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sparse solution mapped to single-output
sparse solution of systems of equations
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Abstract—The single-system multiple-output (SSMO)
sparse reconstruction problem is to solve the under-
determined linear systems of equations Y=HX where
the number of rows of Y exceeds the number of rows
of X that are not all zero. We show that this problem
can be mapped to a dual problem of solving an under-
determined linear system of equations w=Gz where
the size of vector w exceeds the number of nonzero
elements of vector z by the number of columns of X.
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I. INTRODUCTION

A. Problem Statement

The single-system multiple-output (SSMO) sparse
reconstruction problem is to solve the multichannel
underdetermined linear systems of equations

Y = HX (1)
• Y is an M × L matrix having full rank.
• H is an M × N matrix having full rank.
• X is an N × L matrix having full rank.
• X has at most (M–1) rows that are not all zero.
But the location of these rows is unknown.
• L < M << N .

The SSMO problem is a multichannel version of the
usual sparse reconstruction problem of solving the
underdetermined linear system of equations y = Hx
where y is an M-vector, at most M–1 elements of x are
nonzero, but the location of the nonzero elements of
x is unknown. This is the single-system single-output
(SSSO) sparse reconstruction problem.
Sparse reconstruction is currently of great inter-

est in compressed sensing, since many real-world sig-
nals and images have sparse (mostly zero) representa-
tions in an appropriate basis, such as a set of wavelet
or curvelet basis functions. The number of obser-
vations necessary to reconstruct the signal is there-
fore greatly reduced from the size of the signal. The
SSMO problem arises in several applications in which
multiple snapshots over time of a signal whose char-
acteristics are varying over time are available.

B. Problem Background

Many approaches to solving the SSSO problem are
known. The most common approach is basis pursuit,
in which linear programming is used to find the solu-
tion to y = Hx which has the minimum 
1 norm (sum
of absolute values). Another approach is matching
pursuit, in which columns of H most highly corre-
lated with the residual y–Hx̂i are successively chosen
to minimize the residual y–Hx̂i+1. Iterative thresh-
olding, in which the Landweber iteration is applied
to y = Hx and some elements of x̂i are thresholded
to zero at each iteration. We will not attempt to
summarize the many variations on these themes.
Extending these approaches to the SSMO prob-

lem has proven to be difficult. The most common
approach is to find the solution to Y = HX that
minimizes a mixed-norm criterion like

MIN
xij

N∑
i=1

√√√√ L∑
j=1

x2
ij . (2)

This is the 
1 norm over columns i of the 
2 norm
of each row. The 
2 norm of a row is zero if and
only if all elements in that row are zero, and positive
otherwise. The 
1 norm is then just the sum of these,
and so can be expected to maximize the number of
all-zero rows of X , as desired.

C. Contribution of This Paper

This paper maps the SSMO problem Y = HX to
a so-called dual SSMO problem w = Gz where

• G is an (N–M+L)× (N–1) matrix.
• w is a known (N–M+L)-length column vector.
• z is an unknown (N–1)-length column vector.
• z has only (N–M) nonzero elements out of (N–1).
So z has (N–1)–(N–M)=(M–1) zero elements.
But the location of these elements is unknown.
• The location of the zero elements of z indicate the
location of the (M–1) nonzero rows of the matrix X .

We call this the dual SSSO problem to the original
SSMO problem. Solving this SSSO problem yields
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the location of the rows of X that are not all zero; z
is an indicator function for these rows. Using these lo-
cations the SSMO problem can be solved. The map-
ping between the SSMO and its dual SSSO problem
is invertible, so the two problems are equivalent.

II. SSMO TO SSSO MAPPING

A. Left and Right Nullspaces of Submatrix of H

We make the following definitions:
• {i1, i2 . . . iM−1}=rows of X that are not all zero.
• Hi1...iM−1=M × (M–1) submatrix of H .
• X ′

i1...iM−1
=L × (M–1) submatrix of X ′.

• M{ H︸︷︷︸
N

indicates H is an M × N matrix.

