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Abstract— Minimization of the elastic net cost func-
tion ||y−Ax||22+2λ||x||1+2µ||x||22 arises in reconstruction
of sparse signals from noisy observations y of underde-
termined linear combinations Ax of x. We reformulate
this problem as a non-negative least-squares problem,
and solve the latter using Landweber iteration with
a non-negativity constraint. In particular, this yields
a simple derivation of the thresholded Landweber it-
eration for minimization of the LASSO cost function.
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I. INTRODUCTION

A. Problem Statement

We are given the noisy observations

y = Ax + w (1)

• x is an unknown sparse (mostly zero) N -vector;
• A is a known M × N full-rank matrix, where
• M << N so the problem is underdetermined;
• w is a M -vector of zero-mean uncorrelated Gaus-
sian (noise) random variables with unit variances.
• Each component xi of x is a random variable with

fxi(X) = C e−λ|X|︸ ︷︷ ︸
SPARSE

e−µX2︸ ︷︷ ︸
SMALL

. (2)

The Gaussian prior penalizes too-large values of x.
The Laplacian (two-sided exponential) sparsifies x.
The negative log-likehood function for (1) is then the
elastic net function (H. Zou and T. Hastie, 2005)

L = (1/2)||y − Ax||22︸ ︷︷ ︸
NOISE

+ λ||x||1︸ ︷︷ ︸
LASSO

+ µ||x||22︸ ︷︷ ︸
RIDGE

(3)

where we have defined the usual two norms

||x||1 =
N∑

i=1

|xi| and ||x||22 =
N∑

i=1

x2
i . (4)

The elastic net has some advantages over LASSO.
It can identify multiple nonzero xi corresponding to
closely correlated columns of A, unlike LASSO.

The elastic net function includes as special cases

λ µ CRITERION
= 0 = 0 Least squares
= 0 �= 0 Tikhonov
→ 0 = 0 Basis pursuit
�= 0 = 0 LASSO
�= 0 �= 0 Elastic net

Tikhonov, also known as ridge, provides regular-
ization if A is near-singular and noise levels are high.

Basis pursuit minimizes ||x||1 subject to the con-
straint y=Ax, and produces a sparse solution x.

LASSO (Least Absolute Shrinkage and Selection
Operator) produces a sparse solution x in noise.

The �1-norm penalty term ||x||1 penalizes small de-
viations of the elements of x from zero. A consider-
able amount of research since 2000 has proven what
the geophysical community has observed since the
1960s: The �1 norm produces sparse solutions. The
�1 norm produces the sparsest solution if the number
of nonzero elements of x is sufficiently small.

The �2-norm penalty term ||x||22 does not penalize
small deviations, since its slope is zero at zero. But
it does penalize large deviations more heavily than
the �1 norm, and thus stabilizes the solution in the
presence of noise. Use of an �2 norm penalty term
for this purpose is called Tikhonov regularization.

The minimum elastic net solution has been com-
puted using coordinate descent, in which all but one
variable xi is held constant, and the xi minimiz-
ing the elastic net function L is computed in closed
form. Since the elastic net functional is convex and
is the sum of a differentiable part and a separable
non-differentiable part λ||x||1, coordinate descent is
guaranteed to converge to the minimizer of L.

However, in many applications A is not represented
as a matrix, but as a sequence of operations, such as
wavelet or fast Fourier transforms. In this case, Ax
and AT y can be computed much more quickly than
a typical matrix-vector multiplication, e.g., N log N .
This motivates use of the Landweber iteration below.

II. Reformulation of Elastic Net Minimi-

zation as Non-Negative Least Squares

First, we use the usual procedure of defining the
positive x+ and negative x− parts of x as
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x+
i =

{
+xi if xi ≥ 0
0 if xi ≤ 0

x−
i =

{−xi if xi ≤ 0
0 if xi ≥ 0

≥ 0.

