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Abstract—The problem of computing sparse (mostly
zero) solutions to underdetermined linear systems of
equations has received much attention recently, due
to its applications to compressed sensing. Under mild
assumptions, the sparsest solution has minimum-L1-
norm, and can be computed using linear program-
ming. In some applications (valid deconvolution, sin-
gular linear transformations), the linear system is un-
derdetermined by a relatively small amount, and a
simpler solution is desirable. This paper presents a
closed-form solution for computing the K-sparse solu-
tion to an M-by-N underdetermined linear system of
equations, if N exceeds (K+1)(N-M+1). A numerical
example and program illustrates the new algorithm.

Keywords— Sparse reconstruction
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Problem Statement

The goal is to solve underdetermined linear system

y = H̃x = H̃W ′Wx = Hz;H = H̃W ′; z = Wx (1)
• H̃ and H=H̃W ′ are rank=M and M×N,N>M;
• W is an N×N unitary transformation matrix that
sparsifies the unknown column N-vector x;
• z has at most K out of N non-zero elements;
• y, H̃, W, H, K, M, N are known; x, z unknown.
• N≥(K+1)(N-M+1).

Examples of the sparsifying transformation W in-
clude the wavelet transform and gradient edge detec-
tors. Of course, if the unknown x is itself known to
be sparse, as in X-ray crystallography, then W = I.
The condition N≥(K+1)(N-M+1) makes this

problem inappropriate for compressed sensing. Three
applications satisfying this condition are:

• Valid (no signal support information is used) de-
convolution problems. The valid convolution of:
– Unknown signal x[n] of length M with known
– Impulse response (1-D) or point-spread (2-D)
function h[n] of length L gives the observed data:
– y[n] = h[n]∗x[n] of length M+L-1. However, only
M-L+1 of M+L-1 values of y[n] are known.

• Linear transformation inverse problems y = Hx in
which H is effectively rank-deficient.
• Reconstruction problems y = Hx in which some of
the data y are missing or garbled.

We note that ifH is substantially underdetermined
N >> M , but each row is known to be bandlim-
ited to π M

N , then our non-iterative algorithm [1] can
be used. We have also used related but different
approaches to X-ray crystallography [2] and to the
limited-angle tomography formulation of SAR [3].

B. Relevant Previous Approaches

Use of sparseness as side information in signal re-
construction goes back at least as far as 1979 [4].
Most early work considered the deconvolution of
sparse 1D spike trains arising in reflections from lay-
ered media in seismic exploration, although [5] con-
sidered 1D reconstruction from bandlimited data.
The first use of sparseness in 2D (image) reconstruc-
tion of which we are aware is [6]. All of this early
work minimized the �1 norm (sum of absolute values)
of the signal, using linear programming. The idea
was that the �1 norm solution lies on a vertex of the
simplex and so is sparse. This idea has recently been
put on a firmer theoretical ground in [7] and other
recent papers. More recent work using this approach
is [8]-[10]. Using the �1 norm for the signal and �2

for the error is called LASSO. The problem with this
approach is the amount of computation required by
linear programming for image reconstruction.
Another way of formulating the linear sparse re-

construction problem is as a matrix “subset selec-
tion” problem [11]-[14]. The forward greedy algo-
rithm successively selects the matrix column closest
(in the mean-square sense) to the residual error re-
sulting from the previous matrix column selections.
The backward greedy algorithm starts with a gen-
eral solution and successively removes the matrix col-
umn that increases the mean-square residual error
the least. The latter algorithm has been shown to
give the correct answer if the noise level is sufficiently
small [13]. However, again the problem is the amount
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of computation required here by subset selection.
Still another recent approach is to include a thresh-

olding constraint in a Landweber-like iterative algo-
rithm [15]-[18], often arising from statistical image
priors that implicitly (but not explicitly) maximize
sparsity. This is a straightforward approach, and un-
like the above methods requires reasonable computa-
tion for 2-D problems. However, even in the absence
of noise, convergence to an optimally-sparse solution
is not in general guaranteed for these algorithms.

C. New Approach of This Paper

All of the above approaches are iterative, requir-
ing many iterations, are computationally intensive,
or both. The approach of this paper requires only:

• The right nullspace of H and solution to (1);
• Solution of N×(K+1)(N-M+1) linear system;
• Rank-one factored (K+1)×(N-M+1) matrix;
• An N -point FFT to find nonzero locations of z;
• Solution of an N×(K+1) linear system to find z;
• Computation of x = W ′z (if x is not sparse).