Then the original SSMO problem, repeated as

M{ Y︸︷︷︸
L

= M{ H︸︷︷︸
N

N{ X︸︷︷︸
L

. (3)

can be rewritten as

M{ H︸︷︷︸
N

Y︸︷︷︸
L


 N{ X

L{ -I︸︷︷︸
L


 = M{ 0︸︷︷︸

L

. (4)

In particular, we have

M{ Hi1...iM−1︸ ︷︷ ︸
M−1

Y︸︷︷︸
L




Xi1

...
XiM−1

-I︸︷︷︸
L



= M{ 0︸︷︷︸

L

. (5)

Nominally, the right nullspace of an M × (M–1+L)
matrix has dimension (M–1+L)–M=L–1. But the
right nullspace of the left matrix in (5) has dimen-
sion L. So the left matrix in (5) is rank-deficient.
Hence, it has a left null row M -vector d′, where

d′︸︷︷︸
M

M{ Hi1...iM−1︸ ︷︷ ︸
M−1

Y︸︷︷︸
L

= 0. . .0︸ ︷︷ ︸
M−1+L

. (6)

Now define the column N -vector z by[
N{ z
L{ 0

]
=

[
N{ H ′

L{ Y ′

]
︸ ︷︷ ︸

M

M{ d . (7)

Note Y ′d=0 since d′Y =0′. zi1=zi2=. . .=ziM−1=0
and all other entries of z are generically nonzero.
Now, suppose that the original H was augmented

by a single, randomly-chosen column HN , and the
original X was augmented by a single row X ′

N of ze-
ros. Since the original problem generically has no so-
lution, but here has a solution by assumption, this
augmentation will not introduce another solution.
Then zN �= 0, since the last row of X is all zero.

B. Formulation of Dual SSSO Problem

Since the M × (N+L) matrix H Y has full rank,
its right null space has dimension (N+L–M). Hence
it has a (N+L) × (N+L–M) right null matrix G′.
Partitioning G as shown and taking a transpose gives

N + L − M{ G1︸︷︷︸
N

G2︸︷︷︸
L

[
N{ H ′

L{ Y ′

]
︸ ︷︷ ︸

M

= 0. . .0︸ ︷︷ ︸
M

. (8)

Since [z′ 0]′ lies in the right null space of G,

N+L−M{ G1︸︷︷︸
N

G2︸︷︷︸
L

[
N{ z
L{ 0

]
= N+L−M{ 0 (9)

which becomes

N + L − M{ G1︸︷︷︸
N

N{ z = N + L − M{ 0 . (10)

Now partition G1 into its first (N–1) columns G̃1 and
its final column (G1)N , and partition z similarly:

N +L−M{ G1︸︷︷︸
N

= N +L−M{ G̃1︸︷︷︸
N−1

(G1)N︸ ︷︷ ︸
1

. (11)

After partitioning, (10) can be rewritten as

N + L − M{ G̃1︸︷︷︸
N−1

(G1)N︸ ︷︷ ︸
1

[
z̃

zN

]
= 0 . (12)

Defining w = −(G1)N gives the dual SSSO system

N + L − M{ G̃1︸︷︷︸
N−1

z̃/zN = −(G1)N = w. (13)

C. Properties of Dual SSSO Problem

• Submatrix G̃1 is an (N–M+L)× (N–1) matrix.
• w=−(G1)N is an (N–M+L) column vector.
• z̃ is an unknown (N–1)-length column vector.
• z̃ has only (N–M) nonzero elements out of (N–1).
So z̃ has (N–1)–(N–M)=(M–1) zero elements.
• The location of the zero elements of z̃ indicate the
location of the (M–1) not-all-zero rows of matrix X .

Increasing the number L of channels has two effects:

• The difference between #rows (N–M+L)
and #columns (N–1) of G̃1 becomes smaller.
• The difference between #rows (N–M+L)
and the sparsity (N–M) of z̃ becomes larger.

Both effects make the SSSO problem easier to solve,
as the following tables show for various problem sizes.
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For the original SSMO problem:

example# variable #1 #2 #3
#equations M 100 100 50
#unknowns N 900 9000 9000
#nonzero M–1 99 99 49
#channels L 50 50 25

For the dual SSSO problem, these give:

example# variable #1 #2 #3
#equations N–M+L 850 8950 8975
#unknowns N–1 899 8999 8999
#nonzero N -M 800 8900 8950

Note that for each of these SSSO problems the
system matrix aspect ratio N−M+L

N−1 and the spar-
sity to #equations ratio N−M

N−M+L are roughly equal,
and close to unity. It is well known that in this case
use of 
1-norm minimization will almost always find
the sparsest solution, for a random system matrix.
The requirement for the SSMO problem is that the
number channles be half the number of equations.

