additional off-equilibrium properties of the mechanism.
The original requirements of full implementation are only restricted to equilibrium proper-
ties. However we believe that in a realistic scenario, oft-equilibrium properties are essential
to justify working within a Nash-implementation framework. Nash equilibrium is an appro-
priate solution concept for complete information games i.e. games where it is assumed that
all agents have complete knowledge about each others utility functions and also each agent
knows that others know about his utility functions and so on (infinite hierarchy of beliefs).
We are proposing this mechanism to be used in an informationally, and possibly physically,
decentralized network setting like the Internet. The root of delving into mechanism design is
that the designer doesn’t have information about the utility functions, so to assume that agents
themselves have all the information is impractical, especially for communications settings. In
absence of complete information with agents, Nash implementation has still been used in lit-
erature - the justification being online or offline learning. In this formulation, before playing
the actual game, agents participate in a multi-round learning process. After the agents have
learnt about each others utilities (or more specifically the equilibrium action) they play the
actual one-shot game.

In order to make the above learning model practical, there have to be real incentives involved
for learning correctly. It is expected that while the learning process is still going on, in every
round agents will quote demands and prices and receive allocation and taxes through the

contract. We are interested in dealing with constrained resource allocation problems where
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the constraints could possibly be of a hard nature i.e. impossible to violate. An instance of this
is the capacity constraint in unicast and multi-rate multicast examples. Hence if one assumes
the learning model, then a necessary property for the mechanism would be that allocation is
always (even oft-equilibrium) feasible, since during the learning process agents will be playing
oftf-equilibrium. To a lesser extent, if one is interested in SBB then same would have to be
true of SBB as well. It is for these reasons that we introduced the proportional allocation, as
a distinct feature of our mechanism, as opposed to the simple allocation used in [HeMal2],
[KaTel3a], where allocation equals demand, i.e. = y everywhere.

Since the mid-90s, various learning models in Mechanism design and Game theory have
been extensively studied. Readers may refer to [HeMal2] for studying how mechanism design
and learning are handled together. Also one may refer to [Yo04], [Fu98], [Te12], [ShLe09],
[MeOz11], [LaTel1] for a compendium of existing results regarding learning in a strategic
set-up.

Now we extend the modification from Section 4.1 to achieve SBB off-equilibrium.

5.1. SBB off-equilibrium

Here we will define f! from (3.25) differently so that we achieve the property of ;e prt; = 0
at all points where y € C, not just at NE. From the expressions in (3.24) as well as the
description of f! below, it will be clear that this method of redistribution only works when
there are sufficient number of agents on every link. So here we will modify assumption (A4)

so that
(A4') Forany!l € L, N* > 5 i.e. there are at least 5 agents on any constraint.

Also, we will only deal with the non-degenerate case where A;; > 0V [, 4. The corresponding
results regarding degenerate cases would involve tedious case-by-case analysis and unneces-

sarily complicate the analysis of what should be a straightforward addition to the mechanism.

Now f! is defined in three parts: f} <(y]-, Ph)je Nz> = fi1+ fl, + fis The three terms
J#
here are individually redistributing the three tax terms from (3.24).

1 o

I — rl =l J

L= fli= —= S Ayy (7 - 3.28

fz 1,,]_ Nl _ 2 ]ENZ l]y] <p_1 Nl _ 1> ( a)
J#
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N 2
2= L gl 3.28b
1,2 (Nl _ 1)2(Nl — 2) k; (pk pm) ( )
k,m#1
f'il,3 =N (fil,Ba + fz’l,Bb + fil,sc) (3.28¢)
50 = 2 Z (3.28d)
t,3a T (Nl _ 1) (Nl _ = pkpm .
k ,m#t
2
fon= g O lyres 5 #elw) + s T dedw)] 6250
j>q ke/\/l keN’l
7,971 k#1,7,9 k=3,q

where ¢(yx) = ALY; — 2ciAuys. For f]

7

3¢ define the set B = {7, ¢} N{k, s},

4
71>q k>s k>s k>s
7,q7#1 k,s#1 k,s#1 k,s#1
|B|=0 |BI=1 k=7,5=q

where ¢ = 'L/J(pé-,pfz, Yey Ys) = pé-pfz (Ariyr) (Asiys). Itis this last expression that necessitates

the assumption (A4'). We will denote the game with the above modified taxes with &”.

Lemma 5.1 (Strong Budget Balance on and oft-NE). For the game &", for all points in the
message space S wherey € C

>Ti=> > T =0 (SBB)

1EN 1EN IEL;

Proof. Please see Appendix 7.6 at the end of this chapter. O

Now just as before, we check individual rationality (for the modified game ®”). Overall

utility for agent ¢ after redistribution, at NE, is

U = vi(z:) — @i Yy Aup + > ff,l + fil,z + ff,g (3.30)

I€L; 1€L;
where the last summation is calculated at NE. At NE, we have equal prices, hence from (3.28b)
it is clear that ;¢ o, f{, term is zero. Since we are only dealing with the non-degenerate case
in this section, it is clear from the definition of fl1 (see (3.28a)) that Y7y fz ;> 0. We
know already, from Lemma 4.7, that v;(z;) — z; Yy, A’ — v:(0) > 0, furthermore since

the functions v; are strictly concave and z; > d; > 0 (by assumption (A2)) we can bound the
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difference in above inequality by a value bigger than zero.

Now note that f/ ; is multiplied by a positive factor 7 which is still to be chosen. Since prices
p', demand/allocation y; and coefficients Aj; are all absolutely bounded, we can always make
the contribution of Y7,/ ffs small enough (without having the knowledge of equilibrium
values in advance) so that the overall utility in (3.30) is bigger than v;(0). Hence we have

individual rationality here as well.

6. Generalizations

Three quite interesting generalizations arise immediately from the set-up and analysis in this
chapter. The first is a case where agents have utilities based on a vector allocation rather than
a scalar allocation i.e., the multiple goods scenario. The objective in this case will be written
as

> vi(z;) with z; € RY: (3.31)
1EN

Note that the assumption of strict concavity can still be made. In a communications scenario,
such an example can arise if the Internet agents have utility based on throughput as well as
delay or packet error rate. In the case of the local public goods problem and in particular
its instance that models the interaction between wireless agents, vector allocation for agent ¢
models the power level of all users that can interfere with 4. In this case the problem (CPyy)

can be restated as

max ) vi(z;) (Cupp)
1EN
st. z, €RPVieN (3.32a)
st. BF o, =Bz, Vi jeN, Vkek (3.32b)

where N as before denote localities, however they needn’t be disjoint now. Note that in the
vector equations (3.32b), multiplication by matrices EF accomplishes the task of selecting
some coordinates from z,.

'The second generalization is with problems which can be equivalently formulated in the

form of (CP), but perhaps with the help of auxiliary variables. Consider the multi-rate multi-
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cast system, in which agents are divided into multicast groups, where agents within a multicast
group communicate with exactly the same data but possibly at different quality (information
rate) for each agent. This problem has both - private and public goods characteristics. Just
like unicast, the limited capacity on links creates constraints on allocation here. However for
saving bandwidth, only the highest demanded rate from each multicast group is transmitted
on every link. This means that resources are directly shared within every group. If we in-
dex agents by a double-index k% € N where k represents their multicast group and % is the

sub-index within the multicast group &, we can state the optimization problem as

max > Vki(Tw:) (CP,,)
2€RY Lien
st. Y max{ajzn} <d VIEL (3.33)
rert €9k

here K' represents the set of multicast groups present on link [ and G}, represents the set of
sub-indices from multicast group k, that are present on link . Mathematically, the important
property to note above is that the feasibility region is indeed a polytope (since the constraints
are piecewise linear). We can easily linearize the above by using auxiliary variables m}, as

proxies for max {a;z1;} indexed by group and link as follows
icGL

max - Vki(Tki) (CP,)
’ kieN
st. ok <mh VicgGh, keKLleL (3.34a)
st. > mL<cd VieL. (3.34b)
kekt

In the presence of auxiliary variables, the construction of the mechanism (esp. taxes) are
slightly different in nature but follow the same philosophy as in this chapter. Readers may
refer to [KaTe13b], [SiAn13] for a full implementing mechanism specifically for the multi-
rate multicast problem. Other works for the multicast problem include finding decentralized
algorithms to achieve social utility maximizing allocation [KaSaTa01], [StLiTe07] as well as
determining optimal allocation via max-min fairness [SaTa99], [SaTa02]. The incorporation

of this model into the unified design methodology is a research topic the authors are currently
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working on.
The third possible generalization would be where the constraint set, instead of being a
polytope, is taken as general convex set (satisfying assumptions from Section 2.3). If one

represents the centralized problem in the form a general convex optimization problem

max »  v;(z;) (3.35a)
s.t. g(z) <0 VieclL, (3.35b)

then, looking at the Lagrangian

L(z,A) = > vi(mi) — > hgi(z), (3.36)

1EN lec

one can construct the first term (payment) in the tax (see (3.18b)) in a similar way as before.
After this, the rest of tax terms can be analogously constructed from the KKT conditions.

'The aforementioned generalizations together can lead to fully implementing mechanisms
with minimal message space that can solve an even larger class of problems of interest.

We conclude with a note on the robustness properties of these mechanisms that we would
like to investigate. Recently there has been a lot of work related to robustness in mechanism
design®. In addition to investigating the learning properties of our mechanism, we are also
interested in investigating robustness of our mechanism (w.r.t. information i.e. beliefs of

agents) and how the two might be related.

“see [AgFuHoKuTe12] for treatment of the same and [BeMo13] for a survey of the major robustness results
in Mechanism design.
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7. Appendix

7.1. Proof of Lemma 4.2

Proof. Suppose there exists a constraint I € £ such that (p%) cpt are not all equal. Then there
exists an agent 1 € N such that p} > p' ; (this is clear from definition in (3.18c)).
Consider the downwards price deviation p!' = §*; > 0 for this agent (whilst keeping all

other values in s; the same). The difference in utility will be

AT; = Uy(s;, 5-s) — Bi(si, 5-4) (3.37a)
2 2

= (0} =9+ (ol — P —nppl (- Alz) +nppl(a— Alz)

(3.37b)
2
= (0, - P +np(pl - P) (a — Alz) >0 (3.370)
N——— T
>0 >

Hence such a unilateral deviation is profitable. Therefore at NE, all quoted prices for any

constraint have to be the same. O

7.2. Proof of Lemma 4.4

Proof: Suppose there exists a constraint I € £ such that, at NE, p* > 0 and ¢! > A/ z. We
will take a downwards price deviation pél = p' — e > 0 for any agent 1 € N'. Again we can

write the difference in utility as

2 2
At =—(pl — P +0—nplpl (a— Alz) +nplpl(a—Alz)  (33%)
= —(—€)>+np (e) (cl — AlT:z:>2 =—ec(e—a) (3.38b)

2
with a = np* (cl = AZT:E) > 0. Now choosing 0 < &€ < min(a, p') this can be made into a

profitable deviation. O]
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7.3. Proof of Lemma 4.5

Proof For any agent 1 € N we can write

Bui(s) _ ’U:(sz) _ ati Bxi
By; Oz; ) Oy,

(3.39)

Note that 8 = 0z;/0y; isn't always defined, since the allocation is continuous but only piece-
wise differentiable for y ¢ C. But right and left derivatives are always defined. Noting that

vi(z;) — g:i = 0 is equivalent to (3.21) (using previous lemmas characterizing NE), it will be

gt? = 0 there is
Ty

sufficient for us if we show that 8 > 0. Since then without making v}(z;) —
always an upwards or downwards deviation in y; to make agent ¢ strictly better-off.
For y € C we have z; = vy;, therefore 8 = 1 # 0. Otherwise, first consider the case where

C is non-degenerate. Then

. C, — AZTQ
Tz, =6, +« ;. — 6, with ay= ——— 3.40a
ox; dag . dag —0apdy;
gy, TR G it S AT W 6) (3.40b)
oz; A (yi - 9i)>
9Ti _ o (1 Lul¥i=0) :a0< Al-(y-—e-)) (3.40¢)
ayi < ‘4[—r (y - 9) jej\/zl\{i} ’ ? ’

Noting that oy > 0 and that due to assumption (A4) there are always at least two agents on
any constraint, clearly the above is positive (since 8; < d; < y; ¥ 7).

In the case when C does have equality constraints, note that allocations are created by com-
posing the maps y A 55 S © where B is proportional allocation on the set € and 4, C
are linear with positive coefficients’. Thus using the fact that for proportional allocation we
have § > 0 (from above) and that A, C have positive coeflicients, we clearly have § > 0 here
as well. m

7.4. Proof of Lemma 4.6

Proof- 'This proof will be done in two separate parts: first we will show that there exists s € S

such that the allocation through the contract is £* and prices are Lagrange multipliers (A} )ic .

>Since they consist of averaging, (3.17), and assigning same value to multiple positions.
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Secondly, we will show that for all claimed NE points, there doesn’t exist a unilateral deviation
that is profitable.

Existence of prices that match Lagrange multipliers A; is obvious, since agents can quote
any price in R and dual feasibility says that A} > 0. For allocation to be the same as z*,
notice that due to assumption (A2) all possible solutions z* lie in the set Y £ C N S, with
S, = x¥, (d;, +0). Quoted demand y can be anywhere in the set S, and for y € C (i.e.
y € ) the allocation is z = y and therefore each point £ € Y is achievable as allocation by
quoting the same pointy = = € ). (However also note that points on the boundary of ) are
achievable as allocation by many y’s outside ) as well.)

Now we will check for unilateral profitable deviations. When quoted demand creates al-
location as z* and the quoted prices are equal and equal to A*, the utility for any agent
is

U;(s) = vi(z}) — 2 > Au)] (3.41)
leL,;
Due to the fact that f(z) = v;(z) — T Xjcr, AuA[ is strictly concave and f'(z}) = 0 (Sta-

tionarity) we can conclude that z} is a global maximizer of f. With this we have

Ui(s) = vilz}) — ] D Akl > vi(zs) — z ) Au)] (3.42a)
leL; IeL;
2 2
> () — @ Y Audf — ) (pﬁ — )\Z‘) — > npiA; (cl — AT:::) (3.42b)
leL; lel; leL;

'The above is true for any (z;); ., and (pﬁ) oL, non-negative and final inequality holds because
the additional terms are non-positive. Now any unilateral deviation (s}, s_;) from agent ¢ will
result in utility for agent 2 which has the form as in (3.42b). Hence we have proved that with
unilateral deviations from messages that have allocation z* and prices A*, the corresponding

agent can never be strictly better off. O]

7.5. Proof of Lemma 4.9

Proof. Recall that due to Lemmas 4.2 and 4.4, at NE we have

Sti=> > 8= >t=> > Auyp (3.43)

ieN ieN leL; lEL e N leL ieNt
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For completing the proof, it will be sufficient to show 3 ;cpi tt = Sicpn ff forany I € L, at
NE. Let’s begin with links with N = 2 (where N* = {1, j}). In case A;;, A;; > 0 the total

payment is

fi+ f; = Agyph + Auyipl = 3 Aunyir'. (3.44)

keN?
In the degenerate case, the tax paid by agents ¢, 5 at NE is y;p, y;p* with opposite signs. But
note that y; = y; at NE, since we are in the degenerate case. Hence the total tax is zero,

which is the same as f! + fjl Now for other links,

1 _ jor 1 _ &
> N3 > Ay (Pli—Nl]_1> =N _3 > . Auy; (Plj—Nl_1>

1EN! JENT 1ENT jeN?
PR 4
(3.45a)
N' —1 1 s
= o ApyiBt ;- Ay~ (3.45b)
Nl—2j§ﬂ FIE Nl—zjg:ﬂg:ﬂ PN -1
i#j
N -1 _ 1 _ _
=g 2 Ajy;p; — N Ajy;pt ;= > Auyip; = Y Ayypt (3.450)
JENT JEN! JENT JEN!

(the proof when A;; are possibly negative also follows from above after explicitly using that

equality constraints would make some allocations equal to each other at NE). O

7.6. Proof of Lemma 5.1

Proof. By rearranging the above sum: Y ;cn Yier. TH = Yier Yient TY, we can see that it

will be sufficient if we show that for any constraint { € L,
Y Ti=0 & Y ti=3 fi ((yj,pé-)jeNl) (3.46)
iEN? iEN? iEN? i#

We will again show this term-by-term; we have already shown in the proof of Lemma 4.9
that the sum of f/, is equal to the sum of payment (first) term from ¢, similarly the sum

of f{, and f! will be shown to be equal to the sum of the second and third terms from ¢,
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respectively. Starting from the second term

2
S (B -7) = SR+ (7)) -2 (3.47a)
1ENT iEN!
Nl 12
= yio1 @) - ( : 2 PiPn (3.47b)
1EN? kmENZ
k>m
Nl l 2
= o1 [(N DY ®)F-2 > pkpm} (3.47¢)
1eN? k,meN?
k>m
Nt . 1 \2
= TNl 12 Dr — Pm (3.47d)
(Nt —1)2 k,mze:/\/l ( ‘ )
k>m

Now observing

2
l l
> (ph-rh) = (oh - 25,) (3.48)
k,meN? 1€Nl k,meN*
kE>m k>m
k,m#1

we get the equality of second terms. For the third term

2
> PP (Cz -2 ai%) =nd > pip;+ Y npjﬁlj( S ¢(yk)> (3.492)

1eENT kEN! JENT JENT kEN!
ton 3O pjp’j( 5 AklAmlykym) (T + Ty + T5) (3.49b)
JENT k>m

where as before ¢(yx) = A2,y2 — 2c;Apye. Here we will equate T, Ty, Ts with the sum of

l ! l .
fi,3a7 fi,3b7 fi,3c’ respectively.

2c2 202
2 — 1 I 1 1
&> PP = > DiPm = § > PP (3.50)
JEN J Nt —1 k>m (Nl — 1)(Nl — IENI kk>‘;2
Mm=*1

'This completes f; 35, now for f; 3

> Pjﬁlj( > ¢(yk)> N1 2 2 PiPmd( (3.51a)

JEN! keNt J>m keN?
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= Nl2—1 > ( S piobo(uk) + > pipké( ) (3.51b)

i>m N k#jm k=j.m
i D5 (s £ Aty £ Aatoo] G
‘LENI '7>;72 k#%]y k J’
7, m*1

'This completes f; 3, and finally the sum for f; 5. can be shown in the same way as above.

Hence after comparing the sum of all three terms from ¢ we have indeed proved (3.46). [J
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Chapter 4.

Distributed Mechanism Design with
Learning Guarantees

Mechanism design for fully strategic agents commonly assumes broadcast nature of commu-
nication between agents of the system. Moreover, for mechanism design, the stability of
Nash equilibrium (NE) is demonstrated by showing convergence of specific pre-designed
learning dynamics, rather than for a class of learning dynamics. In this chapter we consider
two common resource allocation problems: sharing K infinitely divisible resources among
strategic agents for their private consumption (private goods), and determining the level for
an infinitely divisible public good with P features, that is shared between strategic agents.
For both cases, we present a distributed mechanism for a set of agents who communicate
through a given network. In a distributed mechanism, agents’ messages are not broadcast to
all other agents as in the standard mechanism design framework, but are exchanged only in
the local neighborhood of each agent. The presented mechanisms produce a unique NE and
fully implement the social welfare maximizing allocation. In addition, the mechanisms are
budget-balanced at NE. It is also shown that the mechanisms induce a game with contrac-
tive best-response, leading to guaranteed convergence for all learning dynamics within the
Adaptive Best-Response dynamics class, including dynamics such as Cournot best-response,
k—period best-response and Fictitious Play. We also present a distributed mechanism that
does not possess any learning guarantees where the average dimension of the message space
scales sub-linearly w.r.t. the number of agents. Finally, we present a numerically study of

convergence under repeated play, for various communication graphs and learning dynamics.
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1. Introduction

'The framework of Mechanism design aims to bridge the informational gap between a designer,
who wishes to achieve “efficient” allocation and agents, who are strategic and posses private
information relevant to determining the efficient allocation. The basic premise of mechanism
design has been applied to a variety of applications and as a result, recent works have focused
on designing mechanisms that are also practically implementable.

In this vein, there are two very important features of practical mechanisms that haven’t been
addressed in the literature. (a) The first is the informational constraint between agents - most
mechanisms define the contract (e.g., allocation and tax) such that messages from all agents
need to be collected centrally in order to determine each agents’ outcome. This is akin to
assuming a broadcast structure of communication between agents. (b) The second is related
to the fact that, when Nash equilibrium (NE) is used as the solution concept, there is little to
no guarantee that agents can learn about each others’ private information in order to calculate
the NE. More specifically, dynamic learning guarantees on convergence to NE induced by the
mechanism are typically provided for specific learning dynamics, which can vary from model
to model. Addressing the two features together can make a mechanism ready for application
to scenarios where agents are distributed - both physically and informationally.

'The motivation for feature (a), i.e., designing a distributed mechanism comes from the
literature on “distributed optimization”, [RaNo04; NeOz09; BoPaChPeEc11; DuAgWal2],
and the motivation for feature (b) comes from the literature on “learning in games”, [MiR090;
MoSh96; Fu98; HoSa02; Yo04].

Regarding problem (a), the literature on distributed optimization aims to address the in-
formational constraints between non-strategic agents who possess local private information
relevant to the centralized optimization. This model, in-part, is analogous to mechanism de-
sign, where in many cases efficient allocation is indeed described by a centralized optimization.
'Thus a natural question to ask is whether efficient mechanisms can be designed such that they
obey the informational constraints of distributed agents. The fact that mechanisms have to
deal with strategic agents, means that this is a new and non-trivial question.

It is important to note here that the centralized allocation problem (see (4.4) and (4.6))

itself is completely oblivious to the informational constraints that the mechanism designer
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faces. For instance, resolving the issue (a) for the public goods problem (Section 4) is not
to be confused with the problem of provisioning local public goods [BeCo003; ShTel2]. In
such models, each agents’ (intrinsic) utility is assumed to depend only on his/her neighbors
allocation thereby naturally aligning the informational constraints with the utility structure.
Utilities for the public goods problem do not require any such assumption. Instead, we require
that the exchanged messages implied by the mechanism satisfy the network communication
constraints.

Regarding problem (b), learning in games is motivated by the fact that NE is, theoretically,
a complete information solution concept. Use of NE in models that don’t necessarily assume
perfect information among agents is typically justified! by showing that under certain natural
learning strategies, such as evolutionary dynamics [B6Sa97], or under specifically designed
learning strategies, such as regret-minimizing algorithms?, agents are guaranteed to learn
each others’ private information and in turn the NE. The larger the class of learning dynamics
for which convergence can be guaranteed, the stronger the implied justification.

In this paper, our objective as the designer is to implement the social welfare maximizing
allocation for the private goods (Walrasian allocation with money) and the public goods (Lin-
dahl allocation) problems in the presence of strategic agents. To achieve this we design a
mechanism which induces a unique and efficient NE that incorporates both the aforemen-
tioned features. Thus, the mechanism determines outcomes for each agent using only his/her
neighbors” messages and doesn't require collecting all agents’ messages centrally. Also, it is
shown that for a sufficiently large class of learning dynamics - adaptive best-response dynamics
(ABR) - there is guaranteed convergence to NE. The ABR class contains several well-known
learning dynamics such as “Cournot best-response” and “fictitious play”, [Br51a], among oth-
ers. Also, the induced game is supermodular with non-compact action space, this can possibly
lead to convergence of the adaptive dynamics (AD) class, [MiR090], of learning strategies as
well (see Section 5 for discussion).

Related works in the literature that focus on learning in games are as follows. In their sem-

inal work [MiR090], Milgrom and Roberts show that for a supermodular game with compact

Learning of NE can also be justified with the Evo/utive interpretation of NE, [Na50; OsRu94], which implies
that NE in a single-shot game can be thought of as the stationary point of a dynamic adjustment process.
2For instance, for the case of zero-sum games, Daskalakis, Deckelbaum and Kim in [DaDeKil5] propose a

new learning algorithm based on regret minimization and show that it converges at a linear rate.
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action space, any learning dynamic within the AD class is eventually bounded between the
two most extreme Nash equilibria. Chen in [Ch02] then presents a mechanism with non-
compact action space (without any informational constraints between agents) for the Lindahl
allocation problem such that the induced game is supermodular and has a unique NE. Follow-
ing this development, Healy and Mathevet in [HeMa12] show that for a contractive game, all
learning dynamics within the ABR dynamics class converge to the unique NE. The authors
also present a mechanism for the Lindahl allocation problem (again without any informa-
tional constraints between agents) such that the induced game is contractive. As contraction
is a more stringent property than supermodularity, ABR class is broader than AD class.

In general, “adaptive” learning strategies are broadly a class of learning strategies where, at
each time, agents respond optimally to some combination of empirical distribution arising
out of the past observed actions. For example, fictitious play is an adaptive learning strategy.
Hofbauer and Sandholm in [HoSa02] provide convergence results specifically for fictitious
play in the case of zero-sum games, supermodular games and potential games. Monderer
and Shapley in [MoSh96] provide convergence results for fictitious play in identical interests
games, i.e., where best-response is equivalent to that of a game where agents have the same
utility functions.

