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Abstract— We propose a new non-iterative algo-
rithm for phase retrieval of a sparse image from low-
wavenumber values of its Fourier transform magni-
tude. No image support constraint is needed. The
algorithm uses the sparsity of the image autocorre-
lation to reconstruct it exactly from low-wavenumber
Fourier magnitude data (superresolution) using a vari-
ation of MUSIC. The sparsity of the image is then
used to reconstruct it recursively from its autocor-
relation. Applications include X-ray crystallography
and astronomy. Three numerical examples illustrate
the algorithm.
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I. INTRODUCTION

A. Background

In many optical problems featuring diffraction and
scattering, Fourier phase information is distorted or
never acquired. Thus Fourier phase must be com-
puted from magnitude (phase retrieval). X-ray crys-
tallography and astronomy are two such problems.
Many algorithms have been proposed to solve this.

Most of them iteratively impose constraints on the
Fourier magnitude values and image support. These
are known to almost surely uniquely determine the
image to some trivial ambiguities, discussed below.
However, high-wavenumber data are often unavail-

able, for reasons discussed below, and the image
support may be unknown. But the image may be
sparse (mostly zero-valued), with the locations of its
nonzero values unknown. This is the case in X-ray
crystallography and astronomy in particular.

B. Problem Statement

The goal is to reconstruct {xn, 0 ≤ n ≤ M − 1}
from some low-wavenumber values {|Xk|, |k| ≤ K2}
of its N-point discrete Fourier transform (DFT)

Xk =
N−1∑
n=0

xne
−j2πnk/N ,M ≤ N (1)

• xn is known to be K-sparse (K nonzero values);
• The locations {ni, 1 ≤ i ≤ K} of its nonzero values
are unknown (hence no known support constraint);

• The 2-D problem has been unwrapped to a 1-D one
using Kronecker or Agarwal-Cooley;
• M is for convenience of presentation:
– The finite support case N≥2M+1 is solved first;
– Then extended to the no support case M=N.

The phase retrieval problem in all dimensions is
known to have the following three trivial ambiguities:

• Translation: If xn is a solution, then xn−D is also
a solution for any integer D. For the no support case
xn−D represents a circular shift (viz., (n-D)mod(N));
• Reversal: If xn is a solution, then xN−n is also a
solution. The signal can only be reconstructed to a
mirror-image ambiguity;
• Sign: If xn is a solution, then −xn is a solution.
If xn may be complex, then ejθxn is also a solution.

The problem is considered solved when xn is deter-
mined to within these three ambiguities.
The autocorrelation rn of xn is defined by

rn =
M−1∑
i=0

xixi−n; |Xk|2 =
N−1∑
n=0

rne
−j2πnk/N (2)

So knowledge of rn is equivalent to knowledge of
Fourier transform magnitude squared. If there is
no support information for xn, rn is the cyclic
autocorrelation–all indices are reduced mod(N).

C. Relevant Other Approaches

Sparse signal reconstruction is often accomplished
by finding the signal satisfying all other constraints
that has minimum �1 norm (

∑ |xn|). This can be
computed using linear programming.
However, that approach is inapplicable here, since

even if all of the Fourier magnitude data were avail-
able, this would only determine the autocorrelation
rn of xn, which is only the sum of {xixj , i− j = n}.
Iterative algorithms such as the hybrid input-

output algorithm, converge to the solution if all
Fourier magnitude data are available and a support
constraint is known. The 1-D solution is not unique,
but the 2-D problem unwraps to a 1-D problem with
bands of zeros, which does have a unique solution.
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However, that approach is also inapplicable here,
since although most xn are zero, the locations ni of
the nonzero values are unknown, so there is no known
support constraint. And if only some of the Fourier
magnitude data are available, convergence to unique
solution is not guaranteed for iterative algorithms.