D. Complete Procedure

1. Given: The SSMO problem Y = HX .
2. Compute the right null matrix G′ of [H Y ].
Or, G is the left null matrix of [H Y ]′.
3. Partition G into [ G̃1︸︷︷︸

N−1

(G1)N︸ ︷︷ ︸
1

G2︸︷︷︸
L

].

4. Solve the SSSO (G1)N = G̃1z̃ for sparse vector z̃.
The solution of this SSSO is actually −z̃/zN , not z̃.
5. The location of the zero elements of z̃ indicate the
location of the not-all-zero rows of matrix X .
6. Solve Y=HX after eliminating all-zero rows of X .

The following MATLAB program demonstrates the
procedure. Given the SSMO problem Y = HX , it
computes all of the variables used in the derivation,
and obtains the SSSO problem w = Gz. The location
of zero values of z indicate the location of not-all-zero
rows of X . The SSSO problem itself is not solved;
any of the panoply of methods for sparse solution of
underdetermined systems of equations may be used.

clear;N=30;M=10;L=5;
H=randn(M,N);X=randn(N,L);
%Input the M-1 rows to be nonzero.
K=[2 5 8 14 16 19 22 25 28];
X1=X;X1(K,:)=0;X=X-X1;Y=H*X;
%GOAL: Compute K from Y.
D=null([H(:,K) -Y]’);
Z=H’*D;G=(null([H -Y]))’;
G1=G(:,[1:N-1]);W=-G(:,N);
%Solve SSSO W=G1*Z1.
Z1=Z(1:N-1)/Z(N);[Z X]

III. Special Case: Number of Not-All-Zero
Rows Equals the Number of Channels

We now consider the special case when M–1=L.
Then the number of equations N–M+L=N–1 equals
the number of unknowns N–1. So the SSSO is no
longer underdetermined; it can simply be solved di-
rectly for z̃, which indicates the locations of not-all-
zero rows of X . SSMO has a closed-form solution!

A. Simpler Algorithm

A simpler algorithm for computing z̃, that avoids
computation of matrix G, can be derived as follows.
We are given the SSMO problem Y = HX , where

now only K rows of X are not all zero. The number of
channels L is assumed to equal or exceed the number
of not-all-zero rows of X , so that L ≥ K.
Let D be the left null matrix of Y , so DY =0. Then

[0] = DY = D(HX) = D[Hi1...iK ][X
′
i1...iK

]. (14)

But if L ≥ K, then the K × L matrix [X ′
i1...iK

] has
full row rank. Then the left null spaces of both Y
and [Hi1...iK ] are identical. Hence columns i1 . . . iK
of Z = DH will be columns of all zeros, so that

[0] = DHi1...iK . (15)

Hence Z=DH is again an indicator function for the
not-all-zero rows of X .

B. Complete Procedure

1. Given: The SSMO problem Y = HX where
now only K rows of X are not all zero
and the number of SSMO channels L ≥ K.
2. Compute the left null matrix D of Y .
3. Compute Z=DH . The all-zero columns of Z
indicate the location of not-all-zero rows of X .

The previous algorithm solves this problem for the
special case K=M–1=L. The following MATLAB
program demonstrates the procedure. Given SSMO
problem Y = HX , it computes indicator function Z.
clear;N=30;M=10;L=8;
H=randn(M,N);X=randn(N,L);
%Input the L rows to be nonzero.
K=[2 5 8 14 16 19 22 25];
X1=X;X1(K,:)=0;X=X-X1;Y=H*X;
%GOAL: Compute K from Y.
D=(null(Y’))’;Z=D*H;[Z’ X]

We note in passing that if only K rows of X are
not all zero and L < K < M–1, the derivation of the
original algorithm still holds, except that d′ is now a
(M–K)×M matrix instead of a row M -vector. The
dual SSSO problem is now a dual SSMO problem.