The structure of this chapter is as follows: Section 2 describes the two centralized alloca-
tion problems and their optimality conditions. Section 3 defines some mechanism design
basics and then presents the mechanism for the private goods problem. Before presenting the
mechanism that resolves both issues, (a) and (b), we present a mechanism that resolves only
issue (a) i.e., distributed communication. Section 4 presents the mechanism for the public
goods problem. Section 5 introduces learning-related properties and contains the result of
guaranteed convergence of any learning dynamic within the ABR class. Finally, Section 5
also contains a numerical study of the convergence pattern of various learning dynamics for

different underlying communication graphs.

2. Model

There are N strategic agents, denoted by the set N = {1,..., N}. A directed communica-

tion graph G = (N, £) is given, where the vertexes correspond to the agents and an edge
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from vertex ¢ to 7 indicates that agent 7 can “listen” to agent j. It is assumed that the given
graph G is strongly connected. In this chapter, we are interested in two different types of
allocation problems: private goods and public goods, we describe each model below. In the

language of Economics literature, these are also known as Walrasian and Lindahl allocation

problems [Hu79; MaWhGr95].

2.1. Private goods allocation problem

There are K infinitely divisible goods, denoted by set X = {1,..., K}, that are to be dis-
tributed among the agents. Each agent receives a utility v;(z;) based on the profile z; =
(z},...,zK) of quantity of each good that he/she receives. Since for each agent, its utility
depends only on privately consumed allocation z; and not on other agents’ allocation, this is
the private goods model.

It is assumed that v; : R — R is a continuously twice differentiable, strictly concave

function that for some 7 > 1 satisfies, V k € IC,

-n<Hg' + Y |Hg'|<o, (4.1a)
1K, Ik
1

H, < ~ (4.1b)

where H™ 1 is the inverse of the Hessian H = [(a%i(-)) / (8:1:?8:1:&)} . To understand the

k,l
significance of this assumption consider the case of K = 1, then this condition is the same as

ne. B _E

It is already assumed that v;(-) is strictly concave, the only additional imposition made by this
assumption is that the second derivative of v;(-) is bounded away from 0 and —oco. More
generally if the utility is separable, v;(z;) = ek ik (2F), then the condition in (4.1) is the
same as

v () € <—n, —:}) , Vkek. (4.3)

'The above mentioned properties of the utility function are assumed to be common knowledge

between agents and the designer. However, the utility function v;(-) itself is known only to
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agent ¢ and is not known to other agents or the designer. The designer wishes to allocate
available goods such that the sum of utilities is maximized subject to availability constraints,

i.e., to solve the following centralized allocation problem,

¢* = argmax »_ v;(z;) (4.42)
z€RKN o nr
subject to Z ¥ =¢, VkeEK, (4.4b)
1EN

where ¢, € R is the total available amount of good & € IC. The allocation z* is also called the
efficient allocation and we assume that it is finite i.e., the optimization is well-defined. The
efficient allocation is unique since the utilities are strictly concave. Further, the necessary and

sufficient condition for optimality are

&gi”,fi) =X, VkEK,VieN, (4.52)
SNzt =ca, VEkEK, (4.5b)
1N

where ()\Z) € R are the (unique) optimal dual variables for each constraint in (4.4b).

ke

2.2. Public goods allocation problem

There is a single infinitely divisible public good with P features, with the set of features de-
noted by P = {1,..., P}. Each agent receives a utility v;(z) based on the quantity of the
public good z = (zP),., € R”. Since for each agent, its utility depends on the common
allocation z, this is the public goods model. It is assumed that v; : RF — R is a contin-
uously double-differentiable, strictly concave function that satisfies (4.1) with the Hessian
H = [(8v,(-))/(02P0z7)], .. If P = 1, then this condition is the same as in (4.2). As in the
private goods model, the properties of the utility function are assumed to be common knowl-
edge between agents and the designer. However, the utility function v,(+) itself is known only
to agent 7 and is not known to other agents or the designer. The designer wishes to allocate the

public good such that the sum of utilities is maximized, i.e., to solve the following centralized
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allocation problem,

z* = argmax y  v;(z). (4.6)

zERP N
'The allocation z* is also called the efficient allocation and we assume it is finite i.e., the op-
timization is well-defined. The efficient allocation is unique due to strictly concave utilities.

'The necessary and sufficient optimality conditions can be written as

&gg ) _ P YpeP, VieN, (4.72)
Sout=0, VpeP, (4.7b)
1EN

where (,uf *> p ey A€ the (unique) optimal dual variables. The dual variables arise in this
p ’z
unconstrained optimization problem because of the standard technique rewriting the public

goods problem (4.6) as a private goods problem with equality constraints,

(:z:’{,:cg,...,:z:}*v) = argmax »  v;(x;) (4.8a)
z1,...2NERP ;o

s.t. Ty =To, To=T3,"** , TN = T1. (48b)

'The model above, leading up to (4.6), captures the possibility that one of the agents in N’
is a seller and thus his/her utility v;(z) = —c;(z) is the negative of the cost of producing
quantity = of the public good. In this case, a convex cost of production leads to a concave
utility function. In general, for the public goods problem one can also assume a seller in the
system who produces the quantity  and for whom the cost of production is a known function.
In this case, the social welfare maximizing allocation contains the utility of the seller as well.
For keeping exposition clear and focus on the similarities between the public and private goods
problems, we do not consider the seller in our model. If needed, this can accommodated in a
straightforward manner.

In the next two sections, we present a mechanism for each of the above problems.
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3. A mechanism for the private goods problem

3.1. Definitions

A one-shot mechanism is defined by the triplet,

(M= M x - x Mg, (320, -, B (), (B0, ) ) (4.9)

which consists of, for each agent ¢ € N, the message space M, the allocation function
Z; : M — RX and the tax function ¢; : M — R. Given a mechanism, a game &,,; is setup

between the agents in N/, with action space M and utilities

o~

u;(m) = v;(Z;(m)) — t;(m). (4.10)
For this game, m € M is a Nash equilibrium if
u; (M) > u;(m;,m_;), Vm; e M;, VieN. (4.11)
'The mechanism is said to fully implement the efficient allocation if
(al(m), y .,@*N(m)) — 2", Ve Muys, (4.12)

where Myg C M is the set of all Nash equilibria of game &,,; and z* is the efficient alloca-
tion from (4.4). Furthermore, the mechanism is said to be budget balanced at Nash equilibrium
if
S ti(m)=0, Ve Muyg. (4.13)
1eEN
Finally, we call the mechanism distributed if for any agent ¢ € N, the allocation function Z;(-)
and tax function ; () instead of depending on the entire message m = (m;);enr, depend only

on m; and (mj) , , i.e., agent ¢ and his/her immediate neighbors. Here N'(2) are all the

JEN(2)
“out”-neighbors of 7 i.e., there exists an edge from ¢ to 7 in graph G iff j € N (7).
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n(i,7) =a @

Figure 11.: n(%, 7) and d(¢, 7) for the strongly connected directed graph G.

3.2. Adistributed mechanism with scalable messages

Before presenting the main mechanism below in Section 3.3, we present here a mechanism
without any learning guarantees and where each agent’s allocation and tax is determined only
by his/her message and those of his/her neighbors. Thus this mechanism resolves issue (a)
from the Introduction but not issue (b). The purpose is to set a theoretical benchmark re-
garding the dimensionality of the message space for designing distributed mechanisms, and
compare how the additional criterion of learning imposes a burden on the dimension of the
message space.

For the purpose of maintaining clarity in the exposition, we present here our mechanism
for the special case of a single private good® i.e., K = 1 and with ¢; = 0. For the mechanism
we present in this section, the average dimension of the message space per agent scales as
the average degree of the graph whereas for the mechanism in the next section the average
message space scales linearly with N i.e., the additional criterion of learning increases the
dimension of the message space.

We consider an arbitrary communication graph that is undirected and connected. We de-
fine a spanning tree, G = (N, £), on the communication graph and the mechanism presented
below works on this spanning tree. This implies that the mechanism prohibits communication
along edges that were in the original communication graph but not in the spanning tree. The
assumption that the communication graph is undirected is made for simplicity of exposition.

Since the spanning tree G is strongly connected, for any pair of vertexes ¢,7 € N, the

3 An analogous construction for the public goods problem works as well, but we do not present it.
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following two quantities are well-defined. d(z, 7) is the length of the shortest path from ¢ to
g and n(z, 7) € N (1) is the neighbor of ¢ such that the shortest path from 7 to 7 goes through
n(z,7). The two quantities are depicted in Fig. 11 for the more general case of a directed
graph.

Additionally, for any agent 7 € N denote by ¢(¢) an arbitrarily chosen neighbor and denote
by I, as the set of agents for which ¢ was the chosen neighbori.e., I; = {k € N' | ¢(k) = ¢}.

The message space for any agent 1 is M; = R+IWEIHEIL A generic message is structured as
Z)jeN (*) ©
RWEI is supposed to represent the profile of demand aggregates, where n} represents the

follows: m; = (s, ni, g;), where y; € R is the demand for agent 7. Here n; = (n

aggregate of demands over all agents k such that the shortest path from 2 to k goes through
J, including 7 itself. Finally, g, = (qf )jeh € RI%l is supposed to represent the profile of
neighbor demand proxies, where g/ represents the demand of neighbor j.

The average size (per agent) of the n—component of the message is the average degree of the
graph deg and the average size of the g—component is 1 (since for each agent, the mapping
¢ choses exactly one neighbor). This implies that the average dimension of the message space
is 2 4 deg.

The allocation and tax function are

. 1
JEN (1) kEkJ;/('j)

L(m) =pi(m )Z(m)+ > |nl-y;— > nb| +2 (qzj - %)2 (4.14Db)

JEN(3) kEN(2) JEL
k1
Pim_) =dy+ > |yt > nil. (4.14¢)
JEN(3) kekj\;é('j)

Since agents are connected through a given graph, they can only communicate with a re-
stricted set of agents i.e., their neighbors. Yet, as indicated in the optimality conditions, (4.5),
there needs to be two kinds of global consensus at the efhicient allocation. Firstly, the total

allocation to all the agents must equal the total available amount, ;. , 27 = 0. Secondly,
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agents also need to agree on a common “price”, A}. The essential idea behind this design is to
create an allocation function that at NE is equal to Z; = y; — 57 Y, ¥; and a tax function
where at NE the price is equal to §; = >_; y;. The intuition behind this specific expression
for Z,(m) and p;(m) at NE has also been used in prior works [GrLe77; Hu79; HeMal2].

In both expressions, Z;(-), D;(-), the aim as the designer is to find an appropriate substitutes
for 37, .; y; such that it depends only on agent #’s neighbors’ messages. This is where the
aggregate demand proxies n’s come in handy. The second term in the tax (4.14b) incentivizes
agents to aggregate demands onto the variable n} such that at NE it is equal to the sum total
of demands y;, of all agents k for whom the shortest path in G from % goes through #’s neighbor
J.

One standard design principle for mechanisms is that if an agent partially controls their own
allocation (such as here, since Z,(m) depends on ;) then they shouldn’t be able to control the
price. The surrogate variables g; are needed so that the price §; can be defined without using
y;. The third term in the tax, (4.14b), is designed for incentivizing agents to achieve the
duplication of y; onto q. for this purpose.

'The mechanism induces the game &, = (N, My x oo x My, ('El, e ﬁN)> where the

utilities are @;(m) = v;(Z:(m)) — t:(m).

Theorem 3.1 (Full Implementation). Zhe game & has a unique Nash equilibrium m € M and
the corresponding allocation is efficient i.e., Z,(m) =z Vi€ N. Eurther, the total tax paid at

Nash equilibrium is zero i.e., ) ;- n t;(m) = 0.
Proof. Please see Appendix 7.1 at the end of this chapter. O

'The proof technique used in the learning result, Theorem 5.4 in Section 5, shows the best-
response as a contraction mapping. Although we don’t formally present a negative result, it is
fairly straightforward to check that the best-response in the game induced by the above mech-
anism is far from contractive and thus this design does not provide any learning guarantees.
One important difference in the best-response comes about because of the use of aggregate
demand proxies nf ’s. Each summand in the second term on the RHS in (4.14b) contains three
terms whereas the corresponding terms in (4.16a) for the mechanism in Section 3.3 contain

only two.
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3.3. A mechanism for the private goods problem

For the purpose of maintaining clarity in the exposition, we present here our mechanism for
the special case of a single private good i.e., K = 1. At the end of this section we comment
on the natural extension of the presented mechanism to the general case of K goods. Also,
kindly note that in this section, the communication graph G is only assumed to be directed
and strongly connected.

Since G is strongly connected, for any pair of vertexes ¢, j € N, the following two quantities
are well-defined. d(3, 7) is the length of the shortest path from ¢ to 7 and n(z, 5) € N (2) is
the out-neighbor of 4 such that the shortest path from 7 to 7 goes through n(%, ). The two
quantities are depicted in Fig. 11.

For any agent ¢ € N, the message space is M; = R¥*!. The message m; = (v;,¢;)
consists of agent ¢’s demand y; € R for the allocation of the single good and a surrogate/proxy
q; = <qi1, gy ) € RY for the demand of all the agents (including himself/herself).

The allocation function is defined as

7 N _ TEN 8 f N — ng\[ Ed %,7) N,
r#i

VieN, (4.15)

where £ € (0, 1) is an appropriately chosen contraction parameter and its selection is discussed

in Section 5 on Learning Guarantees, proof of Theorem 5.4. The tax function is defined as

—~ N N I, i
t;(m) = p;(m_;) (:z:i(m) — ]\?) + (qz- — £yz) + 3 (¢ - ¢y) (4.162)
reN(3)
2
+ <qz' —fqn(i,r)) ,
rgN (i)
r#£1
_ 1| @iy T .
pi(m_s) = 3 é + 5 + Ed(jr L |, Vien, (4.16b)
reN(7) rgéj;é 1)

where n(,1) € N(2) is an arbitrarily chosen neighbor of 7 and § > 0 is an appropriately
chosen parameter. Both &, ¢ are tuned simultaneously in the proof of Theorem 5.4 from

Section 5.
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'The quantities, n(-, -) and d(-, -), are based on the graph G. The only property of relevance
here is that the two are related recursively i.e., d(n(z, r), 7) = d(7,7)— 1. Thus if a mechanism
designer wishes to avoid calculating the shortest path (possibly due to the high complexity)
then n, d can be replaced by any valid neighbor and distance mapping, respectively, as long as

they are related recursively as above.

3.4. Results

Fact 3.2 (Distributed). The mechanism defined in (4.15) and (4.16) is distributed.

'The distributed-ness of the mechanism follows from the fact that the expressions in (4.15)
and (4.16) depend only on m; and (m,)reN(i).

Since agents are connected through a given graph, they can only communicate with a re-
stricted set of agents i.e., their neighbors. Yet, as indicated in the optimality conditions, (4.5),
there needs to be two kinds of global consensus at the efficient allocation. Firstly, the total
allocation to all the agents must equal the total available amount, ), 5 7 = ¢;. Secondly,
agents also need to agree on a common “price”, Aj. To facilitate this, the message space con-
sists of the surrogate variables g¢; = (g}, ..., ¢") which are known locally to agent 7 and are
expected at equilibrium to be representative of the global demand y = (yi, ..., yn). Specif-
ically, the second, third and fourth terms in the tax, (4.16a), are designed for incentivizing
agents to achieve the aforementioned duplication of global demand y to the local surrogate
g;.

To motivate the choice of the allocation function and the remaining part of the tax function
consider the case of ¢ = 1 and take into account the duplication, i.e., g, =y, V7 € N. Since
& = 1, all the factors involving £ become 1 for the expressions in (4.15) and (4.16). We design
the allocation Z;(m) as a function of y; and (g),¢ ;) such that after taking into account
the duplication it becomes y; — ﬁ > iz Y5 + 5. This facilitates the first global consensus,
>ien Ti = c1. One standard design principle for mechanisms is that if an agent partially
controls their own allocation (such as here, since Z;(m) depends on y;) then they shouldn’t be
able to control the price. This is the reason that p;(-) doesn’t depend on m;. It is function of
(4),ens) and is designed such that after taking into account the duplication, the price for any

agent is proportional to 3. 74.. This facilitates the second consensus - common price for all
g prop i Y; p

114



agents. The intuition behind the specific expression for Z;(m) and p;(m) at NE (after taking
into account the duplication) has also been used in prior works [GrLe77; Hu79; HeMa12].

Finally, we set £ < 1 and adjust the allocation and tax function accordingly so that the game
&t can be contractive (see Section 5).

Before proceeding to the main results, we define the best-response of any agent ¢,

,Bz(m,z) = (ﬂi(m,i), (jz(m,z)) £ argmax uz(m) (417)
m;EM;

Note that §;(+) is a set-valued function in general.

Lemma 3.3 (Concavity). For any agenti € N and m_; € M_,, the utility u;(m), defined
in (4.10), for the game &y is strictly concave in m; = (Y, qi). Thus, the best-response of agent 1
is unique and is defined by the first order conditions.

Proof. Please see Appendix 7.2 at the end of this chapter. [

Concavity of the induced utility in the game &, largely follows from the tax terms being
quadratic. The second tax term in (4.16a) is the only source of cross derivatives across com-
ponents of message m;. We prove concavity by verifying that the Hessian matrix is negative

definite.

Theorem 3.4 (Full Implementation and Budget Balance). For the game ® .y, there exists a
unique Nash equilibrium, m € M, and the allocation at Nash equilibrium is efficient, i.e., z,(m) =

z}, V1 € N. Further, the total tax paid at Nash equilibrium T is zero, i.e.,

> ti(m) =o. (4.18)
1eEN
Proof. Please see Appendix 7.3 at the end of this chapter. O

The proof of Theorem 3.4 can be intuitively explained as follows. Since the optimality
conditions in (4.5) are sufficient, we start by showing that at any Nash equilibrium the allo-
cation and price necessarily satisfy the optimality conditions. Thereby ensuring that if Nash
equilibrium exists (unique or multiple) the corresponding allocation is efficient. Then we show
existence and uniqueness by showing a one-to-one map between message at Nash equilibrium

and (z*, \*) arising out of the optimization in (4.4).
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Generalizing to multiple goods (K > 1)

For the general problem we use notation on a per good basis. The message space is,

Mi= x M= x RO = RIVDK, (4.19)
Any message m; = (mf) —— (yi, gi) contains separate demands and proxies for each good

k € K. We denote it as follows

vi = (4), . €R, (4.202)

_ (4TE NK
¢ = (g ),,GA,,,CG,C c RVX, (4.20b)

where for any good k € K, demand and proxies (yf, (q; ’k)re N) € RN*! have the same
interpretation as in the presented mechanism with only one good. The allocation function
z¥(-), for any k € K, depends only on the messages pertaining to good & i.e.,

Zp o x MES R, (4.21)

b jeN
where the expression for Z¥(-) is the same as in the presented mechanism, (4.15), replacing
Yir dngir) with y¥, q;’(’: ) qr*, respectively. The tax function too can be divided on a per-

good basis as follows,

ti(m)=> tF(m), VmeM,VieN. (4.22)

Here £F has the same domain and co-domain as ¥ in (4.21) and the expression for it is the
same as in the presented mechanism, (4.16), replacing all variables with their corresponding
good k variables. Also, Z; is replaced by Z¥ and instead of denoting price by p; we denote it
by pf.

'The generalized mechanism is distributed as well, since all allocation and tax functions still

depend only on message of the agent and that of its neighbors. Owing to the design with a
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good-wise separation, we have the following form for utility
wl(m) = v ( (85 (m* )m> Z £%(m (4.23)

Concavity of u; follows from arguments similar to Lemma 3.3, since the only cross-derivatives
across goods are of the form (82v;) / (8zk8z!) and for multiple goods such terms are part of
the Hessian of v;(+) (which is assumed to be strictly concave). Since the optimality conditions
in (4.5) are sufficient, the properties of efficiency, existence and uniqueness of Nash equilib-
rium follow from the first order conditions for optimality in the best-response. Finally, the
Budget Balance result holds true on a per-good basis, so it also holds for the total tax which

is the sum of per-good taxes.

4. A mechanism for the public goods problem

For the purpose of maintaining clarity in the exposition, we present here our mechanism for
the special case of a single feature in the public good i.e., P = 1. At the end of this section
we comment on the natural extension of the presented mechanism to the general case of P
features. Also the definition of full implementation here is as before, except (4.12) which is
replaced by

Z(m) =Z(m) =--- =zZy(m) =", Vm e Mpyg. (4.24)

For any agent ¢ € N, the message space is M; = R¥*1. The message m; = (y;, ¢;)
consists of agent ¢’s contribution y; € R to the common public good and a surrogate/proxy
q; = (qil, gy ) € RY for the contributions of all the agents (including himself/herself).

The allocation function is defined as

+ 3 Inir) . VieEN. (4.25)

N 1
mz(m) = N y'L + Z )gd(‘L 7‘) 1

reN(3) 5 rgEN'(
r#i
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The tax function is

iny =~ &~ ) 2 r r r 2
t(m)=p(m_)&(m) + (¢ — &w) + > @ - &)’ + > (& —&dhunm)
rEN(3) rgN (i)
r#1
4]
- q;(i i) 1 q, 1 O, r) .
pi(m,i):é(N—l) = — Z _— o) ) V’LEN,
3 N-1 reN(3) € N - rgy\/ gt
r#1

(4.26b)

where n(%,1) € N(2) is an arbitrarily chosen neighbor of z and ¢ € (0,1), § > 0 are appropri-
ately chosen parameters and their selection is discussed in Section 5 on Learning Guarantees,
proof of Theorem 5.5.

In the following, we denote the induced game by &,,; and define, as in the previous section,

the utility in the game by (4.10) and the best-response by (4.17), .

1. Results

Fact 4.1 (Distributed). The mechanism defined in (4.25) and (4.26) is distributed.

Generally, for a public goods problem one expects the allocation function of the form £ :
M — Rinstead of (:f),' M = R>i€/\/ i.e, a single common allocation instead of N different
allocation functions, one for each agent. However, owing to the informational constraints of
the model, there does not exist* a single function & : M — R such that it depends only on m;
and (m;);c ;) for every @ € N. Since in general there are N different neighborhoods (one
for each agent), the informational constraints necessitate the use of N allocation functions
<£i>iej\/' 'The multiple allocation functions are consistent with the model in (4.8). As each
&, represents the level of the same public good, at NE we must have Z;(m) = £,(m) for all
1,7 € N. The fact that £;(m) # &;(m) for all m € M means that the allocation is not

teasible off-equilibrium.

One interpretation for N allocation functions is as follows: at the time of signing the mech-

“apart from the trivial constant function, which cannot give a full implementation result.
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anism contract, agents are aware of the informational constraints that the mechanism and its
implied messaging must satisfy. 'Thus, each agent 7 can only use messages (1;); y;) to cal-
culate their own best-response. The mechanism designer thus designs allocation function Z;

for agent 7 such that appropriate proxies

can be used for messages (11;) ;4 r;) ;.. Of agents
not in the neighborhood of 7. Effectively thus, the mechanism designer accounts for the in-
formational constraints through the appropriate design of proxies. A second interpretation
is through the simulated learning process of NE. In this each agent “acts virtually” during
the learning phase i.e., each agent takes only virtual actions during the learning phase, updat-
ing his/her action from one round to the next by observing only his/her neighbors message.
Once the stationary point of the learning process is reached (NE), the “real action” is taken
only once. The virtual interpretation is also used in most of the distributed optimization liter-
ature [RaNo04; NeOz09; BoPaChPeEc11; DuAgWal2].

'The specific design of allocation and taxes in (4.25) and (4.26) is discussed below. The opti-
mality conditions in (4.7) require that agents have global consensus on two aspects: allocation
must be the same for all and sum of prices should be equal to zero. As in the private goods
mechanism, we design the second, third and fourth tax terms in (4.26a) such that agents are
incentivized to duplicate global demand y onto locally available variables g;. To motivate the
allocation function and the remaining part of the tax function consider the case of £ = 1 and
take into account the duplication ¢, = y, V7 € N. In this case all the factors involving
¢ in (4.25) and (4.26) are 1. The allocation function Z;(m) depends on y;, (gr),c ;) and is
designed such that after taking into account the duplication it is proportional to 3= y;. This
facilitates the first consensus - all agents’ allocation must be the same. The price p;(m_;) is
designed such that it depends only on (g.),.c r(; and after taking into account the duplication
it is proportional to y; — 5 ;4 ¥;. This facilitates the second consensus - sum of prices
over all agents is zero.

With the above design principles, all the results of this section follow. We then introduce
an additional fifth term in the tax, (4.26a), just for the purpose of achieving contraction in
Section 5 (see proof of Theorem 5.5). Incentives provided by this term are in line with those

already provided to the neighboring agent n(%,) through his/her third tax term, hence it

5described in the paragraph below.
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doesn’t interfere with the equilibrium results in this section. Only the proof of concavity
changes slightly.

Finally, we set ¢ < 1 and adjust everything in the allocation and tax function correspond-
ingly so that the game &,,; can be contractive (see Section 5).

For the next two results, the basic idea behind the proofs are similar to the corresponding

results from the previous section.

Lemma 4.2 (Concavity). For any agentt € N andm_; € M_;, the utility u;(m) for the game
& pup is strictly concave in m; = (Y5, ;). Thus, the best-response of agent 1 is unique and is defined
by the first order conditions.

