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Abstract— The limited angle tomography problem
is to reconstruct an image from a set of its projec-
tions (Radon transform) over a limited range of an-
gles. It has applications in medical imaging and syn-
thetic aperture radar. From the Radon projection-
slice theorem, this problem is equivalent to image re-
construction from partial Fourier data. This paper
presents an algorithm for solving this problem for
sparse images. The fraction of nonzero pixels must
be one-fourth the fraction of Fourier data available or
less; their locations are unknown; and there is no sup-
port constraint. The problem requires only solution
of two Toeplitz-mosaic-Toeplitz (TMT) linear systems
of equations and a 2D FFT. For noisy data, the mini-
mum singular vector of a TMT matrix is required; this
can be computed using inverse power method (TLS).
Numerical examples illustrate the new algorithms.
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I. INTRODUCTION
A. Problem Statement

The limited angle tomography problem is to recon-
struct an image x(y, z) from its projections p(t, )

p(t,0) = //x(y,z)é(t —ycosf — zsinf)dy dz (1)

over a narrow range of angles 6. Using the projection-
slice theorem [1], this is equivalent to reconstruct-
ing the image from the partial Fourier data in a
bowtie-shaped region. This has applications to med-
ical imaging and non-destructive evaluation where
projection data is available over a narrow range of
angles, due to physical constraints.

In synthetic aperture radar, the projection data are
also bandlimited in ¢ and the image is complex. Then
Fourier data is only known in a segment of an annulus
in the Fourier plane [2]. Multistatic, spotlight-mode,
and strip-map synthetic aperture radar (and holog-
raphy) can all be formulated in this way.

In practice, the problem is discretized. If the image
is bandlimited and has finite extent then the con-
tinuous 2D Fourier transform can be replaced with
the 2D discrete Fourier transform. This should not
be confused with assuming that the image has com-
pact support within the 2D DFT. This is not only
often untrue, but leads to an extremely ill-posed re-
construction problem. By using different sampling

rates along different projection angles, rectangular
2D sampling can be used without interpolation.
This paper solves the following problem: Recon-
struct a sparse image from its 2D DFT known only
in a trapezoidal region of the 2D DFT Fourier plane.
The trapezoidal region closely approximates an an-
nular segment, and includes the bowtie region as a
special case. The image is known to be sparse: the
number of nonzero pixels does not exceed one-fourth
the number of known DFT values. The locations
of nonzero pixels are unknown, no compact support
constraint within the 2D DFT is available, and the
image is allowed to have complex-valued pixels.

B. Relevant Previous Approaches

Most approaches to limited angle tomography as-
sume the image has compact support within the 2D
DFT, so that the number of nonzero pixels does
not exceed the number of known 2D DFT values
in the bowtie-shaped region of the Fourier plane.
Then the problem becomes a linear system of equa-
tions, which can be solved using conjugate gradi-
ent or alternating projections that alternately im-
pose the known Fourier values and compact support
constraints. However, this linear system of equa-
tions is extremely ill-posed. Hence some regulariza-
tion is necessary, such as Tikhonov-regularized least-
squares or the edge-preserving regularization used in
[3]. However, any regularization introduces bias into
the reconstruction, so that the solution is incorrect
even in the noiseless case. We will not attempt to
survey literature on limited angle tomography.

Use of sparseness as side information in signal re-
construction goes back at least as far as 1979 [4].
Most early work considered the deconvolution of
sparse 1D spike trains arising in reflections from lay-
ered media in seismic exploration, although [5] con-
sidered 1D reconstruction from bandlimited data.
The first use of sparseness in 2D (image) reconstruc-
tion of which we are aware is [6]. All of this early
work minimized the ¢; norm (sum of absolute values)
of the signal, using linear programming. The idea
was that the ¢; norm solution lies on a vertex of the
simplex and so is sparse. This idea has recently been
put on a firmer theoretical ground in [7] and other



recent papers. More recent work using this approach
is [8]-[10]. Using the ¢; norm for the signal and ¢,
for the error is called LASSO. The problem with this
approach is the amount of computation required by
linear programming for image reconstruction.

Another way of formulating the linear sparse re-
construction problem is as a matrix “subset selec-
tion” problem [11]-[14]. The forward greedy algo-
rithm successively selects the matrix column closest
(in the mean-square sense) to the residual error re-
sulting from the previous matrix column selections.
The backward greedy algorithm starts with a gen-
eral solution and successively removes the matrix col-
umn that increases the mean-square residual error
the least. The latter algorithm has been shown to
give the correct answer if the noise level is sufficiently
small [13]. However, again the problem is the amount
of computation required here by subset selection.

