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Abstract— One-bit compressed sensing reconstructs
a sparse signal from only signs of linear combinations
of the signal values. The problem formulates easily as
a linear programming problem, but simpler methods
are desirable. The binary iterative hard thresholded
Landweber (BIHT) algorithm requires an oracle to
know the exact sparsity of the signal. We reformulate
the one-bit problem with noisy observation as a non-
negative least-squares problem and solve the latter
using the Landweber iteration with a non-negativity
constraint, which becomes a soft-thresholded Landwe-
ber iteration with both shrinkage and thresholding.
We apply this to image reconstruction from two bits
of Fourer phase without an image support constraint.
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I. INTRODUCTION

A. Problem Statement

We are given as data only the signs {si}

si = sign[yi] =
{

+1 if yi > 0
−1 if yi < 0 (1)

of the M linear combinations y of an unknown x

y = Ax (2)

• x is an unknown sparse (mostly zero) N -vector;
• A is a known M×N full-rank matrix with M ≥ N ;
• Each component xi of x is a random variable with

fxi(X) = C e−λ|X|︸ ︷︷ ︸
SPARSE

e−µX2︸ ︷︷ ︸
SMALL

. (3)

The Gaussian prior penalizes too-large values of x.
The Laplacian (two-sided exponential) sparsifies x.
The goal is to reconstruct x from the signs si of yi,
i.e., from only one (sign) bit of each value yi of y.

B. Problem Reformulation

We assume that the {si} are independent and
equally likely to be ±1, and let matrix S=diag[si].
Premultiplying (2) by S gives (here |y| means [|yi|])

z = |y| = Sy = (SA)x. (4)

• zi=|yi|. The given data is precisely that z ≥ 0;

• SA is still a known full-rank matrix (S is known).

The cost functional to be minimized is then

E = ||01 + z − (SA)x||22/2︸ ︷︷ ︸
EQUALITY

+ λ||x||1︸ ︷︷ ︸
SPARSE

+µ||x||22︸ ︷︷ ︸
RIDGE

(5)

with the additional constraint z ≥ 0 (which is the
data) and where we have defined the usual two norms

||x||1 =
N∑

i=1

|xi|; ||x||22 =
N∑

i=1

x2
i ; 01 =

[
0}M − 1
1} 1

]
.

E is the one-bit compressed sensing version of the
elastic net (LASSO plus ridge) cost functional. The
ridge provides regularization when A is near-singular.

The signs si of yi only determine x to a positive
scale factor. To keep x from being driven to zero,
the last row of the first term of (5) is 1+zM–sMaT

Mx,
where aT

M is the last row of A and zM ≥ 0 makes
sMaT

Mx ≥ 1 and keeps x 	= 0. This has been done
previously by constraining ||x||=1, but this is a non-
convex constraint, which complicates optimization.

The �1-norm penalty term ||x||1 penalizes small de-
viations of the elements of x from zero. A consider-
able amount of research since 2000 has proven what
the geophysical community has observed since the
1960s: The �1 norm produces sparse solutions.

The �2-norm penalty term ||x||22 does not penalize
small deviations, since its slope is zero at zero. But
it does penalize large deviations more heavily than
the �1 norm, and thus stabilizes the solution in the
presence of noise. Use of an �2 norm penalty term
for this purpose is called Tikhonov regularization.

Minimization of E in the limit λ → 0 with µ=0 be-
comes minimization of ||x||1 subject to the equality
constraint 01+z=(SA)x and the inequality z ≥ 0.
This can be formulated as a linear programming
problem and solved using any number of algorithms.
Alternatively, any number of convex optimization al-
gorithms can be applied to the minimization of E .