Proof. Please see Appendix 7.4 at the end of this chapter. O]

Theorem 4.3 (Full Implementation and Budget Balance). For the game & pyp, there exists a
unique Nash equilibrium, m € M, and the allocation at Nash equilibrium is efficient, i.e., T (m) =

x*. Further, the total tax paid at Nash equilibrium m is zero, i.e.,

> ti(m) =o0. (4.27)
1EN
Proof. Please see Appendix 7.5 at the end of this chapter. O

Generalizing to multiple features (P > 1)

With an idea similar to the extension for the private goods mechanism, we extend the pre-

sented mechanism by first increasing the message space such that for each agent we have

p
mi = (m?)
¢ t pEP

sion for Z7(m) is the same as in the presented mechanism with y;, (q,)

= (¥:,¢;). The allocation in this case is P—dimensional and the expres-
reN (i) replaced by
vr, (qf >reN(i)' The tax function is

ti(m) = tf(m), (4.28)

where the expression for £} is the same as in the presented mechanism, replacing m by mF.
'The results above follow using analogous arguments to those mentioned in the previous

section regarding generalization to multiple goods, K > 1.
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5. Learning Guarantees

In this section we provide results for guaranteed convergence for a class of learning algorithms
when the mechanisms defined in Sections 3 and 4 are played repeatedly. As discussed in the
Introduction, such results act as a measure of robustness of a mechanism, w.r.t. information
available to agents, and thus makes the mechanism ready for practical applications.

A learning dynamic is represented by

(Bn)nz1 © X AM), (4.29)

where @, is a mixed strategy profile with product structure to be used at time n. Denote by
S(pn) € M the support of the mixed strategy profile i, and denote by m,, € S(u,) the
realized action. Authors in [HeMal2] define the Adaptive Best-Response (ABR) dynamics
class by restricting the support S(u,) in terms of past observed actions. Define the history
Hyp = (Mp, My, . .., My_1) as the set of observed actions between n’ and n— 1. Denote
by m the unique Nash equilibrium of the game and define B (M) as the smallest closed ball
centered at 7 that contains the set M’ C M. 'The closed ball is defined with any valid metric
d on the message space M.

Informally, a learning dynamic is in the ABR class if any point in the support of the action
(distribution) at any time 7 is at most as far away from the Nash equilibrium than the best-
response to any action that has been observed in some finite past {n’, ..., n—1}. Furthermore,
for the above comparison, the only relevant measure is the distance to Nash equilibrium and
thus the actions observed in some finite past {n/,...,n — 1} can be replaced by other actions

that are no further from the Nash equilibrium. Formally, we have the following.

Definition 5.1 (Adaptive Best-Response Learning Class [HeMal2]). A learning dynamic is

an adaptive best-response dynamic if Vo', 37 > n', s.t. Vn > 1,

S(pn) € B(B(B(Hpn))), (4.30)

where B : M — M is the best-response of the game.

'The above is satisfied for instance if every agent puts belief zero over actions further from
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Nash equilibrium than the ones that he/she has observed in the past. Some well-known
learning dynamics are in the ABR class, following are a few examples.

Cournot best-response is defined as S(u,) = m, = B(m,_1), i.e., at every time agents
best-respond to the last round’s action. This gives rise to a deterministic strategy at each time.
More generally, k—period best-response is defined as the learning dynamic where at any time
n, an agent ¢’s strategy is a best-response to the mixed strategy of agents 7 # ¢ which are
created using the observed empirical distribution from the actions of the previous k—rounds
ie, {Mjn_k,--.,Mjn 1} In fact, the generalization of this is also in the ABR class, where
at each time n, an agent ¢’s strategy is the best-response to the mixed strategy of agents j # ¢
that is formed by taking any convex combination of the empirical distributions of actions
observed in the previous k—rounds. Finally, Fictitious Play [Br51b; Fu98], which maintains
empirical distribution of all the past actions (instead of k most recent ones) is also in ABR.
'The additional requirement for this is that the utility in the game should be strictly concave,

which is true for the presented mechanisms (see Lemmas 3.3 and 4.2).

Definition 5.2 (Contractive Mechanism). Let d be any metric defined on the message space
M such that (M, d) is a complete metric space. A mechanism is called contractive if for any
profile of utility function (vi('))ieN that satisfy the assumptions of the model, the induced
game B, or B, (depending on the allocation problem) has a single-valued best-response

function B : M — M that is a d—contraction mapping.

A function b : M — M is a d—contraction mapping if there exists ¢ < 1 such that
d(h(z),h(y)) < cd(z,y) for all distinct z, y € M. For the results below, we use the follow-
ing well-known check for contraction mapping: h is a contraction mapping (for some metric
d) if the Jacobian has norm less than one, i.e., ||Vh|| < 1, where any matrix norm can be
considered. Specifically, we consider the row-sum norm.

For the game induced by a contractive mechanism, by definition, there is a unique Nash
equilibrium. This is due to the Banach fixed-point theorem, which gives that the best-response
iteration for the induced game converges to a unique point. As shown in the previous sections,

the game &,,; and &,,; already have a ungiue Nash equilibrium.

Fact 5.3 ((HeMal2, Theorem 1]). If a game is contractive, then all ABR dynamics converge

to the unique Nash equilibrium.
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'The idea behind the above proof is to show that after a finite time, under any ABR dynamic
the distance to equilibrium gets smaller (exponentially) between successively rounds due to the
best-response being a contraction mapping. It is shown below that the presented mechanism
for both, the private and public goods problems, is contractive and thus owing to the above
result there is guaranteed convergence for all learning dynamics in the ABR class.

Contraction ensures convergence for the ABR class; this result is in the same vein as
the one in the seminal work [MiR090]. Milgrom and Roberts show that Supermodular-
ity ensures convergence for the Adaptive Dynamics class of learning algorithms (also de-
fined in [MiR090]). Supermodularity requires that the best-response of any agent % is non-
decreasing in the message m; of any other agent 7 # ¢. The aim in this chapter is to get
guarantees for the ABR class, however it is shown below that the game &,,; induced by the
private goods mechanism is also supermodular and thus has guaranteed convergence for the
Adaptive Dynamics class as well.

Before proceeding, kindly note that contraction is somewhat more stringent a condition
than supermodularity and consequently the ABR class is broader than the adaptive dynamics
class. Thus in order to have better learning guarantees, our principle aim to ensure the property

of contraction.

5.1. Results

Theorem 5.4 (Contraction). The game Oy defined in Section 3.3 is contractive but not supermod-
ular. Thus, all learning dynamics within the ABR dynamics class converge to the unique efficient
Nash equilibrium.

Proof. Please see Appendix 7.6 at the end of this chapter. O

'The intuition behind the proof of Theorem 5.4 can be motivated as follows. By selecting
parameter { < 1, contraction of best-response for the variables (), is already ensured.
However, for best-response in §;, § we need tuning of ¢, §. Due to the specific nature of the
mechanism it turns out that in order to accommodate any given value of 7 > 1, £ needs to be
selected close to 1 and correspondingly ¢ needs to be selected as a function of the chosen £.

Since the best-response §; and § are decreasing in q,i(i ;) the game is not supermodular.
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Generalizing to X > 1 'The proof of Theorem 5.4 relies on inverting v, : R — R and
bounding it appropriately. For the general case this is the same as inverting Vv, : RE — R,
Strict concavity of v;(-) ensures that the determinant of Hessian of v; is never zero, hence
an inverse for Vv; exists in the general case. Of course, to bound the derivatives of (Vv;) !,
instead of using the condition in (4.2) we use the more general condition from (4.1). Finally,
the proof is completed by tuning the parameters £, in exactly the same manner as in the

proof of Theorem 5.4.

Theorem 5.5 (Contraction). Zhe game By, defined in Section 4 is both contractive and super-
modular. Thus, all learning dynamics within the ABR dynamics class converge to the unique Nash
equilibrium.

Proof. Please see Appendix 7.7 at the end of this chapter. O

Initially the parameters have the following bound: ¢ € (0,1) and § > 0. In order to get
contraction, a further restriction & € (\/m , 1) needs to be imposed. This also gives
that each best-response is non-decreasing in the message of every other agent and thus the
game is supermodular. Finally, here too in order to accommodate any value of > 1 the final
tuning of ¢ requires it to be chosen very close to 1 and consequently d is selected as a function
of the chosen &.

Generalizing to P > 1, the essential idea of inverting Vv; from above works here too and

from there onwards the steps follow analogously to the ones in the proof above.

5.2. Numerical Analysis of convergence

For numerical analysis we consider the private goods problem with one good (K = 1) and
the public goods problem with one feature (P = 1). We consider N = 31, n = 25 and the

agents’ utility function as quadratic, i.e.,

’Ui(ZIJi) = 951:12 + 0,25, (Private)

v;(z) = 6;z° + oy (Public)

An example of quadratic utility function can be found in [SaMoScWo12], for the model of

demand side management in smart-grids. In each case the second derivative of v;(-) is 26;
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Private goods Public goods
£=1- (1.831x10%), | £€=1— (2.515 x 10°%),

Bi T
ALy 1€ 5 — 1005.6. § = 0.9505.
_ 1 _ —4 —1 _ -3
Exdss-Retii =1 (7.324x10%), | €=1—(1079),
§ = 932.3. § = 0.8744.

Table 1.: (&, 6) parameter values for different graphs and problems.

and thus for any agent % the value for 6; is chosen uniformly randomly in the range (-7, —5-).
As the model doesn't impose any restriction on the first derivative, the value for o; is chosen
uniformly randomly in the range (10, 20). From the proof of Theorems 5.4 and 5.5, one can
numerically calculate the value of parameters £, d. For the particular instance of the random
6, o generated to be used for the plots below (the same values for 8, ¢ are used for both public
and private goods examples), the parameter values are listed in Table 1.

For numerical analysis, quadratic utilities provide the following simplification. Since the
utility functions v;(-) are quadratic, this gives that (v) ™" () is affine. Thus for any agent
1 € N, the best-response §; and §; are affine in other agents’ message. This gives that for
learning strategies such as k—period best-response or Fictitious Play, instead of maintaining
the empirical distribution over other agents’ past actions, every agent can simply maintain the
empirical average.

Since it has been shown that the best-response is a contraction mapping, one expects that
any learning strategy that best-responds to some convex combination of past actions from
finitely many rounds, converges at an exponential rate. Indeed, this is exactly observed from
Fig. 12 and 15, where the absolute distance ||m,, — M|| of the action in round n to the Nash
equilibrium 7 of the game &,,: and &, is plotted versus n, respectively. Here a straight
line in the semi-log plot indicates that the logarithm of the distance is linear in n. The four
cases considered in each figure are through two possible graphs and two possible learning
dynamics. For the graph G, the first case is a full binary tree (lower average degree) and
second a sample a Erdés-Reriyi random graph with only one connected component, where
any two edges are connected with probability p = 0.3 (higher average degree). The same
instance of Erd@s-Reriyi random graph is used for both private and public goods examples.

For the learning dynamic, one case considered is when the action taken by any agent ¢ at time
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Figure 12.: ||m,, — M||2 vs. n for the private goods mechanism.

n is the best-response to an exponentially weighed average of past actions, i.e.,

mp—1 Tn-1
= 431
ma =B (7ot 4 T2, (4312
r,= 2m y Tnt (4.31b)
2 2

'The second learning dynamic is to best-respond to the average of past 10 rounds.

Since the learning iterations are essentially conducting information exchange, one expects
that the convergence to be faster for a graph that is more connected. From both the figures
this is evident, as for each learning dynamic higher average degree Erdds-Reriyi random graph
shows faster convergence than lower average degree Binary Tree. In fact, for both learning
dynamics the convergence for the Erdds-Renyi random graph is faster than either learning
dynamic for Binary Tree. Comparing the two learning dynamics among themselves, we ob-
serve that the more aggressive exponential weighing leads to faster convergence compared to
the learning dynamic that puts equal weight on each of the previous 10 actions.

Finally, for Fig. 12, in each case the relative distance to Nash equilibrium, defined as
|mn, — ]|2/|||1, is in the order of 107° when the absolute distance to Nash equilibrium is
1073, For Fig. 15, the relative distance in each case is of the order of 108 when the absolute

distance to Nash equilibrium is 1075,
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Figure 14.: || (Bs(mn));cpr — (AL, .-+, AD)||2 vs. n for the private goods mechanism.

127



T T T
—Binary Tree and Exponential Weight | |
_ —Binary Tree and 10-period average
Lﬁ_ Erdos-Renyi and Exponential Weight| ]
= 100 L — Erdos-Renyi and 10-period average |-
®©
pd
o
[0}
o
c
©
@
Q40°F 1
| | | | | | |
0 100 200 300 400 500 600 700 800

lteration number

Figure 15.: ||m,, — /|| vs. n for the public goods mechanism.

6. Summary and Comments

In this chapter, we present a distributed mechanism where agents only need to exchange
messages locally with their neighbors. While for models with non-strategic agents, extensive
research has been done in the field of distributed learning and optimization, this is not the case
with mechanism design where agents are fully strategic. For every profile (v;(+));. 5 of utility
functions, the induced game is shown to have a unique NE. The allocation at equilibrium is
efficient and taxes are budget balanced. Then we establish informational robustness of the
mechanism by showing that the best-response in the induced game is a contraction mapping.
This establishes that every learning dynamic within the ABR dynamics class converges to the
unique and efficient NE when the game is played repeatedly. The ABR class contains learning

dynamics such as Cournot best-response, k—period best-response and Fictitious Play.

Future Research Directions

A significant scope for improvement in the presented mechanism is the reduction of the size
of the message space. A more scalable mechanism, as in Section 3.2, would be one where
on average the dimension of each agent’s message space scales sub-linearly w.r.t. N. How-
ever, such an attempt might possibly require restrictions on either the underlying graph G

or the upper bound on 7 that is admissible under the model. For the presented mechanism,
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the only restriction on the graph is that it is connected and there is no upper bound on 7.
Another improvement can be that of considering more complicated constraint sets for the
optimization (4.4). However, as can be seen from previous attempts at mechanism design
for general constraint sets, [JoTs09; JaWal0; KaTe12; SiAn17; SiAnl14a], such an extension
is not straightforward. Finally, for preventing inter-temporal exchange of money during the
learning phase, one can adjust taxes such that there is budget balance for all messages, rather

than just at NE.

Learning in summary style mechanism  Our preliminary work strongly suggests that with
a summary-style distributed mechanism from Section 3.2, contractive best-response cannot
be guaranteed for arbitrary connected graphs. In such a case, one way to ensure learning
guarantees is to restrict the set of communication graphs allowed under the model. We are
currently investigating the possibility of getting similar learning guarantees as in Section 5
when the communication is restricted to a regular graph.

We are currently also investigating into the impossibility results for designing distributed
efficient mechanisms with guaranteed convergence of the ABR class of dynamics, where the
message space scales sub-linearly with N (for each agent) and where allocation and tax func-

tions are restricted to be polynomial function of the messages.

Better learning guarantees in non-summary distributed mechanism

We are currently also investigating the possibility of improving the ambit of learning guaran-
tees presented. The result presented in Theorems 5.4 and 5.5, guarantee convergence for a
subclass of adaptive learning strategies - adaptive best-response (ABR) dynamics class. The
result was proved by showing that the best-response in the induced game is a contraction
mapping and then using the result from [HeMa12], where authors show that for a game with
contractive best-response any ABR dynamic converges.

'The class of learning strategies for which we are currently investigating convergence results

are regret-minimizing learning algorithms® where at each time ¢, an agent plays an action

bsuch as the Multiplicative Weights algorithm.
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according to a rule that ensures that the regret

t t

@i(my) — max ) di(mn) (4.32a)

n=1

(vi(:f:(mn)) _ fi(mn)> —maxy" (vi(i(m)) _ fi(m)> (4.32b)

1 n=1

Ry

3

I
]~

n

grows sub-linearly with time.

It is in order to mention here that since we are interested in multiple agents, the precise
definition of regret can be adapted by appropriate modification (see [Ro16, Ch. 17]). Since
agents are interested in maximization of an objective that depends on their overall utility in
the game 4;(m) = v;(£(m)) —£;(m), we are investigating convergence of regret-minimizing
algorithms for the mechanism presented in Sections 3 and 4, which already have a contrac-
tive best-response. It is guaranteed that regret-minimizing algorithms converge to the set of

Correlated equilibria of a game’ and that this set contains all the Nash equilibria (see [Ro16,
Ch. 17]).

7A subtle distinction that needs to be emphasized here is that minimizing internal regret leads to convergence
to the set of correlated equilibria (CE) and minimizing the external regret leads to convergence to the set of

coarse-correlated equilibria (CCE). The set of CCE contains the set of CE which in turn contains the set of
NE.
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7. Appendix

7.1. Proof of Theorem 3.1

Proof. 'The utility in the game, u;(m;, m_;), is continuously twice differentiable in m,; for any
m_;. By evaluating the matrix of second derivatives of w.r.t. component of m; it can be shown
that the utility is strictly concave® in m; for any m_;. This implies that the best-response is
unique and that necessarily at any NE, for every agent ¢+ € N the first order derivative of
u;(m;, m_;) w.r.t. m; must be zero. This gives that at any NE m = (y;, ny, ¢;),.,, We have,

forany: € N,

vi(Z;(m)) = pi(m_s), (4.33a)
nl=y+ 3 nf, VjeN@), (4.33b)
kEN(3)
ki
g =vy, Vjiel. (4.33¢)

The condition in (4.33b) implies for any 7 € N,

nl= 3w, VieN() (4.34)

keN
n(i,k)=j

For verifying this we substitute (4.34) in (4.33b)’. This means we have to verify

Yo=Yt D>, > Y (4.35)

keN kEN (i) TEN
n(i,k)=3 k#i  n(jr)=k

The condition n(j,7) = k creates a partition of nodes and thus for no 7 € N is there a
repetition of ¥, in the RHS of above. So to verify the above we can simply show that the
sets A, B defined below are the same (note that ¢ € N and 7 € N (z) are kept fixed in the

8The Hessian is a diagonal matrix with all negative entries.

9Uniqueness of solution can be verified easily in this case. Since we work with the spanning tree G, we can start
at one level above the leaf nodes. Consider j as a leaf node and ¢ as its parent, in this case (4.33b) implies
that nz = y;. Next consider node k that is one level above ¢, in this case (4.33b) implies n}c can be written
explicitly in terms of demand y’s. Uniqueness is shown by following similar construction all the way back to

the root node and establishing that the system of equations (4.33b) gives n’’s explicitly in terms of y;’s.

i
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argument below).

A={leN |n(1) # 5}, (4.362)
B={keN |n(jk) =1} (4.36b)

Consider any k € B, this gives n(7, k) = ¢ and thus the shortest path from ¢ to k is a sub-path
of the shortest path from 7 to k. This means that the shortest path from 1 to k cannot contain
g ie., n(z, k) # 7. This gives B C A. Consider any [ € A i.e., shortest path from ¢ to [ does
not contain j. Now suppose that the shortest path from 7 to [ does not contain ¢. Since ¢ and
J are connected, this means that there exists a cycle containing ¢, 7, [, which is a contradiction.
'Thus the shortest path from 7 to [ does contain ¢ i.e., A C B. This completes the verification
of (4.34).

Substituting (4.33c¢) and (4.34) in (4.33a) and the expression for Z;(m) from (4.14a) gives
that at any NE we have

v(Zi(m)) =pi(m ) = Y y;, ViEN, (4.37)
JEN

SEOEDS <yi - Z%> 0. (4.38)

ieN ieN E=)

These are precisely the KK'T optimality conditions of private goods optimization problem (4.4).
Since the utilities v;(+) are strictly concave, the KKT conditions are both necessary and suffi-
cient for optimality. This implies that at any NE m the allocation is efficient i.e., Z;(m) = z,
VieN.

Existence and uniqueness of NE is verified constructively by specifying the message m at
NE in terms of the unique optimal solution (including the optimal dual variable) (z*, A*) to
the optimization problem (4.4). The steps are exactly as in the proof of Theorem 3.4 in Ap-
pendix 7.3 later. Proof of budget balance at NE also follows the same steps as in Appendix 7.3.

[l
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7.2. Proof of Lemma 3.3 (Concavity - Private goods)

Proof. Since the allocation and tax functions are smooth and v,(+) is continuously double-
differentiable, to establish concavity we show that the Hessian of u;(m) w.r.t. m; is negative
definite i.e., H < 0. Once this is established, the optimization in (4.17) has a strictly concave
objective and an unbounded constraint set. Thus it has a unique maximizer, defined by the
first order derivative conditions.

The Hessian is of size (N + 1) X (N + 1) and we have

8%u;
Hyy = gy(;”) — (& (m)) — 267, (4.39)
32ui(m) 0 fOI’j S N1 ] 7£ 7;1
Hiian = Hi1) = oo | 2 forj—i (4.39b)
104, orj==u,
A%u;(m .
Hiji1y+1) = B(q]()z) =-2, VjeEN, (4.39¢)
8%u;(m . .
H(ry1)41) = aq,,éqj) =0, VjreN,j#r. (4.39d)

'The characteristic equation, Det (H — zI) = 0, becomes
(z +2)! ((:z: +2)(z — Hy) — 4§2> _ 0. (4.40)

'This implies that N — 1 eigenvalues of H are —2 and the remaining two eigenvalues satisfy
22+ (2— Hyp )z —2v!(Z;(m)) = 0. Since H is a symmetric matrix, all its eigenvalues are real.
Due to v}/(+) < 0, the product of roots in the above quadratic equation is positive and the sum

of roots is negative. This gives that the remaining two eigenvalues of H are also negative. [

7.3. Proof of Theorem 3.4 (Full Implementation - Private goods)

Proof. For the private goods problem in (4.4), the optimality conditions in (4.5) are sufficient.
'Thus in order to prove that the corresponding allocation at Nash equilibrium is efficient, we

show that at any Nash equilibrium 7 = (¥, q) € M, the allocation (:’1:} (ﬁ)) and prices

iEN
(ﬁi (ﬁ)) o satisfy the optimality conditions as * and A}, respectively. Then using an invert-
1

ibility argument we show existence and uniqueness of Nash equilibrium.
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Using Lemma 3.3, at any Nash equilibrium 7 we have: V,, u;(m) = 0,V 1 € N. This

gives

dvi(3:(m)) Ot (m) _

] 4.41
i o 0, VieWN, ( a)
Ou(@m)) _ 94(m) _ 0, VreN,ieN. (4.41b)
dgq; oq;

Using the definitions in (4.15) and (4.16), this becomes

vi(Z:i(m)) — Pi(m ) + 26(q; — €¥,) =0, VieEN, (4.42a)
&y, forr =1,

q; = &v, for r € N (3), VieN. (4.42b)
§qnir forr ¢ N(z)andr #3,

For any distinct pair of vertexes 1, 7, denote by {2, %1,%2,...,%4(,» = 7} the ordered ver-
texes in the shortest path between ¢ and 7, where 7; = n(z,7) € N (). Since the shortest
path between 7 and r contains the shortest path between 5 and r, for any & < d(3,7), we
have n(%,7) = tky1. Using the third sub-equation in (4.42b) repeatedly, replacing 7 by 2
gives,

G =g, =g, ==t g L (4.43)
Now using the second sub-equation of (4.42b), replacing 7 by %4(; »)—1 and noting that 7 €
N (Lagr)-1), gives @G, = €7, This combined with the above equation gives that (4.42b)
implies

g PTTY view (4.44)
g4en)y, forr #1,

Using the above and then combining (4.42a) with (4.15) and (4.16b) gives, V ¢ € N,

vi(Z:(M)) = B:(M_s), (4.452)
I 1 ,
Zi(m) =Y~ 1 ; Y, (4.45b)
() = (15 Sy (4.450)
JEN
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(4.45b) implies Y ;cp Zi(M) = 0 and combining (4.45a) and (4.45¢) gives vj(Z;(™m)) =
$ Y sen T Vi € N Thus, the allocation-price pair

1 1
((% N1 JZ#M@/’ 5%:,%') (4.46)

satisfy the optimality conditions, (4.5), as (z*, A}). Since the optimality conditions are suffi-
cient, the allocation at any Nash equilibrium m is the efficient allocation z*.
For existence and uniqueness, consider the following set of linear equations that must be

satisfied at any Nash equilibrium m,
T =7, — =) Ui ViEN, (4.47a)

Al = Y. (4.47b)
Here (@-) o Are the variables and (z*, A}) are fixed - since they are uniquely defined by the
j

optimization (4.4). The above equations can be inverted to give the unique solution as,

N-1, 6x .
7, = * . 4.4
U, N z; + N VieN (4.48)

Furthermore, using above and (4.44), the values for (@:) can also be calculated uniquely.

1,7EN
Since a solution for m = (¥, q) in terms of z*, A} exists,eexistence of Nash equilibrium is
guaranteed. Also, since this solution is unique, there is a unique Nash equilibrium.