Still another recent approach is to include a thresh-
olding constraint in a Landweber-like iterative algo-
rithm [15]-[18], often arising from statistical image
priors that implicitly (but not explicitly) maximize
sparsity. This is a straightforward approach, and un-
like the above methods requires reasonable computa-
tion for 2D problems. However, even in the absence
of noise, convergence to an optimally-sparse solution
is not in general guaranteed for these algorithms.

C. New Approach of This Paper

This paper presents a new algorithm that uses de-
terministic side information that the image is sparse.
This does not introduce bias, so the solution is cor-
rect in the absence of noise. The algorithm is very
fast, requiring only solution of two Toeplitz-mosaic-
Toeplitz (TMT) systems of equations (for noisy data,
computation of of a TMT minimum singular vector).

First, the null vector (noiseless data) or minimum
singular vector (noisy data) of a TMT matrix con-
structed from the Fourier data is computed. Sec-
ond, this vector is unwrapped into a 2D signal with
trapezoidal support, and its 2D DFT computed. The
smallest magnitudes of this 2D DFT provide the lo-
cations of nonzero pixels. Since nonzero pixels can
only occur at integer coordinates, there is some error
correction capability for low noise levels. Finally, the
nonzero pixel values are computed by solving another
overdetermined linear system of equations.

II. NOISELESS SOLUTION PROCEDURE

A. Problem Formulation

We make the following assumptions:
o x;; is defined on an MxM rectangular lattice;
e We have fM? of M? values X,,, of the DFT of Tij
in a trapezoidal region of the Fourier plane;

o f=fraction of the 2D DFT values available. This
includes both a limited range of projection angles 6
and bandlimitation in ¢ of projections p(t, 6);

o K= fM?/4—1 or fewer of the z;; are nonzero;

e The locations {(iy,jn),1 < n < K} of the nonzero
image pixels are all unknown;

e The known 2D DFT values X,,, include an addi-
tive zero-mean white Gaussian noise random field.

We start our indexing at n = 1 instead of n = 0 for
convenience in matrix indexing. The (MxM)-point
2D DFT X, of 255 for 1 <m,n < M is

M M
Xom = ZZxije*j%[(ifl)(mfl)Jr(J’*l)(n*l)]. (2)
i=1 j=1
B. DFT-Based Derivation of Algorithm

Let s;; be the 2D function having 2D DFT S,,,:
e Smun has compact support of K+1 pixels shaped
similarly to the trapezoidal support of the known
Xyn but 1/4 the size (1/2 in linear dimension);
e 5;; is an indicator function for nonzero x;:

SijZO
Sij#o

Then (x* denotes 2D convolution)

if Lij 75 O;
if Tij = 0

TijSij = 0 — Xy * %Sy, = 0. (4)

Since there are only K nonzero values of x;j, s;; is
uniquely determined, to an (irrelevant) scale factor.
The support of its 2D DFT S,,,, looks like this:

Fig. 1: Supports of S,,, and known X,,,.

The second of (4) can be written as a Toeplitz-
mosaic-Toeplitz (TMT) linear system of equations for



the unknown S,,,,. Its structure looks like this:

Fig. 2: A TMT structure. Each submatrix
is itself Toeplitz, in block Toeplitz structure.

Each submatrix is itself Toeplitz and there is an
overall block Toeplitz structure. This TMT struc-
ture is derived as a submatrix of a circulant-block-
circulant matrix in the alternate derivation to follow.

Simn are the elements of the null vector of this TMT
matrix constructed from the known X,,,. Then an
inverse 2D DFT computes s;;, which is zero at the
locations of the nonzero x;;:

Singn — 07 1 S n S K. (5)
Once the locations of the nonzero z;; are known, their
values can be computed by solving a second TMT
linear system of equations. This system is actually
Toeplitz-block-Toeplitz (all blocks have same size).