Note that all of these operations are straightforward
linear algebra and can be implemented in a non-
iterative way. Of course, iterative methods such as
conjugate gradient may be used in some steps, but
the overall algorithm is non-iterative, and can even
be considered to be a closed-form computation.

II. Derivation of New Algorithm

Let G be an N×(N-M) matrix of (not necessarily
orthogonal) vectors spanning the right nullspace of
H . Let z̃ be the minimum �2 norm solution to (1):

HG = 0;G = [g1| . . . |gN−M ]; z̃ = H ′(HH ′)−1y.
(2)

Then the desired solution z can be written as

z = z̃ +
N−M∑
i=1

eig
i =

N−M∑
i=0

eig
i (3)

for some unknown constants {ei}. We define e0g
0 = z̃

for notational convenience. Computing the N -point
discrete Fourier transform of each column and using
the results as first rows of circulant matrices gives

Ẑ =
N−M∑
i=0

eiĜ
i (4)

where ĝi
k =

∑N−1
n=0 gi

ne−j2πnk/N , 0 ≤ k ≤ N − 1 and

Ẑ =




ẑ0 · · · ẑN−1

. . . . . . . . .
ẑ∗N−1 · · · ẑ0


 (5)

Ĝi =




ĝi
0 · · · ĝi

N−1

. . . . . . . . .
ĝi

N−1
∗ · · · ĝi

0


 (6)

using the conjugate symmetry relation ĝi
N−k=ĝi

k
∗.

The eigenvalues of each circulant matrix Ĝi are the
elements {gi

n} of gi. Because only K elements of z
are nonzero, Ẑ has rank K, and there exists a vector
v of length K+1 such that

Ẑ

[
v
0

]
=

N−M∑
i=0

eiĜ
i

[
v
0

]
= 0 (7)

Let ˆ̃G
i

be the matrix of the first K+1 columns of Ĝi.

Each ˆ̃G
i

is Toeplitz. Rewrite this equation as

[
ˆ̃G

0

. . . ˆ̃G
N−M

]


e0v
...

eN−Mv


 = 0 (8)

This is a system of N equations in a total of (N-M+1)
unknowns {ei} and (K+1) unknowns {vi}.

• If N>(N-M+1)+(K+1) then this is an overdeter-
mined system of quadratic equations, which by Be-
zout’s theorem almost surely has only the actual so-
lution assumed to exist. But its solution is difficult.
• If N>(N-M+1)·(K+1) then this is an overdeter-
mined system of linear equations. Solution is easy.

We can solve for the (N-M+1)(K+1) unknowns
{eivj}. Arranging these into an (N-M+1)×(K+1)
matrix and computing its rank-one decomposition
yields {ei} and {vj} to a (irrelevant) scale factor.
Next, make the following definitions:

{zin , 1 ≤ n ≤ K} = {zi : zi 
= 0, 1 ≤ i ≤ N} (9)

[Fik] = [e−j2π(i−1)(k−1)/N ]ik, 1 ≤ i, k ≤ N (10)

[F̃ik] = [e−j2π(i−1)(nk−1)/N ]ik, 1 ≤ k ≤ K (11)

• {zin , 1 ≤ n ≤ K} are the nonzero values of {zi};
• F is the DFT matrix implementing Ẑ = Fz;
• F̃ is a tall N×K submatrix of F .
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Then we have the (N×K)(K×N) factorization

Ẑ = Fdiag[zi]FH = F̃diag[zin ]F̃
H (12)

Extending F̃ by any other column of F gives

0 = Ẑ

[
v
0

]
= F̃diag[zin 0]F̃

H

[
v
0

]
(13)

Since F̃ is a tall matrix and zin 
= 0, we have

F̃H

[
v
0

]
= 0→ FH

[
v
0

]
= 0 for i ∈ {in} (14)

This shows that an inverse N-point DFT of a zero-
padded v is zero at the locations {in} of nonzero zi.
The conditioning of the location problem is deter-
mined by the condition number of F̃ . Random dis-
tribution of {in} yields good conditioning; clumping
of {in} and large gaps yields poor conditioning. The
DFT of null vector of Toeplitz-structured matrix can
be seen as a deterministic version of MUSIC, without
computing the autocorrelation first.