D. New Approach of This Paper

We solve the problem formulated above in 3 steps:

1. The sparsity of the autocorrelation rn, whose
nonzero locations are also unknown, is used to com-
pute rn from low-wavenumber Fourier magnitudes
{|Xk|2, |k| ≤ K < N}, using a variation of MUSIC;
2. If the problem is 2-D, it is unwrapped to a 1-D
problem using the Kronecker transform or Agarwal-
Cooley fast convolution (for no known support);
3. The sparse signal xn is computed recursively from
the sparse rn. At each recursion, the locations of
already-determined nonzero xn are used to determine
whether a nonzero xn is located at n or M–n or N–n
for the no known support case. Then the rn due to
the newly-determined xn are all eliminated.

E. Organization

This paper is organized as follows. Section II re-
views diffraction scattering theory to explain why
only low-wavenumber Fourier transform magnitude
data is available in many optics problems. It
then presents the superresolution algorithm for re-
constructing the sparse autocorrelation from low-
wavenumber Fourier magnitude data only. Section
III presents the algorithms for recursively recon-
structing the sparse signal xn from the sparse auto-
correlaiton rn, first for the finite-support case and
then for the no known support case. Section IV
presents two illustative numerical examples, one for
each support case.

II. Superresolution and Scattering

The first subsection reviews general diffraction
imaging in optics; the second specializes to crystals.
The third reviews how MUSIC can be adapted to
perform superresolution and reconstruct the sparse
autocorrelation from low-wavenumber Fourier mag-
nitude data. We also provide a glossary linking X-ray
crystallography terms to signal processing terms.

A. Diffraction Imaging

Consider an object {o(x), x ∈ R3} known to be
zero outside the sphere |x| ≤ R for some finite radius
R (so o(x) has compact support) illuminated with a
plane wave δ(t − �eI · x/c) in a direction specified by

the unit vector �eI , travelling at wave speed c. Taking
temporal Fourier transforms to replace time depen-
dence with frequency dependence results in

Ft→ω{δ(t− �eI · x/c)} =
∫

δ(t− �eI · x/c)e−iωtdt

= e−iω( �eI ·x)/c = e−i2π( �eI ·x)/λ λ = wavelength (3)

Here wavelength replaces frequency over wave speed.
For each x ∈ R3, this plane wave is scattered

by o(x), producing a spherically-spreading scattered
field. In the direction specified by the unit vector �eS ,
the scattered field in the far field (large |x|) is

e−i 2π
λ �eI ·xo(x)

1
4π|x| e

i 2π
λ �eS ·x

We now make the Born approximation, which is that
the scattered field is not further scattered by o(x) at
other values of x. This amounts to assuming that
|o(x)| << 1, so that o(x1)o(x2) is negligible vs. o(x).
This linearizes the problem, and allows us to state
that the total measured field from all of o(x) is

e−i 2π
λ �eI ·x︸ ︷︷ ︸

INCIDENT

+
1

4π|x|
∫

e−i 2π
λ ( �eI− �eS)·xo(x)dx︸ ︷︷ ︸
SCATTERED

(4)

The goal is to reconstruct o(x) from this field. In the
sequel we subtract off the incident plane wave and
omit the geometric spreading factor 1/(4π|x|).
As the incident �eI and scattered �eS directions

sweep over the unit sphere, the 3-D Fourier trans-
form O(k) of o(x) is determined over a set of spheres
of radius 2π

λ centered on another sphere of radius 2π
λ .

This is also the set of all spheres of radius 2π
λ that

pass through the origin.
Some thought (picture a flyball governor spinning

around all possible axes) shows that this sweeps over
all wavenumbers with magnitudes ≤ 4π

λ . In fact,
we can omit half of the incident or scattered direc-
tions and still recover {O(k), |k| ≤ 4π

λ } (picture an
anemometer spinning around all possible axes and
use reciprocity). Hence we can recover only a low-
wavenumber-filtered version of o(x); the shorter the
wavelength λ, the higher the o(x) cutoff wavenumber.
This is important in the development to follow.
For more details see any paper on diffraction scat-

tering or tomography. We have found the papers of
A.J. Devaney to be particularly helpful to us.

