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Abstract—The single-system multiple-output (SSMO)
sparse reconstruction problem is to solve the underde-
termined linear systems of equations Y=HX where Y
is M-by-L, H is M-by-N, X is N-by-L, K rows of X are
not all-zero, and N>M>K>L. We show that by elim-
inating some variables of Y=HX we can reduce this
problem into one with K=L, whose solution is trivial.
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I. INTRODUCTION

A. Problem Statement

The single-system multiple-output (SSMO) sparse
reconstruction problem is to solve the multichannel
underdetermined linear systems of equations

Y = HX (1)

• Y is an M × L matrix having full rank.
• H is an M × N matrix having full rank.
• X is an N × L matrix having full rank.
• X has only K rows that are not all zero (NAZ).
But the location of these NAZ rows is unknown.
• #channels=L < K < M < N .

The SSMO problem is a multichannel version of the
usual sparse reconstruction problem of solving the
underdetermined linear system of equations y = Hx
where y is an M -vector, K elements of x are nonzero,
but the location of the nonzero elements of N -vector
x is unknown. This is the single-system single-output
(SSSO) sparse reconstruction problem.
Sparse reconstruction is currently of great inter-

est in compressed sensing, since many real-world sig-
nals and images have sparse (mostly zero) representa-
tions in an appropriate basis, such as a set of wavelet
or curvelet basis functions. The number of obser-
vations necessary to reconstruct the signal is there-
fore greatly reduced from the size of the signal. The
SSMO problem arises in several applications in which
multiple snapshots over time of a signal whose char-
acteristics are varying over time are available.

B. Problem Background

Many approaches to solving the SSSO problem are
known. The most common approach is basis pursuit,
in which linear programming is used to find the solu-
tion to y = Hx which has the minimum �1 norm (sum
of absolute values). Another approach is matching
pursuit, in which columns of H most highly corre-
lated with the residual y–Hx̂i are successively chosen
to minimize the residual y–Hx̂i+1. Iterative thresh-
olding, in which the Landweber iteration is applied
to y = Hx and some elements of x̂i are thresholded
to zero at each iteration. We will not attempt to
summarize the many variations on these themes.
Extending these approaches to the SSMO prob-

lem has proven to be difficult. The most common
approach is to find the solution to Y = HX that
minimizes a mixed-norm criterion such as

MIN
xij

N∑
i=1

√√√√ L∑
j=1

x2
ij . (2)

This is the �1 norm over columns i of the �2 norm
of each row. The �2 norm of a row is zero if and
only if all elements in that row are zero, and positive
otherwise. The �1 norm is then just the sum of these,
and so can be expected to maximize the number of
all-zero rows of X , as desired.

C. Contribution of This Paper

This paper shows that eliminating P of the rows
of X results in a reduced-size problem (RSP) with:

• Ỹ is an (M–P )× L matrix having full rank.
• H̃ is an (M–P )× (N–P ) matrix having full rank.
• X̃ is an (N–P )× L matrix having full rank.
• X̃ has about K N−P

N rows that are NAZ.

The number of NAZ rows of X̃ is approximate and
assumes that NAZ rows are randomly distributed
among the (N–P ) rows of X̃.
We require (M–P ) > K N−P

N for a unique solution.
The point of the RSP is that if K N−P

N ≤ L then
the RSP can be solved in closed form (see below).
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II. Derivation of New Algorithm

A. Reduced-size Problem (RSP)

We partition Y = HX as follows:
[

Y1

Y2

]
=

[
H11 H12

H21 H22

] [
X1

X2

]
(3)

where the sizes of the various matrices are

• Y1 is (M–P )× L and X1 is (N–P )× L.
• Y2 and X2 are both P × L and H22 is P × P .
• H12 is (M–P )× P and H21 is P × (N–P ).

Note that we may reorder the rows and columns of
Y, H, X before partitioning the system Y = HX .
Eliminating X2 gives the RSP

Y1 − H12H
−1
22 Y2 = (H11 − H12H

−1
22 H21)X1 (4)

which can be written as the RSP Ỹ = H̃X̃, where

Ỹ = Y1 − H12H
−1
22 Y2.

H̃ = H11 − H12H
−1
22 H21.

X̃ = X1. (5)

These matrices have the sizes noted above.

B. Closed-form Solution (CFS)

If P is chosen so that K̃ = K N−P
N < L then the

RSP can be solved in closed form as follows. Define

• {i1, i2 . . . iK̃}=NAZ rows of X .
• H̃i1...iK̃

=(M–P )× K̃ submatrix of H̃ .
• X ′

i1...iK̃
=L × K̃ submatrix of X ′.

Let D be the left null matrix of Ỹ , so DỸ =0. Then

[0] = DỸ = D(H̃X̃) = D[H̃i1...iK̃
][X̃ ′

i1...iK̃
]′. (6)

But if L ≥ K̃, then the K̃ × L matrix [X ′
i1...iK̃

]′ has
full row rank. Then the left null spaces of both Y
and [Hi1...iK̃

] are identical. Hence columns i1 . . . iK̃
of Z = DH̃ will be columns of all zeros, so that

[0] = DH̃i1...iK̃
. (7)

All-zero columns of Z=DH̃ indicate NAZ rows of X̃ .

C. Summary of New Algorithm

1. Choose integer P so K̃ < (M–P ) and K̃ < L
where K̃=K N−P

N .
2. Compute the RSP from the original problem.
3. Apply the CFS algorithm to the RSP.

III. Example Problem Sizes

These examples of original problem sizes

example# variable #1 #2 #3
#unknowns N 100 300 400
#equations M 75 150 150
#nonzero K 49 74 66
#channels L 25 50 50
Reduction P 50 100 100

lead to these problem sizes for the RSP

example# variable #1 #2 #3
#unknowns N–P 50 200 300
#equations M–P 25 50 50
#nonzero K̃ 24 49 49
#channels L 25 50 50

In all of these cases, Ỹ drops rank. If it does not,
then choose a different set of eliminated variables X2.

IV. NUMERICAL EXAMPLE

The following demonstrates the procedure on a
76× 100, 50-sparse, 26-channel, SSMO problem.
The problem eliminates the bottom half of X ; if

this matrix is not 25-sparse in rows, then it switches
to eliminating the top half of X , which must then be
at least 25-sparse in rows, and displays a message.
The sum of absolute values of each row of the half

of X used is plotted in blue, and the indicator vari-
able Z in red; zero values indicate a NAZ row of X .
Once the locations of NAZ rows of X are found,

the original problem is easily solved (is not shown).

clear;clf;H=rand(76,100);X=rand(100,26);
Q1=rand(1,100);Q2=sort(Q1);%random rows
K=find(Q1>Q2(50));X(K,:)=zeros(50,26);
Y=H*X; %GOAL:Find zero rows of X
HIH=H(1:26,51:100)/H(27:76,51:100);
YY=Y(1:26,:)-HIH*Y(27:76,:);
HH=H(1:26,1:50)-HIH*H(27:76,1:50);
N=(null(YY’))’;X1=abs(X(1:50,:));
if(isempty(N));X1=abs(X(51:100,:));
disp(’Keeping last 50 rows of X’)
HIH=H(1:26,1:50)/H(27:76,1:50);
YY=Y(1:26,:)-HIH*Y(27:76,:);
HH=H(1:26,51:100)-HIH*H(27:76,51:100);
N=(null(YY’))’;end;Z=sum(abs(N*HH),1);
subplot(211),stem(sum(X1,2)),hold on
subplot(211),stem(Z,’r’,’filled’),...
title(’X in blue; indicator in red’)

A sample run of this program is shown below.
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