However, in many applications A is not represented
as a matrix, but as a sequence of operations, such as
wavelet or fast Fourier transforms. In this case, Ax
and AT y can be computed much more quickly than
a typical matrix-vector multiplication, e.g., N logN .
This motivates use of the Landweber iteration below.
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II. Reformulation of E Minimization as a

Non-Negative Least Squares Problem

First, we use the usual procedure of defining the
positive x+ and negative x− parts of x as

x+
i =

{
+xi if xi ≥ 0
0 if xi ≤ 0

x−
i =

{−xi if xi ≤ 0
0 if xi ≥ 0

≥ 0.

(6)
Then x+

i and x−
i are related to xi and |xi| by
x = x+ − x− (7)

||x||1 =
N∑

i=1

(x+
i + x−

i )

||x||22 = ||x+||22 + ||x−||22
Now consider the (N+M)× (2N+M) problem

[
01
−λ√
2µ

1

]
︸ ︷︷ ︸

ỹ

=
[

SA −SA −I√
2µI

√
2µI 0

]
︸ ︷︷ ︸

Ã


x+

x−

z




︸ ︷︷ ︸
x̃

(8)

where we have defined the two column vectors

01 = [0 . . . 0︸ ︷︷ ︸
M−1

1︸︷︷︸
1

]T ; 1 = [1, 1 . . . 1︸ ︷︷ ︸
N

]T (9)

and we impose constraints x+
i ≥ 0; x−

i ≥ 0; z ≥ 0.
The squared �2 error is then (note that x+

i x−
i =0)

||ỹ − Ãx̃||22 = ||(SA)(x+ − x−) − z − 01||22
+ ||

√
2µ(x+ + x−) +

λ√
2µ

||22
= ||(SA)x − z − 01||22
+ 2µ||x||22 + 2λ||x||1 +

Nλ2

2µ

= 2E +
Nλ2

2µ
. (10)

The final term in (10) does not affect the argmax, so
computing the non-negative least-squares solution to
(8) minimizes the cost function E . Also note that

(SA)T (SA) = AT (ST S)A = AT A (11)

independent of the diagonal matrix S of signs of yi.
Minimization of E is a non-negative least-squares

problem. It can be solved using Matlab code like:
clear;M=30;N=10;L=.0001;E=.0000005;
e=sqrt(2*E);randn(’state’,1);X(3)=1;X(7)=-2;
A=randn(M,N);X(N)=0;X=X’;Y=A*X;
S=diag(sign(Y));AA=[S*A -S*A -eye(M)];
AA=[AA;e*eye(N) e*eye(N) zeros(N,M)];
YY=[zeros(M-1,1);1;-L/e*ones(N,1)];
Z=lsnonneg(AA,YY);[X Z(1:N)-Z(N+1:2*N)]

III. Solution of the Non-Negative

Least-Squares Using Landweber

A. Review of Landweber Iteration

The basic Landweber iteration is

xk+1 = xk + AT (y − Ax), x0 = 0 (12)

where xk is the estimate of x at the kth iteration.
The Landweber iteration can be viewed as a steepest
descent algorithm for minimizing the cost function

f(x) = (1/2)||y − Ax||22
∇f(x) = −AT (y − Ax). (13)

The basic steepest descent algorithm is

xk+1 = xk −∇f(x)
= xk + AT (y − Ax). (14)

Here, we use the basic Landweber iteration

x̃k+1 = x̃k + ÃT (ỹ − Ãx̃k) (15)

with a non-negativity constraint at each iteration

x̃k+1
i = max[x̃k+1

i , 0]. (16)

We call this the non-negative Landweber iteration.
Since the cost functional f(x) and the non-

negativity constraints x+
i ≥ 0 and x−

i ≥ 0 are all
convex, the non-negative Landweber iteration will
converge if the maximum eigenvalue of ÃT Ã ≤ 2.