B. X-Ray Crystallography

We now specialize to the case of o(x) is a crystal:

• o(x) is periodic: o(x) = o(x+[Lx, Ly, Lz]) for some
lengths Lx, Ly, Lz. Each period of o(x) is a unit cell;
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• o(x) is atomic: o(x) =
∑M

n=1 onδ(x− xn) for some
values and locations {(on, xn), n = 1 . . .M}. on is
proportional to the atomic number of the nth atom.

More precisely o(x) is sparse (mostly zero-valued)
and its nonzero values specify the electron density,
which is clustered around atomic nuclei. It thus may
be collections of small regions rather than impulses.
These properties of o(x) imply the following prop-

erties of its Fourier transform O(k):

• O(k) is discrete in wavenumber k (see below);
• The atomicity of o(x) lead to more complicated
properties of O(k) (see below).

More precisely O(k) can be written as

∑
i,j,k

Oi,j,kδ(kx − i
2π
Lx
)δ(ky − j

2π
Ly
)δ(kz − k

2π
Lz
). (5)

More properly, the periodic o(x) can be expanded in
a 3-D Fourier series with Fourier coefficients Oi,j,k.
However, there are also consequences to the use of

X-ray wavelengths, which have λ ≈1 Angstrom:

• Only the o(x) Fourier magnitude |O(k)| can be
measured, since there is no lens for imaging X-rays;
• Only a low-wavenumber-filtered version of o(x) can
be recovered, with resolution about 1 Angstrom.

We thus have the two problems of phase retrieval
(recovering � O(k)) and superresolution or bandwidth
extrapolation (recovering O(k) for large |k|). There
are well-known iterative algorithms for both of these
problems that require a support constraint: o(x) = 0
for |x| > R for some R. However, these algorithms
cannot be applied here, since the periodicity of o(x)
implies there is no support constraint. It could be
assumed that in each unit cell there is a bounding
region in which the crystal is known to be empty of
atoms, but this is seldom true in practice.
The problem is as follows: How to take advantage

of sparsity and periodicity to recover the phase and
high-wavenumber information. Note sparsity cannot
be used as a support constraint: Although o(x) is
mostly zero, there are no regions in which o(x) is
known to be zero, so there is no fixed constraint.

C. Glossary

We repeat the following glossary from an earlier
paper of ours linking terms in X-ray crystallography
to corresponding concepts in signal processing. This
glossary should be helpful to readers in both fields.

X-RAY CRYSTAL. SIGNAL PROC.
Electron density image or object
Crystal structure space-periodic
Unit cell lengths spatial periods
Atomicity object sparsity
P1̄ group even symmetry

Reciprocal space Fourier domain
Structure factors F{object}

Structure amplitude |F{object}|
Patterson map autocorrelation
Karle-Hauptman Circulant matrix
determinants≥0 pos.semi-definite
Sayre equation F{o(x)(o(x) − 1)}
Isomorphous Inserting atoms
replacement into the object
Anomalous Vary λ excite
dispersion heavy atoms

Crystallographic Rotation invariant
symmetry within the lattice

Noncrystallogra- Rotation invariant
phic symmetry extending lattice

Born approximation Linearization

D. Superresolution

The problem here is to reconstruct the K2–K-
sparse autocorrelation rn from knowledge of the
low-wavenumber values of the DFT magnitude
{|Xk|, |k| ≤ K2}. Repeating (??), we have

rn =
M−1∑
i=0

xixi−n; |Xk|2 =
N−1∑
n=0

rne
−j2πnk/N (6)

Since xn is K-sparse, rn is (K2–K)-sparse.
Let sn be the indicator function for nonzero rn:{
sn = 0 if rn �= 0
sn �= 0 if rn = 0