For Budget Balance, we have the following. From the above characterization, at Nash
Equilibrium 77 all tax terms from (4.16a), other than p;(7m_;) (:’1:}(7’7"7,) - j\}), are zero. Fur-

thermore, the prices are all equal to A} and allocations are equal to z}. Thus,

S E@) = A (@(m) _ j\}) Y (Z 2t — c1> —x.0=0, (4.49)

iEN 1EN iEN

since the efficient allocation * satisfies the constraint Y ;cp ZF = ¢3. N
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7.4. Proof of Lemma 4.2 (Concavity - Public Goods)

Proof. Since the allocation and tax functions are smooth and v,(+) is continuously double-
differentiable, to establish concavity we show that the Hessian of u;(m) w.r.t. m; is negative
definite i.e., H < 0. Once this is established, the optimization in (4.17) has a strictly concave
objective and an unbounded constraint set. Thus it has a unique maximizer, defined by the
first order derivative conditions.

The Hessian is of size (N + 1) X (N + 1) and we have

O’ui(m) _ vi(Z:(m))

_ _ 2
8%u;(m 0 forjeN, j#u,
H(jip = Hyjy) = 7(]) = .. (4.50b)
0y.0q; 2¢ forj =1,
02u;(m) :
Hiji1y+1) = W =-2, VjeEN, (4.50¢)
8%u;(m . .
H(r+1)(j+1) = 7(]) = 0) v_],'f’ € N: J # T. (450d)
9q; 0q;
'The characteristic equation, Det (H — zI) = 0, becomes
(z +2)! ((:z: +2)(z — Hy) — 4§2> _ 0. (4.51)

'This implies that N — 1 eigenvalues of H are —2 and the remaining two eigenvalues satisfy
2?+(2— Hy1 )z +26€2 — 3350/ (Z:(m)) = 0. Since H is a symmetric matrix, all its eigenvalues
are real. Due to v/() < 0, the product of roots in the above quadratic equation is positive
and the sum of roots is negative. This gives that the remaining two eigenvalues of H are also

negative. [

7.5. Proof of Theorem 4.3 (Full Implementation - Public goods)

Proof: For the public goods problem in (4.6), the optimality conditions in (4.7) are sufficient.
Thus in order to prove that the corresponding allocation at Nash equilibrium is efficient, we

show that at any Nash equilibrium 7 = (¥, q) € M, the allocation (:’z:}- (ﬁ)) and prices

ieN
(ﬁi (m))ie/\/ satisfy the optimality conditions as z* and u!”, respectively. Then using an in-
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vertibility argument we show existence and uniqueness of Nash equilibrium.
Using Lemma 4.2, at any Nash equilibrium m we have: V,,, u;(m) = 0,V 7 € N. This

gives

dvi(zd(m))  Oki(m) _

0y; y; O Ve, 4329
Bvi(mi(ﬁ)) B atz(m) — 0, Ve N, 1N, (452]3)
aq’ oq;

Using the definitions in (4.25) and (4.26), this becomes, V i € N,

;,(vé(fi(m)) — Pi(m_s)) + 263k — €3.) + 6€(Thpey — €0) = O, (4.53a)
£y, forr =1,
T ={ ¢y, forr e N(9), . (4.53b)

§qnir forr ¢ N(i)andr #1,

For any distinct pair of vertexes , 7, denote by {%,%1,%2, ..., %43, = 7} the ordered ver-
texes in the shortest path between ¢ and 7, where 7; = n(z,7) € N(z). Since the shortest
path between 7 and r contains the shortest path between 4 and r, for any & < d(3,7), we
have n(ix,7) = 141. Using the third sub-equation in (4.53b) repeatedly, replacing 7 by i
gives,

T =tq =g, = =g (4.54)
Now using the second sub-equation of (4.53b), replacing 7 by %4(; »)—1 and noting that 7 €
N (%a(ir)-1), gives qfdw)_l = £, This combined with the above equation gives that (4.53b)
implies

g=| % TT=H view. (4.55)
§¥eny,  forr # 4,

Using the above and then combining (4.53a) with (4.25) and (4.26b) gives, V ¢ € N,

v;(Z:(m)) = Di(m_s), (4.562)
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o _ 1 _
p;(m_;) =6(N —1) <yi ~ -1 Zy]) . (4.56¢)
T g
(4.56b) implies Z;(m) = Z,(m) forany 3,7 € N and (4.56¢) gives 3, Di(7 ;) = 0. Thus,

the allocation-price pair

1 . B 1 B
<N J%/yj, (5(1\7 -1) (yi - N_;yj>>i€N> (4.57)

satisfy the optimality conditions, (4.7), as (z*, u**). Since the optimality conditions are suffi-
cient, the allocation at any Nash equilibrium m is the efficient allocation z*.
For existence and uniqueness, consider the following set of linear equations that must be

satisfied at any Nash equilibrium m,

1
= — "7, (4.58a)
Nje/\/ ’
it =8(N —1) yi—#z:yj , VieEN. (4.58Db)
N—15%

Here (yj>jef\/ are the variables and (z*, u'*) are fixed - since they are uniquely defined by the

optimization, (4.6). The above equations can be inverted to give the unique solution as,

e M

VieN. (4.59)

Furthermore, using above and (4.55), the values for (QZ) v Can also be calculated uniquely.

ire
Since a solution for @ = (7, q) in terms of z*, u'* exists, existence of Nash equilibrium is
guaranteed. Also, since this solution is unique, there is a unique Nash equilibrium.

For Budget Balance, we have the following. By the characterization from above we know
that at Nash Equilibrium 77, all tax terms from (4.26a), other than p,;(m _;)Z;(m), are zero.

Furthermore, the prices are equal to u}* and each allocation is equal to z*. Thus,

Yoh(@) =Y piet =2y pu =2 0=0, (4.60)

1EN 1EN 1€EN
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since the optimal dual variables (,ul*) - satisfy, (4.7b), S ien pui” = 0. O

1

7.6. Proof of Theorem 5.4 (Contraction - Private goods)

Proof: 'The game is contractive if the matrix norm of the Jacobian of best-response f =
(,51) o = (ﬂi, (L) _y is smaller than unity, i.e., ||[VB|| < 1. We use the row-sum norm
7 7

for this, and in this proof verify specifically the following set of conditions,

0Y; 07; .
> vy Yill <1, vien, (4.61a)
o J
reNrzi \|OUr| jen 10gr
og;’ (olikd .
Yoo =m T+ “l| <1, YweN,VieN, (4.61b)
reN, r#i ay, JEN GQr

'The summation can be performed simply over the indexes r € N () instead of r # % because
our defined mechanism is distributed and hence the best-response of agent ¢ depends only on

() senc
Consider any agent 7 € N, for the best-response §; we have

35 forw =1,

4 =9 &Y for w € N (1), (4.62)
§qniiw) forw ¢ N(2) and w # 1.

'Thus, by choosing £ € (0, 1), all conditions within (4.61b) are satisfied where w # 7. Next,
we verify conditions in (4.61a). Once this is done, then in conjunction with £ € (0, 1), the
conditions from (4.61b) with w = ¢ are also automatically verified.

For the best-response §j;, we have

. 1 Trn(ir) 1 q; N1 (=
U= > zaunat > o F+ @) (Bilm ). (463)
N=1 TN NN =1 Gt € ( )
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where p;(m_;) is defined in (4.16b). Thus, we have,

1 1

<z forr =1,
6€ vy (")
8 1 1 1 1 ,
7 — s = f
O | V1€ E€w0) orr EN, (464
1 1 1 1 , ,
N — 1 ¢gd6n-1 + §€aET) 1 47 () forr ¢ N(z), 7 # 1.

where in each expression above v;'(-) is evaluated at p;(m_;). Also, in the notation used
above, for any 7 € N (1), n(¢,7) = r. All other partial derivative of §; are zero. With all this

condition in (4.61a) becomes,

EREN RN S N ] (o y
o0& vy () v ()| \, &y (N = 1)€ 0ul () |\, Gy (N — 1)1 :
r#t
(4.65)
To simplify the above, we utilize the upper bound from (4.2), v!'(-) € (—n, —%) Set
)
< y_71 (4.66)

so that the expressions inside absolute value operator for the second and third terms on the

LHS in (4.65) are guaranteed to be positive. With this, (4.65) becomes

—1 1 1 1
ol (i 5, 5w
r#£1
) 1 1
< N—-1-|> -+ > 5o (4.67)
N -1 rGN(z’)f rQJ\;(i) gater)1

Since any agent has at least one neighbor i.e., [N (2)| > 1, the LHS above is negative. For
the RHS, note that the expression inside the square brackets has exactly N — 1 terms and
each term is of the form ¢ %, for some k > 1. Since £ < 1, this gives that even the RHS

is negative. Utilizing the lower bound from (4.2), a sufficient condition to verify (4.67) is
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79

of (4.67), respectively. Combining this with the condition in (4.66), a sufficient condition for
verifying (4.61a) is

7)<min< d C) VieN. (4.68)

N-1" ¢ ‘Di

Without any further tuning of parameters £, §, the proof is complete as long as 7 satisfies
above. However, in our model we would like to accommodate any value of 7 > 1 and this

requires tuning of parameters £, d. Set

C,
=(N -1 in|—> 4.69
6 =( )?élifl‘pi>0’ (4.69)
this t t the sufh t diti < ‘C"
1n 1S oge € Su c1en condaition as'n 135\1[1 Dz , 1.€.,
1 1 1 1 1
2 .
7n° < min —Z —Z”/N—l—Z+Z”
NS LN € N gt reN() € riN ) S
r#t r#t
70)

We want to tune ¢ € (0, 1) such that the RHS above can be made arbitrarily large. For this,
first note that, for any ¢ € N the numerator of the RHS is bounded away from zero for ¢
in the neighborhood of 1. Second, the denominator can be made arbitrarily close to 0 by

choosing ¢ close enough to 1,

1
N-1- Zgjuzfd” = Z' (1—§>+Z ( Sd(’?’)‘1>’(4'71)
reN() r¢N(7) reN(7) r¢N(7)
r#£1 r#£1
where for any given £ > 1,€ > 0, choose £ € (<1+€)1/k , 1) to have |1 — £7%| < e. Finally,
it is clear from above that the denominator can be made arbitrarily small concurrently for all
1EN.
That the game is not supermodular follows from the first sub-equation of (4.64), where

the derivate of best-response §; w.r.t. qfl(i ;) is clearly negative. Also, convergence of every
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learning dynamic within the ABR class is guaranteed by Fact 5.3. ]

7.7. Proof of Theorem 5.5 (Contraction - Public goods)

Proof: 'The game is contractive if the matrix norm of the Jacobian of best-response f =
(,51) o = (ﬂi, (L) _y is smaller than unity, i.e., ||[VB|| < 1. We use the row-sum norm
7 7

for this, and in this proof verify specifically the following set of conditions,

oY; oY; .
SO 2E Yl) <1, vien, (4.72a)
o J
reN,r2i \|OYr|  jen 10gr
lolikd oG )
> =+ ~1] <1, YweN,VieN. (4.72b)
reN, r#i ay, JEN GQr

'The summation can be performed simply over the indexes r € N () instead of r # % because
our defined mechanism is distributed and hence the best-response of agent ¢ depends only on

() senc
Consider any agent 7 € N, for the best-response §; we have

35 forw =1,

4 =9 &Y for w € N (1), (4.73)
§qniiw) forw ¢ N(2) and w # 1.

'Thus, by choosing £ € (0, 1), all conditions within (4.72b) are satisfied where w # 7. Next,
we verify conditions in (4.72a). Once this is done, then in conjunction with £ € (0, 1), the
conditions from (4.72b) with w = ¢ are also automatically verified.

For the best-response §;, we have the following relation

1

ﬁ(“i(fl(m)) - ﬁi(m—i)) + 26(G; — £0:) + 06(qhsay — €8:) = O, (4.74a)
= ;/.(Ué(fi(m)) — Pi(m_s)) + 0&(ghs) — £6:) = 0. (4.74b)

In the above relation, Z;(m) is evaluated at §j; instead of y;. Also, this relation implicitly
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defines §;. Differentiating this equation w.r.t. (q;;(i r)) N gives
")

N2 Oqy; N¢
vy (Zi(m)) < 09; 1) 0 2 0% '
% + 4+ — — :0, VTEN'L;(475b)
N2 Bq,’;(i’r) 5 N§ 5 aq:z(i,r) ( )
w(@(m) (0% | 1 N T ), A
( + + NgdGr) -1 o Oqnimy O VrENE T

W(@(m) 85 SN -1 g <1_ ¢ O )ZO r=i, (475

n(%,1)

N \bgy, | e
(4.75¢)
which implies

(N —1) .
Tg — 56 forr = 1,

aﬂz 1 0 v"(:’ﬁi(m)) .

= X —— forr € N (1),
Guny  Y(E(mM) e Ne¢ N2g or (%)
N s utlam)

~NedEn T T Negdin 1 orr ¢ N(i), r # 1.

(4.76)

In the notation used above, for any r € N(7), n(%,7) = r. All other partial derivative of §;

are zero. With all this condition in (4.72a) becomes,

5(N — ‘ ‘ 5 ”(9: )‘ < >
SN
‘ Nf g 7'6/\/(7.

N
;\5/_ v, (z(zm))‘ ( g;() fd(i,lr)_1> <8¢ — ”(il_(;")) (4.77)
r#£1

|

We impose the condition

%= ( N];11> (4.78)

so that the expression inside the first absolute value term in above is negative. To simplify the

other expressions containing absolute value, we utilize the lower bound from (4.2), v}(+)
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(_771 _%) Set
n < NJ, (4.79)

so that the remaining expressions inside absolute value in (4.77) are guaranteed to be negative.

With this, (4.77) becomes

[—”f(fi(m))} 1+ > g+ Z)gd(w) 1

reN(7) rdN (i
r#£i
SN6 |2 | Y s — (N =N —1)| + NEQL—€) |, (480)
€ | ins €

r#i

where N — [N (2)| — 1 is the number of agents in the system except agent ¢ and all his/her
neighbors in N (¢). Clearly the LHS above is positive. For any r € N (2) and r # %, we have
d(z,7) > 2. On the RHS, inside the square brackets there are exactly N — |N(¢)| — 1 terms
in the summation and each term is of the form £ %, for some k > 0. Since ¢ < 1, this gives
that even the RHS is positive Utilizing the upper bound from (4.2), a sufficient condition
to verify (4.80) is n < NJD ,
the LHS and RHS of (4.80), respectively. Combining this with the condition in (4.79), a

where C;, D; are the expression inside the curved bracket on

sufficient condition for verifying (4.72a) is

1 C;

7 < min (Né N3 D,

) VieN. (4.81)

Without any further tuning of parameters £, §, the proof is complete as long as 7 satisfies
above. However, in our model we would like to accommodate any value of 7 > 1 and this

requires tuning of parameters £, 6. Set

1 . (C;
0= N min (Q) >0, (4.82)

in this to get the sufficient condition as 7? < m}\Ifl (C ) ie.,
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1 1
2 .
n° <ming |14 > 4+ Sai1
’EN{ reNGi) & rgy;g@) g

/ LY -V - D]+ N - ) } (483)
5 ,.%f;é('i)g ’

We want to tune £ such that the RHS above can be made arbitrarily large, whilst satisfy-
ing (4.78). For this, firstly note that, for any 2 € N the numerator of the RHS is greater than

1, hence it is bounded away from zero. Secondly, the denominator can be made arbitrarily

close to 0 by choosing ¢ close enough to 1,

S s W-WOI-0= ¥ (g 1) = T (s,

r¢N(3) r¢N(4)

reN
r#£i r#1 d(z,7)>3
(4.84)
. L\ 1/ e
where for any given ¥ > 1,e > 0, choose ¢ € (1+E> , 1] to have (5 1) < €.

Note that this is consistent with (4.78). The remaining term N{(1 — €) can also made made

arbitrarily small by choosing ¢ close enough to 1. Finally, it is clear from above that the

denominator can made arbitrarily small concurrently for all 2 € N.

The fact that the game is supermodular follows from the preceding analysis, where the

parameters are chosen such that each expression in (4.76) is positive. O
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Chapter 5.

Mechanisms Design for Fairness

Mechanism design for incentivizing strategic agents to maximize their sum of utilities (SoU) is
a well-studied problem in the context of resource allocation in networks. There are, however,
a number of network resource allocation problems of interest where a designer may have a
different objective than maximization of the SoU. The obvious reason for seeking a different
objective is that this notion of efficiency does not account for fairness of allocation. A second,
more subtle, reason for demanding fairer allocation is that it indirectly implies less variation in
taxes paid by agents. This is desirable in a situation where implicit individual agent budgetary
constraints make payment of large taxes unrealistic.

In this chapter we study a family of social utilities that provide fair allocation (with SoU
being subsumed as an extreme case) and derive conditions under which Bayesian and domi-
nant strategy implementation is possible. Furthermore, it is shown how a modification of the
above mechanism by adding just one message per agent can guarantee full Bayesian implemen-
tation i.e., no extraneous equilibria. We consider the problem of demand-side management
in smart grids as a specific motivating application and through numerical analysis it is demon-
strated that in this application the proposed method can result in significant gains in fairness

of allocation and a reduction in tax variation among agents.

1. Introduction

Mechanism design or incentive design is a well-established framework for dealing with decen-

tralized resource allocation problems in the presence of strategic agents. The corresponding

146



literature is vast, especially in the domain of dominant, Nash and Bayesian implementation,
[HuRe06; MaSj02; Ja01; Kr09; AlBoHoPo13a].

There are several engineering applications where mechanism design has been studied for re-
source allocation in the presence of strategic agents. Provision of bandwidth for networks has
been studied for different networks, such as unicast and multicast [MaBa06; YaHa07; JaWa10;
SiAnl4a; SiAn16]. Power allocation in wireless networks has been considered in [FuSc07],
where the VCG mechanism was adapted for competition between stations, and in [ShTe12]
where a mechanism that achieves Lindahl equilibrium allocation was presented. A simi-
lar problem of throughput maximization via mechanism design was solved in [SoZhFa08].
Truthful mechanisms for efficient spectrum allocation to selfish secondary users in a dynamic
setting has been studied in [WaWuJiLiCl08; Wal0], while the authors in [HuBeHo06b]
proposed a mechanism that achieved max — min fair allocation. Demand-side management
in smart grids using incentives has been studied in [FaAl00; CaKel0; SaMoScWo12]. Fi-
nally, an online auction for pricing of electric vehicle charging has been studied in [Gel1],
[BhKaChGu14].

In the area of Networks, a majority of the works start with the assumption that the social
objective is the sum of individual utilities (SoU) of all the system’s agents. There are, how-
ever, a number of problems of theoretical and practical interest where a designer may have
a different objective than maximization of the SoU. Consider for example, a network where
optimizing SoU results in one (or a few) agents receiving almost all the available resources
(e.g. bandwidth) and everyone else receiving an appreciably lower portion. In such a case, the
social planner may want to introduce fairness in the allocation process even if it means a slight
reduction in revenue. In such a market where efhiciency is defined by allocating through max-
imization of SoU, an agent can receive disproportionate allocation as long as he/she is able to
pay for it. Even if agents have this capability, a designer may desire to move away from this
notion of efficiency.

A second—more subtle—reason for a departure from the SoU social objective is the fact that
the standard mechanism design framework does not provide any formal way of limiting the
range of the taxes/subsidies required at equilibrium. This implies that the magnitude of the
monetary transfers (taxes/subsidies) can vary greatly among agents (with those who benefit

more from the allocation having to contribute more as well). This can be a significant practical
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problem since it does not take into account the budget constraints of individual agents.

'The prevalence of SoU over fairness considerations in most of the mechanism design liter-
ature has strong mathematical reasons. The main reason is that for SoU, in conjunction with
quasi-linear utilities, agents’ individual goals can be aligned directly with the overall social
objective, so that when agents maximize their net utility they are simultaneously maximizing
the overall social objective. The VCG mechanism [Gr73] is the most prominent example of
this. For any agent ¢, his/her utility v(z; 6;) is determined by the allocation z and their private
type ;. The SoU social objective is =~ | v(z; 6;), which upon maximization determines the
optimal allocation Z(8). For quoted message profile ¢ = (@) en, the utility of any agent 1 is
v(2(¢); 6:) — ti(¢), where VCG taxes t;(¢) = — X2, v(2(@); ¢;) + fi(¢—s) precisely create
a situation such that the user performs social objective maximization whilst maximizing self
utility.

As soon as one moves away from the SoU objective, due to the social and individual ob-
jectives not aligning with each other, basic design techniques like VCG mechanism are not
useful. This is one of the main reasons why there are significantly fewer results on fairness in
the mechanism design literature.

In [CoGkGo13], authors use the concept of “proportional fairness” (same as maximizing
the sum of log of utilities) to reduce disparity. The focus is on a tax-less mechanism where
the contract proposes to throw away existing resources (“resource-burning”) in order to tax
untruthful agents. This mechanism achieves at least £ fraction of proportionally fair allocation.
In[PaVo12], optimal auctions in the Bayesian set up are derived, such that instead of efficiency
maximization or revenue maximization, a linearly combined metric is maximized which favors
exchange of goods at low prices (thereby ensuring fairer trade).

“Envy-freeness” is another well-known criterion for equitable allocations (see [Va74]). This
notion was originally proposed for exchange economies where an allocation is called envy-free
if no agent is strictly better off by taking someone else’s allocation instead of their own'. Such
a notion was argued in terms of the stability it provides, since each agent may be content
with what they have comparing to the possible option of acquiring someone else’s allocation.

This, however, is an ex-post notion and in general imposes quite stringent constraints on the

Note that this exchange refers to both allocation of good and taxes.
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design. For a large enough environment it may indeed be impossible to achieve envy-freeness
in optimal allocation.

Max-min fairness is the one notion of fairness that has received the most attention in the
literature. In [PoShTe04] authors consider the mechanism design problem under perfect in-
formation with weak budget balance constraint and focus on achieving k—fairness® which is a
generalization of max — min. Possibility results are shown for k = 1, 3 whereas k¥ = 2 leads to
an impossibility result. In [AtYe08] authors provide tight bounds on ineficiency arising from
k—fairness in terms of budget deficit bound. In [WaXuAhCo15] authors consider a form of
VCG mechanism with the AGV (C. d’Aspremont and L.-A. Gérard-Varet) [dAGé79] tax-
form (an idea arising out of [dAGé79; dACrG¢é90]). The problem is of Bayesian mechanism
design with strong budget balance and efficient allocations. The authors formulate max — min
in this scenario as a parameter optimization problem and present an algorithm to solve it.

'The work of [WeMaOz14] is motivated by the second reason mentioned above for depart-
ing from the SoU social objective, in the context of dynamic pricing for electricity markets.
The dual version of the resource allocation optimization problem is considered and additional
structure is introduced on the dual variables to ensure less variation between them. This would
typically ensure less fluctuation in prices (and thus in the monetary transfers) since it is well-
known that the dual variables for resource allocation optimization problems act as prices in
the corresponding markets.

In [RaBo07] authors provide a centralized (non-strategic, non-decentralized) algorithm
for max — min fair allocation, with applications to wireless network problems. The proposed
algorithm generalizes the well-known water-filling solutions. The authors demonstrate that
the max — min fair allocation is derived from the geometric properties of the feasible allo-
cation set. Recently, in the area of green communications, analysis has focused on strategic
behavior in large-scale, multi-agent systems with decentralization of information. In [BeAl-
HoAmAIl15] authors introduce a fairness-based metric for energy efficiency in wireless com-
munication (non-strategic), which results in a max — min optimization problem. Readers
may refer to [LaKaChSal0] for a comparative study on different fairness metrics for resource

allocation in networking.

2k —fairness is said to have been achieved if at equilibrium every agents achieves utility of at least — v][v—k], where

[y is the k™ lowest cost and N is the number of agents.
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We would like to clarify that “fairness” when used in this chapter refers to allocating re-
sources such that all agents receive utilities as close to each other as possible. This is different
from the notion of “proportional fairness” [KeMaTa98; MaBa06] in resource allocation prob-
lems which is a technique to translate demands into allocation in a proportional manner. It
is also different from the idea of fairness used in scheduling algorithms for resource alloca-
tion [KuWh04; RaGuGoPs06; HuSuBeAg09; SaAlEr12], which refers to ensuring average
processor time assigned to each agent is proportional to their cost. The challenge for the
mechanism design problem such as ours is to elicit information about private utility func-
tions in order to make utilities closer at equilibrium. Also the model considered here is of
non-cooperation and thus fairness based on cooperative models [Bal.aSaSa16] that provide
solutions like bargaining are not considered.

In this chapter, we ask if and how we can design mechanisms that implement social objec-
tives that are especially designed for fairness and go beyond the standard objective of SoU. We
seek a methodology that is flexible enough to create space for the designer when other notions
of fairness might be too stringent. We consider the problem of demand-side management in
smart grids as a specific motivating application.

'The contributions of this work are summarized as follows.

We consider the form of the social objective given by the additive function 3>~ ; g.(v(z; 6;))
where v(z; 6;) is the utility of the 2-th user with allocation z and type 6;, and g.(z) is a family
of concave functions parametrized by € > 0. 'This is taken such that at € = 0, the objective
is simply the SoU i.e., go(2) = z; while as the parameter € increases, g.(-) becomes more
concave. Therefore, as € increases, more fairness is built into the allocation and comparison
from the baseline case of SoU (¢ = 0) can be made. Note that unlike agents’ utilities, the
choice of the specific function g, is in the designer’s hand, as long as it serves the design
objective of fairer allocation.

