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Abstract— The goal is to reconstruct a sparse signal
from some, but not all, of its Discrete Fourier Trans-
form (DFT) values. If the signal has K non-zero and
real values, a unique solution is determined by any K
DFT values, their conjugates, and the DC value, if the
DFT order is prime. However, no algorithm is known
for this unless the K DFT values are at consecutive
frequencies (a total of 2K+1 consecutive values). �1-
norm minimization only works if the frequencies are
randomly chosen. We present a new algorithm that
reconstructs a K-sparse non-negative real-valued sig-
nal from any K DFT values, their conjugates, and the
DC value, provided that the DFT order is prime and
less than 4K. It does not use the �1 norm or pursuit.

Keywords— Sparse reconstruction
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Problem Statement

The N-point DFT Xk of the length=N signal xn is

Xk =
N−1∑
n=0

xne−j2πnk/N , k = 0 . . .N − 1. (1)

We are given the following facts about the problem:

• xn is real-valued and non-negative (xn ≥ 0);
• xn=0 unless n ∈ {n1 . . . nK} (the ni are unknown);
• Xk known only for k ∈ {k1 . . . kM} (ki known) and
their conjugates {N–k1 . . . N–kM} (XN−k=X∗

k);
• The DC value X0=

∑N−1
n=0 xn is also known;

• The DFT order N < 4K and N is a prime number.

The goal is to recover the K-sparse signal xn from
its DFT values Xk known at M frequencies ki, their
conjugate frequencies N–ki, and X0, Since M < N
the problem is very underdetermined, so the sparsity
of xn must be used to determine a unique solution.

B. Problem Significance

Reconstruction of signals and images from limited
frequency data occurs in various problems such as:

• Limited-angle tomography in medical imaging;
• Synthethic-Aperture Radar (SAR) radar imaging;
• Magnetic Resonance Imaging (MRI) in medicine.

Many signals and images of practical interest have a
sparse representation in a wavelet basis. Computa-
tion of the wavelet transform can be viewed as con-
volutions with scaled wavelet and scaling basis func-
tions, which becomes multiplication in the DFT do-
main. Hence the results of this paper apply to both
sparse signals and wavelet-sparsifiable signals.

C. Previous Results

It is known that a K-sparse real-valued signal can
be recovered uniquely from any K N-point DFT val-
ues Xk, their conjugates XN−k=X∗

k , and X0, pro-
vided that N is prime. In particular, if Xk is known
for |k| ≤ K (2K+1 consecutive values of Xk), then
xn can be reconstructed using any of the well-known
array processing techniques such as Prony’s method,
MUSIC, or ESPRIT (even if N is not prime).
The necessity of N being prime can be seen as fol-

lows. Suppose N is even. Then knowledge of X2k

for |k| ≤ K would only allow reconstruction of the
aliased xn+xn+N/2. Hence there is no way to deter-
mine whether xn or xn+N/2 is the non-zero element.
Replacing 2 with any other factor shows that N must
be prime to ensure uniqueness for any choice of ki.
A common approach to sparse reconstruction is to

compute the minimum �1 norm solution, usually by
linear programming. If the DFT frequencies kI are
randomly chosen, and if enough of them are known,
then it has been shown that the minimum ell1 norm
solution is in fact xn. However, in many practical
situations we do not have the luxury of choosing the
ki at random-they are pre-specified. And the num-
ber M (or 2M+1, depending on how conjugates are
counted) must be greater than the minimum of K.
Other approaches include thresholded Landweber

iteration and orthogonal matching pursuit. These are
much faster computationally, but require more of the
problem in order to compute xn. Since our apporach
is completely different from all of these, we refer the
reader to the extensive literature on these methods.
Our approach, in contrast, works for any choice

of frequencies ki (and N–ki). However, it also re-
quires that xn ≥ 0 and N<4K, so that the system
matrix has aspect ratio=2. This seems to be a com-
mon choice in the sparse reconstruction literature.
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II. NEW ALGORITHM: PRELIMINARIES

A. Non-Negative Indicator Function

Define the polynomial S(z) as

S(z) =
K∏

i=1

(z − ej2πni/N )(z−1 − e−j2πni/N ). (2)

S(z) is a polynomial of degree 2K whose coefficients
Sk have Hermitian symmetry S−k=S∗

k, and Sk=0 for
|k| > K. Evaluating S(z) on the unit circle z=ejω:

S(ejω) =
K∏

i=1

(ejω−ej2πni/N )(e−jω−e−j2πni/N ). (3)

Setting ω = 2πn/N shows that

S(ej2πn/N ) =
K∏

i=1

|ej2πn/N − ej2πni/N |2 (4)

from which it is apparent that

S(ej2πn/N )
{
= 0 for n = ni

> 0 for n �= ni
. (5)

The inverse N-point DFT sn of Sk is seen to be

sn =
1
N

K∑
k=−K

Skej2πnk/N =
1
N

S(ej2πn/N ) (6)

(Sk=0 for |k| > K). sn is real since S−k=S∗
k , and

sn

{
= 0 for n = ni

> 0 for n �= ni
(7)