{
Sk �= 0 0 ≤ k ≤ K2

Sk = 0 otherwise
(7)

where Sk is the N-point DFT of sn. Then we have

snrn = 0→
N−1∑
i=0

|Xi|2Sk−i = 0 (8)

Since there are only K2+1 nonzero values of Sk, the
2K2+1 known values {|Xk|2, |k| ≤ K2} determine
Sk to an irrelevant scale factor. The second equation
can be written as a Hermitian Toeplitz linear system
of equations. All this generalizes directly to multiple
dimensions; the only difference is that the Toeplitz
matrix becomes a Toeplitz-block-Toeplitz matrix.
The polynomial of degree 2K2+1 with coefficients

Sk has zeros {ejni}, where ni are now the locations
of the nonzero values of rn. So an inverse DFT of Sk

is zero at locations of nonzero rn. Then the linear
system (??) determines the nonzero values of rn.



4

III. Recursive Reconstruction of Sparse

Signal xn from Autocorrelation rn

Having reconstructed the (K2–K)-sparse autocor-
relation rn, the goal is now to reconstruct the K–
sparse signal xn. We assume that each rn = xixi−n

for some specific i; no rn except n=0 is the sum of
more than one such term. This is realistic since the
xn are resolved into points at random locations.

A. Finite Support xn

Suppose xn=0 outside the range 0 ≤ n ≤ M − 1
and N≥2M–1, so there is no aliasing. Without loss
of generality, due to the translational ambiguity, set
x0=1. Since each rn is a single term xixi−n, we can
set all nonzero xn and rn to one to determine loca-
tions of nonzero xn. Then arranging the actual values
of rn into a matrix, the xn are determined by a rank-
one factorization of this matrix. This determines xn

to an overall sign ambiguity.
The algorithm is initialized as follows:

1. Let rn=0 outside the range |n| ≤ M and r±M=1.
Since x0=1, we have xM=1.
2. Let L be the largest integer L<M such that
r±M=1. Then either xL=1 or xM−L=1.
3. There is no way to tell at this point–this is the
reversal ambiguity.
4. Without loss of generality, let xL = 1.
5. Take rL and rM−L “off the board” by setting to 0.

The algorithm recursions are as follows:
1. For each n decreasing from L to 2;
2. If rn=0 go to the next smaller n;
3. If rn �= 0 either xn=1 or xM−n=1;
4. Check rL−n and r|L−(M−n)|;
5. One of these will be one; the corresponding x=1;
6. If both are one, both x=1;
7. Say xn=1. Set r|i−n|=0 for all {i : xi = 1};
8. This prevents false alarms from these rn;
9. Go to the next smaller value of n; go to #2.

B. Tiny Example

As an example, suppose we are given rn=:
{1,0,0,1,1,1,1,1,0,4,0,1,1,1,1,1,0,0,1}
Initialization:

• x0 = x9 = 1.
• r6=1→ x6=1 or x3=1:
• Without loss of generality x6=1;
• Take r6 and r9−6 “off the board.”

Recursion:
• r5=1→ x5=1 or x4=1:
• x5=1→ r6−5=1. NO.
• x4=1→ r6−4=1. YES.
• Take r9−4, r6−4, r|0−4|} “off the board.”

• rn=0 for all remaining n.

So the solution is
xn = {1, 0, 0, 0, 1, 0, 1, 0, 0, 1} (9)

or its reversal, translation, or sign change.

C. No Support xn

With no support information, rn computed from
the squared DFT magnitude is the cyclic (aliased)
autocorrelation rn+ rN−n. Assuming at most one of
these two terms is nonzero, the problem is to distin-
guish whether each nonzero computed rn is actually
rn or an aliased value rN−n.
This can be performed during the recursion, since:

• rn=1→ xn=1 or xM−n=1;
• rN−n=1→ xN−n=1 or xM−(N−n)=1;
• M<N is the largest index rM=1;
• So we need to check the correlations between all
previously computed nonzero xi and these four can-
didate nonzero xn, rather than the two before;
• Only one of these four sets will all be nonzero;
• This determines a nonzero xn and dealiases rn.