Within this framework we ask for which values of the parameter € and under what con-
ditions for g.(-) is dominant strategy implementation possible and when is Bayesian Nash
Equilbrium (BNE) implementation possible. We show that indeed mechanism design is pos-
sible provided € is not too large, by providing an upper bound on the range of €. This is done by
formulating the incentive compatibility constraints as a set of linear inequalities on the design

variables and checking whether this system (together with strong budget balance and/or indi-
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vidual rationality) is feasible. Our proving techniques follow closely the work of [dACrGé90;
dACrGé04]. Not surprisingly, the results in the Bayesian set-up are derived under certain
assumptions on the prior beliefs, p;(6_;|6;), of agents, which generalize the notion of inde-
pendent beliefs.

For the case of Bayesian mechanism design, we go one step further and propose a modifica-
tion to our mechanism which ensures not only that truth-telling is a BNE but also that it is the
only BNE. This provides robustness to the mechanism as prediction/focusing towards a spe-
cific desired equilibrium is no longer needed. For general Bayesian mechanism design, authors
in [MoRe90] have derived a set of sufficient conditions under which augmenting the message
space results in full implementation. Our approach is different from that of [MoRe90] in
that the sufficient condition is easier to verify and a precise modification to the mechanism
is presented. This modification doesn’t make significant changes to the mechanism and only
requires exchange of one additional message.

We finally demonstrate that the range of € induced by our methodology (from Section 3
and 4) is sufficient to provide quite significant gains in fairness - as measured by the decrease in
several measures of disparity. This is done for dominant implementation through analytically
solving for relevant quantities for the scenario of two-type agents. Similarly, for Bayesian
implementation, we carry out a numerical study for the smart grid application introduced in
Section 2.1.

'The remaining of this chapter is organized as follows: Section 2.1 describes a simplified
model for demand-side management of smart grids motivating the need for fairness in mech-
anism design. Section 2.2 defines the general centralized problem which has been modified
for fairness. The next two sections prove the existence of mechanisms that implement the
centralized problem for type sets of size two in dominant strategy (Section 3) and for general
finite type sets in BNE (Section 4). Section 5 presents the modification for full Bayesian im-
plementation. The analytical derivation for dominant strategy implementation is worked out
in Section 6 and the numerical study for the smart grid application is presented in Section 7.
Finally, Section 8 discusses future work and immediate extensions of the main results in this

chapter.
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2. Motivating Application and General Model

2.1. Demand-side management of smart grids

Below we discuss a practical application, as a motivation for our work, from demand-side man-
agement of smart grids using a simplified version of the model described in [SaMoScWo12].

We assume a power system with N users and a single supplier. The supplier does not have
any decision making power and is considered a passive agent. Each user has a decision to
make namely, the power level he/she wants to consume. It is assumed that the user loads
are price-elastic [St02] i.e., users can decide the power level they want for themselves after
taking price into consideration. The system runs for a single time slot®. Letz = (z1,...,Zy)
denote the power consumption profile of all the users. Owing to the power demand of musz-
run loads, for each user, the power consumption has a minimum m, limit, which is considered
public information®. This gives the feasible set of power allocation as X = {z € RY | 1 <
1 < N, m; < z;}. Users are assumed to be heterogeneous and are modeled by private utility
functions [FaAl00], v(z;, 8;), where z; is the allocation and parameter 8; € ©; represents
each user’s value for power. Following [SaMoScWo12] we assume quadratic utilities of the

form

6;x; — % if0 <z; < 26; (5.1)

’U($i, 91) = {

'The power supplier, although is a passive agent, incurs a cost for supplying the total power
demanded. This cost is assumed to be an increasing, quadratic (convex) function, C(y) = ay?,
where a is a technology dependent parameter and y = Y | z; is the total demanded power.
Most of the literature on mechanism design for efhicient allocation of power defines effi-

ciency from a market point of view i.e., power is allocated such that the sum of utilities is

maximized i.e.,

N N
max »  v(z;,6;) — C (Z $j> . (5.2)
2€Xx 3 j=1

3This is a simplification over [SaMoScWo12], where K > 1 time slots are considered. This simplification
retains all the salient features of the model, since in our work the focus is on allocation across agents and not
across time.

4 Again, this is a mild simplification compared to [SaMoScWo12], where m; is part of agent ¢’s private infor-
mation.

152



Table 2.: ©, = {5,15}, N = 100, 10% agents with high type, a = 0.3, m; = 0.1

Ty L o v(&y,0n) | v(£L,6L) o)
o/u (%) o/u (%)
GC (%) GC (%)
1.477 | 0.100 | 0.4152 21.608 0.498 6.36
175% 244%
53% 74%
iH iL g
(VCG) | (VCG) | a/u (%)
GC (%)
21.01 1.43 5.90
174%
53%

Setting aside for the time being the issue of how this problem can be solved in a decen-
tralized way in the presence of strategic agents, let us study the solution of the centralized
problem (5.2). For this define £(8) as the maximizer in (5.2), where § = (64, ...,0n).

For illustration, we consider a specific instance of the problem in (5.2) with the following
parameters. Users can be of two types, either high type (i.e., users who have a high valuation
for power) with parameter 8 = 15 or low type (i.e., users who have a low valuation for power)
with parameter 87, = 5. There are N = 100 users and 10% of them are of high type. Due to
the symmetry of the system the solution Z(6) to (5.2) can be expressed by just two numbers:
allocation to agents with high type, say £, and allocation to agents with low type, say £ 7.
'These results are provided in Table 2. We also tabulate the corresponding utilities achieved
at this allocation, together with different measures of disparity: (a) the standard deviation, o;
(b) the normalized standard deviation by the mean, o /u; and (c) the Gini coefficient (GC)°.
It is evident that there is a great disparity in the solution of the SoU problem (5.2) regardless
of the measure of disparity one considers.

Now consider the problem of mechanism design when allocation is through (5.2). We

Defined as the ratio of mean of the difference between every possible pair of data points with mean size. The
lower the value of GC, the more equitable the allocation. GC of 0% is perfectly fair and GC of 100% is
absolutely unfair - everyone except an individual receiving 0. GC is independent of scale, hence can also be
used in comparing fairness across different settings.
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choose as our baseline case the widely used and accepted Vickerey-Clarke-Groves (VCG)
mechanism [Gr73]. Indeed, VCG is proven to be a truthful mechanism when allocation is
based on SoU and moreover, it provides implementation in dominant strategies and thus is
robust with respect to information available to agents. Each agent is taxed based on the quoted
type profile by all agents. If agents quote ¢ = (¢4, ..., ¢n), then any agent ¢’s net utility is
v(z;; 6;) — ti(¢). Due to the symmetry of the system,the VCG taxes can be expressed by two
quantities, £z (taxes paid by users that quote type as ) and £, (taxes paid by users that quote
type as ). In the last three columns in Table 2 we present results on disparity in taxes paid
by different agents by the same three measures mentioned above. As above, there is disparity
in the tax paid between agents, an expected result since in a market, agents who pay more can
get more.

Now suppose that a designer wants to impose a fairer or less disparate allocation of power
and consequently taxes. The main question is how can this be achieved? We outline our
approach below in the context of the aforementioned application and develop this approach
in the general case in the rest of the chapter.

We propose that the designer solves the following optimization problem instead of (5.2)

Iglea)chg(v(azi, 6;)) - C <Z azz> (5.3)

where g(-) is a concave, increasing function. Due to the concavity of g(-) the law of di-
minishing returns ensures that the resulting optimal allocation is less disparate than the one
from (5.2). Consequently, the allocation resulting from (5.3) is preferable for a designer in-
terested in fairer allocation. However, this allocation cannot be implemented through the
VCG mechanism. The reason is that although the designer allocates through (5.3), each user
optimizes his/her true net utility, and as a result the objectives of the designer and the user
are not aligned through the VCG taxes. Hence, for a designer who wants to implement a
fairer allocation from (5.3), the question is whether there is a truthful taxation mechanism for
implementing this allocation in the presence of strategic agents. In a nutshell, this chapter

provides sufficient conditions under which the answer to the above question is positive.
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2.2. General Centralized Problem

For a system of agents N' = {1, ..., N}, allocation is defined via the following optimization
problem:
ie(e) = argmax Z ge(v(x) ei))a (54)
2EX N

where X C RY is the constraint set, § = (6;)icy € © £ Xien©; is the type profile of agents
and ©; is the discrete type set for agent 7 with |©;| = L,. The utility function v(z; ;) measures
agent ¢s satisfaction at allocation z with private type being ;. A concave transformation g.(-)
is applied for making the allocation fairer compared to the SoU setup. It is further assumed
that the functions g. : R — R and v(+;6;) : RY — R are such that the optimization has
a unique solution (e.g., if v(-;6;), ge(+), ge(v(+;6;)) are concave and increasing and X is a
convex set).

Specifically the form g.(2) = z — €f(z) for € > 0 is considered, where f(-) is assumed to
be a convex function. Note that at € = 0 optimization (5.4) becomes the SoU problem, while
as € increases from 0 the function g, has a stronger concave component. The form g.(z) =
z — €f(z) is considered without significant loss generality, since it closely emulates Taylor’s
series (w.r.t. €) of many interesting families of concave functions. Consider for example the
family h.(z) = 2* ¢ whose Taylor’s series is h.(z) = z — €(z log(z)) + o(€), where z log(2)
is indeed convex. In any case, the validity of a particular choice of the function f(-) has to
be justified in a specific application by the reduction of an appropriate disparity measure it

achieves.

3. Dominant Strategy Implementation

'The Mechanism design problem in this section is to find a message space M = X;cp M, and
allocation, tax functions (Z,t) : M — X x R such that the induced game for agents in N’

with action space M and quasi-linear utilities

;(m; 0;) = v(Z(m);0;) —ti(m) VmeM,ieN (5.5)
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has a dominant strategy equilibrium® m* for which Z(m*) = Z.(8), where 8 = (8;);cn is the
true type profile. This is known as Dominant Strategy Incentive Compatibility (DSIC).

In general, dominant strategy implementation is very restrictive (note that the well stud-
ied VCG mechanisms are no longer applicable since this is not the maximization of SoU).
Following [dAG¢€79], the special case of L, = 2V ¢ € N is considered in this section. In
particular, each agent is assumed to have a high and a low type, i.e., ©;, = {67,6/} Vi e N.

'The proposed mechanism is a direct mechanism, thus M; = ©, V ¢ € M. Agents report
their types (possibly untruthfully) ¢ = (¢;)icn and the allocation they receive on the basis
of this is the optimal allocation £.(¢) for the quoted type profile ¢, where Z(-) is defined
in (5.4).

Assuming that for not participating in the mechanism, an agent receives 0 utility value

(including 0 tax), the voluntary participation condition for dominant strategy implementation

isV(6;,6_;) €0, 1N,
v(£e(6;,0-:); 0;) — t:(6;,6_;) > 0. (5.6)

'This is the ex-post version of the individual rationality (IR).

We now explain the intuition behind the main result in this section and subsequently for-
malize it Theorem 3.1. It has been shown in the literature [dAGé79] that for the SoU opti-
mization problem (under certain conditions) there exists a mechanism which implements the
optimal allocation in dominant strategies. However, when the optimization problem changes
to the one in (5.4), implementation may not be possible since the designer’s objective (objec-
tive in (5.4)) is not aligned with the individual users’ objectives which are always of the form
v(Z.(0);0;) — ti(6). In fact, as € increases from zero, the two objectives become more and
more different. In Theorem 3.1 we are trying to quantify this effect by showing that for sufhi-
ciently small €, the first order differences —e f(v(z;6;)) do not affect implementability. We
do that by summarizing this effect in the quantity K (-) defined in Condition (A;). Intuitively,
as € increases the feasibility set defining taxes that satisfy the DSIC and IR conditions shrinks

and at some point vanishes.

SFor any 6, message m* € M is a dominant strategy equilibrium if it satisfies @;(m},m_;;6;) >
ﬂi(mi,m_i;ei) Vm; € M;, Vm_; € M_;, VieN.
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Next we state the assumption on (5.4) under which the main result in this section is derived.
For the optimization (5.4), first define V¢ € N, F; :== {(¢¥5,&) € ©? | ¢; # &} With this
define the difference, V¢ € N, (6;,¢;) € Fi, 6 , € ©_,,€ >0,

Ki(0i,0i,0_i,€) = > 9e(v(£c(6:,0-:);6;)) — D ge(v(&e(s,6-5);65)). (5.7)

JEN JEN
Optimality conditions from (5.4) imply that the above difference is always non-negative, since
£.(0:,0_:), (s, 0-;) € X and £.(6;,0_;) is the maximizer of }_,c v ge(v(z; 6;)) subject to
z € X. However, due to the finite type spaces, the difference above is expected to be strictly

positive. We formalize this expectation into the following condition.

Condition (A;) Assume that3é€,,q; > Osuchthatforall0 < € < €4z, V2 €N, (6, ¢;) €
Fi, 0, €0,
Ki(6;, ¢:,0_i,€) + Ki(5,0:,0 5,€) > 0. (5.8)

Condition (A;) need only be checked at € = 0. By continuity of the optimization on
parameter €, this will imply that these conditions continue to hold for all 0 < € < €4, for
Some €,,,. > 0.

'The first contribution of this chapter is summarized in the following theorem.

Theorem 3.1. If Condition (Ay) is satisfied then 3 €pey > 0 such that for all 0 < € < Epge
there exist taxes (tz(q’)))
strategies) and IR.

0PN that satisfy DSIC (which implies implementation in dominant

Proof. Please see Appendix 9.1 at the end of this chapter. O

The relation between €,,4, and €4, is defined in the proof, specifically via the relation
in (5.25).

'The theorem is proved in two parts, firstly the DSIC condition is stated as a system of linear
inequality constraints on the taxes (which act as design variables). In the spirit of the technique
used in [dACrGé90], Farkas Lemma is used to get an alternate condition which is equivalent
to satisfying DSIC. This alternate condition can be rewritten so that dual variables arising

from the Farkas Lemma are eliminated and thus the condition contains no unknowns and
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only the parameters of the problem. Finally these conditions are compared with Condition
(Ay) to get the result and the precise value of €.

Note that the stricter, but easier to verify condition

J €maz > 0s.t. VO < € < €maq, min min  min K;(6;,¢:,60 ;,€) >0, (5.9)
1EN (6;,¢;)EF; 0 €0 _;

is sufficient to guarantee that Condition (A;) is satisfied. Note that the above condition
and similarly condition (A;) do not impose a restriction on the agents’ types but only on the
maximum value of € for which dominant implementation can be guaranteed. This implies that
the functions g.(z) = z — e f(2), cannot be made to be as concave as the designer might have
wanted in order to have a fairer allocation, while still achieving implementation in dominant

strategies.

4. Bayesian Implementation

In this section we drop the assumption from the previous section that the type sets are bi-
nary and we consider type sets of arbitrary size. Dominant strategy implementation is too
restrictive for the general scenario, hence the next best reasonable solution concept - Bayesian
implementation, is considered.

In a Bayesian set up, agents have a prior distribution on the type profile. For agent %, prior
is p; € A(®). For basic regularity assume that the prior gives non-zero probability on all
points of © (this is only a technical condition and the ensuing results can be proved without
it as well). These priors are assumed to be common knowledge between agents and designer -
hence there is no need to introduce second order beliefs over the priors and so on.

The mechanism used is a direct mechanism with allocation function Z(), as defined in (5.4).
Given the allocation and tax functions (Z.,t) : © — X x R¥, the utility function in the
Bayesian set up for strategy profile 0 = (O’j 105 — @j)jeN is given by, V2 € N,

(0 | 6:) = By, [v(2:(0(6)); 6:) — t:(0(8)) | 4] (5.10)

where 6; is the true type of agent 2 and the expectation is conditioned on it. The Bayesian

implementation condition—also known as Bayesian Strategy Incentive Compatibility (BSIC)—
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for the direct mechanism is that the truthful strategy o (6;) = 6;, V0, € ©;, V¢ € N must
be a Bayesian Nash equilibrium (BNE)” for the induced Bayesian game.

In addition, it is required the tax function to have the Strong Budget Balance (SBB) property,
ie.,

Y t(y)=0, Vy€O. (5.11)
1EN

We restrict attention to optimization (5.4) and priors (pz()) o that satisfy the following

conditions.

Condition (A;) Assume that 3 €,,4, > 0 such that H(e) > 0 forall 0 < € < €4z, Where

H(e) = min (911,}*}11)1;;11@ [ (0, 9:,0 4, €) | 9¢], (5.12a)
hi(0;, ¢:,0_;,€) 322(”(@(@; 6 :);6;) — v(2(i,60-4); 9j)>- (5.12b)
JEN

This is the most general form of the assumption needed about the optimization. More

relaxed assumptions are discussed later in this section.

Condition (B) Assume that for any non-zero vector R := (R(%))yco with R(¢) € R,
there does not exist any A := (Ax(6k, Pr))ecn,(6r.60)c 7 With Ax(0k, dx) € R, such that
Vie N,V € 0,

1/J—i | 1/11) Z Ai(¢i)¢z Z p1 | 9 )‘ (91)"/}1) - ( ) (513)

$.€0; 6,€0;
biFYi 91'751/11'

Note that Condition (B) involves only the priors. This condition was first introduced
in [dAG¢€79] and is a generalization of independent priors, ie., p;(¥_; | ¥;) = p;j(¥_,)
(refer to [dAGé79] for an example of priors which are not conditionally independent but still
satisfy the condition above).

'The second contribution of this chapter is summarized in the following theorem.

7Strategy o* = (C":< 10, — ei)iEN isaBNE ifVi € N, Vo, €0, VO’; :0; — 0 ﬁi(df,dii | 91) >
’ai(agva*—i | ei)'
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Theorem 4.1. If Conditions (A>) and (B) are satisfied then for all 0 < € < €pqq, there exist taxes
(t:(9)) sco scr that satisfy BSIC (which implies implementation in BNE) and SBB.

Proof. Please see Appendix 9.3 at the end of this chapter. O

'The proof of this theorem begins by modifying tax variables ¢ to new variables z where the
relation between the two is such that SBB is always satisfied (without losing generality); this
is the famous AGV form of taxes [dACrG¢é90]. As in Section 3, the BSIC condition on the
design variables z is stated as a system of linear inequalities which is further converted into an
alternate expression by the use of Farkas Lemma. Unlike Section 3 though the dual variables
can't be eliminated in this case. With the help of Condition (B) the alternate condition is
further simplified to a convenient form which is then rewritten (by exchange of summation
order) in a way that can be compared to Condition (Az). This leads to the result and also the
precise value of €4,

For ease of verification, instead of checking (5.12) one can alternatively check the stricter

condition
min (91(1;1)1%}_ ,min hi(6;, $:,0 _i,€) > 0. (5.14)
or even
K(é) + € si(Hi, ¢;,0_;, 6) > 0, (5.15a)
where K(e) = min (9521)1%& e_IiIélél_i K, (6, ¢:,6 ;,¢€), (5.15b)
5i(0i, 9i, 0-ir€) = ) f(v(2(0:,0-:);0;)) — f(v(Ee(s,6-5); 65)). (5.15¢)

JEN

These conditions are easier to verify since they are prior-independent and depend only on
the optimization problem (5.4). Also, it is straightforward to check that (5.15a) = (5.14)
= Condition (A;). We finally mention that as in the case discussed in Section 3, the above
condition, due to continuity, need only be checked at € = 0.

Note that the SBB condition in (5.11) is an additional property that we impose on the de-
sign of the mechanism and not an additional assumption. In other words, if one removes this
additional requirement, all our results will still hold, and furthermore, the range of allowable

values of € will further increase.
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5. Full Bayesian Implementation

In accordance with the majority of the literature on Bayesian implementation (see for instance
[BoKrSt15; Ja91; Ja01; Hal2b]), the main result in the previous section aimed at BSIC con-
dition for implementation. This ensures that truth-telling is a BNE but gives no information
about other possible BNE. In general this may be a problem, since when the Bayesian game is
played, the designer cannot predict in advance which BNE will be achieved. The justification
used in such a situation is that of “focusing”®. Along with the mechanism, the selected BNE is
also announced by the designer. All the agents are then focused towards this particular BNE
and in anticipation that others will be playing according to it, they too choose to play it.

In this section we modify our mechanism by augmenting each agents’ message space to
include one additional message - which takes values in a continuous space - with the specific
aim of achieving full implementation, i.e., truth-telling as the only BNE. This will add to
the robustness of the mechanism and will put to rest any equilibrium selection issues. Such a
modification only requires that the BSIC constraints (see (5.37)) can be satisfied with strict
inequality. This gives the designer room to alter taxes.

For general Bayesian mechanism design, authors in [MoRe90] have derived sufficient con-
ditions under which augmenting the message space results in full implementation. We choose
however not to follow this technique, since it only provides existence results and the sufh-
cient condition itself is difficult to check since it requires searching over functions. Instead,
a concrete augmentation of message space and a concrete modification of the mechanism is
proposed below.

In our analysis we restrict attention to private goods i.e., any agent ¢’s utility is affected only
by level of his/her consumption level z; and the scenario where the utility functions v;(-) are
differentiable. Extending to general public goods is possible, but will make the proofs more
technical and obfuscate the basic idea behind them. Similarly, mean value theorem can be

used (to replace derivatives) but it will make the analysis more technical.

8This is the same justification as the one used for working without loss of generality, with the “revelation
principle” and direct mechanisms.
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'The new message space, allocation and taxes for any agent ¢ are

Mi — ei X [_5) +5]) m; = (¢i)yi)' (5163)
i;e,i(m) - je,i(¢) + Ys, (516b)

e fi 1 ! Aei y @i if _6) 6 )
ti(m) = { B(¢) + (@l 84 ifZi(ﬂ ) (5.16¢)

where #.(¢) is the allocation function defined in (5.4) and #;(¢) is a tax designed for BSIC
and SBB (from the previous section). Also, §, B > 0 are constants chosen by the designer. In
particular, 4 is a small constant, the choice of which will be clear in the proof of Theorem 5.1.
'The constant B is chosen to be large enough so that no rational agent will ever choose mes-
sage y; = +0. This is possible because due to the type sets being discrete, the utilities are
bounded. The modification above allows agents to change their allocation by a small amount
Y; € [—0,+0]. For this increase/decrease in allocation they are charged/subsidized at the
“market” price v'(Zc:(¢); ¢s) corresponding to the truth-telling strategy. This modification
serves the purpose of giving agents more delicate control of their allocation and utility than
in a discrete set-up. Technically, this allows the designer to disrupt any BNE at which the
price an agent is capable of paying (i.e., his/her derivative without tax terms) doesn’t match

the market price designed for truthful strategies.

Theorem 5.1. Assumin g that the conditions of Theorem 4.1 are satisfied and the space of taxes has a
proper interior (i.e., all incentive inequalities are satisfied strictly), then for the mechanism defined

in (5.16) at any true type profile 8 = (6;)icn,
(1) messagem* = (m*)ief\/ = ((Hi, 0))ieN is a BNE.

K3

Furthermore, assuming¥ v € N, (6, ¢;) € Fi, the sign of the quantity v'(Zei(¢s, ¢—:); 60;) —
V'(Zei (@i, —i); i) remains the sameN ¢_; € ©_,

(2) any message other than m* is not a BNE.

Hence the mechanism in (5.16) achieves full Bayesian implementation.

Proof. Please see Appendices 9.4 and 9.5 at the end of this chapter. O
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Several comments are in order regarding the statement and the proof of theorem. The
condition just prior to Part (2) of the theorem can be interpreted as follows. Start with a
stricter condition: sign of v'(z;6;) — v'(z; ¢;) is the same for all z € X. Based on this the
types in ©; can be ordered solely based on the derivative they induce. This ordering, which is
otherwise not possible (since the expression can in general have different signs as z varies), has
further significance. In SoU problems (like (5.4) at € = 0), optimal allocation is dependent
only on the rate of growth of utilities’. Thus for ordered types, from (5.4) at € = 0, optimal
allocation for an agent depends monotonically on their type irrespective of others’ types. The
actual condition prior to Part (2) of the theorem is a simpler version of the stricter condition
and requires checking for only finite number of arguments.

'The proof of the first part of the theorem begins by establishing that truth-telling is better
for any agent given that others are playing m* ;. Then, further optimization on the y; variable,
with the use of calculus (since the utility depends on this continuously), proves that truth-
telling and y; = 0 is indeed a BNE.

'The proof of the second part of the theorem relies on establishing a profitable deviation
with the y; variable (for some agent 2) whenever the message is different from m*. The gap
in the incentive inequalities (assumed at the beginning of the theorem) determines the range
for y; i.e. value of the 4.

In general, the proof of Part (2) of the theorem requires for all 8;, ¢ and o_;, the quantities

> pi(6-i]6) [U'(fﬁi(aw));@) — v'(Z:(c(8)); 0:(6:)) (5.17)
6_.€0_;

to remain non-zero whenever 0;(6;) # 6;. Any condition that ensures that for any non-
truthful strategy o there exist an agent ¢ and type 6; for which the above expression is non-
zero, would be sufficient for the theorem to hold. For example, given type sets, utilities and the
optimization, a condition on the priors may then be sufficient. Furthermore, such condition
wouldn’t significantly reduce the set of possible priors since the space of priors is essentially
equivalent to RITZ: Bt while only a finite set of hyperplanes are eliminated from it.

