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Abstract—The problem of computing sparse (mostly
zero) solutions to underdetermined linear systems of
equations has received much attention recently, due
to its applications to compressed sensing. Under mild
assumptions, the sparsest solution has minimum-L1-
norm, and can be computed using linear program-
ming. We present a non-iterative algorithm for this
problem that requires only that each row of the system
matrix be bandlimited to the aspect ratio of the ma-
trix. The algorithm can be used directly with linear-
time-invariant sparsifying operators, and with wavelet
transforms if the matrix is more bandlimited. A nu-
merical example and code illustrate the algorithm.
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I. INTRODUCTION

A. Problem Statement

The goal is to solve underdetermined linear system

y = H̃x = Hz; H = H̃W−1; z =Wx (1)

where it is assumed that
• H̃ and H=H̃W−1 have rank=M and M×N,N>M;
• W is an N×N circulant matrix that sparsifies the
unknown column N-vector x to vector z;
• z has at most K out of N non-zero elements;
• y, H̃,W,H,K,M,N are known; x, z unknown.
• Each row of H̃ is bandlimited to πM

N ; K < M
2 .

For the sparsifying transformation W we use a gra-
dient edge detector. The procedure is adapted to
wavelet transforms in Section III below. Of course,
if the unknown x is itself known to be sparse, as in
X-ray crystallography, then we can use W = I.
If the problem is only slightly underdetermined (N-

M<<N), then a different approach that does not re-
quire bandlimited rows ofH can be used [1]. We have
also used related but different approaches to X-ray
crystallography [2] and to the limited-angle tomog-
raphy formulation of SAR [3].

B. Relevant Previous Approaches

Use of sparseness as side information in signal re-
construction goes back at least as far as 1979 [4].
Most early work considered the deconvolution of

sparse 1D spike trains arising in reflections from lay-
ered media in seismic exploration, although [5] con-
sidered 1D reconstruction from bandlimited data.
The first use of sparseness in 2D (image) reconstruc-
tion of which we are aware is [6]. All of this early
work minimized the �1 norm (sum of absolute values)
of the signal, using linear programming. The idea
was that the �1 norm solution lies on a vertex of the
simplex and so is sparse. This idea has recently been
put on a firmer theoretical ground in [7] and other
recent papers. More recent work using this approach
is [8]-[10]. Using the �1 norm for the signal and �2
for the error is called LASSO. The problem with this
approach is the amount of computation required by
linear programming for image reconstruction.
Another way of formulating the linear sparse re-

construction problem is as a matrix “subset selec-
tion” problem [11]-[14]. The forward greedy algo-
rithm successively selects the matrix column closest
(in the mean-square sense) to the residual error re-
sulting from the previous matrix column selections.
The backward greedy algorithm starts with a gen-
eral solution and successively removes the matrix col-
umn that increases the mean-square residual error
the least. The latter algorithm has been shown to
give the correct answer if the noise level is sufficiently
small [13]. However, again the problem is the amount
of computation required here by subset selection.
Still another recent approach is to include a thresh-

olding constraint in a Landweber-like iterative algo-
rithm [15]-[18], often arising from statistical image
priors that implicitly (but not explicitly) maximize
sparsity. This is a straightforward approach, and un-
like the above methods requires reasonable computa-
tion for 2D problems. However, even in the absence
of noise, convergence to an optimally-sparse solution
is not in general guaranteed for these algorithms.

C. New Approach of This Paper

All of the above approaches are iterative, requir-
ing many iterations, are computationally intensive,
or both. The approach of this paper requires only:

• Discrete Fourier transforms of each row of H̃ ;
• Solution of an M×M linear system of equations;
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• The nullspace of a K×K Toeplitz matrix;
• Solution of an M×K linear system of equations.

If H̃ and W are set in advance, then only two linear
systems, both with K unknowns, need to be solved.
This is a major advantage if K << M , as is often
the case. These savings also apply to deconvolution
problems, as the first example below shows.
Note that all of these operations are straightfor-

ward linear algebra and can be implemented in a
non-iterative way. Of course, iterative methods such
as conjugate gradient may be used in some steps, but
the overall algorithm is non-iterative, and can even
be considered to be a closed-form computation.
This paper is organized as follows. Section II de-

rives the algorithm for W = I. Section III extends
it to circulant W representing linear-time-invariant
operators, and to wavelet transformsW ; for wavelets
the rows of H̃ must now be more bandlimited. Sec-
tion IV provides an illustrative numerical example.

