CS61B Midterm Review

Winston Liaw and Amir Kamil

Agenda
1. Static vs. Dynamic
2. Box and pointer diagrams
3. Code Questions and examples
4. Bit representation
5. Algorithmic Analysis
6. Access rights
7. Quickie questions

Static vs. Dynamic
- What happens? Assume we have defined:
 Homer h = new Homer();
 Bart b = new Bart();
 Homer h1 = b;
 h1.talk2();
 Answer: Homer, Bart: dude

Static vs. Dynamic cont.
- What happens? Assume the same definitions
 Bart b1 = b;
 b1.talk2();
 Answer: Homer, Bart: dude
 Cartoon c1 = h;
 ((Homer)c1).talk4();
 Answer: Homer, Homer: doh!

Static vs. Dynamic cont.
- What happens?
 Cartoon c2 = b;
 ((Bart)c2).whoa();
 Answer: dude
 Lumpy l2 = b;
 ((Homer)l2).talk4();
 Answer: Bart: dude

Static vs. Dynamic cont.
- For calls with an object of interest (i.e. h.f()), static methods are called based on static type, non-static methods are based on dynamic type.
- For calls involving “this”, things get a little trickier. Static calls “stay” in the same class, dynamic calls are based on the dynamic set.
Box and Pointer diagrams

- Draw the diagrams that result from this code:

```java
int [] x = new int[3];
int [] y = new int[0];
int [][] z = new int[3][2];
```

Box and Pointer diagrams cont.

- Draw the diagrams that result from this code:

```java
int [] x = new int[3];
int [] y = new int[0];
int [][] z = new int[3][2];
```

Box and Pointer diagrams cont.

- Draw the diagrams that result from this code:

```java
int [] x = new int[3];
int [] y = new int[0];
int [][] z = new int[3][2];
```

Coding Question

- Finish this method:

```java
/* Given an IntList, it will reverse it destructively and return the new list */
public IntList reverse(IntList l) {
    ...
}
```

Coding Question Solution

```java
public IntList reverse(IntList l) {
    IntList prev = null;
    IntList next = l.tail;
    while (l != null) {
        next = l.tail;
        l.tail = prev;
        prev = l;
        l = next;
    }
    return prev; // once we are done reversing all the pointers
    // we need to set l's head to the new head
}
```
Bit Representation

- What is the bit representation for: byte b = 15;
 Answer: 00001111
- What is this value as a char?
 10110111
 Answer: 183
- What about as a byte?
 Answer: -73

Modular Arithmetic

- For modular arithmetic:
 - Find out how many times your divisor can divide into your dividend. Remember, the remainder must be positive
 - If the remainder is greater than the range of your values (byte can have values btw -128 and 127 for instance) then loop value around

Another Coding Question

- Finish these methods:
  ```java
  public int remove() {
      int x = pqueue.head;
      pqueue = pqueue.tail;
      return x;
  }
  ```

Another Coding Question Solution cont.

  ```java
  public void insert(int k) {
      ListNode temp = pqueue;
      IntList newnode = new ListNode(k, null);
      if (k < temp.head) {
          if (temp.head == null) {
              pqueue.head = newnode;
          } else {
              pqueue = new IntList(k, pqueue.head);
          }
      } else if (temp.tail == null) {
          pqueue.tail = newnode;
      } else {
          pqueue = new IntList(k, pqueue.tail);
      }
  }
  ```

Another Coding Question Solution cont.

- Two’s complement
 - If the Most Significant Bit (MSB) is 0, then treat the remaining bits as normal (as a positive number).
 - If the MSB is 1, flip the remaining bits, add 1, and that is your negative value.
 - Remember, two’s complement only applies to signed values. For an unsigned integer, for instance, treat it as “normal.”
Algorithmic Analysis

- **Definition of Big-Oh**
 - \(O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \}
 - \(0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \)

- **Definition of Big-Omega**
 - \(\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \}
 - \(0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \)

Algorithmic Analysis

- One method takes \(O(n^2) \), while another takes \(O(n \log(n)) \). The \(O(n \log(n)) \) method is always preferred.
 - True or false?

Algorithmic Analysis

- What are the running times (Big-Oh, Big-Omega, Big-Theta) for this code?

```java
for (int i = k; i < z; i++)
  for (int j = 0; j < z; j++)
    //some log (n) code here
```

Answer: all are \((z-k)(z)\log(n)\)

Access rights

- If you override a method in a child class, Java allows you to change the access rights to be less restrictive

 Ex. –

 Parent’s method is protected

 Child’s method is public

 Refer to page 113 in Programming into Java for more details

Quickies

- What class has no superclass?

- Why would you want to pick an array over a list?