The initialization is more difficult:
• There is now a cyclic translational ambiguity.
• Two nonzero xn are closest together.
• Let them be x0=1 and xM=1, where:
• M is largest and N-M smallest i : ri �= 0.

Now let L be the next-largest index such that rL �= 0.
Run the algorithm assuming rL is a true autocorre-
lation. If the result doesn’t work, rN−L was the true
autocorrelation. Run the algorithm using the next-
largest index. Continue until the algorithm works
(generates an xn satisfying the rn).

D. Converting 2-D to 1-D Problems

A 2-D or 3-D phase retrieval problem with known
finite image support can be unwrapped into a 1-D
phase retrieval problem by rows or columns. The
resulting 1-D problem signal support constraint in-
cludes known bands of zeros, ensuring a unique solu-
tion to the trivial ambiguities.
A 2-D or 3-D phase retrieval problem without any

support information can be unwrapped into a 1-D
phase retrieval problem using the Agarwal-Cooley
fast convolution algorithm. This regards the 2-D or
3-D problem indices as a residue number system rep-
resentation of the 1-D problem indices. The DFT
sizes Nx, Ny, Nz must be relatively prime integers;
that is, the lengths Lx, Ly, Lz must be relatively
prime integer multiples of the same unit length.
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IV. Numerical Examples

A. Example: Known Finite Support

The image is a 100× 100 16-sparse image in which
each nonzero pixel has value one. Its autocorrelation
is 199× 199 and is 240-sparse (excluding the 0th lag
which has value 16). So
• K=16; K2–K=240; N=2M-1=199.
The 199×199 2-D DFT magnitude is known only for
the 20 lowest wavenumbers along each axis. The goal
is to reconstruct the 16-sparse image from this low-
wavenumber Fourier magnitude data.
The autocorrelation estimate obtained by taking

the inverse 199×199 2-D DFT of this given data,
setting the unknown Fourier magnitudes to zero, is
shown in Figure 1. The 0th lag is at the center. It can
be seen that reconstructing xn from this unresolved
data would be difficult.
The true autocorrelation (with the 0th lag set to

zero for display purposes) is shown in Figure 2.
The logarithms of the singular values of the

Toeplitz-block-Toeplitz matrix are plotted in Figure
3. The sharp drop between 241 and 242 shows that
this matrix has an effective rank of 241. The thresh-
old used to determine the locations of nonzero ri,j is
between the 241 and 242 smallest values. Specifically,
• σ241 = 3.4× 10−5; σ242 = 5× 10−10

• t241 = 1.5× 10−10; t242 = 4× 10−5

Reconstructed autocorrelation is shown in Figure 4.
Compare to the actual autocorrelation in Figure 2.
The original and reconstructed sparse images are

shown in Figures 5 and 6. Note the translation; this is
considered a trivial ambiguity. In fact, the algorithm
reconstructed the reversal of the original image; its
reversal is shown to facilitate comparison.
Matlab code used to generate this example:
clear;rand(’seed’,0);XX=ceil(rand(100,100)-.9988);
YY=conv2(XX,fliplr(flipud(XX)));
FYY=fftshift(fft2(YY));
FYY=FYY(100-20:100+20,100-20:100+20);FY1=FYY(:);
%Autocorrelation reconstructed from low freqs only
FYY(199,199)=0;YL=abs(ifft2(FYY)); %modulated
YL(1:3,1:3)=zeros(3,3);YL(197:199,197:199)=zeros(3,3);
YL(197:199,1:3)=zeros(3,3);YL(1:3,197:199)=zeros(3,3);
figure,imagesc(YL),colormap(gray)