II. Derivation of New Algorithm for W=I

In this section the problem is to reconstruct a K-
sparse signal z from its bandlimited and underdeter-
mined linear transformation y=Hz. This has evident
applications in reconstruction of sparse signals.
Define the 1-D DFTs of z and each row of H as

Ĥik =
N∑

n=1

Hine
−j2π(n−1)(k−1)/N , 1 ≤ k ≤ N(2)

Ẑk =
N∑

n=1

zne
−j2π(n−1)(k−1)/N ; 1 ≤ k ≤ N (3)

By Parseval’s theorem, we have

yi =
N∑

n=1

Hinzn =
N∑

k=1

ĤikẐk (4)

Since each row of H is bandlimited to πM
N , this be-

comes the M×M linear system of equations



y1
...
yM


 =



· · · Ĥ1, M

2
Ĥ1,N−M

2
· · ·

· · · ...
... · · ·

· · · ĤM, M
2

ĤM,N−M
2

· · ·







...
ẐM

2

ẐN−M
2

...




Solution yields the lowest M
2 frequencies Ẑk of z.

Next, form the N×N circulant matrix C whose first
row is {Ẑk, 1 ≤ k ≤ N}. The eigenvalues of C are
the values of zi. Since only K of these values are
non-zero, C has rank K, and there exists a column
vector v of length K+1 such that

0 = C

[
v
0

]
=




Ẑ1 · · · ẐK+1

. . .
. . .

. . .
Ẑ∗

K+1 · · · Ẑ1


 v (5)

If K < M
2 , then all of its elements are known.

Next, make the following definitions:

{zin , 1 ≤ n ≤ K} = {zi : zi �= 0, 1 ≤ i ≤ N} (6)

[Fik] = [e−j2π(i−1)(k−1)/N ]ik, 1 ≤ i, k ≤ N (7)

[F̃ik] = [e−j2π(i−1)(nk−1)/N ]ik, 1 ≤ k ≤ K (8)

• {zin , 1 ≤ n ≤ K} are the nonzero values of {zi};
• F is the DFT matrix implementing Ẑ = Fz;
• F̃ is a tall N×K submatrix of F .

Then we have the (N×K)(K×N) factorization

C = Fdiag[zi]FH = F̃diag[zin ]F̃
H (9)

Extending F̃ by any other column of F gives

0 = C

[
v
0

]
= F̃diag[zin 0]F̃

H

[
v
0

]
(10)

Since F̃ is a tall matrix and zin �= 0, we have

F̃H

[
v
0

]
= 0 → FH

[
v
0

]
= 0 for i ∈ {in} (11)

This shows that an inverse N-point DFT of a zero-
padded v is zero at the locations {in} of nonzero zi.
The conditioning of the location problem is deter-
mined by the condition number of F̃ . Random dis-
tribution of {in} yields good conditioning; clumping
of {in} and large gaps yields poor conditioning.

III. Circulant and Wavelet Sparsification

A. Sparsification by Circulant Matrix

We now consider the problem

y = H̃x = Hz; H = H̃W−1; z =Wx (12)

• Unknown x is not sparse but is sparsifiable to z;
• The rows of H̃ are bandlimited to πM

N ;
• W is an N×N circulant matrix that:
– Implements a linear-time-invariant sparsifier;
– A 2-D difference operator is used in the example;
– The first row of W is the impulse response hn;
– The first row of W−1 is the impulse response gn;
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– hn ∗ gn = δn where ∗ denotes cyclic convolution.

Then H=H̃W−1 implements a cyclic convolution
of gn with each row of H̃ . Since each row of H̃ is
bandlimited, each row of H is also bandlimited, and
the problem reduces to the caseW = I treated above.
Often the DFT of hn will be zero at some low fre-

quencies. For example, the DFT of a difference op-
erator is zero at DC (k=0). gn is then computed
assuming its DFT is also zero there, and the recon-
structed xn is filtered to zero at those frequencies.
The correct xn can be computed using side informa-
tion that a few values of xn are known to be zero.
Otherwise, the only addition is to perform a cyclic

convolution of each row of H̃ with gn; this is easily
implented using N th-order DFTs. See the example.

B. Sparsification by Wavelet Transform

This procedure can still be applied if the wavelet
transform is used for sparsification of x. However,
each row of H̃ must now be bandlimited to π

2L
M
N ; L

is the number of scales used for wavelet dilation.
The discrete-time wavelet transform consists of:

• The low-pass filter scaling function gn;
• The high-pass filter wavelet function hn;
• gn = (−1)nhn; both functions have finite support.

The function xn to be sparsified is:

• Filtered separately by both gn and hn;
• Both outputs are downsampled;
• The downsampled output of gn is then filtered in
the same way xn was filtered;
• This is continued through a total of L dilations.