B. Application to Present Problem

Substitution of (8) in (15) gives after some algebra

(x+)k+1 = (x+)k − AT A[(x+)k − (x−)k] + AT S01
+ AT Szk − λ1− 2µ[(x+)k + (x−)k]

(x−)k+1 = (x−)k + AT A[(x+)k − (x−)k]− AT S01
− AT Szk − λ1− 2µ[(x+)k + (x−)k]

zk+1 = SA[(x+)k − (x−)k] − 01 (17)

followed by the three non-negativity constraints

(x+)k+1
i = max[(x+)k+1

i , 0]
(x−)k+1

i = max[(x−)k+1
i , 0]

zk+1
i = max[zk+1

i , 0] (18)

so most of the computations in the Landweber iter-
ation are the matrix-vector multiplications Ax and
AT Sz, which can often be implemented using a fast
algorithm such as the fast Fourier transform, the fast
wavelet algorithm or a sparse matrix-times-vector.
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C. Convergence of Non-Negative Landweber

Ã is underdetermined. The nonzero eigenvalues of
ÃT Ã are the eigenvalues of ÃÃT , which from

ÃÃT =
[

SA −SA −I√
2µI

√
2µI 0

] 
 AT S

√
2µI

−AT S
√

2µI
−I 0




=
[
2(SA)(AT S) + I 0

0 4µI

]
(19)

are double those of (SA)(AT S) plus one, and 4µ. The
non-negative Landweber iteration will converge if µ
and all eigenvalues of (SA)(AT S) are less than 1

2 .
Since SA is overdetermined, the nonzero eigen-

values of (SA)(SA)T in (19) are the eigenvalues of
(AT S)(SA)=AT A, independent of data S.

D. Derivation of Thresholded Landweber

Let µ=0 and recall xk=(x+)k–(x−)k and −(x−)k

are the negative values of xk. Then (17) becomes

xk+1 = xk − AT Axk + AT S(01 + zk)
= xk + AT S[(01 + zk) − SAxk]

zk+1 = SAxk − 01 (20)

followed by shrinkage of |xk| by λ, thresholding val-
ues of |xk| < λ to 0, and imposing non-negative zk+1:

xk+1
i =




xk+1
i − λ if xk+1

i > +λ
xk+1

i + λ if xk+1
i < −λ

0 if |xk+1
i | < λ

zk+1 =
{

zk+1 if zk+1 ≥ 0
0 if zk+1 ≤ 0

(21)

This is similar to soft-thresholded Landweber with

• “Observations” (01+zk) instead of y, where the
• Signs of yi (the data) are included in SA and
• zk+1 ≥ 0 forces (SA)xk ≥ 0, which is the data.

E. Orthonormal Columns

Let overdetermined A have orthonormal columns
AT A = I. Then the above algorithm simplifies to

zk+1 = (SA)xk − 01

xk+1 = (AT S)(zk + 01) (22)

along with thresholding and shrinkage steps (21).
If zk is replaced with zk+1 in the second equation,

this is similar to an alternating-projections algorithm
with a sign constraint in one domain and thresholding
and shrinkage (for sparsity) in the other domain.

Multiplication by SA allows the sign constraint to
be implemented as a non-negativity constraint. Mul-
tiplication by AT S undoes multiplication by S in SA.

IV. Image Reconstruction from Two Bits

of Discrete Fourier Transform Phase

A. Background

The problem of reconstructing a signal or image
from two bits of the phase of its Fourier transform
arises in phase-shifting digital holography. This re-
duced bit-depth allows real-time reconstruction by a
spatial light modulator, which modulates phase.

Previous algorithms on reconstruction from two
bits of Fourier phase have been alternating projec-
tion algorithms that impose a support constraint in
the spatial domain and a sign constraint on the phase
in the Fourier domain. If the support is chosen to be
a half-plane, then one bit of phase is sufficient, since
the even part of the image with such a constraint
determines the entire image. This seems somewhat
contrived. Knowledge of one bit of phase amounts to
approximate knowledge of the zero crossings of the
real part of the Fourier transform, which under mild
assumptions determines the real part of the image to
an overall scale factor. Two bits of phase amounts to
approximate knowledge of the zero crossings of the
real and imaginary parts of the Fourier transform,
which determine the even and odd parts of the im-
age, respectively, to separate scale factors for each.

