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Abstract—The problem of computing sparse (mostly
zero) or sparsifiable (by linear transformation) solu-
tions to underdetermined linear systems of equations
has applications in compressed sensing and minimum-
exposure medical imaging. We present a simple, non-
iterative, low-computational-cost algorithm for com-
puting a sparse solution to an underdetermined linear
system of equations. The system matrix is the Kro-
necker (tensor) product of two matrices, as in separa-
ble 2D deconvolution and reconstruction from partial
2D Fourier data, where the image is sparsifiable by a
separable 2D wavelet or other transform. Numerical
examples and program illustrate the new algorithm.
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I. INTRODUCTION

A. Problem Statement

The goal is to solve underdetermined linear system

y = H̃x = H̃W ′Wx = Hz;H = H̃W ′; z = Wx (1)
• H is the Kronecker product H = H1

⊗
H2;

• H1 and H2 are both M×N matrices; N>>M;
• H̃ and H=H̃W ′ are both M2 ×N2 matrices;
• W is N2 ×N2 unitary transformation matrix that
sparsifies the unknown column N2-vector x to z;
• z has only M − 1 out of N2 non-zero elements;
• y, H̃,W,H,M,N are known; x, z are unknown.

The sparsifying transformation W is any 2D separa-
ble orthonormal transform, such as the 2D wavelet
transform. Of course, if the unknown x is itself
sparse, as in X-ray crystallography, then W = I.
Applications with system matrix H̃ and H=H̃W ′

are Kronecker products of two matrices are:

• 2D deconvolution with separable point-spread-
function (PSF), e.g., a 2D Gaussian PSF;
• 2D reconstruction from partial Fourier data, since
the 2D DFT is the Kronecker product of 1D DFTs;
• The image (unwrapped to x) is sparsifiable by a
separable 2D transform, e.g., 2D wavelet transform.

We note that ifH is substantially underdetermined
N >> M , but each row is known to be bandlim-

ited to πM
N , then our non-iterative algorithm [1] can

be used. We have also used related but different
approaches to X-ray crystallography [2] and to the
limited-angle tomography formulation of SAR [3].

B. Relevant Previous Approaches

Use of sparseness as side information in signal re-
construction goes back at least as far as 1979 [4].
Most early work considered the deconvolution of
sparse 1D spike trains arising in reflections from lay-
ered media in seismic exploration, although [5] con-
sidered 1D reconstruction from bandlimited data.
The first use of sparseness in 2D (image) reconstruc-
tion of which we are aware is [6]. All of this early
work minimized the �1 norm (sum of absolute values)
of the signal, using linear programming. The idea
was that the �1 norm solution lies on a vertex of the
simplex and so is sparse. This idea has recently been
put on a firmer theoretical ground in [7] and other
recent papers. More recent work using this approach
is [8]-[10]. Using the �1 norm for the signal and �2
for the error is called LASSO. The problem with this
approach is the amount of computation required by
linear programming for image reconstruction.
Another way of formulating the linear sparse re-

construction problem is as a matrix “subset selec-
tion” problem [11]-[14]. The forward greedy algo-
rithm successively selects the matrix column closest
(in the mean-square sense) to the residual error re-
sulting from the previous matrix column selections.
The backward greedy algorithm starts with a gen-
eral solution and successively removes the matrix col-
umn that increases the mean-square residual error
the least. The latter algorithm has been shown to
give the correct answer if the noise level is sufficiently
small [13]. However, again the problem is the amount
of computation required here by subset selection.
Still another recent approach is to include a thresh-

olding constraint in a Landweber-like iterative algo-
rithm [15]-[18], often arising from statistical image
priors that implicitly (but not explicitly) maximize
sparsity. This is a straightforward approach, and un-
like the above methods requires reasonable computa-
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tion for 2-D problems. However, even in the absence
of noise, convergence to an optimally-sparse solution
is not in general guaranteed for these algorithms.

C. New Approach of This Paper

All of the above approaches are iterative, requir-
ing many iterations, are computationally intensive,
or both. The approach of this paper requires only:

• Computation of singular value decompositions
(SVDs) of M×N matricesH1 and H2 (H=H1

⊗
H2);

• Computation of left and right null vectors of the
M×M matrix formed from the M2 elements of y;
• Solution of an M2 × (M − 1)2 linear system;
• Computation of x = W ′z (if x is not sparse).