FY1=FY1((41̂ 2+1)/2:41̂ 2);TT=toeplitz(FY1,FY1’);
II=[];for I=0:20;II=[II [1:21]+I*41];end
T=TT(II,II);[U S V]=svd(T); %Toeplitz-block-Toeplitz
P=reshape(V(:,441),21,21);FP=abs(fft2(P,199,199));
ZZ=YY;ZZ(100,100)=1; %Set 0th lag to 1 for display
figure,imagesc(ZZ),colormap(gray)
figure,plot(log(diag(S))),title(’SINGULAR VALUES’)

FPP=FP(:);[W1,J]=sort(FPP);W(J(1:241))=1;W(199̂ 2)=0;
figure,imagesc(reshape(W,199,199)),colormap(gray)

XX(199,199)=0;%W1(241)=1.5X10̂ -10;W1(242)=4X10̂ -5
figure,imagesc(XX),colormap(gray)
X1=(XX(:))’;X=X1(min(find(X1>0)):max(find(X1>0)));
Y1=(YY(:))’;Y=Y1(min(find(Y1>0)):max(find(Y1>0)));
M=length(Y);Y=Y((M+1)/2:M);
[W2,N]=find(Y>0);L=length(N);
Z(N(1))=1;Z(N(L))=1;Z(N(L-1))=1;

Y(N(L-1))=0;Y(N(L)+1-N(L-1))=0;
for I=L-2:-1:2;if Y(N(I))==1;
if Y(N(L-1)-N(I)+1)==1;Z(N(I))=1;
Y(N(I+1)+find(Z(N(I+1):N(L))==1)-N(I))=0;
Y(N(I)-find(Z(N(1):N(I-1))==1)+1)=0;
else NI=N(L)+1-N(I);
Z(NI)=1;NI1=N(L)+1-N(I-1);
Y(NI1+find(Z(NI1:N(L))==1)-NI)=0;
Y(NI-find(Z(N(1):N(L)+1-N(I+1))>0)+1)=0;

end;else;end;end;Z=fliplr(Z);Z(199̂ 2)=0;
ZZ=reshape(Z’,199,199); %Get reversal
figure,imagesc(ZZ),colormap(gray)

B. Example: Sparse Image; No Support

This example is similar to the first example, with
similar results. The 16-sparse image is now 100×99,
where 100 and 99 are relatively prime integers. This
facilitate unwrapping from 2-D to 1-D using the
Agarwal-Cooley fast convolution. The image is ac-
tually generated as a 1-D signal whose ends are cho-
sen to avoid having to rerun the algorithm, and then
mapped to 2-D, then back to 1-D for the algorithm.
Figures correspond to those from the first example,

and are quite similar. Singular values and thresholds
are also similar numbers, and are not given.
Matlab code used to generate this example:
clear;rand(’seed’,1);X=ceil(rand(1,9900)-.999);
X(9900)=1;X(9899)=1;X(9897)=1; %To avoid having to
N=length(X);Y1=conv(X,fliplr(X)); %rerunning algorithm
Y2=Y1(N+1:2*N-1)+Y1(1:N-1);Y2=[Y1(N) Y2]; %Cyclic
for I=0:100*99-1;YY(mod(I,100)+1,mod(I,99)+1)=Y2(I+1);end
%Autocorrelation reconstructed from low freqs only
FYY=fftshift(fft2(YY));FYY=FYY(51-20:51+20,50-20:50+20);
FY1=FYY(:);FYY(100,99)=0;YL=abs(ifft2(FYY)); %mod.
YL(1:3,1:3)=zeros(3,3);YL(98:100,97:99)=zeros(3,3);
YL(98:100,1:3)=zeros(3,3);YL(1:3,97:99)=zeros(3,3);
figure,imagesc(YL),colormap(gray)