(5)
Then we have

x = x+ − x− (6)

||x||1 =
N∑

i=1

(x+
i + x−

i )

||x||22 = ||x+||22 + ||x−||22
Now consider the still-underdetermined problem

[
y

− λ√
2µ

1

]
︸ ︷︷ ︸

ỹ

=
[

A −A√
2µI

√
2µI

]
︸ ︷︷ ︸

Ã

[
x+

x−

]
︸ ︷︷ ︸

x̃

(7)

where 1=[1,1. . .1]T , and both x+
i ≥ 0 and x−

i ≥ 0.
The squared �2 error is then (note that x+

i x−
i =0)

||ỹ − Ãx̃||22 = ||y − A(x+ − x−)||22 (8)

+ ||
√

2µ(x+ + x−) +
λ√
2µ

||22
= ||y − Ax||22
+ 2µ||x||22 + 2λ||x||1 +

Nλ2

2µ

= 2L +
Nλ2

2µ

The final term in (8) does not affect the argmax, so
computing the non-negative least-squares solution to
(7) minimizes the elastic net cost function L.

III. Solution of the Non-Negative

Least-Squares Using Landweber

A. Review of Landweber Iteration

The basic Landweber iteration is

xk+1 = xk + AT (y − Ax), x0 = 0 (9)

where xk is the estimate of x at the kth iteration.
The Landweber iteration can be viewed as a steepest
descent algorithm for minimizing the cost function

f(x) = (1/2)||y − Ax||22
∇f(x) = −AT (y − Ax). (10)

The basic steepest descent algorithm is

xk+1 = xk −∇f(x)
= xk + AT (y − Ax) (11)

which is the basic Landweber iteration.

Another way of looking at this is to note that
∇f(x) is the correlation of the residual Ax–y with
each column of A. The bigger this correlation, the
more we should alter that component of xk.

B. Non-Negative Landweber Iteration

Here, we use the basic Landweber iteration

x̃k+1 = x̃k + ÃT (ỹ − Ãx̃k) (12)

with a non-negativity constraint at each iteration

x̃k+1
i = max[x̃k+1

i , 0]. (13)

We call this the non-negative Landweber iteration.
Since the cost functional f(x) and the non-

negativity constraints x+
i ≥ 0 and x−

i ≥ 0 are all con-
vex, the non-negative Landweber iteration is guar-
anteed to converge if the maximum eigenvalue of
ÃT Ã < 2. The nonzero eigenvalues of ÃT Ã are the
eigenvalues of ÃÃT , which from

ÃÃT =
[

A −A√
2µI

√
2µI

] [
AT

√
2µI

−AT
√

2µI

]

=
[

2AAT 0
0 4µI

]
(14)

are double the eigenvalues of AAT , and 4µ. The non-
negative Landweber iteration will converge if µ < 1

2
and all the singular values of A are less than unity.

Substitution of (7) in (12) gives

zk+1 = y − A[(x+)k − (x−)k]
vk+1 = λ1 + 2µ[(x+)k + (x−)k]

(x+)k+1 = (x+)k + AT zk+1 − vk+1

(x−)k+1 = (x−)k − AT zk+1 − vk+1 (15)

followed by the non-negativity constraints

(x+)k+1
i = max[(x+)k+1

i , 0]
(x−)k+1

i = max[(x−)k+1
i , 0]. (16)

so most of the computation in the Landweber iter-
ation are the matrix-vector multiplications Ax and
AT z. These can often be implemented using a fast
algorithm such as the fast Fourier transform, the fast
wavelet algorithm or a sparse matrix-times-vector.

C. Derivation of Thresholded Landweber for LASSO

Let µ=0 in the elastic net criterion (3). This gives
the LASSO criterion. We now examine what this
does to the non-negative Landweber iteration (15).
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Let µ=0 in (15). This gives the iteration

zk+1 = y − A[(x+)k − (x−)k]
(x+)k+1 = (x+)k + AT zk+1 − λ1

(x−)k+1 = (x−)k − AT zk+1 − λ1 (17)

followed by the non-negativity constraints

(x+)k+1
i = max[(x+)k+1

i , 0]
(x−)k+1

i = max[(x−)k+1
i , 0]. (18)

Since xk=(x+)k–(x−)k, and −(x−)k is the negative
values of xk, (17) is the usual Landweber iteration
applied to (1), followed by shrinkage of |xk| by λ and
thresholding values of |xk| < λ to 0. This is the well-
known thresholded Landweber iteration

xk+1 = xk + AT (y − Ax), x0 = 0 (19)

followed by shrinkage and thresholding

xk+1
i =




xk+1
i − λ if xk+1

i > +λ
xk+1

i + λ if xk+1
i < −λ

0 if |xk+1
i | < λ.