Here we replace the support constraint (which
is usually not available) with a sparsity constraint,
which consists of soft thresholding. This arises di-
rectly from the above algorithm. The matrix A is
the concatenation of a 2-D discrete Fourier trans-
form and the inverse of a sparsifying operator, such
as a wavelet transform. Both of these can be im-
plemented directly as algorithms, so that the matrix
A need never be formed or stored. AH is then an
inverse 2-D discrete Fourier transform followed by a
wavelet transform, again implemented as algorithms.

B. Problem Formulation

The N × N -point 2-D discrete Fourier transform
of the M × M image x[m, n] is defined as

Xk1,k2 =
M−1∑
m=0

M−1∑
n=0

x[m, n]e−j 2π
N (mk1+nk2). (23)

The inverse 2-D discrete Fourier transform is

x[m, n] =
1

N2

N−1∑
k1=0

N−1∑
k2=0

Xk1,k2e
j 2π

N (mk1+nk2). (24)

The 2-D DFT is a unitary linear transformation, ex-
cept for a factor of 1

N (these are collected in (24)).
”Two bits of phase” means the signs of Re[Xk1,k2 ]

and Im[Xk1,k2 ]. This specifies the phase as lying in
one of four quadrants, hence ”two bit” quantization.
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C. Tiny Numerical Example

We deliberately choose a tiny example to make
some important points about the problem. The
64×64-point 2-D DFT of the 8×8 image shown was
computed, and only the signs of the real and imagi-
nary parts were used as data. Note that half of these
are redundant by conjugate symmetry. Three resolu-
tions of the 2-D Haar wavelet transform was used as
the sparsifying transform. The shrinkage and thresh-
olding parameter λ=0.0001 and 3000 iterations used.

The reconstructed image visually closely resembles
the original image, even though no support or non-
negativity constraints were used. A better picture of
the reconstruction is the 1-D plot of the unwrapped
original and reconstructed images. Note that the re-
construction is off slightly at the two ends. This is be-
cause the single scale factor specified (the DC term)
only applied to the even part of the image. The odd
part is computed to sparsify the overall image, but
the lack of a scale factor introduces a slight error.