FY1=FY1((41̂ 2+1)/2:41̂ 2);TT=toeplitz(FY1,FY1’);
II=[];for I=0:20;II=[II [1:21]+I*41];end
T=TT(II,II);[U S V]=svd(T); %Toeplitz-block-Toeplitz
figure,plot(log(diag(S)))
P=reshape(V(:,441),21,21);FP=abs(fft2(P,100,99));
FPP=FP(:);[W1,J]=sort(FPP);W(J(1:241))=1;W(9900)=0;
ZY=reshape(W,100,99);YY(1,1)=1; %0th lag→1
figure,imagesc(YY),colormap(gray)
figure,imagesc(ZY),colormap(gray)
%Agarwal-Cooley unwrapping:
for I=0:100*99-1;Y(I+1)=ZY(mod(I,100)+1,mod(I,99)+1);end
Y=[Y(2:N-1) 1 1]; %cyclic shift 0th lag to N
[W,K]=find(Y>0.1);L=length(K);M=K(L-1);
Z(K(L))=1;Z(K(L-1))=1;Z(K(L-3))=1; %initialize
Y(K(L))=0;Y(K(L-1))=0;Y(K(L-3))=0; %from initialized
Y(K(L-2))=0;
for I=L-4:-1:(L+1)/2;if Y(K(I))>0.1;
if Y(K(L)-K(I))*Y(K(L-1)-K(I))*...
Y(K(L-3)-K(I))>0.1;Z(K(I))=1;

for J=1:L;if Z(K(J))>0.1;if K(I)-K(J)̃ =0;
Y(abs(K(I)-K(J)))=0;end;end;end;Y(N-K(I))=0;
elseif Y(K(L)-(M-K(I)))*Y(K(L-1)-(M-K(I)))...
*Y(K(L-3)-(M-K(I)))>0.1;Z(M-K(I))=1;

for J=1:L;if Z(K(J))>0.1;if M-K(I)-K(J)̃ 0;
Y(abs(M-K(I)-K(J)))=0;end;end;end;Y(N-(M-K(I)))=0;
end;else;end;end
for I=0:100*99-1;XX(mod(I,100)+1,mod(I,99)+1)=X(I+1);end
for I=0:100*99-1;ZZ(mod(I,100)+1,mod(I,99)+1)=Z(I+1);end
figure,imagesc(XX),colormap(gray)
figure,imagesc(ZZ),colormap(gray)
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C. Example: Sparsifiable Image; No Support

In this example we reconstruct a non-sparse but
sparsifiable image from its cyclic autocorrelation.
The problem size is much smaller in order to illus-
trate several important points that are lost in larger
problems. We also skip the superresolution part.
The image is a block letter ‘E’ in which each seg-

ment has a different size. This can be sparsified by a
2-D difference operator (corner detector). Each lag of
the 30×29 cyclic autocorrelation of the sparsified im-
age is a single product. For larger problems, this will
almost certainly hold, unless the block letters have
precisely identical segments.
The cyclic translational ambiguity of the un-

wrapped 1-D cyclic phase retrieval problem is ad-
dressed by simply translating the solution. Without
this, the reconstructed block letter ‘E’ is circularly
shifted in 2-D, which may make recognition of the
letter difficult. Note this is an inevitable feature of
the problem that requires additional information.
In Example #2, the sparse image had a pixel added

to it so that the algorithm would work the first time.
In the present example, the algorithm must be rerun
several times since the first few nonzero cyclic auto-
correlation lags are in fact aliased small lags. The
L–3, L–4 and L–5 lags were all aliased; the L–6 lag
was genuine, and the algorithm then worked.
To illustrate this, we have included a plot of both

the cyclic autocorrelation and the doubled (to dis-
tinguish it) linear autocorrelation. Examination of
this plot (which is of course unknown from the data)
shows that the largest few lags are in fact aliased
small lags. These are the lags noted above.
The Matlab code provided below only checks for

nonzero lags between a prospective nonzero image
location and the three known nonzero image locations
used to initialize the algorithm. This is simpler than
checking lags between the prospective location and
all previously determined locations, but it does allow
a single false value to creep in.
We have chosen to keep the program simple, to

make the point that even for a problem as dense as
this one, only a single false value crept in. Complete
checking may be unnecessary for most problems.
Since the sparsified image is used to create a non-

sparse image, its true values must be computed by
a rank-1 matrix factorization. This step is now in-
cluded in the program below.
Matlab code used to generate this example:

%Create block letter E with unequal parts:
clear;X(27,27)=0;X(14:16,5)=ones(3,1);
X(3:22,3:4)=ones(20,2);X(3:6,5:21)=ones(4,17);
X(9:13,5:20)=ones(5,16);X(17:22,5:25)=ones(6,21);

FY=abs(fft2(X,30,29)).̂ 2; %Given Fourier data.
figure,imagesc(log(fftshift(FY))),colormap(gray)
title(’FOURIER MAGNITUDE DATA; ORIGIN AT’)

FDY=FY.*abs(fft2([1 -1;-1 1],30,29)).̂ 2;
DY=(real(ifft2(FDY)));for I=0:30*29-1;
Y1(I+1)=DY(mod(I,30)+1,mod(I,29)+1);end
figure,imagesc(DY),colormap(gray)
title(’SPARSIFIED CYCLIC AUTOCORRELATION’)
figure,plot(Y1), %GOAL: Reconstruct X from DY.
title(’UNWRAPPED CYCLIC AUTOCORRELATION’)
%abs(Y1): To find nonzero locations of DX
Y=abs(Y1);Y=[Y(2:870) 1];N=length(Y);
[W,K]=find(Y>0.1);L=length(K);M=K(L-1);
%initialize: L-3,L-4,L-5 don’t work.
Z(K(L))=1;Z(K(L-1))=1;Z(K(L-6))=1;
for I=L-7:-1:7(L+1)/2;if Y(K(I))>0.1;
if Y(K(L)-K(I))*Y(K(L-1)-K(I))*...
Y(K(L-6)-K(I))>0.1;Z(K(I))=1;

for J=1:L;if Z(K(J))>0.1;if K(I)-K(J)̃ =0;
Y(abs(K(I)-K(J)))=0;end;end;end;Y(N-K(I))=0;
elseif Y(K(L)-(M-K(I)))*Y(K(L-1)-(M-K(I)))...
*Y(K(L-6)-(M-K(I)))>0.1;Z(M-K(I))=1;

for J=1:L;if Z(K(J))>0.1;if M-K(I)-K(J)̃ =0;
Y(abs(M-K(I)-K(J)))=0;end;end;end;
Y(N-(M-K(I)))=0;end;else;end;end
%Translational ambiguity: cyclic shift Z.
%Artifact: set Z(853)=0. See paper text.
Z=Z([549:870 1:548]);Z(853)=0;Y=[Y1(2:870) 1];
%Now find actual values of DY from locations.
[W,K]=find(Z>0.1);L=length(K);%Reuse variables.

for I=1:L;for J=1:L;if K(I)-K(J)̃ =0;YY(I,I)=1;
YY(I,J)=Y(abs(K(I)-K(J)));end;end;end;
%Compute rank=1 factorization of matrix YY:
[U S V]=svd(YY);Z(K)=-Z(K).*V(:,1)’/V(1,1);
for I=0:30*29-1;DZ(mod(I,30)+1,mod(I,29)+1)=Z(I+1);end
figure,imagesc(DZ),title(’RECONSTRUCTED LOCATIONS’)
ZZ=fliplr(flipud(cumsum(fliplr(flipud(cumsum(DZ)))’)’));
figure,imagesc(ZZ),title(’RECONSTRUCTED IMAGE’)
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LOWPASS AUTOCORRELATION
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FOURIER MAGNITUDE DATA; ORIGIN AT CENTER
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