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Abstract—The single-system multiple-output (SSMO) B. Problem Background

sparse solution problem is to solve the greatly under-
determined linear systems of equations Y=HX where
Y is M-by-L, H is M-by-N, X is N-by-L, and K rows of
X are not all-zero (NAZ). We map this problem to a
slightly-underdetermined dual SSMO problem W=GZ
where G is N—(K—-L)-by-N, Z is N-by-(M-K), W is N—
(K-L)-by-(M—-K), and N-K rows of Z are NAZ. The
all-zero rows of Z correspond to the NAZ rows of X.
For K=M-1, this dual problem is single-channel, with
N unknowns, while the original problem has NL un-
knowns. The dual problem is then solved by adapting
the Hybrid-Input-Output (HIO) algorithm used for
phase retrieval. A Matlab program is also included.
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I. INTRODUCTION
A. Problem Statement

The single-system multiple-output (SSMO) sparse
reconstruction problem is to solve the multichannel
underdetermined linear systems of equations

Y=HX (1)
where
e Y is an M x L matrix having full rank.
e His an M x N matrix having full rank.
e X is an N x L matrix having full rank.
o X has only K rows that are not all zero (NAZ).
But the location of these NAZ rows is unknown.
o L < K <M < N for a well-defined problem.

The SSMO problem is a multichannel version of the
usual sparse reconstruction problem of solving the
underdetermined linear system of equations y = Hzx
where y is an M-vector, K elements of x are nonzero,
but the location of the nonzero elements of N-vector
x is unknown. This is the single-system single-output
(SSSO) reconstruction problem.

Sparse reconstruction is currently of great inter-
est in compressed sensing, since many real-world sig-
nals and images have sparse (mostly zero) representa-
tions in an appropriate basis, such as a set of wavelet
or curvelet basis functions. The number of obser-
vations necessary to reconstruct the signal is there-
fore greatly reduced from the size of the signal. The
SSMO problem arises in several applications in which
multiple snapshots over time of a signal whose char-
acteristics are varying over time are available.

Many approaches to solving the SSSO problem are
known. The most common approach is basis pursuit,
in which linear programming is used to find the solu-
tion to y = Hx which has the minimum ¢; norm (sum
of absolute values). Another approach is matching
pursuit, in which columns of H most highly corre-
lated with the residual y—H Z; are successively chosen
to minimize the residual y—Hz; 1. Iterative thresh-
olding, in which the Landweber iteration is applied
to y = Hx and some elements of Z; are thresholded
to zero at each iteration. We will not attempt to
summarize the many variations on these themes.

Extending these approaches to the SSMO prob-
lem has proven to be difficult. The most common
approach is to find the solution to Y=H X that min-
imizes a mixed-norm criterion like

This is the 1 norm over columns ¢ of the 5 norm
of each row. The ¢5 norm of a row is zero if and
only if all elements in that row are zero, and positive
otherwise. The £; norm is then just the sum of these,
and so can be expected to maximize the number of
all-zero rows of X, as desired.

C. Contribution of This Paper

This paper maps the greatly-underdetermined
(by N-M) SSMO problem Y=HX to a slightly-
underdetermined (by K-L) so-called dual SSMO
problem W=GZ where

e G is a known (N—(K-L)) x N matrix.

o Wis a known (N—(K-L)) x (M-K) matrix.

e Z is an unknown N x (M-K) matrix.

e Z has (N-K) not-all-zero (NAZ) rows.

But the location of these NAZ rows is unknown.

e The location of all-zero rows of Z correspond to,
and are an indicator function for, NAZ rows of X.

o Since number of NAZ rows(N-K) < (N-(K-L))
=number of equations, the sparse solution is unique.



Solving the slightly-underdetermined dual problem
effectively solves the greatly-underdetermined origi-
nal problem, since once the location of NAZ rows of
X in the original problem is known, X can be com-
puted quickly. Z is an indicator function for NAZ
rows of X. Comparing matrix sizes in Y=HX and
W=GZ shows why the latter is a dual problem.

The next section presents the mapping from origi-
nal to dual SSMO problems. However, following sec-
tions will consider only the case K=M-1. This is
the maximum number of NAZ rows for which the
original SSMO problem has a unique solution. For
K=M, any choice of NAZ rows leads to a solution;
for K > M, any choice of NAZ rows leads to an infi-
nite number of solutions. K=M-1 means the number
of observations (rows of Y') is minimum.

When K=M-1, the dual problem becomes SSSO
(single-channel), since then M—K=1. The number
of unknows in the dual problem is then N, while
the original problem had N L unknowns. Since the
dual problem is only slightly underdetermined, the
actual number of unknowns is K—L. If the number
of channels is not less than the number of rows, the
problem is trivial to solve. Otherwise, we adapt the
Hybrid-Input-Output (HIO) algorithm used in phase
retrieval to the dual problem.

II. MAPPING ORIGINAL TO DUAL

We map the original SSMO problem to the dual
SSMO problem. For completeness, this section does
not, yet assume K=M-1.