ORIGINAL IMAGE
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D. MATLAB Program
%Image Reconstruction from 2 Bits of Phase.
%N=image size; M=DFT size; l=lambda; L=#iterations.
clear;N=8;M=64;l=0.0001;L=3000;%Make Image:
x=[0:63]’;x=reshape(x,8,8);B(1,1)=sum(sum(x));
%Initializations (and clearing variable spaces):
FX(M,M)=0;SR(M,M)=0;SI(M,M)=0;B(M,M)=0;
FV(M,M)=0;FVR(M,M)=0;FVI(M,M)=0;W0(N,N,1)=0;
W1(N/2,N/2,4)=0;W2(N/4,N/4,4)=0;W3(N/8,N/8,4)=0;
V0(N,N)=0;V1(N/2,N/2)=0;V2(N/4,N/4)=0;V3(N/8,N/8)=0;
%Goal: Reconstruct image x from SR and SI, where:
Fx=fft2(x,M,M);SR=sign(real(Fx));SI=sign(imag(Fx));
%Reconstruction Algorithm:
X(N,N)=0;for J=1:L;%Initialize, and L=#iterations
%Haar Transform:
W0(:,:,1)=X;
W1(N/2,N/2,4)=0;W2(N/4,N/4,4)=0;W3(N/8,N/8,4)=0;
I11=[1 -1 -1 1]/2;I12=[1 1 -1 -1]/2;
I21=[1 -1 1 -1]/2;I22=[1 1 1 1]/2;
for I=1:4;%1st stage:
A=I11(I)*W0(1:2:N,1:2:N,1)+I12(I)*W0(1:2:N,2:2:N,1);
B=I21(I)*W0(2:2:N,1:2:N,1)+I22(I)*W0(2:2:N,2:2:N,1);
W1(:,:,I)=A+B;end;
for I=1:4;%2nd stage:
A=I11(I)*W1(1:2:N/2,1:2:N/2,1)+I12(I)*W1(1:2:N/2,2:2:N/2,1);
B=I21(I)*W1(2:2:N/2,1:2:N/2,1)+I22(I)*W1(2:2:N/2,2:2:N/2,1);
W2(:,:,I)=A+B;end;
for I=1:4;%3rd stage:
A=I11(I)*W2(1:2:N/4,1:2:N/4,1)+I12(I)*W2(1:2:N/4,2:2:N/4,1);
B=I21(I)*W2(2:2:N/4,1:2:N/4,1)+I22(I)*W2(2:2:N/4,2:2:N/4,1);
W3(:,:,I)=A+B;end;
%End Haar Transform.
%Shrink and Threshold W (Soft Threshold):
W1(abs(W1)<l)=0;W2(abs(W2)<l)=0;W3(abs(W3)<l)=0;
W1(abs(W1)>l)=W1(abs(W1)>l)-l*sign(W1(abs(W1)>l));
W2(abs(W2)>l)=W2(abs(W2)>l)-l*sign(W2(abs(W2)>l));
W3(abs(W3)>l)=W3(abs(W3)>l)-l*sign(W3(abs(W3)>l));
%Inverse Haar Transform:
V3=W3(:,:,1); %3rd stage:
V2(2:2:N/4,2:2:N/4)=(V3+W3(:,:,2)+W3(:,:,3)+W3(:,:,4))/2;
V2(2:2:N/4,1:2:N/4)=(V3-W3(:,:,2)+W3(:,:,3)-W3(:,:,4))/2;
V2(1:2:N/4,2:2:N/4)=(V3+W3(:,:,2)-W3(:,:,3)-W3(:,:,4))/2;
V2(1:2:N/4,1:2:N/4)=(V3-W3(:,:,2)-W3(:,:,3)+W3(:,:,4))/2;
%2nd stage:
V1(2:2:N/2,2:2:N/2)=(V2+W2(:,:,2)+W2(:,:,3)+W2(:,:,4))/2;
V1(2:2:N/2,1:2:N/2)=(V2-W2(:,:,2)+W2(:,:,3)-W2(:,:,4))/2;
V1(1:2:N/2,2:2:N/2)=(V2+W2(:,:,2)-W2(:,:,3)-W2(:,:,4))/2;
V1(1:2:N/2,1:2:N/2)=(V2-W2(:,:,2)-W2(:,:,3)+W2(:,:,4))/2;
%1st stage:
V0(2:2:N,2:2:N)=(V1+W1(:,:,2)+W1(:,:,3)+W1(:,:,4))/2;
V0(2:2:N,1:2:N)=(V1-W1(:,:,2)+W1(:,:,3)-W1(:,:,4))/2;
V0(1:2:N,2:2:N)=(V1+W1(:,:,2)-W1(:,:,3)-W1(:,:,4))/2;
V0(1:2:N,1:2:N)=(V1-W1(:,:,2)-W1(:,:,3)+W1(:,:,4))/2;
%End Inverse Haar Transform.
%Impose Data Sign Constraints:
FV=fft2(V0,M,M);FVR=SR.*real(FV)-B;FVR(FVR<0)=0;
FVI=SI.*imag(FV);FVI(FVI<0)=0;
FV=SR.*(FVR+B)+j*SI.*FVI;
X=real(ifft2(FV));X=X(1:N,1:N);
%Output Figures:
end;figure,plot(0:63,x(:),0:63,X(:))
figure,imagesc(x),colormap(gray)
figure,imagesc(X),colormap(gray)