Finally, the mechanism presented has the SBB property only at BNE. However, as in the

*This is because at optimum, trade-offs between giving infinitesimal allocation to one agent vs. another will be
determined by the slope of their utilities at those points.
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proof of Theorem 4.1, using the AGV form for budget balanced taxes i.e., &;(m) = Z;(m) —
ﬁ > ;i 2;(m) a similar modification can make the mechanism in (5.16) budget balanced
oft-equilibrium as well. In order to effectively convey the salient features of the augmentation

for full implementation we presented the mechanism without this modification.

6. An Analytical Example for Dominant Implementation

'This section contains analysis of an example where we are interested in evaluating the gain in
overall fairness w.r.t. allocation and taxes, attained with the proposed method. The example
considered provides closed form expressions for the relevant quantities from the optimiza-
tion (5.4), which enables a closed form expression for the gains in fairness.

Consider ©; = S = {0y,0,} Vi € N, where 8y > 61, > 0and linear utilities with private
consumption i.e., v(z;6;) = 0;z; (this is a simplification over piecewise linear utilities, for e.g.
[Mo16] uses it in an energy storage application, [CuNa05] uses it in resource allocation on
wireless networks). The constraint setis X = {z € RY | =¥, z; <1} and g.(2) = z — e2?.

'Thus the centralized optimization problem is

£.(0) = arg max %;/ (Gimi — e@f:z:f) : (5.18)

At € = 0 the objective is exactly the SoU. As € starts increasing from 0 onwards, the optimiza-

tion problem is transformed such that higher utilities will be weighed less than lower ones -
thereby giving closer to equal distribution of allocation.

Due to the symmetric nature of the problem, the solution can be described by the pair

(z g, 1), which denotes the allocation to any agent with type 8y, 6, respectively. Generically

we denote by m € {0, ..., N} the number of agents with type 8.

At € = 0 a solution (there are multiple) to the above is ¢ = % and z; = 0. For
0<e< %9’{07;9% the unique solution is the same. For € > %Q%EGL , the unique solution is
H H

W) (G — 6.,) + 63 (0, 0m) + 6%
mé? + (N — m)o% ’ L= mé? + (N — m)o%’

(5.19)

Ty =

Dominant implementation condition from the proof of Theorem 3.1 is satisfied if €4, is
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Figure 16.: Gini Coefficient of ('U(:f:e(e); Qi))ieN vs €, N = 50.
such that
2
Poas = 5o % (5.202)
0L (g, 4 QL)<m9% (N —m— 1)9%,)
N+1 2
> i ; oL . (5.20b)
a0 (o + ) (V- 1)63 )
'The inequality is calculated so that the expression is independent of m.
'The main quantity of interest is the variation in the utility profile (v(:z-e(e); Qj));v_l. We
consider the well known Gini coefficient (GC) as a measure of disparity in allocation.

- N(m@H:z:H —+ (N — m)@L:z:L)

where GC depends on € via Ty, zf.

Fig. 16 plots GC vs. € for N = 50, (8y,01) = (1,0.75) and three cases m € {9, 24, 39}.
In this example €,,,, = 14. As is evident from Fig. 16, there is considerable reduction in the
GC in the range of allowable €. The gains are particularly significant for smaller values of m

i.e., m = 9,24 since in those cases the inequality in allocation is significant to begin with (at

€ = 0).
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Figure 17.: Plot of quantities that determine €,,,4,. The difference between upper and lower
bounds imposed by BSIC and H(€) from eq. (5.12a).

7. Bayesian Implementation for smart grid demand-side
management

This section considers the case of Bayesian implementation and further elaborates on the smart
grid application presented in Section 2.1.

For the numerical analysis we consider parameters (as in Section 2.1), N = 100, 0y = 15,
6, = 5,a = 0.3, m; = 0.1. In this application we have symmetric agents and hence any
profile of types 8 = (64, . ..,0100) can be represented by a single number m € {0,...,100}
which represents the number of agents with type 8. A common prior Binomial(100, 0.1) is
assumed on m, so the typical number of high-type users is 10. Also note that both allocation
and taxes, which are a function of type profile § can now be represented as functions of the
variable m i.e., £;(68) = zg(m) if §; = Oy, else Z,(8) = z(m). For appropriate comparison
with the results in the literature we do not consider the SBB constraints for this example.

Figure 17 depicts two quantities as a function of €. First, H(e) defined in (5.12) in Condi-
tion (Az) in Section 4. We find that H(e) > 0 for all € < 0.025. For this specific example,
since the types are binary and agents are symmetric, the BSIC constraints imposed on the
taxes (as shown in (5.37)) simplify to a single inequality of the form A > 0. The second quan-
tity plotted in Figure 17 is A. From this plot, we ascertain that taxes satisfying BSIC exist
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Figure 18.: Gini Coefficient (%) and Standard Deviation of (v(:ﬁe(é’); 91-)> o VSE

for up to € < 0.2. 'This implies that the sufficient condition (Ay) imposes almost an order of
magnitude less €,,,, compared to the one imposed by the looser condition (5.37) required in
the proof. We make two comments regarding this discrepancy. First, in cases where agents
aren’t symmetric or the number of types is more than two, one cannot represent feasibility in
the simplified form A > 0 and so one has to rely on sufficient condition (A;). Second, as will
be shown in the subsequent analysis, even this reduced range of € provides significant gains
in fairness.

Figure 18 depicts GC and the standard deviation, o (dual y-axes) of the utility at optimal
allocation, ('U(:T:E,i(ﬁ), ei))iej\/ vs. €, for the typical case of m = 10. The GC value is 73% at
€ = 0,55% at e = 0.025 and 15% at € = 0.2. Recall that GC is a normalized quantity with
100% being extreme case of unfairness and 0% being fairest. This demonstrates that even
under the stringent sufficient condition (Az) we can have reduction of GC by 18 percentage
points (and a further reduction by another 40 percentage points if we choose the extreme value
of €42 = 0.2 dictated by (5.37)). A similar decreasing trend is also evident for the standard
deviation, as € increases.

The results in Section 4 guarantee existence of taxes such that BSIC are satisfied. This
means that there is a non-empty feasible set of taxes (shown to be a polytope in the proof,
Appendix 9.3). In order to fully specify taxes a designer can choose any point within this

non-empty set. In the following, we consider two such choices detailed below.
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Figure 19.: Standard Deviation of Taxes vs. €, for 10% agents with type 8 as well as mean
with Bin(100,0.1) prior.

* 'The first one minimizes the expected total tax paid by agents over the non-empty feasible set.
In this case, we impose two further practical constraints. First, all taxes are non-negative
and second, the expected payoff of the supplier (revenue minus cost) must be positive. If

this were not true then the supplier would be better off not participating.

Figure 19 depicts standard deviation o in the tax vector (tl(é’), oot N(@)) with m = 10
vs. €, as well as the mean w.r.t. m. For the case of m = 10, the ¢ value is 0.51 at ¢ = 0,
0.26 at € = 0.025 and 0.026 at ¢ = 0.2, and similar trends are observed for the mean o.
'This justifies one of the stated goals of this work, which is to lower tax fluctuation between

agents.

* 'The second one maximizes the expected total tax paid by agents (i.e., revenue for the pro-
ducer). In this case, we impose the non-negative constraint on taxes as above, and a comple-
mentary constraint of individual rationality of each user. This ensures that at equilibrium

users are better off than not participating.

Figure 19 also depicts the standard deviation in the tax vector (tl (0),...,tx (9)) withm =

10 vs. €, as well as the mean w.r.t. m, with similar trends observed as above.

'The above results can be compared to two well-accepted baseline designs. The first one is the

VCG which results in standard deviation of the tax vector equal to 5.9 (typical i.e., m = 10)
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and equal to 6 (average). As the second baseline design we consider a Stackelberg Game
played between the supplier and users [MaWhGr95, Chapter 12, Bertrand Competition].
Supplier plays first by setting the price, agents play next by setting their demand equal to the
level that maximizes their own utility (for this to be well-posed we assume minimum demand
m; = 0). Anticipating this the supplier sets that price which maximizes his/her expected
payofl, revenue minus cost. This is the same as Peak Load Pricing (PLP) scheme mentioned
in [SaMoScWo12], applied to a single-shot model. This scheme results in standard deviation
of the tax vector equal to 0.59 (typical i.e., m = 10) and equal to 0.6 (average).

8. Summary and Comments

Fairness for resource allocation problems in the presence of strategic agents has received rela-
tively less attention due to lack of mathematical convenience in analysis. This chapter proposes
a new concept of fairness in resource allocation problems that goes beyond SoU maximization.
'This fairness aspect is adjustable (through the selection of the parameter € and the function
f(+)) in a family of functions, thus giving a wide range that a designer may exploit at their own
discretion. The main result proves the existence of incentive mechanisms that implement the
fairer allocation proposed in dominant and Bayesian equilibria (in respective cases). Analyti-
cal and numerical results indicate that through the proposed techniques there are significant
gains in fairness of allocation, within the permissible limits of the design method. The theoret-
ical results are justified by discussing a specific model for demand-side management in smart
grids. Finally a modification of our mechanism is presented, which guarantees truth-telling as
the only BNE. This is done by adding one continuous message per agent, other than his/her
type. This modification is especially useful in situations where selection of equilibria is too
complex to predict.

Although the form considered in (5.4) is g.(z) = z — € f(z), it is easy to see that the results
can be extended to cases where f depends on €; as long as terms of the form €f(z,e) — 0
as € — 0. Ideally one would like to consider the class of g.(z) = 2'7¢, so as to reconcile
with known fair social utilities such as the geometric mean and min utility. This however may
not be a practical necessity since as indicated by the results in Sections 6, 7, even the form

9:(2) = z — €2? provides a significant reduction in disparity of allocation, utilities and taxes.
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9. Appendix

9.1. Proof of Theorem 3.1

Proof. We begin with the following Lemma:

Lemma 9.1. Forany e > 0, there exist taxes (tz(q’))) that satisfy the corresponding DSIC

ISCRISIY
(which implies implementation in dominant strategies) and IR conditions if and only if, ¥V 0_; €

@,i, ’iEN,

v(Z(6f,0_.); 07 ) + v(2(67,0-.); 6F) — v(&(6],6);6;) — v(2.(67,6-:);6f) > 0.
(5.22)
Proof. Please see Appendix 9.2 below. O

From the definition in (5.7), we have

V(Ee(0:,0-:); 6:) — ef (v(Ee(8:,0-:);6:)) + D v(&e(6:,6-:);8;) — ef (v(2e(6:,0-4); 6;))

J7#4

= U(Ee( i, 0-.); 0:) — € f (v(Ee($5,0-0);6:)) + 5 v(Be($i, 6-0); 6;) — e f (v(Ee(¢:, 6-:); 6,))
JF#
Ki(9i7 ¢i1 97i7 E)' (523)

Using the above twice, first with (6;, ¢;) = (67,6F),0_;, = 6_; and then with (6;, ¢;) =
(6F,67),6_; = 6_;, and adding the two results in (using the notation from proof of Theo-
rem 3.1)

Ay —e€f(Aum) + AL, — €f(ALL)
= K;(67,6F,0_.,¢) + Ki(67,67,0_.,¢) + Aur — €f(Aur) + Ary — €f(Ary). (5.24)

This can be rewritten as

Ay + Ar, — Agrp — Ay
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= Ki(‘ng, 9{‘, 0_i, 5) + Ki(ef, ‘95[; 0_;, 6) + €<f(AHH) + f(ALL) - f(AHL) - f(ALH)>-
(5.25)

Thus it is sufficient to prove that the RHS above is non-negative. Owing to Condition (A;),
3 €maz > 0 such that the sum of the first two terms in RHS is strictly positive for all 0 < € <
€maz and clearly the second term can be made arbitrarily small in magnitude (by choosing a
smaller €,,,.). Hence the condition in (5.22) is satisfied'® forall 0 < € < &,,4. The value &4,
is bigger or smaller than €,,,, depending on whether f(Agx)+ f(ALL) — f(AuL) — f(ALm)

is positive or negative in the range (0, €maz)- O

9.2. Proof of Lemma 9.1

Proof: Note that the taxes are a finite collection of variables, since ®, N are both finite sets.
For the DSIC constraints to be satisfied, the following constraints must hold V7 € N, V
0_;, € ©_;,

v(ie(ef,ﬁ,i); 95[) — tz(gf, 971) Z v(:f:e(ﬁf, Q,i); Hﬁ) — ti(gf, Q,i), (5263.)
v(:f:e(ﬁf’, Q,i); 91[') — tz(HIL, Q,i) Z v(:f:e(HfI, Q,i); 91[') — tz(HIH, 971) (526b)

This gives truth-telling as a dominant strategy for agent ¢ regardless of types of others. For

IR, the following constraints must be satisfied V¢ € N,V 0_, € ©_,,

ti(ef, 9—1’) S v(:ﬁe(ef{, 9_i); GIH y (52721)
ti(gill’e—i) S ’U(je(giL’e—i); ezL : (527b)

From the above sets of constraints it is clear that one can design (ti(efl ,0.2),6:(6F, H,i))

separately for each 7 € N, 6_; € ©_;. So for any 1, 6_;, the constraints can be rewritten in
P y a2

0Qverall the behaviour of K;(6;, ¢;,6_, €) w.r.t. € will dictate the value of €4z, Emaz- This in turn will effect
the usefulness of this method, since a designer might want to ensure certain minimum gains in fairness for
which he/she might want to choose € as large as possible.
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the form

(1 (Ann — A
-1 1] |t Ap,— A
< | A HL (5.29)
1 0] [t Agg
10 1) I Apr |
where (t1,t2) = (:(65,0 ), t:(6F,6 .)) and
Apn = 11(:%5(951, e—i); 9{1), App = 'U(ie(eill’e—i); ezL)’ (529)
AHL = U(ie(gf,a_i); 91[1), ALH = 'U(Iie(giL,@_i); 9{{) (530)
Using the Farkas Lemma, the above system is feasible in ¢ if and only if V A € R%,
_ S _ S
1 -1 A1 Agg — Ary A1
-1 1 A A, — A A
20 = Lh HD ’I >o. (5.31)
1 0 A3 Apn As
L 0 1 ] _A4_ L ALL ] _A4_

'The equality constraints on A give that A\; + A3 = Az and Ay + Ay = A;. These give
A3 = As = 0. Hence A € R? can be parametrized as A = (£,¢,0,0)" for £ € R, Thus for

teasibility, using Farkas Lemma, the condition that must be satisfied is

(AHH - ALH; ALL - AHL) AHH) ALL) ' (5) £) 0) 0) Z 0 (532)
~ §<AHH +Apr — Anr — ALH) >0 (5.33)

& Agg+ Ap, — Aur — Ay > 0. (5.34)

O]
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9.3. Proof of Theorem 4.1

Proof. 'The utility for any agent ¢ when other agents are truth-telling is

a(¢i |6) = 3 (6 | 6) [v(::ne(qsi,e_i);ei) b, 65) (5.35)

0 €0 _;

where agent s true and quoted types are 8;, ¢; € ©;, respectively. We consider taxes in the

AGYV form [dACrGé90],

1

ti(v) = z:(¢) — N1 sz(iﬁ) VieN, ¢ 0. (5.36)
jE

i

Taxes in this form always satisfy SBB and any tax function which satisfies SBB can be written

in this form. Therefore WLOG, the design variables henceforth are (zj(¢)) JEN-
YEB®
BSIC constraints can be written as: Vi € N, (6;, ¢;) € F;,

ﬁi(ei | 91) Z ’l'li((pi | 91) (53721)
s > pi(6-:]6:) {Zi(gi; 6_;) — Nl—l > 2;(6;,0-;) — zi(¢i, 0_5)
6_,€0_; J#1
1
t N1 ;zj(ﬁbi,@—i)]
< Ym0 ] 6)[v(8e(6:,01);6:) — v(&:(8:,6 4);6)]. (5.37b)

0_;€0_;
So the condition for design of taxes is a linear system of inequalities and can be written in the
form Az < bwhere the indexing is as follows: z = (z](’t,b)) ERPL Y= <b(i, 6, ¢1)> € RP:
and A = (A(i,@i,cbi | ],2/))) € RP>*P for D; = NI, L and D, = 1, (L7 — Ly).

'The rest of the proof will be to show that this linear system is feasible in variable z, using the

Farkas Lemma'' [Ro70, pg.201].

11 Relevant version of the Farkas alternative result: The system
teRY, Az<b;, AecRM*N pcRM (5.38)

is feasible iff all solutions A\ € Rﬂ_’[ of ATA = Osatisfy b XA > 0.
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Consider any A = ()\i(ﬁi,(bi)) € A2 { (B, de) ER, | k€N, (B, dr) € Fi} that
satisfies A" A = 0,ie.,Vj €N, ¢ € ©,

STOST AG, 6,0 | 5,%) M6, ¢:) =0

1EN (85,4:)EF;

& (Y= | 95) D Ay, ;) — > pi(h—; | 6;) A;(65,%;5)

di#Y; 6575

- Ni > {Pk Yo | Ue) D (o br) — D De(¥—k | Ok) Ae(6k, ¥i)| = 0.
k#j b7 Yn Ok 7Yk

(5.39)

'The above equation can be rearranged to give thatV 7 € N, ¢ € 6,

(Vs | ¥5) DO AW i) — >0 pi(W_; | 6;) A (65, ;)

¢ #Y; 6575

Y Z {Pk Y_r | Yr) Z eV, i) — Z Pr(V_k | O) Ae(Ok, ¥i)|. (5.40)

kEN PuFPr OuFYr
Denote the RHS above by R(4) and note that it depends only on 7 and not j.

Lemma 9.2. If X € A satisfies (5.40) then for any 5 € N, 9; € ©,

Do A(05%5) = D0 Xi(¥5,¢5)- (5.41)
6;€0; #;€0;
0;7%; i 7Y;
Proof.
> A8 %5) — >0 A5, 95) (5.42a)
6;€0; $;€0;
0;£Y; biFEY;
=2 {pj(iﬁj!%) > Ai(0%5) — > pi(v | ¢j)Aj(¢j,¢j)] (5.42b)
V- 8;79; $iAb;
=) R, %) (5.42¢)
Y

= Z {pk("p—k | Yr) Z e (O, Pr) — Z Pe(V—r | ¢x) Ak("pk;‘pk)], k#3 (5.42d)
Y—j

OrFAYr PeF Pk
=0. (5.42¢)
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Here (5.42c¢), (5.42d) follows by application of (5.40) and other equations are just by rearrang-
]

ing summation terms.

With the application of above Lemma, one can rewrite the LHS of (5.40) to get thatV j, 9,

pi(W—i 1 95) Do Ai(d5,%5) =D pi(¥—; | 6;) Ai(6;,%;) = R(¥). (5.43)

di£Y; 05 7#Y;

Condition (B) on priors states that there exist no A € A such that above holds for a non-zero

R. Hence AT\ = 0 implies that R = 0, therefore (by (5.40)) V7 € N,V ¢ € ©,

(W5 1 95) Do AW ) = > pi(¥-5 1 6;) Ai(85,%5) (5.44)
biFY; 0;#Y;

Next we show that for all A € A that satisfy (5.44) we have b' A > O i.e.,

Yoo > b(4,65,%) Ai(0i,¢5) > 0 (5.45a)
S > Nlng) Yo pi(0-i6)- {U(ie(ei,e—i);@) — v(2e(¢i,6-:);0:)| > 0.
iENy 9—1’6@_1;
(6:,:)EF:

(5.45b)

Proving this will finish the proof by Farkas Lemma.
Foranys,6;,¢;,0 ;,denotex = £.(6;,0_;), & = &(¢s,6 ;). Rearranging terms from (5.7),

gives

v(z;6;) — v(E;6;)
S (v(:f:;ej) —v(g; 9j)> +e (f(v(:r;ei)) - f(v(i;f)i))> + K65 i, 0, €).

JEN JEN
Jj#e
(5.46)
Denote the RHS expression in (5.46) as 7 = n; + 72, where
m=), <’U(fi;9j) - v(m;Hj)>, (5.472)
TN
FE=)
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M =¢€ Z (f(’U(fU; 0;)) — f(v(&; ‘9j))) + Ki(6;, ¢, 6, €). (5.47Db)

JEN

Now continuing from the LHS of (5.45b),

LHS of (5.45b) = > Xi(0i,¢:) > p:(6-i | 6:)(m + m2). (5.48)
(evig%}_‘ 6_;€c0_;

For any fixed ¢, consider the summation with only 7, first

Yoo Xi(0i,0:) D>, pi(6-i|6:) ) (U(ie(@,@—i);ej) - U(js(ei,e—i);ej)>

(0:,9:)EF; 0_;€0_; JEN
J#i
=2 > v(Ze(6i,6-0):6;) Y pi(6-i | 6:)Ai(6;, ¢:)
JEN ¢.€0;, 0;4p;
J#1 0_,€0_4

= > >0 A, ¢:) pi(0-i | 6;) v(Z(6:,0-:);6;). (5.49)
JEN (8:,¢:)€F;
J#1 0_,€0_
By (5.44), the inside summation in the first term is equal to p;(8_; | ¢;) 2oy, A(¢:, ¥;). Incor-

porating this and changing variables of summation appropriately gives the overall summation

from (5.49) equal to 0. Now consider the term in the RHS of (5.48) with 7,

Z Ai(6i,¢:) >_ (6| 6;) - M. 550
(Giffij)\[E}‘i 6_i€0_;

Rearranging terms in 7, we can write

m=3 (v(ﬁe(ei,e_i);ej) - v(:ze(qsi,e_i);ej)). (5.51)

JEN
'Therefore by Condition (Az), 3 €mez > Osuch thatforall0 < € < €44, the inside summation
in (5.50) is non-negative V 1 € N, (6;, ¢;) € F;. This finishes the proof by Farkas Lemma,

since the expression in (5.45a) is now shown to be non-negative for all positive 0 < € <

]

emaa: .
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9.4. Proof of Part (1), Theorem 5.1

Proof. For strategy
(,p) = ((ai .0, -0,), (o0, - [—5,+5])> , (5.52)
1EN

utility is
(©1616) =30 09 o a:(0(0) + 50i6:) - £(0(0))

— (6.0 (340 (6)); ai(é’i))} (5.53)

First in this proof we establish that for any agent 1, true type 6;, when other agents use
strategy m*, = (6_;,0), strategy 0;(6;) = 6, gives higher utility than 0;(6;) # 0; at any
value of p;(6;). For this start by considering the utility in (5.53) with o_;(6_;) = 6_; and
pi(6:) = 0,

i(0:(6,) | 6:) Zpl 6_.16) { 0(2.4(0:(0:),6-.); 8:) — . (0:(68)), 9_1)} (5.54)

From the result in Section 4, allocation and taxes (Z., ) satisfy BSIC condition. Hence the
utility in (5.54) is maximized at 0;(6;) = 6;. The minimum difference between the value of
such an expression at 0;(6;) = 6; and 0,(0;) # 6; is strictly positive since the tax function t
satisfies BSIC with strict inequality. Now the utility u; in (5.53) clearly depends continuously
on p;(6;), hence by choosing a small enough range for p;(6;) (i.e., by choosing a small enough
d) it can be ensured that even in (5.53), for 0_;(6_;) = 0_;, u; is maximzed at 0;(6;) = 6;.
Now the only thing that remains to be proven is that when other agents quote message m*
and 0,(0;) = 0;, then p;(6;) = 0 is optimal. For agent ¢ and true type 6;, the utility in (5.53)
only depends on p; through p;(6;). Optimizing w.r.t. p;(6;) (for calculating equilibrium) gives

Bui 1A . 0. - cr.-(0-: —
ooy~ , 2 P18 {v (2e5(6) + ps(6:); 6:) — v/ (2,:(8); 0u(6:))| = 0. (5.55)

At equilibrium, the above derivative will have to be zero since the end points £ cannot be

maximizers - since they incur a huge tax B. Also note that since v(z;; ;) is assumed to be
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concave in z; (for any 6;) the utility u;(o, p|6;) in (5.53) is concave in p;(6;) and thus the
condition in (5.55) is both necessary and sufficient for optimality w.r.t. p;(6;).

The expression in (5.55) is clearly equal to 0 when ¢,(6;) = 6; and p;(6;) = 0. Hence
applying the above result for all §; € ©; and ¢ € N gives that m* = (6, 0) is a BNE. O

9.5. Proof of Part (2), Theorem 5.1

Proof: Consider the derivative similar to (5.55) but with general strategies

8ui PR a
80:(65) = e_i%;)_i pi(0-: | 6:) [U (Ze,i(04(6:),0-3(0-5)) + pi(65); 65)

0 (Fea(04(6:), 7 i(6-1)); ai(ei))] . (5.56)

This being zero is a necessary at BNE. Now we begin by considering the same with p;(6;) = 0,

U= 5 PO ] 6|V (@uil0:(6),04(6-0))i82) — V' (@usl0:(61),0(6-)); (62)].