C. Matriz Derivation of Algorithm

We now present a second derivation of the algo-
rithm, for reasons noted below. We can write

Xml*mz,nl —n2
K
E Ti, 7jn€*j%[(in*1)(ml —m2—1)+(jn—1)(n1—n2-1)] .

n=1
(6)

The (M? x M?) circulant-block-circulant matrix [C]
having for its first row X,, , can be factored as

[C] = DH . DIAG[:EH < -:EMN[]D (7)

where D is the Kronecker product of the DFT matrix
having (n, k)™ element e~3 %5 ("=D(*=1) with itself.

Only K of the M? diagonal values z;; are nonzero,
by assumption. Let F' be the submatrix of D in which
all rows but those corresponding to {(in, jn),1 < n <
K} have been deleted, and all columns but the K+1
corresponding to the support of s;; (defined above)
have been deleted. Then the (K+1)x(K+1) TMT
submatrix [X] of [C] can be factored as

[X] = F - DIAGlz, j,)]F- (8)

This (K+41)x (K+1) matrix clearly has rank K, so it
has a null vector @ = [a;1...axk|’. Postmultiplying
(8) by this null vector a gives

[X)a@ = F” . DIAG[x;, ;,]JFi=0— Fa=0. (9)

Since F' is a submatrix of the 2D DFT matrix D, we
can compute Dd using a 2D FFT and see which val-
ues are zero. The rows of D corresponding to those
values are the rows of F', and this identifies the loca-
tions {iy,jn} of nonzero z;;.

Although this derivation is more complicated than
the first one, it makes two important points:

o The conditioning of the problem is determined pri-
marily by the condition number of the matrix F. If
a compact support constraint is used, F' is extremely
ill-conditioned. But if the nonzero values T(i, j,) are
(roughly) evenly spaced throughout the M? x M?
region, F' will be fairly-well conditioned;

o If there are in fact fewer than K nonzero values
of ;, j,., the second derivation shows that the TMT
matrix [X] is rank-deficient by more than one; its

rank is the actual number of nonzero z;, ;-

ITI. Noisy DATA SOLUTION PROCEDURE
A. Other Spectral Estimation Algorithms

Most spectral estimation algorithms, such as Pis-
arenko method, MUSIC, and ESPRIT, operate not
on the data but on the autocorrelation function es-
timated from the data. This has the advantage that
additive white noise tends to be concentrated in the
subspace spanned by the singular vectors associated
with the minimum singular values, since the autocor-
relation of zero-mean white noise is an impulse.

However, all autocorrelation-based methods are in-
appropriate here, for the following three reasons:

e Only a small number of data points are available,
not a long time series of data;

o Estimation of autocorrelation from data, which is
always inexact due to end effects, is impractical;



« In practice, the additive noise is often neither white
nor uncorrelated with the data.

Hence an approach that operates directly on the data,
rather than on the autocorrelation, is necessary.
The approach used in this paper has been termed
MUSIC since it is conceptually similar to MUSIC,
but differs from MUSIC in these five (minor) ways:

o It operates on the data, not its autocorrelation;

« Noise is dealt with not by exploiting its (approxi-
mately) impulsive autocorrelation added to data au-
tocorrelation, but by perturbing data directly;

o The finite number of possible locations introduces
error correction to nearest for small noise levels;

e The Fourier data is in an offset trapezoidal region;
o Space and wavenumber have been exchanged.

A simple likelihood function argument shows that
if the noise is an additive zero-mean white Gaussian
random field, then the likelihood is maximized when
the given Fourier data X,,, are perturbed as little
as possible (in the mean square or Frobenius norm
sense) to make the TMT matrix drop its rank. Two
major approaches are known for this problem.

The first is an iterative algorithm that alternates
between the following two constraints:

o Computing the nearest (in Frobenius norm) lower
rank matrix using the singular value decomposition,
by subtracting the outer product of the minimum
singular vectors times the minimum singular value;
o Computing the nearest (in Frobenius norm)
Toeplitz matrix by averaging along the diagonals.

The other is structured total least squares, which it-
eratively perturbs the matrix closer to singular, while
averaging diagonals to preserve structure.

Both of these approaches have been applied suc-
cessfully to other problems. However, they have two
problems rendering them inappropriate here:

e The TMT matrix size makes repeated computation
of its singular value decomposition impractical;

e The Frobenius norm (sum of squared magnitudes
of matrix elements) weights lower frequency compo-
nents more than higher frequency components, since
they occur more often in the TMT matrix (e.g., along
main diagonals of Toeplitz submatrices).