III. Numerical Example

A 30×30 block image xij was sparsified by cyclic
convolution with the corner detector:

zij =
29∑

m=0

29∑
n=0

xmnhi−m,j−n, hij =
[
1 −1
−1 1

]
(15)

zij was then unwrapped by rows to a column vector
zn and multiplied by a random 832×900 matrix H̃ :

yi =
900∑
n=1

H̃inzn, 1 ≤ i ≤ 832 (16)

Given knowledge of H̃ and that the sparsified image
zij has only 12 out of 900 nonzero elements, the goal
is to reconstruct xij from yi (832 observations).
We have K = 12, M = 832, N = 900. Since

N = 900 > 897 = (12 + 1)(900− 832 + 1) (17)

we can use the method of this paper. The 900×897
matrix is indeed singular, with singular values

σ1 = 389;σ896 = 0.080;σ897 = 1.8× 10−14 (18)

The null vector of this matrix was arranged into a
13×69 rank-one matrix having singular values

σ1 = 1.00;σ2 = 6× 10−14 (19)
The discrete Fourier transform of order=900 of the
length=13 factor of the rank-one decomposition was
computed. Their magnitudes were ordered from

smallest to largest. The 12th and 13th smallest were

p12 = 1.23× 10−13; p13 = 0.0085 (20)

a sharp threshold confirming the presence of only 12
nonzero elements of zn, which was then rewrapped
to the sparsified image zij .
The corner detector was then deconvolved from zij

to obtain xij . The corner detector frequency response
is zero along the 2-D frequency axes, so side informa-
tion xi1=x1j=0 was used to fill in those values.
Figure #1 shows the minimum-norm-least-squares

solution to y = H̃z. This is clearly insufficient for
determining the nonzero elements of zij . Figure #2
shows the reconstruction of the indicator function for
nonzero zij , found by setting the 12 smallest values
to one and the other 900–12 values to zero. As noted
above, there is a sharp threshold. Figure #3 shows
the reconstruction of the original image xij .
This demonstrates that the algorithm works with

good conditioning and sharp thresholds throughout.
The Matlab code used to generate this example is
given at the end of the paper in an Appendix.

IV. Conclusion

We have presented a non-iterative algorithm for
reconstructing sparse solutions to slightly underde-
termined systems of linear equations. The algorithm
requires only simple linear algebra operations. A nu-
merical example demonstrates the algorithm in re-
construction of a simple, sparsifiable image. If the
underdetermination is not small, but matrix rows are
bandlimited, our algorithm of [1] can be used.
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V. APPENDIX

%GOAL: Reconstruct sparsifiable X from Y=H*X.

%SIZES: X and W:30X30(900). H:832X900. Y:832X1.

clear;rand(’seed’,0);X(30,30)=0;H=rand(832,900);

%Create the 30X30 sparsifiable block image X:

X(2:7,2:27)=ones(6,26);X(12:17,2:27)=ones(6,26);

X(2:27,2:7)=ones(26,6);X(22:27,2:27)=ones(6,26);

%Sparsify the image X to W with corner detector:

W=real(ifft2(fft2(X).*fft2([1 -1;-1 1],30,30)));

%Reconstruct sparse W from Y=H*W(:)(could be H*X):

W=W’;Y=H*W(:);N=null(H);N(:,69)=H\Y;A=[];FN=fft(N);
%Form 900X897 singular Toeplitz blocks matrix:

for I=1:69;A=[A toeplitz(FN(:,I),FN(1:13,I)’)];end

%Find null vector of A and its rank 1 decomposition:

[U S V]=svd(A);[U1 S1 V1]=svd(reshape(V(:,897),13,69));

%Compute DFT and note sharp threshold → #nonzero W:

P=abs(fft(U1(:,1),900));P1=sort(P);P1(12),P1(13)

%Make Q binary & compute values sparse W from data Y:

Q=reshape(flipud(P),30,30);Q(Q<.001)=0;Q=1-sign(Q);

Z1(900)=0;Q1=Q(:);I=find(Q1>0.001)+1;Z1(I)=H(:,I)\Y;
%Inverse filter corner detector & set values where 0:

FW=fft2(reshape(Z1,30,30))./fft2([1 -1;-1 1],30,30);

FW(1,:)=-sum(FW(2:30,:));FW=FW.’;FW(1,2:30)=-sum(FW(2:30,2:30));

FW(1,1)=sum(sum(X));WHAT=real(ifft2(FW));imagesc(WHAT)
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