0 €0 _;

(5.57)

By the assumption in the theorem statement, for 0;(6;) # 6;, the term inside the brackets
above is either positive for all 8_; or negative for all §_,. Hence the expression ¥ cannot be
zero for any ¢, §; when 0;(6;) # 6;. Since only discrete variables are involved in the expression
¥, it means that all the values that ¥ can take (i.e., V ¢, 8;, 0 with 0,(8;) # 0;) are a discrete
set (say, D) of points not containing zero.

'The only difference between the expression in (5.56) and ¥ is the introduction of the vari-

able p;(6;) € [0, +0] - on which the expression in (5.56) depends continuously. This means

Ou;
Opi(6:)

points from set D. The range of the continuous sets around each point in D can be continu-

that the set of all values (say, ) taken by is the union of continuous sets centered at the

ously controlled by changing ¢ with the sets becoming a discrete point as 6 — 0. Hence it is
clear that one can find § small enough so that even this new set F doesn’t contain zero. Once
such a ¢ is chosen it is clear that any strategy o for which 3 %, ; such that ¢;(6;) # 6; cannot
be a BNE since the expression in (5.56) being zero was a necessary condition for a BNE.

Note that each part of the proof of Theorem 5.1 prescribes a positive upper limit for d. The
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designer will eventually choose a § that satisfies both.
Now consider a strategy of the form m} = (6;, y;) where there is truth-telling but y; # 0.
It is clear that this cannot be a BNE, since by strict concavity of v(z;; 6;), at 0;(6;) = 6; the

expression in (5.56) goes to zero only for p;(6;) = y; = 0. O
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Part Il.

Dynamic Games
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Chapter 6.

Structured Perfect Bayesian Equilibrium in
Infinite Horizon Dynamic Games with
Asymmetric Information

In dynamic games with asymmetric information structure, the widely used concept of equilib-
rium is perfect Bayesian equilibrium (PBE). This is expressed as a strategy and belief pair that
simultaneously satisfy sequential rationality and belief consistency. Unlike symmetric infor-
mation dynamic games, where subgame perfect equilibrium (SPE) is the natural equilibrium
concept, to date there does not exist a universal algorithm that decouples the interdependence
of strategies and beliefs over time in calculating PBE. In this chapter we find a subset of PBE
for an infinite horizon discounted reward asymmetric information dynamic game. We refer
to it as Structured PBE or SPBE; in SPBE, any agents’ strategy depends on the public his-
tory only through a common public belief and on private history only through the respective
agents’ latest private information (his private type). The public belief acts as a summary of
all the relevant past information and it’s dimension does not increase with time. The moti-
vation for this comes the common information approach proposed in Nayyar et al. (2013)
for solving decentralized team (non-strategic) resource allocation problems with asymmetric
information and Vasal et al. (2016) where SPBE for finite horizon games are characterized.
We calculate SPBE by solving a single-shot fixed-point equation and a corresponding forward
recursive algorithm. The class of SPBE contain equilibria that show signa/ing behavior and

we demonstrate this (and our methodology) by means of a public goods investment example.
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Finally, analytical and numerical tools for checking the existence of SPBEs is discussed.

1. Introduction

Dynamic games with symmetric information among agents has been studied well in game the-
ory literature [FuTi91; BaOl199; MaSa06; KrZa14]. The appropriate equilibrium concept is
subgame perfect equilibrium (SPE) which is a refinement of Nash equilibrium. A strategy pro-
file is SPE if its restriction to any subgame of the original game is also an SPE of the subgame.
However there are models of interest where strategic agents interact repeatedly whilst observ-
ing private signals. For instance, relay scheduling with private queue length information at
different relays [VaAn14]. Another example is that of Bayesian learning games [BiHiWe92;
AcDalLoOz11; LeSuBe14; VaAn16b] such as when customers post reviews on websites such
as Amazon; clearly agents posses their own experience of the object they bought and this con-
stitutes private information. These examples lead to a model with asymmetric information,
where the notion of SPE is ineffective.

Appropriate equilibrium concepts in such a case consist of strategy profiles and beliefs.
These include weak perfect Bayesian equilibrium, perfect Bayesian equilibrium (PBE) and
Sequential equilibrium. PBE is the most commonly used notion. The requirement of PBE
is sequential rationality of strategy as well as belief consistency. Due to the fact that future
beliefs depend on past strategy and strategies are sequentially rational based on specific beliefs,
finding a pair of strategy and belief that satisfy PBE requirement is a difficult problem and
usually reduces to a large fixed-point equation over the entire time horizon. To date, there
is no universal algorithm that provides simplification by decomposing the aforementioned
fixed-point equation for calculating PBEs.

Our motivation stems from the work of Nayyar et al. [NaMaTe13]. Authors in [Na-
MaTel13] consider a decentralized dynamic team problem (non-strategic agents) with asym-
metric information. Each agents observes a private type which evolves with time as a con-
trolled Markov process. 'They introduce a common information based approach, whereby
each agent calculates a belief on every agents’ current private type. This belief is defined in
such a manner that despite having asymmetric information, agents can agree on it. They pro-

ceed to show optimality of policies that depend on private history only through this belief and
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respective agents’ current private type.

The common information based approach has been studied for finite horizon dynamic
games with asymmetric information in [GuNaLaBal4; NaGuLaBal4; VaAn16a; VaAn15;
VaAnl6b]. Of these, [GuNaLaBal4; NaGul.aBal4] consider models where the aforemen-
tioned belief from the common information approach is updated independent of strategy.
'This implies that the simultaneous requirements of sequential rationality and belief consistency
can be decoupled, resulting in a simplification in calculating PBEs. However these models
produce non-signaling PBEs. For the models studied in [VaAn16a; VaAn15; VaAn16b] be-
lief updates depend on strategies. Consequently the resulting PBEs are signaling equilibria.
'The problem of finding them though, becomes more complicated.

Other than the common information based approach, Li et al. [LiSh14] consider a finite
horizon zero-sum dynamic game, where at each time only one agent out of the two knows the
state of the system. The value of the game is calculated by formulating an appropriate linear
program.

All works listed above for dynamic games consider a finite horizon. In this chapter, we deal
with an infinite horizon discounted reward dynamic game. Cole et al. [CoKo01] consider an
infinite horizon discounted reward dynamic game where actions are only privately observable.
'They provide a fixed-point equation for calculating a subset of sequential equilibrium, which
is referred to as Markov private equilibrium (MPrE). In MPrE strategies depend on history

only through the latest private observation.

Contributions

In this work we follow the models of [VaAn16a; VaAn15; VaAn16b] where beliefs are updated
dependent on strategy and thus signaling PBEs are considered.

'This chapter provides a one-shot fixed-point equation and a forward recursive algorithm
that together generate a subset of perfect Bayesian equilibria for the infinite horizon dis-
counted reward dynamic game with asymmetric information. The common information based
approach of [NaMaTe13] is used and the strategies are such that they depend on the public
history only through the common belief (which summarizes the relevant information) and on

private history only through respective agents’ current private type. The PBE thus generated

183



are referred to as Structured PBE or SPBE and posses the property that the mapping between
belief and strategy is stationary (w.r.t. time).

'The provided methodology (consisting of solving a one-shot fixed-point equation) provides
a decomposition of the interdependence between belief and strategy in PBEs and enables a
systematic evaluation of SPBEs.

'The model allows for signaling amongst agents as beliefs depend on strategies. This is be-
cause the source of asymmetry of information in our model is that each agent has a privately
observed type that affects the utility function of all the agents. These types evolve as a con-
trolled Markov process and depend on actions of all agents (the actions are assumed to be
common knowledge).

Our methodology for proving our results is as follows: first we extend the finite horizon
model of [VaAn16a] to include belief-based terminal reward. This does not change the proofs
significantly but helps us simplify the exposition and proofs of the infinite horizon case. In
the next step, the infinite horizon results are obtained with the help of the finite horizon ones
through continuity arguments as horizon T' — oo.

'The remainder of this chapter is organized as follows: Section 2 introduces the model for
the dynamic game with private types and discounted reward. We consider two versions of the
problem, finite and infinite horizon. Section 3 defines the backward recursive algorithm for
calculating SPBEs in the finite horizon model. The results in this section are an adaptation
of the finite horizon results from [VaAnl6a]. This is done so that the finite horizon results
can be appropriately used in Section 4. Section 4 contains the central result of this chapter,
namely the fixed-point equation that defines the set of SPBE strategy for the infinite horizon
game. Section 5 discusses a concrete example of a multi-stage public goods game with two
agents. This example is an infinite horizon version of the finite horizon public goods example
from [FuTi91, ch. 8, Example 8.3]. Finally, Section 6 discusses the question of existence of

SPBEs and provides analytical as well as numerical techniques for checking the same.

2. Model for Dynamic Game

WEe consider a dynamical system with N strategic agents, denoted by the set N'. Associated

with each agent 7 at any time ¢ > 1, is a type z¢ € X". The set of types is denoted by X* and
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is assumed to be finite. We assume that each agent 7 can observe their own type z} but not
that of others. Denote the profile of types at time ¢ by z; = (z!);cn-

Each agent 7 at any time ¢ > 1, after observing their private type z takes action a} € A".
The set of available actions to agent 7 is denoted by A” and is assumed to be finite. It is assumed
that the action profile a; = (al);c at time ¢ is publicly observed and is common knowledge.

'The type of each agent evolves over time as a controlled Markov process independent of
other agents given the action profile a;. We assume a time-homogeneous kernel @* for the

evolution of agent 7s type i.e.,

N
IP>(fllt+1 | L1, al:t) = P($t+1 | Tt, at) = H Qz(szH | Ty, at)- (6.1)

i=1

The notation we use is 1.4 = (Zk)k=1,.+ and a1+ = (ar)r=1,.+. Initial belief, at time 1, is
assumed as P(z1) = [1V, Qi (z?).

Associated with each agent 1 is an instantaneous reward function R* that depends on the

type and action profiles i.e., reward at time ¢ for agent ¢ is R*(z4, a;). Furthermore, rewards

are accumulated over time in a discounted manner with a common discount factor § € (0, 1).

'This means that player 7’s objective is to maximize

Jh9 £ 9 {i S IR (X, At)} : (6.2)

t=1
where [E9 denotes the expectation given strategy profile g (described below) used by all agents.
'The transition kernels, initial belief and reward functions are assumed to be common knowl-
edge.

We consider two versions of the problem - finite horizon (T') and infinite horizon, where
the main result is for the infinite horizon problem. For the finite horizon problem we intro-
duce a terminal reward and in this regard we first define public beliefs 7, since the terminal
reward is defined as a function of these beliefs.

Define the public history hf at time ¢ as the set of publicly observed actions i.e., hf =
ar:_1 € (XY, A"t L. Denote the set of public histories by H¢. Define private history ht of
any agent 7 at time ¢ as the set of privately observed types z%,, € (X*)? of agent ¢ and publicly

observed action profiles a; 4 1 i.e., hi = (z%,,a1.+ 1). Denote the set of private histories by H}.
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Note that private history k! contains public history h¢. Also denote the overall history at time ¢
by hy = (21, @14—1) and the set of all such histories by #H;. To preserve the above information
structure, we also assume that the instantaneous rewards R:(z;, a;) are not observed until the
end of the game (or else it might reveal partial information about the state z;).

Any strategy used by agent 4 can be represented as g* = (g;):>1 with g : Hi — A(AY).
Here A(A") is the set of all probability distributions over the elements of the set A"

The public belief m, € xX_; A(X7), at any time ¢, depends on the strategy profile g1._; =
(91.4_1)jen- Given astrategy profile g1.¢_1, we define the belief as follows: ,(z:) = (7‘(’; (:1:;)) en”
with
Pé(z; | hg) if P(h) > 0,

o . . ' (6.3)
Yooi jexs @ (i | Ty, ae)m (2t ) fPO(RE) =0.

e * {
Initial beliefis 7} (z%) = Q%(z}). The second sub-case in the above definition implies that for
histories with zero probability of occurrence, under a particular strategy profile g, the public
belief at time ¢ is an updated version of the public belief at time ¢ — 1, taking into account
the forward transition kernel Q* and assuming that the distribution over the latest action a; ;
does not depend on private type z¢_;. It ensures that the belief random variable TI;, at any
time ¢, is measurable, even if the set of histories resulting in any instance 7; has zero measure
under strategy g.

The second sub-case in (6.3) is, however, only one of many possible updates than can be
used here. Dynamics that govern the evolution of public beliefs at histories with zero prob-
ability of occurrence, affect equilibrium strategies. Thus, the construction proposed for cal-
culating perfect Bayesian equilibria in this chapter will produce a different set of equilibria
if one changes the second sub-case above. The most well-known example of another such
update is the intuitive criterion proposed in [ChKr87] for Nash equilibria, later generalized
for sequential equilibria in [Ch87]. Intuitive criterion assigns zero probability to states that
can be excluded based on data available to all players (in our case action profile history a;.+1).
Another example of belief update is universal divinity, proposed in [BaSo87].

In this chapter we stick with the update presented in (6.3), however the proofs of all techni-

cal lemmas and the main theorems will go through for other updates as well. An interesting
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direction for future work is to isolate and analyze the eftect of using other belief updates on
the equilibrium calculation technique proposed in this chapter and thus predict the qualitative
properties of the equilibrium strategies calculated.

Finally, in the finite horizon game, for each agent i there is a terminal reward G*(7p1, T4 ;)
that depends on the terminal type of agent % and the terminal belief. It is assumed that G*()

is absolutely bounded.

3. Technical Lemmas in the finite horizon model

In this section, we state and prove properties of the finite horizon backwards recursive algo-
rithm for calculating SPBE, adopted from [VaAn16a] with minor modifications to accom-
modate for belief-based terminal rewards. The results from this section are used in Section 4
to prove the infinite horizon equilibrium result.

To distinguish quantities defined in this section with infinite horizon, we add a superscript

T to all the quantities.

3.1. Finite Horizon problem and Backwards Recursion

Consider a finite horizon, T' > 1, problem in the dynamic game model described in Section 2.

Define the value functions (V;i’T D XGenA(XT) x Xt — R) and strategy

. €N te{l,...,T}

(’7; ’T) . backwards inductively as follows!.
€N te{1,...,T}

1. VieN,set Vol = G-

~1

2. Foranyt € {1,..., T} and m;, solve the following fixed-point equation in (7" );cn-
VieN, '€ XY,
,7;:7"(. \ :1:2) € argmax EiCled) A, v [Ri(Xt,At)
Yi(|zt)EA(AY)

+ 5‘/;1711 (E(Etx ’7;11’ At)) Xti+1) | Ty 33;] (64)

(see below for the various quantities involved in the above expression).

'This construction differs from the one proposed in [VaAn16a] only in Step 1., since it has to accommodate
the terminal reward.
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3. 'Then define,

Vi (m,, af) = BT CRDATTnC Ri(X, Ay
+ OV (B 4, 4, X ) | 7). (65)

Note that the strategy 5, generated by above depends on ;. Denote by 8 the mapping
oo e, 3 = G,

In (6.4), the expectation is with the following distribution
(Xtii: A; A;i7 Xti+1) ~ 7Tt ( ) (a’t ‘ "I:t)~ IT(a’;i ‘ x;z)Ql($;+l ’ JZ;, a't) (66)
and F(m,, 3, A) = [F(m', 7T At)} _» where
i (NI NOI (17 J
ZmJEXJ ™ (x )ry (a' ‘ z )Q (x | T 70’) ifDen. > 0

F(n,7,a)(a") £ Yo (8 (@ | ) (6.7)
> aicxi 7rj(:,;j)Qj(g;/j | z?, a) if Den. =0

Note here that the second sub-case above is consistent with (6.3). Below we define strategy-

belief pair (8*, u*),

B* = (5;:*)t€{1 """ I Bt HE — A(AY) (6.82)

W= (’u't’ )te{l,...,T},iEN pe' My = A(H) (6.8b)

based on the mapping 8 produced by the above algorithm.
Define belief p* inductively as follows: set uf(z;) = [IX, Qi(z!). Fort € {1,...,T},

pita B | = F(u:k* (1), 63 [7c1]. e (6.92)

1 [ ] (2e0) = H p [P (i) (6.9)

Denote the profile of beliefs by u;[h{] = (,uz"* [hf]) N Denote the strategy arising out of
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~zT by,B
Bi° (ai | 1) = e[ ] a | ) (6.10)

3.2. Finite Horizon Result

In this section, we presented three lemmas. The first two are technical results needed in the
p
proof of the third. The result of the third lemma is used in Section 4.

Define the reward-to-go Wy T for any agent 4 and strategy 8¢ as

Wl,B T(hz) E'Bl B* ut (RS I:Zén tRz(Xn’A ) 6T+17tGi(ﬂT+l’X’}+1) ’ h;:l (611)

n=t

Here agent 7’s strategy is 8 whereas all other agents use strategy 8 ** defined above. Since
X*, A* are assumed to be finite and G* absolutely bounded, the reward-to-go is finite V
i,t, 5", hi.

Lemma3.1. Foranyt € {1,..., T}, 1 €N, ht and B,

VT (up k), @) > EPR IR, Ay + 6V (Bl (5], 67, Ad), Xi0) | B
(6.12)

Proof. Please see Appendix 8.1 at the end of this chapter. O

Lemma 3.2.

E%MWM”%XN”MM&AHWHW®%%mmM@4

n=t-+1
1 —1k  xric T . . . . .
= EﬂZ:T’ﬂt:T He [ht}[ Z 5n7(t+1)Rz(Xn7 An) + 5T+17tGZ(ET+1: X’}’+l) | h’:: a, mz+l]
n=t+1
(6.13)
Proof. Please see Appendix 8.2 at the end of this chapter. O

The result below shows that the value function from the backwards recursive algorithm is

higher than any reward-to-go.
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Lemma3.3. Foranyt € {1,..., T} 1 €N, hi and B,
VAT (wilR), 2b) > WPt (m) (6.14)

Proof. Please see Appendix 8.3 at the end of this chapter. O

4. SPBE in Infinite Horizon

In this section we consider the infinite horizon dynamic game, with naturally no terminal

reward.

4.1. Perfect Bayesian Equilibrium

A perfect Bayesian equilibrium is the pair of strategy and belief (8*, u*), where

p = ('BZ’*>t>1iEN B H; — A(AY) (6.152)
u = (ﬂi’*)m’iw pet s HE = A(Hy) (6.15b)

such that sequential rationality is satisfied: V 7 € N, B, ¢ > 1, ht € HL,

BFAT W[ S M RY(X,, An) | b > BPATBE S 67t RI(X,, Ay) | R
et n=t

(6.16)

and beliefs satisfy certain consistency conditions (please refer [FuTi91, pp. 331] for the exact

conditions).

Definition 4.1 (Structured Perfect Bayesian Equilibrium). A structured perfect Bayesian equi-
librium has strategy 8* that depends on public history A{ only through public belief 7, and
on private observation z% , only through the latest observation z:.

4.2. Fixed Point Equation for Infinite Horizon

Below we state the fixed-point equation that defines the value function and strategy mapping

for the infinite horizon problem. This is analogous to the backwards recursion ((6.4) and (6.5))
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that defined the value function and § mapping for the finite horizon problem. The fixed-point
equation construction below along with the forward recursion given later calculate perfect
Bayesian equilibria of the infinite horizon dynamic game.

Define the set of functions V* : x¥; A(X7) x X* — R and strategies 4* : X* — A(A?)
(which is generated formally as ° = §*[x] for given ) via the following fixed-point equation:
VieN,z' e &,

%(-|2") € argmax EY()7

" [RI(X, A) + 6V (E(x, %, A), X") | m, 2],
7 (|z*)eA(AY)

(6.17a)

A

Vi(x, o) = EV (1247 [Ri(X, A) + 6V° (E(z, 5, A), X) E? a:] (6.17b)

Note that the above is a joint fixed-point equation in (V, %), unlike the backwards recursive
algorithm earlier which required solving a fixed-point equation only in 4. Here the unknown

quantity is distributed as

(X, A, A7, X0 o () (0 | )5 a™ | 27) Qe (618)

and F'(-) is defined through (6.7). The belief update for histories with zero probability is part
of the definition in (6.7). The choice of this update affects the value function and strategy cal-
culated by the above fixed-point equation and thus the signaling equilibria that are calculated
in this section (also see the discussion below (6.3)). The particular form used in (6.7) is just
one instance of many that can be used here, proofs in this chapter go through for other belief

updates as well.

Define belief p* inductively as follows: set u}(z;) = [1~, Q4(z?). Then for ¢t > 1,

uit sy = F(,u,:’*[hc] 6 [us[h5]], @z ), (6.19a)

[T [h§+1] (Te+1) = H “t+1 [h':-l—l] (zt,1)- (6.19b)

By construction the belief defined above satisfies the consistency condition needed for a Per-
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tect Bayesian Equilibrium. Denote the stationary strategy arising out of 4 by §* i.e.,
B."(a; | hi) = 6'|wi[R¢| (o} | <). (6.20)

4.3. Relation between Infinite and Finite Horizon problems

The following result states the consequence of the similarity between the fixed-point equation

in infinite horizon and the backwards recursion in the finite horizon.

Lemma 4.2. Consider the finite horizon game with G* = V*. Then Vf’T =V,Vic N,
t € {1,...,T} satisfes the backwards recursive construction (6.4) and (6.5).

Proof. Please see Appendix 8.4 at the end of this chapter. O

4.4, Equilibrium Result

'The central result of this chapter is that the strategy-belief pair (8*, u*) constructed from the
solution of the fixed-point equation (6.17) and the forward recursion of (6.19) and (6.20)
indeed constitutes a PBE.

Theorem 4.3. Assuming that the fixed-point equation (6.17) admits an absolutely bounded solution
V* (for all i € N), the strategy-belicf pair (8*, u*) defined in (6.19) and (6.20) is a PBE of the
infinite horizon discounted reward dynamic game i.e., Vi € N, B4t > 1, h;' € 7—[2,

B[S g0 R (X, An) | B] > BPYP ] ST M RY (X, An) | B
n=t n=t

(6.21)

Remark Note that by definition in (6.9), u* already satisfies the consistency conditions re-

quired for perfect Bayesian equilibrium.

Proof. Please see Appendix 8.5 at the end of this chapter. O

5. A Concrete Example

In this section, we consider an infinite horizon version of the public goods game from [FuTi91,

ch. 8, Example 8.3]. We solve the corresponding fixed point equation (arising out of (6.17))
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numerically to calculate the mapping 8 (which in turn generates the perfect Bayesian equilib-
rium (5%, u*)).

The example consists of two symmetric agents. The type space and action sets are X! =
X?% = {zf,2L} and A! = A? = {0, 1}. Each agents’ type is static and does not vary with
time.

'The actions represents whether agents are willing to contribute for a common public good.
If at least one agent contributes then both agents receive utility 1 and the agent(s) that con-
tributed receive cost equal to their type. If no one contributes then both agents receive utility
0. Thus the reward function is

Ri(z,0) = { bt ifet=l (6.22)
a” ifa*=0
where a=* represents the action taken by the agent other than 3.

We use the following values 2 = 1.2, z¥ = 0.2 and consider three values § = 0, 0.5, 0.95.
Since type sets have two elements we can represent the distribution 7,(-) € A(X!) with
only m;(zf) € [0, 1], similarly for agent 2. For any ® = (71, m) € [0, 1]?, the mapping
6[x] produces (- | z¢) for every 1 € {1,2} and z* € X* = {zF,zL}. Since the action
space contains two elements, we can represent the distribution 4°(- | z*) by 4*(a* = 1 | z?)
i.e., the probability of taking action 1. We solve the fixed-point equation by discretizing the
m—space [0, 1]? and all solutions that we find are symmetric w.r.t. agents i.e., ¥*(- | %) for
m = (w1, T2) is the same as 42(- | z¥) for 7’ = (72, 71) and similarly for type .

For § = 0, the game is instantaneous and for the values considered, we have 1 — ¥ =
—0.2 < 0. This implies that whenever agent 1’s type is ¥, it is instantaneously profitable not
to contribute. This gives ¥*(a! = 1 | z¥) = 0, for all w. Thus we only plot §'(a* = 1 | z%);
in Fig. 20. For § = 0 the fixed-point equation (6.17) is only for the variable 4 and not V, and
can be solved analytically. Refer to [VaAn16a, eq. (20) and Fig. (1)], where this solution is
stated. There are multiple solutions to the fixed-point equation and our result from Fig. 20
matches with the one of the results in [VaAn16a].

Intuitively, with type z¥ the only value of 7 for which agent 1 would not wish to con-

tribute is if he anticipates agent 2’s type to be zl with high probability and rely on agent 2
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to contribute. This is why for lower values of 75 (i.e., agent 2’s type likely to be z%) we see
F'(a' = 1| zL) = 0 in Fig. 20.

Now consider 4'(a' = 1 | z¥) plotted in Fig. 20, 21 and 23. As § increases, future rewards
attain more priority and signaling comes into play. So while taking an action, agents not only
look for their instantaneous reward but also how their action aftects the future public belief
m about their private type. It is evident in the figures that as  increases, at high 7y, up to
larger values of 5 agent 1 chooses not to contribute when his type is %. This way he intends
to send a “wrong” signal to agent 2 i.e., that his type is £ and subsequently force agent 2 to
invest. This way agent 1 can free-ride on agent 2’s investment.