B. Background for Noisy Data Algorithm

Consider (9) with the noiseless {X,,,} replaced
with noisy {X,,,}. Then [X]d@ # 0. What happens

now is that F'@ computes the 2D DFT of (unwrapped)
a, “filters” it with {x;;}, and then F* computes the
inverse 2D DFT of the result. In the noiseless case,
only K of the {x;;} are nonzero, and choosing the
2D DFT of @ to be zero at those nonzero locations
makes [X]a=0. In the noisy case, all of the {xz;;} are
nonzero, so there is no way to make [X]a=0.

However, if the noise level is not too high, K of the
{xm} will be larger than the remaining M-K values.
Heuristically, [X]@ will be minimized by choosing the
DFT of @ to be zero at the locations of the largest
{z;} values, and nonzero elsewhere. Hence comput-
ing the value of @ that minimizes [X]a (in the mean
square norm) can be expected to pick out the loca-
tions of the largest {z;;}, which are assumed to be
the true nonzero {;; }. This value of @ is the singular
vector of [X] associated with the minimum singular
value of [X]. In the sequel, we refer to this as the
“minimum singular vector” of the matrix [X].

This will not work perfectly, of course, since the
DFT of a has varying nonzero values. Hence the
minimum of [X]d@ will be attained by a weighting of
{zi;}. But it can be expected that the DFT of @
will be significantly smaller at the K locations of the
true nonzero {x;;}. Note that choosing @ to be the
minimum singular vector of [X] also minimizes the
perturbation (in Frobenius norm) of [X] that makes
[X] drop rank, without regard to struture. Hence
this is the non-structured total least squares (TLS)
solution. TLS has been used effectively with Prony’s
method; we refer to our method as TLS MUSIC.

Note that the SVD of [X] need not be computed—
only its minimum singular vector is required. This
can be computed fairly quickly using a few iterations
of the inverse power method. Each iteration requires
solving a linear system of equations with structured
(Toeplitz or TBT) matrix [X]. Also note that there
are only M? possible locations of nonzero values of
{zi;}, so error correction to the nearest possible lo-
cation can happen if the noise is sufficiently small.

C. Noisy Data Algorithm

1. Assemble the given Fourier data X,,, in a trape-
zoidal region into the TMT matrix [X];

2. Compute the minimum singular vector @ of [X]
using a few iterations of the inverse power method;
3. Unwrap the minimum singular vector @ into a
trapezoidal region and compute its 2D DFT;

4. Identify the locations of the K smallest (in magni-
tude) values of this 2D DFT. These are the estimated
locations of the nonzero values of {z;;};

5. Compute the nonzero values of {x;;} by solving
an overdetermined linear system of equations.



IV. MICRO-EXAMPLES
These examples illustrate the algorithm. Larger
numerical simulations are given in the next section.
A. Noiseless Algorithm Micro- Example

The goal is to reconstruct x;; from its (4x4)2D
DFT values X,,, in the triangular region

* ok ok * —5—3
* ok % -8 1473
% % 93;? -4 —1-j (10)
* %k 2427 5—D5j7
* % ok * —5—j

where * denotes an unknown value and the origin

is at the center. Since this is a (4x4)2D DFT, the

values in the top and bottom rows are identical, as

are the values in the first and last columns. z;; is

sparse in that only 3 of its 16 values are nonzero.
The trapezoidal support of S, is

b 0 0 0
Son=1c a 0 0 (11)
d 0 0 0

where again the origin is at the center and the top and
bottom rows, and left and right columns, are identi-
cal. Flipping Sy, left-right and up-down, complex
conjugating it, and sliding it over the known X,,,
values yields the TMT linear system

—1—-3 1475 —-5—45 -85 d* 0
5-5j —-1—j5 1+7j —4 | |0
-5—j5 5—-5j —1—j5 2+42j b*| |0
2+2j —4 -85 9+3j a* 0
(12)
which has the solution
d* —j
| 1=3
bl T 1—2; (13)
a* 2
The 2D DFT using Matlab notation of S, is
1+25 0 0 O
1+57 2 0 0 B
DET j 0 0O -
0 0 0O
4+45 2425 4j 2+ 67
2—2j 0 2425 4
—2+2j5 45 2425 0 (14)

45 242 0  —2+42j

The three zeros indicate the locations of the nonzero
x;5. Solving a 3 x 3 linear system yields

[9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

0 0 0 0
10 24y 0 0
iz o o0 0 347 (15)
0 0 445 0
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