Note that all of these operations are straightforward
linear algebra and can be implemented in a non-
iterative way. Of course, iterative methods such as
conjugate gradient may be used in some steps, but
the overall algorithm is non-iterative, and can even
be considered to be a closed-form computation.

II. Derivation of New Algorithm

A. Review of Kronecker Product

The Kronecker (tensor) product A
⊗

B of two
M ×N matrices A and B is the M2 ×N2 matrix

[A
⊗

B] iM+m
jM+n

= Ai,jBm,n,
0 ≤ i, j ≤ M − 1
0 ≤ m,n ≤ N − 1

(2)

A simple numerical example:

[
1 2
3 4

] ⊗[
5 6
7 8

]
=




5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32


 (3)

Relevant properties of the Kronecker product are:

(A
⊗

B)(C
⊗

D) = (AC)
⊗

(BD) (4)

If C and D are inverses of (sparsifying) 1D wavelet
transforms, and A and B are 1D partial discrete
Fourier transform (DFT) matrices, or 1D Toeplitz
(convolutional) matrices, then C

⊗
D is the inverse

2D wavelet transform, and A
⊗

B is the partial 2D
DFT matrix or 2D convolution for separable PSF.

vec(AXB) = (B′ ⊗A)vec(X). (5)

vec(X) unwraps the matrix X by columns (X(:) in
Matlab). Applying this to the current problem,

vec(Y ) = (H1

⊗
H2)vec(Z) ↔ Y = H2ZH ′

1 (6)

B. Reformulation of Problem

Recall that the original problem is

y = Hz = (H1

⊗
H2)z (7)

where z has at most M − 1 nonzero elements. Wrap-
ping vectors y and z into matrices Y and Z:

• M2-vector y → (M ×M) matrix Y ;
• N2-vector z → (N ×N) matrix Z,

and defining the SVDs of H1 and H2 as

H1 = U1S1V1; H2 = U2S2V2 (8)

the original problem is equivalent to

Y = H2ZH ′
1 = (U2S2V2)Z(V ′

1S1U
′
1) (9)

which in turn becomes

R = S−1
2 U ′

2Y U1S
−1
1 = V2ZV ′

1 (10)

where the M×MmatrixR is quickly computable from
the M×M matrix Y composed of values of data y.
Since only M−1 elements of Z are nonzero, Z and

hence Y both have rank M − 1. Assuming that no
two nonzero elements of Z are in the same row or col-
umn, rows and columns containing nonzero elements
of Z are known. Let  n be the right null vector of R:

0 = R n = (V2ZV ′
1) n → 0 = ZV ′

1 n (11)

If the ith row of Z is all zero, then the ith element of
ZV ′

1 n is zero. If the (i, j)th element of Z is nonzero,
the jth row of V ′

1 is orthogonal to  n. Hence zeros of
V ′

1 n indicate columns of Z with a nonzero element.
Repeating this with R′ identifies rows of Z with

nonzero elements. Hence rows and columns of Z with
nonzero elements can be identified. Each nonzero
element is at the intersection of one of these rows and
columns, for a total of (M − 1)2 possible locations of
nonzero elements. So M2 values of y are sufficient to
determine which of these elements is nonzero.

III. Numerical Examples

A. Example Illustrating the Algorithm

Matlab’s rand was used to create the following:

• A 256×256 sparse image Z, with 21 nonzero pixels;
• A 484×65536 system matrix HH, which is the Kro-
necker product of a 22×256 matrix H with itself;
• The length=484 vector of data y=HH*Z(:).
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The goal is to reconstruct the 65536-vector Z(:) from
the 484-vector y, using the side information that only
21 elements of Z(:) (locations unknown) are nonzero.
The above algorithm was applied to this problem:

• SVD of 22×256 matrix H (HH=H
⊗

H);
• Left and right null vectors of the 22×22 matrix Y;
• Two 256×22 matrix-vector multiplications;
• Solution of a 484×421 linear system of equations
to determine values of the nonzero elements of Z.

Results are shown in three figures:
1. Original sparse image Z (21 nonzero pixels);
2. 22×22 matrix of data Y from data vector y;
3. Reconstructed rows and columns containing
nonzero pixels (actual nonzero pixels are also shown).