(20)

This is a much simpler derivation of thresholded
Landweber iteration than the usual derivation.

D. Overdetermined A with Orthonormal Columns

Now let (1) no longer be underdetermined, so that
M ≥ N . Let

√
2A have orthonormal columns, so that

AT A = (1/2)I; µ = 1/4. (21)

Then the non-negative Landweber iteration becomes

x̃k+1 = x̃k + ÃT (ỹ − Ãx̃k)
= ÃT ỹ + (I − ÃT Ã)x̃k

= ÃT ỹ =
[

AT y − λ1
−AT y − λ1

]
(22)

since in this case ÃT Ã=I from

ÃT Ã =
[

AT
√

2µI
−AT

√
2µI

] [
A −A√
2µI

√
2µI

]
(23)

=
[

AT A + 2µI 2µI − AT A
2µI − AT A AT A + 2µI

]
=

[
I 0
0 I

]
.

Imposing non-negativity gives the final answer as

xi =




(AT y)i − λ if (AT y)i > +λ;
(AT y)i + λ if (AT y)i < −λ;
0 if |(AT y)i| < λ.

(24)

That is, compute the least-squares solution in closed
form, and then apply shrinkage and thresholding. Of
course, this is also a well-known result for µ=0. Here
we have extended it to a nonzero value of µ, which
can be used as initialization for other values of µ.

IV. Solution of the Non-Negative

Least-Squares Problem Using an

Active-Sets Algorithm

A. Active-Sets Algorithm When Solution is Sparse

Of course, the non-negative least-squares problem
(7) can also be solved using active-set algorithms,
such as the original algorithm of Lawson and Hansen.
The idea behind these algorithms is that non-zero
(strictly positive) elements of the solution are recur-
sively identified from the largest value of the dual

w = AT (y − Ax̂) (25)

where x̂ is the least-squares solution using the non-
zero elements identified at that recursion.

This algorithm requires computation of a least-
squares solution for a reduced set of identified non-
zreo variables at each recursion. However, in the
present problem, most elements of x̃ are known to be
0, since minimization of L with λ �= 0 sparsifies the
solution x̃, whose sparsity is the same as the sparsity
of x. In fact, the sizes of the least-squares problems
to be solved at each recursion do not exceed M .

B. Tiny Numerical Example

The following Matlab code implements the new al-
gorithm. For random matrices with zero-mean Gaus-
sian entries, it seems to works about half the time.
For larger problems, the tolerance for lsnonneg usu-
ally must be raised to foster faster convergence.

clear;M=10;N=20;L=.01;E=.0000005;
X(3)=1;X(7)=-2;X(13)=3;X(17)=-4;
e=sqrt(2*E);randn(’state’,2);
A=randn(M,N);X(N)=0;X=X’;Y=A*X;
%GOAL: Compute sparse X from Y.
%NOTE: Doesn’t work for all A.
AA=[A -A;e*eye(N) e*eye(N)];
YY=[Y;-L/e*ones(N,1)];
Z=lsnonneg(AA,YY);
[X Z(1:N)-Z(N+1:2*N)]

C. Comparison with Non-Negative Sparse x

Since 2008, it has been shown that a sufficiently
sparse and non-negative x can be computed by solv-
ing the non-negative linear problem y=Ax, x ≥ 0. In
practice, this would likely be solved as a non-negative
least-squares problem. In the present paper, we have
shown that we can use the same algorithm to solve
for sparse x, with the following additional benefits:
• Sparse solution x can now have mixed signs;
• �1-norm minimization to promote sparsity;
• LASSO penalty to deak with noise in the data;
• Ridge penalty to improve conditioning of AAT .