B. Problem I: Given {Xk, |k| ≤ K}
By Parseval’s theorem for the DFT, we have

K∑
k=−K

X∗
kSk = N

N−1∑
n=0

xnsn = N

K∑
i=1

xnisni = 0 (8)

since sni=0 by construction. Furthermore, since xn

and sn are both non-negative,
∑N−1

n=0 xnsn=0 implies
xnsn=0 for all n, so that any non-negative K-sparse
solution xn must have sni=0 at non-zero locations ni

of xn. So sn is an indicator function for these.
Suppose we are given the 2K+1 consecutive values

{Xk, |k| ≤ K}. Then sn can be computed from the
{Xk, |k| ≤ K} by solving for {Sk, |k| ≤ K} the linear
system of inequalities

K∑
k=−K

X∗
kSk = 0;Nsn =

K∑
k=−K

Skej2πnk/N ≥ 0. (9)

and looking for zero values of sn. The locations ni

of the zero values of sn indicate possible non-zero

values of xn. Once the ni have been found, xni can
be computed either by solving a K×K linear system
of equations, or by using a POCS algorithm.
Of course, Problem I can also be solved using

Prony’s method, MUSIC, or ESPRIT, and without
requiring non-negativity of xn. But now we extend
Problem I to allow missing values of Xk in |k| ≤ K.

C. Problem II: Given {Xk, |k| ≤ K+2} Missing Xk′

Now suppose we are given {Xk, |k| ≤ K + 2} but
we are missing X±k′ for some 0 ≤ k′ ≤ K. None of
Prony’s method, MUSIC, or ESPRIT can be applied.
But the above procedure can be applied by defining

T (z) = S(z)(z + a+ z−1)2 (10)

In terms of coefficients of S(z) and T (z):

(z + a+ z−1)2
K∑

k=−K

Skzk =
K+2∑

k=−(K+2)

Tkzk. (11)

The constant a is chosen so that T±k′=0. Then

T (ejω) = S(ejω)(a + 2 cos(ω))2. (12)

Setting ω = 2πn/N as before gives

T (ej2πn/N ) = S(ej2πn/N )(a + 2 cos(2πn/N))2. (13)

We again recognize the inverse DFTs

Ntn = Nsn(a + 2 cos(2πn/N))2 ≥ 0. (14)

tn is an indicator for locations of non-zero values of
xn. The DFT Tk of tn has the same properties as Sk,
except that Tk=0 for |k| > K+2 and T±k′=0.

tn is computed from {Xk, |k| ≤ K + 2, k = ±k′}
by solving for {Tk, |k| ≤ K + 2} the linear system of
inequalities

K+2∑
k=−(K+2)

k=±k′

X∗
kTk = 0;Ntn =

K+2∑
k=−K+2

Tkej2πnk/N ≥ 0.

and looking for zero values of tn.
By induction, we can extend this to any number of

missing values of Xk. Each missing Xk requires two
additional values of Xk to compensate for it. This is
disappointing, since in theory we should only need K
values of Xk (and their conjugates), even if they are
non-consecutive. It may seem as though we could use

T (z) = S(z)(z − a)(z−1 − a∗) (15)

which maintains T (ejω) ≥ 0. Unfortunately, in this
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case it is not always possible to choose a so that
T±k′=0. To see why, expand the additional term into

(z − a)(z−1 − a∗) = −a∗z + (1 + |a|2)− az−1 (16)

so that the constant term must be greater than the
square magnitudes of the leading and trailing coeffi-
cients. But the Hermitian quadratic polynomial that
makes T±k′=0 does not always have this property.

III. NEW ALGORITHM: MAIN RESULT

A. Problem Statement

We now consider the main problem: Let xn be a
K-sparse real-valued non-negative signal having an
N-point DFT Xk. Given any 2K+1 values of Xk

{X0, X±k1 , X±k2 . . .X±kK}, 0 < ki < N/2 (17)

we can recover xn by solving a linear system of in-
equalities, provided N < 4K. N must be prime to
ensure uniqueness, but this can usually be relaxed.

B. Problem Solution

Since we evaluate polynomials at z = ej2πn/N , we
can perform all polynomial calculations mod(zN–1).
So we can redefine T (z) as (compare to above)

T (z) = S(z)
[N/4]∏
k=1

(z+ak+z−1)2 mod(zN −1) (18)

where [N/4] is the greatest integer not exceeding
N/4. Then the extra term is a polynomial of de-
gree 4[N/4] ≤ N , and the [N/4] constants ak can be
chosen to make [N/4] values of T±k′

i
=0, so that X±k′

i

are not needed to compute the indicator function tn.
We already know that a K-sparse xn requires K

values of X±k and X0. So if N=4K, we can zero out
K=N/4 values of T±k, leaving K=N/4 nonzero values
of T±k and T0, just what we need to compute xn.
Using the same argument as before, the indicator

function tn can be computed by solving the linear
system of inequalities

[N/2]∑
k=−[N/2]

k=±k′

X∗
kTk = 0;Ntn =

[N/2]∑
k=−[N/2]

Tkej2πnk/N ≥ 0.

and looking for zero values of tn.