A. Left and Right Nullspaces

The original problem, repeated as
M{[Y] = m{[H] N{[x]. (3)
D2

can be rewritten as

N{X]
m{[H] [Y] | (1] | =M{[0] . (¥
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Let {i1,42...ix} be the indices of the NAZ rows of
X, and define the M x K submatrix of H

H = [H; |Hy,|...|Hi] (5)

whose columns multiply the NAZ rows X;, of X, so

MA{| Hi, . ipe
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=M{[0]. (6)
Dl

Suppose momentarily that K+L > M. The right
nullspace of an M x (K + L) matrix nominally has
size K+L-M. Since the right nullspace of [H|Y] has
size L, [H|Y] is rank-deficient by M-K. So [H|Y]
has a left nullspace of size M—K, and there exists an
(M-K) x M matrix D" such that

M- k(D[] [Y] = M - k{0 0]. (7)
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A similar argument can be applied if K+L < M.
Now define the (M—K) x N matrix Z’ as

M- K{z]=M- k{0 ]Mm{[H]. (3
\1( < <<
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Then Z; ,; =[0] and other columns of Z" are NAZ.
Z acts as an indicator function for NAZ rows of X.

B. Partitioning

The next step is to reduce the size of the problem
by eliminating some columns of the matrix D, using
D'Y=]0]. Partition D'Y=[0] as follows:

M — L{[Y1]

M- K{Di|[Ds]| L-ofve] | =[0]. (9)
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Solving for DY gives
Dy = -D\1Y, L. (10)

Now partition (8) similarly as

- L]

M- k{2 |=|Dl|[Ds]| L—of (11)
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Defining

H, = H, — V1Y, 'Ho,
this becomes

M- K{[2']|= M - K{ D}
~ ——
N M—L N

and taking a transpose gives

M- L{mH]. @3)

Partition Hs and D; as
K — L{{ Dn
N{[Z] = N{{Hz: | Hs2| | M — K{[Dw2|| . (15)
~ —_————
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Now define the two quantities

D3
Z P—

Dy Dy
ZDyy (16)
and postmultiply (15) by Dy5' to get
Z = ZDy;
= (H31 D11 + H3aD12)Dyy
= H31D3 =+ H32. (17)
Note that Z, like Z, has all-zero rows {i; . ..ix} since

postmultiplying a zero row by D1_21 gives a zero row.
The dual SSMO equation we use in the sequel is

N{|Z| = N{{Ha |K - L{[Ds] +N{[Hzz]. (18)
~~ —— ~— —~—
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For K=M-1, this becomes a SSSO problem.

C. Formulation of Dual Problem

Although we will not use it, we can put (18) into
the usual form of an SSMO problem. Let G be the
(N—-(K-L)) x N left null matrix of Hs;. Then

N— (K -L{[G]N{[Z] =GHz =W  (19)
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which is the dual problem noted above. Note that

o Number of equations: N—(K-L).
o Number of nonzero: N-K < N-(K-L).
So the sparse solution is unique.

III. SOLUTION OF DUAL PROBLEM
A. Introduction

In the sequel, we consider only K=M-1, so that
the original problem has the mazimum number of
NAZ rows that allow a unique solution. Then the
dual problem becomes an SSSO problem, since the
number of channels is M-K=1.

This still leaves the problem of how to solve the
dual problem. The usual procedure (¢1-norm min-
imization) does not work seem to work here. This
is not surprising; ¢;-norm minimization can only be
expected to work if the unknown vector is almost
entirely sparse (zero-valued), and Z is only (N-K)
sparse. Another approach is needed.

The Hybrid-Input-Output (HIO) algorithm has
been used with great success in phase retrieval, and
it has also been applied to some other combinatorial-
type problems. It does not seem to have been ap-
plied to sparse reconstruction problems, since f;-
norm minimization works so well.

B. Hybrid Input-Output (HIO)
The HIO algorithm, adapted to solution of (18), is

ZH =78 L Q(2pP(ZF) - ZF) — P(Z%)  (20)

where projections P(Z) and Q(Z) are the vectors
closest to Z (in the least-squares sense) such that:

e P(Z) has the form Hsjd+Hsz for some vector d,
e Q(Z) has K zero values (out of N), and we define
o ZF is the solution after k iterations.

Q(Z) sets the K smallest elements of Z to 0, and
leaves others unaltered. P(Z) is computed using

w = Hél(Z—Hw)

d = (HjyHsz) ‘'w
= Hs+ Hgid (21)
(2)

since w and d are (K—L)-vectors and their lengths
(K-L) << N. (Hj Hs1)~! may be precomputed.

IV. MATLAB PROGRAM

The following program illustrates the algorithm.
The output KHAT is the indices of NAZ rows of X.
Computation of X is then straightforward.

The algorithm requires the number of channels L
to be large. However, it should be recalled that the
number of NAZ rows of X is M-1, the maximum
possible for a unique solution, so the number M of
observations is minimum. The algorithm trades off
the number of observations for number of channels.

clear;N=100;M=51;L=50;
H=randn(M,N) ; X(N,L)=0;

X(1:N/(M-1):N, :)=randn(M-1,L);

Y=H*X; %GOAL:Compute X from Y and H.
Y1=Y(1:M-L,:);Y2=Y(M-L+1:M,:);
Hi=H(1:M-L,:);H2=H(M-L+1:M,:);
H3=(H1-Y1*inv(Y2)*H2)’;
H31=H3(:,1:M-L-1);H32=H3(:,M-L:M-L);
%Hybrid Input-Output algorithm:
HH=pinv (H31) ; 4HH=inv (H31’*H31) *H31’;
Z=randn(N,1) ;for I=1:1000;

DHAT=HH* (Z-H32) ;
PZ=H31*DHAT+H32;W=2%PZ-Z;

Wil=sort (abs(W)) ;W(abs (W) <W1(N-M+2))=0;
Z=7+W-PZ;end

[V,J]=sort(abs(Z)) ;KHAT=sort (J(1:M-1))