The wavelet transform can then be implemented by:

1. Matrix-vector multiplication �Y = C �X
2. where (2LN × 2LN) matrix C is circulant;
3. 2Lth row of C is the dilated wavelet hn;
4. �X ′=[ �X0, �X1, �X2 . . . �XL] where
5. �X0=[x1, x2 . . . xN/2,−xN/2+1 . . .− xN ];
6. �X1=[x1, x2, x3 . . . xN ];
7. �X2=[x1, 0, x2, 0, x3, 0, x4 . . . xN ];
8. �X3=[x1, 0, 0, 0, x2, 0, 0, 0, x3 . . . xN ];
9. �Xi has length 2i−1N, i �= 0, so that;
10. �X has length N+N+2N+4N+8N+. . .2L−1N=2LN ;
11. Wavelet transform is every (2L)th sample of �Y .

Write W = UCV ′ where U and V have forms like

U =


 1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


 (13)

V =
[
1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1

]
(14)

For example, the Haar wavelet transform of a signal
of length=8 and 3 scales is implemented by multipli-
cation by the 8×8 matrix




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1




Multiplication by this matrix can also be imple-
mented using a circulant matrix, as follows:

1. 8th row is [1, 1, 1, 1,−1,−1,−1,−1]′;
2. Size 2LN = 238 = 64. Multiply by �X=:
3. [x1 . . . x4,−x5 . . .− x8, x1 . . . x8] augmented to
4. [x1, 0, x2, 0, x3 . . . x8, x1, 0, 0, 0, x2, 0, 0, 0 . . .]
5. Note that �X has length 8+8+16+32=64
6. Taking elements #{8,16,24,32,40,48,56,64} of �Y .
7. Add scale factors 1/2 and 1/

√
2 at the end.

Matlab code implementing this example is given in
the Appendix. The various matrices can be exam-
ined.
Since W is orthogonal, W−1 =W ′ and

H = H̃W−1 = H̃W ′ = H̃V C′U ′ (15)

Now rewrite the original problem as

y = H̃x = Hz = (H̃V )C′(U ′z) (16)

and note that

• U ′z is K-sparse since z is K-sparse;
• H̃V has the form [H̃1 . . . H̃N |H̃10H̃20 . . .]
• Each row of H̃V has the form of �X ′ above.

This shows that we can apply the procedure, pro-
vided each row of H̃ is bandlimited to π

2L
M
N . Note

that the zero-stuffing of sections of each row of H̃
introduce copies of its spectrum, but this is matched
by the similar zero-stuffing of z, so the lowest M fre-
quencies of z can still be found.



4

IV. Numerical Example

The computational savings are illustrated by de-
convolution of a 72×72 block image xij from its un-
dersampled cyclic convolution with a 2-D Gaussian
point-spread-function. We have the following:

• 722=5184 unknown image pixels xij ;
• 362=1296 known undersampled data yij ;
• The data are blurred and low-pass filtered;
• The image is known to be sparsifiable to zij by
• convolution with 2-D filter [1 -1;-1 1]

The lowest frequencies of the sparsified image zij in
a 19×19 square centered at DC were computed from
the downsampled data. This enabled reconstruction
of the locations of nonzero values of zij , provided
there were no more than 10×10–1=99 of them.
The 100×100 Hermitian Toeplitz-block-Toeplitz

matrix with 10×10 blocks of the lowest frequencies of
zij was set up. An image of the element magnitudes
is shown in Figure #1. Its singular values were

σ98 = 0.0085, σ99 = 1.1× 10−9, σ100 = 2.2× 10−10

which cleary shows that the matrix rank, and hence
the number of nonzero values of zij , is 98.
The 72×72 2-D DFT of the null vector rearranged

into a 10×10 array was computed. The logs qn of its
magnitudes were sorted, and there was a clear thresh-
old, confirming the presence of 98 nonzero values of z:

q98 = 11.47; q99 = 17.06; q100 = 17.1 (17)

The locations of these 98 smallest values are shown
in Figure #2 (all other locations display as zero).
The 2×2 sparsifying filter was then deconvolved

from zij to obtain xij . Its frequency response is zero
along the 2-D frequency axes, so side information
xi1=x1j=0 was used to fill in those values. Figure
#3 shows the reconstruction of the original image
xij . The complete Matlab code used for this exam-
ple is listed in the Appendix.