C. Solving Linear Systems of Inequalities

Superficially, this looks like a linear programming
problem, but it isn’t. It is the first stage of a linear
programming problem using the simplex method, in
which a basic feasible solution is computed.

However, this problem can also be solved using a
POCS algorithm, consisting of the following steps:

• Project tn onto set of non-negative signals tn ≥ 0
using two FFTs to relate Tk to tn;
• Set {Tk, k �= ±ki} = 0. That is, set Tk = 0 for
those values of k for which Xk is unknown;
• Project non-zero {Tk, k = ±ki} onto the known
hyperplane

∑
k=±ki

X∗
kTk = 0;

• Continue until N/4 values of tn are smaller than
the remaining 3N/4 values of tn;
• These tn are possible locations of non-zero xn.

Once the possible locations ni of the non-zero val-
ues of xn have been found by thresholding tn, another
POCS algorithm can be used to solve for these xn:

• Set zn = 0 for n �= ni and for zni < 0;
• Compute DFT Zk of zn and set Z±ki = X±ki ;
• Compute the inverse DFT zn of Zk;
• Continue until convergence.

IV. Review of Two FFTs

We review two FFT algorithms for fast computa-
tion of the DFT that are pertinent to this algorithm.

A. Rader Prime Factor FFT

The Cooley-Tukey FFT is well-suited for values
of N that are highly composite, e.g., powers of two.
N prime is a worst case for it, since N cannot be
factored. But the Rader FFT can be used instead.
Let N be prime and p be a primitive root of N

(often p = 2 can be used). Then

{pi, i = 1 . . .N − 1} = {i, i = 1 . . .N − 1},mod(N).
(19)

That is, the powers of p mod(N) are a reordering of
1 . . .N − 1. Then the DFT can be rewritten as

Xpk̃ − x(0) =
N−1∑
ñ=1

xpñe−j2πpñ+k̃

(20)

where pĩ ≡ i mod(N). The DC value X0 is computed
separately as X0 =

∑N−1
n=0 xn.

This is a cyclic convolution of order N − 1, so it
can be computed using an (N − 1)-point DFT. This
is especially effective if N is one more than a power
of two, e.g., N=257 or 65537.

B. Good-Thomas 2-D to 1-D FFT

The Good-Thomas FFT is a mapping between a
1-D and 2-D DFT using a residue number system to
relate the indices. Let N = N1N2 where N1 and N2
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are relatively prime. Then define

n ≡ n1 mod(N1); n ≡ n2 mod(N2) (21)

The N1N2-point 1-D DFT Xk of xn is related to the
(N1 × N2)-point 2-D DFT Xk1,k2 of xn1,n2 , where

k ≡ N1k2 +N2k1 mod(N1N2) (22)

So a 2-D DFT can be reformulated as a 1-D DFT,
and the algorithm of this paper applied to images.

V. NUMERICAL EXAMPLE

We present a very small (N=101) example to illus-
trate the algorithm. The locations of known Xk and
non-zero xn are chosen randomly (while preserving
conjugate symmetry locations), although random-
ness is unnecessary. The non-zero values of xn are
one, to facilitate the results. The total number of
known Xk is 55 (27 values, their conjugates, and the
DC value), and the number of non-zero xn is 27.
The result of the method of frames (setting un-

known Xk = 0) is shown in Figure #1. The unfilled
circles are the true values of xn, and the filled circles
are the result of the method of frames. It can be seen
that a threshold would recover many, but not all, of
the locations of non-zero xn.
The result of our algorithm is shown in Figure #2.

Again the unfilled circles are the actual xn, and the
filled circles are the tn computed from the known Xk.
It can be seen that zero values of the tn find all of
the locatins of non-zero xn (and some other possible
values). The total number of zero values of tN is
39, 12 more than the actual number of non-zero xn,
but fewer than the 55 known values of Xk. Hence a
second POCS algorithm can be used to reconstruct
the actual values of the non-zero xn. The results of
this algorithm are not shown.
The Matlab program used to generate these results:

clear;N=101;rand(’seed’,0);
K=find(round(rand(1,floor(N/2)))==1);
K=[1 K fliplr(N+2-K)];
rand(’seed’,0);X=round(rand(1,N)-1/4);
FX=fft(X);Y=zeros(1,N);Y(K)=FX(K);
%GOAL: Reconstruct sparse X from Y.
F=rand(1,N); %Initialization
for I=1:1000; %Iteration
%Project S onto S>0:
S=real(ifft(F));S=S.*(S>0);F=fft(S);
%Set F=0 except where Y is nonzero:
F=F.*(Ỹ =0); %Project F onto F*Y’=0:
F=F-Y*(F*Y’)/(Y*Y’);end; figure
stem(X),hold on,stem(S*100,’filled’)
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Fig. 1. Result of Method of Frames
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Fig. 2. Result of Algorithm: Indicator
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