The Matlab code for this example is given below.

clear;rand(’state’,0);X=ceil(rand(256,256)-0.99965);
H=rand(22,256);[U S V]=svd(H);Y=H*(H*X)’;Q=V(:,1:22);
%Y(:)=kron(H,H)*X(:).484X65536 matrixXvector too big.
%GOAL: Get sparse X(length=65536) from Y(length=484).
W=inv(S(:,1:22))*U’;YY=reshape(kron(W,W)*Y(:),22,22);
I=find(abs(Q*null(YY))<0.000001);%=find(sum(X’)>0)’
J=find(abs(Q*null(YY’))<0.000001);%=find(sum(X)>0)’
Z(256,256)=0;Z(I,:)=1;Z(:,J)=1;%Lines with nonzero X
figure,imagesc(X),colormap(gray),title(’SPARSE IMAGE’)
figure,imagesc(Y),colormap(gray),title(’DATA IMAGE’)
figure,imagesc(Z+3*X),colormap(gray),title(’INDICATOR’)

B. Larger Numerical Example

This larger and more complete problem features:

• A 499-sparse vector of length 1,000,000;
• 250,000 linear combinations of this as data;
• Valid 2-D deconvolution of a separable PSF.

The problem is to reconstruct a sparse 1000×1000
image from its valid 2-D convolution with a 501×501
separable random PSF. Since only 1/9 of the 2-D
convolution is known, the FFT cannot be used here.
The algorithm was run using the Matlab code be-

low. The 250,000-point data vector was rearranged
into a 500×500 matrix Y, whose singular values were

σ499 = 2.5× 10−8; σ500 = 5.6× 10−15. (12)

so its null vector was clearly defined. This was then
used to determine the rows and columns of the im-
age containing nonzero pixels. Reconstruction of the
image is then straightforward (see the program).
Results are shown in three figures:

4. Original 1000×100 499-sparse image X;
5. 500×500 valid 2-D convolution data Y;
6. Reconstructed image (matches original image).

Despite the size of the problem, solution requires:
• A 500×1000 SVD (performed off-line);
• Solving 2 500×500 linear systems;
• A 499×499 matrix inversion.

The Matlab code for this example is given below.
clear;K=0;rand(’seed’,0);H=rand(1,501);
%GOAL:499-sparse X from Y=[250,000X1,000,000 H]X
%499-sparse 1000 X 1000 image such that no two pixels
%are in same row or same column, as required by the algorithm:
X(1000,1000)=0;while(K<499);I=ceil(1000*rand);J=ceil(1000*rand);
if(sum(abs(X(I,:)))+sum(abs(X(:,J)))==0);X(I,J)=1;K=K+1;end;end;
%Matrix to implement valid convolution with random H:
T=toeplitz([H(1) zeros(1,499)],[H zeros(1,499)]);[U S V]=svd(T);
Q=V(:,1:500);Y=T*X’*T’;S=diag(1./diag(S));YY=S*U’*Y*U*S;
%GOAL:Recover sparse X from its valid 2-D convolution Y.
[U1 S1 V1]=svd(YY); II=find(abs(Q*V1(:,500))<0.00000001);
[U2 S2 V2]=svd(YY’);JJ=find(abs(Q*V2(:,500))<0.00000001);
%II and JJ are rows and columns with nonzero pixels
G1=T(:,II);G2=T(:,JJ);W=G2\Y;W=G1\W’;Z(II,JJ)=W;
figure,imagesc(X),colormap(gray),title(’ORIGINAL IMAGE’)
figure,imagesc(Y),colormap(gray),title(’CONVOLVEDIMAGE’)
figure,imagesc(Z),colormap(gray),title(’RECONSTRUCTED’)
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Fig. 1. Original 256×256 21-sparse image
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Fig. 2. 22×22 matrix of observations
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Fig. 3. Rows and columns containing nonzero pixels

ORIGINAL IMAGE

Fig. 4. Original 1000×1000 499-sparse image

CONVOLVED IMAGE

Fig. 5. 500×500 valid 2-D convolution data

RECONSTRUCTED

Fig. 6. Reconstructed 1000×1000 499-sparse image