Now consider Fig. 22 and 24, where ¥*(a' = 1 | ) is plotted. Coordination via signaling
is evident here. Although it is instantaneously not profitable to contribute if agent 1’s type
is 27, by contributing at higher values of 7, (i.e., agent 2’s type is likely ) and low 7y,
agent 1 coordinates with agent 2 to achieve net profit greater than 0 (reward when no one
contributes). This can be done since the loss of contributing is —0.2 whereas profit from
free-riding on agent 2’s contribution is 1.

Under the equilibrium strategy, beliefs IT, form a Markov chain. One can trace this Markov
chain to study the signaling effect at equilibrium. On numerically simulating this Markov
chain for the above example (at § = 0.95) we observe that for almost all initial beliefs, within
a few rounds agents completely learn each other’s private type truthfully (or at least with very
high probability). In other words, agents manage to reveal their private type via their actions
at equilibrium and to such an extent that it negates any possibly incorrect initial belief about
their type.

As a measure of cooperative coordination at equilibrium one can perform the following
calculation. Compare the value function V!(-,z) of agent 1 arising out of the fixed-point
equation, for § = 0.95 and z € {z”, 2"} (normalize it by multiplying with 1 — § so that
it represents per-round value) with the best possible attainable single-round reward under a
symmetric mixed strategy with a) full coordination and b) no coordination. Note that the
two cases need not be equilibrium themselves, which is why this will result in a bound on the
efficiency of the evaluated equilibria.

In case a), assuming both agents have the same type z, full coordination can lead to the

z

best possible reward of 21=2 =1 — 2

i.e., agent 1 contributes with probability 0.5 and agent
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2 contributes with probability 0.5 but in a coordinated manner so that it doesn't overlap with
agent 1 contributing.

In case b) when agents do not coordinate and invest with probability p each, then the
expected single-round reward is p(1 — ) + p(1 — p). The maximum possible value of this
expression is (1 — £)2.

For z = zl = 0.2, the range of values of V!(my, mp, z¥) over (my,m) € [0, 1] is
[0.865, 0.894]. Whereas full coordination produces 0.9 and no coordination 0.81. It is thus
evident that agents at equilibrium end up achieving reward close to the best possible and gain
significantly compared to the strategy of no coordination.

Similarly for £ = £ = 1.2 the range is [0.3, 0.395]. Whereas full coordination produces

0.4 and no coordination 0.16. The gain via coordination is evident here too.

A

R
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1\ \\\ ‘0 |1
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Figure 21.: ' (a* = 1 | z¥) vs. (my, m2) at § = 0.5.
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Figure 23.: 4 (a*

0.5

0.5

o

Figure 24.: 4'(a’

=1 zf)vs. (m,m) at § = 0.95.

196



6. An existence result for the finite horizon fixed-point

equation

While it is known that for any finite dynamic game with asymmetric information and perfect
recall, there always exists a PBE [OsRu94, Prop. 249.1], existence of SPBE is not guaranteed.
It is clear from our algorithm that existence of SPBEs boils down to existence of a solution
to the fixed-point equation (6.17). In this section we focus on the corresponding fixed-point
equation in the finite horizon version (6.4) and discuss analytical and computational tech-
niques to check existence of a solution. We focus on the finite horizon fixed-point equation
to avoid existence issues related to the Value function V* in the infinite horizon fixed-point
equation. At each time ¢ given the functions V%, ; for all ¢ € N from the previous round (in
the backwards recursion), (6.4) must have a solution 4} for all 2 € N.

Generally, existence of equilibria is shown through Kakutani’s fixed point theorem, similar
to proving existence of a mixed strategy Nash equilibrium of a finite games [OsRu94; Na50].
Specifically, this is done by showing existence of a fixed point for the best-response correspon-
dences of the game. Among other conditions, it requires the “closed graph” property of the
correspondences, which is usually implied by the continuity property of the utility functions
involved. For (6.4) establishing existence is not straightforward due to: (a) potential discon-
tinuity of the 7, update function F' when the denominator in the Bayesian update is 0 and
(b) potential discontinuity of the value functions, V%, ;. In the following we provide sufficient
conditions that can be checked at each time ¢ to establish the existence of a solution.

It is in order to mention here the work in [Re99], generalized in [Re16], where the author
identifies the property of detter-reply security in games with discontinuous utilities to establish
existence of pure strategy Nash equilibrium. Analogously, the author in [Rel6] identifies
the more general property of point security. There is a qualitative difference in the nature of
the fixed-point equation encountered in this chapter and the one encountered in calculating
pure strategy Nash equilibrium in normal form games (as in [Re99; Re16]), which is why we
focus on developing a different set of existence results that are particularly geared towards the
fixed-point equation encountered in this chapter.

In (6.4), agent 7’s optimal strategy ¥;(+|z!) is the maximizer of the current reward plus

reward-to-go from t 4+ 1. However this reward-to-go contains an updated belief IT;; at
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time ¢ + 1 and since we are interested in signaling equilibria, the belief update depends on the
equilibrium strategy profile 4;. Thus agent ¢’s own strategy appears on the LHS as well as RHS
and this makes the fixed-point equation (6.4) qualitative different from the best-response
fixed-point equation encountered in calculating Nash equilibria in normal form games.

We consider a generic fixed-point equation similar to the one encountered in Section 3
and Section 4 and state conditions under which they are guaranteed to have a solution. To
concentrate on the essential aspects of the problem we consider a simple case with N = 2,
type sets X* = {zf,z”} and action sets A* = {0,1}. Furthermore, types are static and
instantaneous rewards R*(z, a) do not depend on 2.

Given public belief 7 = (7!, 72) € x2,A(A"), value functions V!, V2, one wishes to
solve the following system of equations for (")71( | :l:’))

zic{zH zl}ie{1,2}

'7i(' | fL'i) € argmax EY ()57 {Ri(:z:i,A)
Yi(-|lzt)EA(AY)

+ Vi<(F1(7r1, 51, A1), F2(n2, 37, Az)),xi) | xi,ﬂ} (6.23)
where the expectation is evaluated using the probability distribution
(A, A%) ~ 7' (a* | &) [ (&™)7 (o7 | ™) + m/ (") (o | 2)]. (6.24)
The probabilistic policy 4 can be represented by the 4-tuple p = (;51[’ , p2L, prH | p?H ) where
P =v'(a*=1|zf)and p* =4 (a* = 1| zL),1 = 1,2.
'The fixed-point equation of interest reduces to

e argmaxa[(w2ﬁ2H +(1 - 7r2)ﬁ2L) X
a€l0,1]

(Vl(Fl(ﬂ-l)ﬁl)) Fl(ﬂ-z)ﬁZ))xH) - Vl(FO(ﬂ-l)ﬁl)) Fl(ﬂ-z)ﬁ2))$H))
+(1_7r2ﬁ2H_(1_7r2)ﬁ2L> (Vl(Fl(ﬂ-laﬁl), F0(7r2)ﬁ2)) :BH)_Vl(FO(’R—l’ﬁl)) F0(7T2,ﬁ2), :BH))
+ (P + (1 — 7)) (R (e¥, 1,1) — RY(z",0,1))

+(1- " - (1 - 7)) (R (2", 1,0) — R'(z",0, 0))} (6.25)
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and three other similar equations for p*Z, 5*#, 5*~. Here

H
Fi(m (0", 2 (6262
s 1 - p¥
Fo(m, (p%,p")) £ . ;,E,) ﬁr(i —ph) (6.26b)

and in both definitions, if the denominator is 0 then the RHS is taken as 7.

6.1. Points of Discontinuities and the Closed graph result

Equation (6.25) and the other three similar equations are essentially of the form (for a given

)

z € argmax afi(z,y,w,2) (6.272)
a€[0,1]

y € argmax bfa(z,y, w, 2) (6.27Db)
bE[0,1]

w € argmax cfs(z,y, w, z) (6.27¢)
c€[0,1]

z € argmax dfs(z,y, w, z) (6.27d)
def0,1]

with z,y, z, w as p*#, gL, 52H | 5L respectively.
Define D; C [0, 1]* as the set of discontinuity points of f; and D = U D;.
For any point z, € D, define S(z,) as the subset of indexes 7 € {1, 2, 3,4} for which f;(z)

is discontinuous at z,,.

Assumption (E1) At any point z, € D, Vi € S(z,) one of the following is satisfied:
1. fi(z,) =0, or

2. Je€ > Osuch thatV z € B.(z,) (inside an e-ball of z;) the sign of f;(z) is same as the
sign of fi(zo).

In the following we provide a sufficient condition for existence.

Theorem 6.1. Under Assumption (E1), there exists a solution to the fixed-point equation (6.27).
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Proof. Please see Appendix 8.6 at the end of this chapter. O

'The above set of results provide us with an analytical tool for establishing existence of a
solution to the concerned fixed-point equation.

While the above analytical result is useful in understanding a theoretical basis for existence,
it doesn't cover all instances. For instance, fixed-point equation [VaAn16a, eq. (21)] does
not satisfy assumption (E1). In the following we provide a more computationally orientated
approach to establishing existence and/or solving the generic fixed-point equation (6.27).

We motivate this case-by-case approach with the help of an example. Suppose we hypoth-
esize that the solution to (6.27) is such that ¢ = 0,w = 0 and y,z € (0,1). Then (6.27)
effectively reduces to checking if there exists y*, z* € (0, 1) such that

y* e arg:znax bf2(0,v%,0,2%) (6.28a)
2re arg:fillax df+(0,y%,0,2%) (6.28b)
f1(0,¥%,0,2%) <0 (6.28¢)
f3(0,97,0,2") <0. (6.28d)

'Thus the 4-variable system reduces to solving a 2-variable system and 2 conditions to verify.
For instance, if f(0,,0, 2), f4(0,¥,0, z) as functions of y, z satisfy the conditions of The-
orem 6.1 then the sub-system (6.28a), (6.28b) has a solution. If one of these solution is also
consistent with (6.28¢), (6.28d) then this sub-case indeed provides a solution to (6.27).

Generalizing the simplification provided in the above example, we divide solutions into
3* = 81 cases? based on whether each of z, y, w, z are in {0}, (0, 1), {1}. There are

(1) 16 corner cases where none are in the strict interior (0, 1);

(2) 32 cases where exactly one is in the strict interior (0, 1);

(3) 24 cases where 2 variables are in the strict interior (0, 1);

(4) 8 cases where 3 variables are in the strict interior (0, 1); and

(5) 1 case where all 4 variables are in the strict interior (0, 1).

Similar to the calculations above, for each of the 81 cases one can write a sub-system to

N
?In general there are 3Ei=1 Mi cases, where M; is the number of types of agent 1.
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which the problem (6.27) effectively reduces to. Clearly, if any one of the 81 sub-systems
has a solution then the problem (6.27) has a solution. Furthermore, searching for a solution
reduces to an appropriate sub-problem depending on the case.

'The approach then is to enumerate each of these 81 cases (as stated above) and check them
in order. The computational simplification arises out of the fact that whenever a variable, say ,
is not in the strict interior (0, 1) then the corresponding equation (6.27b) need not be solved,
since one only needs to verify the sign at a specific point. Hence, all sub-cases of (1) reduce to
simply checking the value of functions f; at corner points - no need for solving a fixed-point
equation. All sub-cases of (2) reduce to solving a 1-variable fixed-point equation and three

corresponding conditions to verify, etc.

7. Conclusion and Future Work

'This chapter considers the infinite horizon discounted reward dynamic game with private
types i.e., where each agent can only observe their own type. 'The types evolve as a con-
trolled Markov process and are conditionally independent across agents given the action pro-
file. Asymmetry of information between agents exists in this model, since each agent only
knows their own private type.

To date, there exists no universal algorithm for calculating PBE in models with asymmetry
of information that decouples, w.r.t. time, the calculation of strategy. Section 4 provides a
single-shot fixed-point equation for calculating the equilibrium generating function 8, which
in conjunction with the forward recursion in (6.19) and (6.20) gives a subset of PBEs (8*, u*)
of this game. The method proposed in this chapter finds PBE of a certain type i.e., where
for any agent %, his strategy at equilibrium depends on the public history only through the
common belief 7, and on private history only through agent ¢’s current private type z:.

Finally, we demonstrate our methodology by a concrete example of a two agent symmetric
public goods game and observe the signaling effect in agents’ strategies at equilibrium as dis-
count factor is increased. The signaling effect implies that agents take into account how their
actions affect future public beliefs 7 about their private type.

One important direction for future work is characterization of games where the proposed

SPBE exists. This boils down to existence of a solution to the fixed-point equation in Section 4,

201



as any SPBE must satisfy this equation.

Privacy-aware Dynamic Mechanisms

A possible direction for future research is investigation into mechanisms for dynamic environ-
ments encountered in the above model. The search for dynamic mechanisms can be aided by
the fact that the above analysis provided a sequential decomposition algorithm for equilibrium
analysis. The additional property of privacy is motivated by the following three works.
Authors in [BeVil0; AtSel3] present an (per round) ex-post incentive compatible direct
dynamic mechanism, for the above model, which is efficient i.e., it achieves allocation that

maximizes the infinite horizon discounted sum of utilities of the agents in the system.

E[i gt ivi(at, 6)]- (6.29)
t=1 =1

At equilibrium, in each round, each agent reveals their private observation/type 6; truth-
tully. One of the main criticisms of truthful direct mechanisms, that applies here too, is that
agents may not wish reveal their private observation completely, thereby making predictions
derived from such mechanisms less robust. This motivation drives investigation into privacy-
preserving mechanisms, where direct mechanisms are not considered as a design choice.

A special case of the model described above is when the uncertainty in state transition are
Gaussian and the costs are quadratic (LQG). Authors in [OlRoYo15], define a framework of
privacy for a system with Gaussian noise and quadratic costs that applies to dynamic single-
price market clearing auctions and through appropriately revealing summary signals (such
as only the price or only the total allocation) show that at the perfect Bayesian equilibrium

(which summarizes entire history through appropriate beliefs) the allocation is efficient.
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8. Appendix

8.1. Proof of Lemma 3.1

Proof. We use proof by contradiction. Suppose 314, ¢, ki, B such that (6.12) is violated. Con-

struct strategy 4; as

o Bi(al | BY) ifzt = £
Filai | zp) = { ﬂi( H) e (6.30)

AT itz; # 2}

Then
Vol (up[hg], 25) (6.31a)
> BRI R (X, A) + 8V (B Rs), B | RS, ), A, Xin ) | s [e], 81]

(6.31b)
= BFP N [ RY(X,, A) + 6VET (B (s B5), B1 (| RS, ), Ae), Xi) LAY (6.310)
> Vil (s k), £) (6.31d)

The first inequality above follows from the algorithm definition in (6.4) and (6.5), the second
equality follows from the definition above in (6.30) and finally the last inequality follows from
the assumption at the beginning of this proof.

Since the above is clearly a contradiction, the result follows. O]

8.2. Proof of Lemma 3.2

Proof- 'This result relies on the structure of the update in (6.9), specifically that p,, ke 1) ds
a deterministic function of u; “*[k¢], B; **, a; and does not depend on .

Consider the joint pmf-pdf of random variables involved in the expectation

BBy wilhg] (i i i i
PPer e wilhi] Tyi1s Q1T Tea2Ty Ty, Trn | B, Gty Tpyg ). (6.32)
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This can be written as % with

i. , 7_7'.'*, *[pe _q 3 3
A= Z ]P'Bt'T Pur 'ut[ t} (mt y Oty Tt41, ey 1.7, Tt42:T, $T+1, 41 | h't) (6333)

—1
Zy

B = Zpﬂimﬁg%*,uﬂhﬂ (a":[i, as, zt, | hz) (6.33b)

~—1
Ty

Using causal decomposition we can write

A=Y PP il (2| BB (ay | BB, (o | B2 ) Qs | €1, a0)

—1
Ty

i' , *'i-*’ *[pe i i 4
PPerPrr il t](at+1zT,$t+2zT,$T+1;7TT+1 | hiyat, T, " Te1) (6.34a)

= Z #Ei’*[hf](mfi)ﬂi(ai | hi)ﬂ;i’*(at_i | A, mt_i)Qi(miH | 23, at)Q_i(mt_ﬁ | 27, ar)
PﬁZJrl:T:/St_J:iTTrﬂt*Jrl[thrl](at+1:T’ TyioT, mfil"-i—l’ i1 | h’}f’ a, mt_i’ mt+1) (6.34b)

where the second equality follows from the fact that given hi, az, z;*, T:11 and w}[hS], the
probability of (at.y1.7, Tt42.T, :I:éurl, 7r11) depends on hl, a4, T, Tuit, Uiy 1[hs, 1] only through
B vrs Biiir. Also the second equality above uses the fact that types evolve conditionally in-
dependent given action. Performing similar decomposition of the denominator B and substi-
tuting back in the expression from (6.32) allows us to cancel the terms 8*(+) and Q*(+). Using
the belief update from (6.9), this gives that the expression in (6.32) is

Ty f+1](mfﬁ)wz*”’ﬁ:i“”al[hg“}(at+1zT,$t+2zT,$§r+1,7TT+1 | i, Gy Togr)

LB [hS —i i i i
— Pﬁt+1'T 'Bt+1.T IJ’tJrl[ t+l](mt+1) at—l—l:T) :Et—|—2:T) $T+1) 7rT—}—l | h't) at; mt—}_l) (63521)

'The above equality follows directly from definition.
'This completes the proof. O
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8.3. Proof of Lemma 3.3

Proof: We use backward induction for this. At time T, using the maximization property
from (6.4),

Ve (urlhg], o) (6.362)
A g (le8)dp T i lhg) [R!(Xr, Ar) + 6G* (F (15 ), 47, Ar), X1 ) | wp[hS), o]
(6.36b)
> E (1) i b R (Xr, Ar) + 8G* (E(uy[h5 ], 47, Ar), Xipyy ) | [R5, 7]
(6.36¢)
W () (6.36d)

Here the second inequality follows from (6.4) and (6.5) and the final equality is by definition
in (6.11).
Assume that the result holds for all m € {t +1,..., T}, then at time ¢ we have

VT (i), 7) (6.372)
> /PP i) [R (X, Ar) + 5Vlfl1<F(#t [hS), BF, As), t+1) | hi] (6.37b)

Z Eﬂiﬁfi'*’# [hg ][R (Xt,At) _|_6E/3t+1Tﬁt+1Tﬂ't+1h VAt [ Z 5n (t+1) R"(Xn,A ) (637C)

n=t+1

+ 5T_tGi(HT+1,X'§"+1) | hz’At’XZH] | hz]

; —i%  xi1c T . . . .
— RPirPer wilhe] [ > 8V R (X, An) + 6T TG (T, Xy y) | hg] (6.37d)

n=t

= WP T (R (6.37¢)

Here the first inequality follows from Lemma 3.1, the second inequality from the induc-
tion hypothesis, the third equality follows from Lemma 3.2 and the final equality by defini-
tion (6.11). O
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8.4. Proof of Lemma 4.2

Proof. Use backward induction for this. Consider the finite horizon algorithm at time ¢t = T,
noting that Vr}fl =G =V
547 (- | ok € argmax B0 [RY(Xp, Ar)
Vo (-|2h) EA(A?)
+ 8V (E(np, 47, Ar), Xy ) | mp, 7] (6.382)
Vi (mp, o) = BT (o) o [Ri(XT, Ar)
+0V* ( (WT,’YT, Ar), XT+1) | o, fUT] (6.38b)
Comparing the above set of equations with (6.17), we can see that the pair (V,4) arising out
of (6.17) satisfies the above. Now assume that V>T = V' foralln € {t+1,...,T}. At time
t, in the finite horizon construction from (6.4), (6.5), substituting V* in place of VZ_’:; from

the induction hypothesis, we get the same set of equations as (6.38). Thus V;*" = V* satisfies
it. O

8.5. Proof of Theorem 4.3

Proof. We divide the proof into two parts: first we show that the value function V* is at least as
big as any reward-to-go function; secondly we show that under the strategy B, reward-to-go

is V™.
Part 1. Foranyi € N, B* define the following reward-to-go functions

WP (Ri) = EPHE " wilhd] [ S 6" RY (X, Ar) | h};] (6.39a)
n=t

W'Lﬂ T(hz) ]Eﬁ'lv’ﬂ—l *uilh I:Zén tRz(Xn,A ) 5T+1_tVi(ET+1,X;1+1) | h;] (639b)

n=t
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Since X%, A are finite sets the reward R’ is absolutely bounded, the reward-to-go W;"* I(h;)
is finite V 1, ¢, B¢, ht.
For any i € N, h; € Hj,
V* (i (ki) @) — WP (hy) =
(V* (i n), ) = Wi (i) ) + (W7 () - W' () (6.40)

Combining results from Lemma 3.3 and 4.2, the term in the first bracket in RHS of (6.40)

is non-negative. Using (6.39), the term in the second bracket is

(6T 1) PP - S 6 TR X, Ap) + VE(Ilpyy, Xy ) | BE]. (6.41)

n=T+1

The summation in the expression above is bounded by a convergent Geometric series. Also,
V* is bounded. Hence the above quantity can be made arbitrarily small by choosing T' appro-
priately large. Since the LHS of (6.40) does not depend on T, this gives that

Vi (wi[hsl, zt) > WP (k) (6.42)

Part2. Since the strategy 8* generated in (6.20) is such that 8} depends on A only through
1 [h¢] and %, the reward-to-go W;*™" at strategy B*, can be written (with abuse of notation)

as
WP (i) = WP (i k], 2f) = BPT4IM [i 6" R (X, An) | i[5 2l (6.43)
For any h! € H;,
WP (g [Rg), 23) = BP0 [Ri(X,, Ay)

+ W (E(wRs), 01w [RS]), Aca), X111 ) | wi[hs],zi)  (6.44a)

Vi(p;[hg], a3) = EF P R (X, A
+ 0V (B (i [he], 0w [BS]], Aver), Xy ) | i[hs),zi] - (6.44b)
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Repeated application of the above for the first n time periods gives

- A1,% . * ¥[pC ot 3

VV;,,B' (,U,:[h:], $;) — Eﬂ WMy [h’t}[ Z 5m7tRl(Xt7 At)
m=t
bW (T ,0) | i) o] (6:450)
ttn b Aegn | | B[], Tt

. . *  *[pC ot )

Vz(/,&:[hﬂ, $;) — [Pk [ht}|: Z 5m7tRz(Xt7 At)
m=t

+ 67V (Mo, X3y ) | iR 7] (645D)

*

Here II;, , is the n—step belief update under strategy and belief prescribed by 8%, u*.
Taking difference gives

WP (el ) — VEug[hg), 23)
= B W (Mo, Xy ) =V (Tlem, X3 ) | wi[RE), 37 (6460)

Taking absolute value of both sides then using Jensen’s inequality for f(z) = |z| and finally

taking supremum over h® gives us
t

sup (Wi (ui[hsl, 2}) — VP (ui[hdl, 23)

hi

< §" sup BP #iR] [ Wtif,:*(ﬂwm Xti+n) - Vi(ﬂ:[hﬂ, 33;)

hi

| wi[Rg), 2] (6.47)

Now using the fact that Wy, ,,, V* are bounded and that we can choose 7 arbitrarily large, we
WP (wihil, =) - Vi(wi i, 23)] = 0. =

get Suphz
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8.6. Proof of Theorem 6.1

Proof: Denote the vector correspondence defined by the RHS of (6.27) by

$1(z) argmax, afi(z)
() = : = : (6.48)
pu(z) argmax, dfs(z)

where z = (z,y,w, 2). Forany z € [0, 1]%, #(z) is non-empty and closed, since the argmax
solution always exists and is one of {0}, {1}, [0, 1]. If in addition ¢ also has a closed graph then
by Kakutani Fixed Point Theorem there exists a solution to (6.27).

Consider any sequence (Z,,, @n, bn, Cn, dn) — (Zg, o, bo, Co, do) such that vV > 1,

a, € argmaxafi(z,) (6.49a)
a€l0,1]

b, € argmax bfs(z,) (6.49b)
bE[0,1]

¢, € argmax cfs(z,) (6.49¢)
c€[0,1]

d, € argmax dfi(z,). (6.49d)
delo,1]

We need to verify that (6.49) also holds for the limit (z, ag, b, o, do)-

If z, ¢ D then due to continuity, (6.49) indeed holds at the limit.

For z, € D, for any v € S(z,) if fi(zy) = O then in the relation to be verified, the
requirement is either of ag, by, ¢, dg € [0, 1], which is always true.

For z, € D; ND{NDE N DS, if f1(zo) > O then for any sequence ,, — g, for large n the
points in the sequence are within B(z,) and thus fi(z,) > O for large n. This means that
the relation from (6.49) holds at the limit (noting that f, f3, f4 are continuous at z; in this
case).

Similarly if f1(z,) < 0 and for any z, € D¢ N D, N DS N DL.

For 2o € D; N Dy N DS N DY if f1(zo) > 0 and fo(zy) < O then there exists an € > 0
such that V ¢ € B.(z,) we have fi(z) > 0 and f>(z) < 0. From this it follows that the

relation (6.49) holds at the limit. Similar argument works for any other sign combination of
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f17f21f37f4-

'The two arguments above cover all cases.
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