V. Conclusion

We have presented a non-iterative algorithm for re-
constructing sparse and sparsifiable solutions to un-
derdetermined linear systems of equations with ban-
dlimited rows. A numerical example demonstrated
the algorithm on a sparsifiable image. An impor-
tant point of this example is that although there are
5184 unknowns and 1296 data points, the only ma-
trix computation was for a 100×100 Toeplitz-block-
Toeplitz matrix. The algorithm requires only a sec-
ond or so. For slightly overdetermined linear systems

that do not have bandlimited rows, the algorithm of
[1] can be used.
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VI. Appendix

A. Sparsification by Circulant Matrix

clear;X(1:4,1:20)=ones(4,20);X(1:20,9:12)=ones(20,4);%T
X(1:20,24:27)=ones(20,4);X(9:12,24:43)=ones(4,20);X(1:20,40:43)=ones(20,4);%H
X(1:20,47:50)=ones(20,4);X(1:4,47:64)=ones(4,18);X(9:12,47:64)=ones(4,18);X(17:20,47:64)=ones(4,18);%E
X(24:43,1:4)=ones(20,4);X(24:27,1:20)=ones(4,20);X(32:35,1:20)=ones(4,20);%F
X(24:43,24:27)=ones(20,4);X(24:43,32:35)=ones(20,4);X(40:43,32:49)=ones(4,18);%IL
X(24:43,53:56)=ones(20,4);X(24:27,53:70)=ones(4,18);X(32:35,53:70)=ones(4,18);X(40:43,53:70)=ones(4,18);%E
X(47:66,6:9)=ones(20,4);X(47:50,6:25)=ones(4,20);X(55:58,6:25)=ones(4,20);%F
X(47:66,28:31)=ones(20,4);X(47:50,28:45)=ones(4,18);X(55:58,28:45)=ones(4,18);X(63:66,28:45)=ones(4,18);%E
X(47:66,49:52)=ones(20,4);X(47:50,49:66)=ones(4,18);X(55:58,49:66)=ones(4,18);X(63:66,49:66)=ones(4,18);%E
X=[zeros(3,71);[X zeros(66,1)];zeros(3,71)];X=[zeros(72,1),X];%72X72 block letters with borders of zeros.
H=0.98.̂([-35:35].̂2);H=H’*H;Y=real(ifft2(fft2(H,72,72).*fft2(X)));Y=Y(1:2:72,1:2:72);
FX=fftshift(fft2(Y)./fft2(H(1:2:length(H),1:2:length(H)),36,36));%Deconvolve H from low frequencies of X.
FH=fftshift(fft2([1 -1;-1 1],72,72));FZ=FH(28:46,28:46).*FX(10:28,10:28);%Z=sparsified X so reconstruct Z.
F1=FZ(:);F1=conj(F1(181:361));F1(1)=real(F1(1));TT=toeplitz(F1,F1’);%Set up the Hermitian Toeplitz matrix.
II=[];for I=0:9;II=[II [1:10]+19*I];end;T=TT(II,II);[U S V]=svd(T);plot(log(diag(S)))%Clearly has rank=98.
W=-log(abs(fft2(reshape(V(:,100),10,10),72,72)));Q=sort(W(:));W(W¡14)=0;Q(5184-100:5184-96)%threshold.
figure,imagesc(W),colormap(gray)%vs.:imagesc(real(ifft2(fft2(X).*fft2([1 -1;-1 1],72,72)))),colormap(gray)
[I J]=find(W);A=exp(-j*2*pi/72*[I-1 J-1]*[rem([0:170],19)-9;1+floor([0:170]/19)]);Z1=A’\F1(11:181);
for K=1:98;Z(I(K),J(K))=real(Z1(K));end;FW=fft2(Z,72,72)./fft2([1 -1;-1 1],72,72);FW(1,:)=-sum(FW(2:72,:));
FW=FW.’;FW(1,2:72)=-sum(FW(2:72,2:72));FW=FW.’;FW(1,1)=sum(sum(X));W=real(ifft2(FW));imagesc(W)

B. Wavelet Transform by Circulant Matrix

W=[1 1 1 1 1 1 1 1;1 1 1 1 -1 -1 -1 -1;1 1 -1 -1 0 0 0 0;0 0 0 0 1 1 -1 -1];
W=[W;1 -1 0 0 0 0 0 0;0 0 1 -1 0 0 0 0;0 0 0 0 1 -1 0 0;0 0 0 0 0 0 1 -1];
H=[1 1 1 1 -1 -1 -1 -1]; %Can also construct W from a circulant matrix:
AH=[-1 zeros(1,56) H(1:7)];AV=[flipud(H’);zeros(56,1)];A=toeplitz(AV,AH);
U(8,64)=0;U(:,8:8:64)=eye(8);V(64,8)=0;V(1:8,:)=diag([1 1 1 1 -1 -1 -1 -1]);
V(9:16,:)=eye(8);V(17:2:32,:)=eye(8);V(33:4:64,:)=eye(8);W2=U*A*V*X;%W=W2
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