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Abstract— We use the Landweber iteration to com-
pute sparse solutions to the underdetermined linear
system of equations y=Ax using iterative reweighted
least squares (IRLS). We show that shrinkage, not
thresholding, is the key to minimizing the LASSO
functional. We also show how the Landweber itera-
tion without thresholding can be used instead of linear
programming for basis pursuit, and how to accelerate
convergence of the Landweber iteration in this case.
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I. INTRODUCTION
A. Problem Statement

The goal is to compute a sparse solution to the un-

derdetermined (M<<N) linear system of equations

y=Azr; A:M x N; x:Nvector; y :Mvector.
If A has random entries, then ¢; norm minimization
of = tends to sparsify the solution = to y = Az as
much as possible. This is currently of great interest
in compressed sensing, since many real-world signals
and images have sparse (mostly zero) representations
in an appropriate basis, such as a set of wavelet or
curvelet basis functions. Another case we consider in
this paper is A consists of randomly-selected rows k
of the DFT matrix Fg,=(1/vN)exp(-j27nk/N).

Sparse solutions can be computed using matching
pursuit, in which the columns of A most highly corre-
lated with y— A%; are successively chosen to minimize
the residual y — AZ; 1. Here Z; is the approximation
to x after ¢ iterations. This produces a sparse solu-
tion that approximately satisfies y = Az, but it does
not always find the optimally sparse solution.

The ¢1-norm solution can be computed using basis
pursuit (BP), in which linear programming is used to
minimize ||z||;. This has been done in the geophysics
literature since the 1960s, for deconvolution of sparse
spike trains in reflection seismology.

The LASSO functional can be used when zero-
mean Gaussian white noise is present in the data.
The minimum LASSO solution can be computed us-
ing gradient methods, coordinate descent, thresh-
olded Landweber iteration, or iterative reweighted-
norm least-squares. Here we combine the latter two.

B. Review of Basic Landweber Iteration

The Landweber iteration solves y = Ax iteratively:

eVt =N 4 AH (y — AzN);, 2 =0. (1)

Also called a Van Cittert iteration, this formula is
derived as a Neumann series applied to (I — A7 A).
To analyze it, rewrite the Landweber iteration as
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This iteration can be rewritten as the summation
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This summation can be written in closed form as

eV o= [T (I—ATFAN[I - (I - A7 A) 1Ay
I—(I— AT AN][(AT A)" Ay, (4)

If A has the SVD A = U diag[o,,]V, then A” A has
the eigendecomposition A7 A = VH diag[o2]V and

N = diaglL - (1= o2)N|V[(ATA) T ATy (5)
From this formula the following facts are evident:

o Va2 components converge as the rising-exponential
function 1 — (1—-02)Y - las N — < if 0 < 02 < 2;
o Convergence is slow for components JfL ~ 0 or 2;
o If the squared singular values o2 < 2, then z%
converges to least-squares solution (A7 A)~t A y;

o If some o, = 0, then 2V converges to A*y, where
A* is an appropriate pseudoinverse of A;

o If some 0, = 1, then the associated singular vector
component of 2V converges in one iteration;

o If each column of A is normalized to one, this is
equivalent to coordinate descent without updating.

The convergence condition 02 < 2 can be guaranteed
by scaling y = Az to y/a=(A/a)x with constant a

=3 > |AyP =

Tr[AP A] = ZO’ > o2, (6)



II. REGULARIZED LANDWEBER ITERATION
A. Tikhonov Regularization

We wish to have weighted quadratic regularization:
min {[ly — Az||3 + 3*|| Da[[3 } (7)

where the penalty term stabilizes the solution.
This is equivalent to the least-squares solution to

yl | A
o) [ ®
which is easily seen to be the pseudoinverse
&= (ATA+ 2D D)1 Ay, (9)
Applying the Landweber iteration to this gives

e o (1)-[5)2)

2N+ AP (y — Az™) — X2(DP D)zN .(10)
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The sole effect is subtraction of an additional term.

B. LASSO Cost Functional Regularization

The LASSO functional is a sum of mixed norms

min {[ly — Az|[3 + Allz}: } (11)
where the penalty term sparsifies the solution.
We may apply the regularized Landweber to the
iterative reweighted least squares (IRLS) functional
minfly — Az} +A Y a2/l2¥]  (12)
making D a diagonal matrix with D,=v\//[z].
The regularized Landweber iteration then becomes
N =N 4 AH (y — Ax) — Asign[zV]. (13)
This is the Landweber iteration with shrinkage, but
without thresholding. Normally soft thresholding is
used with the Landweber iteration, which subtracts
Asign[zV 1] (shrinkage), but also sets x¥F1=0 if
|zN*t1| < X (thresholding). Here, we only subtract
Asign[zV] (shrinkage of #7V) and do not threshold.
To avoid problems when z2=0, we should re-
place |zY| with |z |+¢ above for very small € > 0.
This rounds off the LASSO term ||x||; slightly at

x=0. The Landweber-with-shrinkage iteration still
converges since Asign[z"V] is a bounded driving term.

C. Basis Pursuit Regularization

In basis pursuit we minimize ||z||; subject to the
constraint y = Ax. This can be viewed as a LASSO
functional as A — 0. This can be solved using linear
programming, or by using IRLS as described next.

The minimum-norm least-squares solution to the
underdetermined system y = Ax has the properties:

o The solution z is the one minimizing ||z||3;

o = A"(AAT)~1y (another pseudoinverse);

e x can also be computed by applying a Landweber
iteration to y = Az, as noted above.

We can minimize ||x||; by rewriting y = Az as

y=Azx = (AD)(Dilx)v D= diag[\/ |xn|]

A minimum-norm solution to y=(AD)z minimizes

1D Yl = 3w /leal = [zl (15)

so applying the Landweber iteration to y = (AD)z
and setting * = D~!2z computes z minimizing ||z||;.

(14)

D. Basis Pursuit Acceleration

The Landweber iteration applied to y=(AD)z has
its convergence behavior determined by eigenvalues
of I-(AD)# (AD). These are in turn the eigenvalues
of I-Adiag[|z)Y[]AH augmented with ones, since the
matrices AB and BA have same nonzero eigenvalues.

This creates a problem, since as many z — 0 ma-
trix Adiag[|z)[]JA” becomes close to singular, and
convergence of the Landweber iteration will be slow.
So we again replace |x)Y | with |z |+e above for very
small € > 0. This bounds the matrix A diag[|zY [JA#

away from singularity, accelerating convergence.

E. Basis Pursuit Acceleration: Random Frequencies

Let A be randomly-chosen rows of the DFT matrix
Frn=(1/v/N)exp(-j2rnk/N), Then AA” =TI and

Adiag[|z? | + ] AT = Adiag[|z) ||A" +eI. (16)
By the Cauchy interlace theorem, the eigenvalues of
Adiag[|z)[]AH will (in this case) interlace those of
F diag[|zY|]FH, which are {|z|}. Hence the com-
ponents VN will converge as 1 — (1 — 02)¥, where

n

0<e<o?<etmax|z| (17)

The closer o2 are to unity, the faster the Landweber

iteration will converge. So including even a small
€ speeds up convergence. And the iteration can be
initialized by setting unobserved frequencies to zero,
and then computing the inverse DFT of the result.



