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Abstract— We use the Landweber iteration to com-
pute sparse solutions to the underdetermined linear
system of equations y=Ax using iterative reweighted
least squares (IRLS). We show that shrinkage, not
thresholding, is the key to minimizing the LASSO
functional. We also show how the Landweber itera-
tion without thresholding can be used instead of linear
programming for basis pursuit, and how to accelerate
convergence of the Landweber iteration in this case.
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I. INTRODUCTION

A. Problem Statement

The goal is to compute a sparse solution to the un-
derdetermined (M<<N) linear system of equations

y = Ax; A :M × N ; x :N vector; y :M vector.

If A has random entries, then �1 norm minimization
of x tends to sparsify the solution x to y = Ax as
much as possible. This is currently of great interest
in compressed sensing, since many real-world signals
and images have sparse (mostly zero) representations
in an appropriate basis, such as a set of wavelet or
curvelet basis functions. Another case we consider in
this paper is A consists of randomly-selected rows k
of the DFT matrix Fkn=(1/

√
N)exp(–j2πnk/N).

Sparse solutions can be computed using matching
pursuit, in which the columns of A most highly corre-
lated with y−Ax̂i are successively chosen to minimize
the residual y−Ax̂i+1. Here x̂i is the approximation
to x after i iterations. This produces a sparse solu-
tion that approximately satisfies y = Ax, but it does
not always find the optimally sparse solution.

The �1-norm solution can be computed using basis
pursuit (BP), in which linear programming is used to
minimize ||x||1. This has been done in the geophysics
literature since the 1960s, for deconvolution of sparse
spike trains in reflection seismology.

The LASSO functional can be used when zero-
mean Gaussian white noise is present in the data.
The minimum LASSO solution can be computed us-
ing gradient methods, coordinate descent, thresh-
olded Landweber iteration, or iterative reweighted-
norm least-squares. Here we combine the latter two.

B. Review of Basic Landweber Iteration

The Landweber iteration solves y = Ax iteratively:

xN+1 = xN + AH(y − AxN ); x0 = 0. (1)

Also called a Van Cittert iteration, this formula is
derived as a Neumann series applied to (I − AHA).

To analyze it, rewrite the Landweber iteration as

xN+1 = (I − AHA)xN + AHy. (2)

This iteration can be rewritten as the summation

xN =
N−1∑
i=0

(I − AHA)iAHy. (3)

This summation can be written in closed form as

xN = [I − (I − AHA)N ][I − (I − AHA)]−1AHy

= [I − (I − AHA)N ][(AHA)−1AHy]. (4)

If A has the SVD A = U diag[σn]V , then AHA has
the eigendecomposition AHA = V H diag[σ2

n]V and

V xN = diag[1 − (1 − σ2
n)N ]V [(AHA)−1AHy]. (5)

From this formula the following facts are evident:

• V xN components converge as the rising-exponential
function 1− (1−σ2

n)N → 1 as N → ∞ if 0 < σ2
n < 2;

• Convergence is slow for components σ2
n ≈ 0 or 2;

• If the squared singular values σ2
n < 2, then xN

converges to least-squares solution (AHA)−1AHy;
• If some σn = 0, then xN converges to A∗y, where
A∗ is an appropriate pseudoinverse of A;
• If some σn = 1, then the associated singular vector
component of xN converges in one iteration;
• If each column of A is normalized to one, this is
equivalent to coordinate descent without updating.

The convergence condition σ2
n < 2 can be guaranteed

by scaling y = Ax to y/a=(A/a)x with constant a

a =
∑ ∑

|Aij |2 = Tr[AHA] =
∑

σ2
n > σ2

n. (6)
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II. Regularized Landweber Iteration

A. Tikhonov Regularization

We wish to have weighted quadratic regularization:

min
x

{||y − Ax||22 + λ2||Dx||22
}

(7)

where the penalty term stabilizes the solution.
This is equivalent to the least-squares solution to

[
y
0

]
=

[
A

λD

]
x (8)

which is easily seen to be the pseudoinverse

x̂ = (AHA + λ2DHD)−1AHy. (9)

Applying the Landweber iteration to this gives

xN+1 = xN + [ AH λDH ]
([

y
0

]
−

[
A

λD

]
xN

)

= xN + AH(y − AxN ) − λ2(DHD)xN .(10)

The sole effect is subtraction of an additional term.

B. LASSO Cost Functional Regularization

The LASSO functional is a sum of mixed norms

min
x

{||y − Ax||22 + λ||x||1
}

(11)

where the penalty term sparsifies the solution.
We may apply the regularized Landweber to the

iterative reweighted least squares (IRLS) functional

min ||y − Ax||22 + λ
∑

x2
n/|xN

n | (12)

making D a diagonal matrix with Dn=
√

λ/
√|xN

n |.
The regularized Landweber iteration then becomes

xN+1 = xN + AH(y − AxN ) − λ sign[xN ]. (13)

This is the Landweber iteration with shrinkage, but
without thresholding. Normally soft thresholding is
used with the Landweber iteration, which subtracts
λ sign[xN+1] (shrinkage), but also sets xN+1=0 if
|xN+1| < λ (thresholding). Here, we only subtract
λ sign[xN ] (shrinkage of xN ) and do not threshold.

To avoid problems when xN
n =0, we should re-

place |xN
n | with |xN

n |+ε above for very small ε > 0.
This rounds off the LASSO term ||x||1 slightly at
x=0. The Landweber-with-shrinkage iteration still
converges since λ sign[xN ] is a bounded driving term.

C. Basis Pursuit Regularization

In basis pursuit we minimize ||x||1 subject to the
constraint y = Ax. This can be viewed as a LASSO
functional as λ → 0. This can be solved using linear
programming, or by using IRLS as described next.

The minimum-norm least-squares solution to the
underdetermined system y = Ax has the properties:

• The solution x is the one minimizing ||x||22;
• x = AH(AAH)−1y (another pseudoinverse);
• x can also be computed by applying a Landweber
iteration to y = Ax, as noted above.

We can minimize ||x||1 by rewriting y = Ax as

y = Ax = (AD)(D−1x), D = diag[
√
|xn|]. (14)

A minimum-norm solution to y=(AD)z minimizes

||D−1x||22 =
∑

x2
n/|xn| = ||x||1 (15)

so applying the Landweber iteration to y = (AD)z
and setting x = D−1z computes x minimizing ||x||1.

D. Basis Pursuit Acceleration

The Landweber iteration applied to y=(AD)z has
its convergence behavior determined by eigenvalues
of I–(AD)H(AD). These are in turn the eigenvalues
of I–A diag[|xN

n |]AH augmented with ones, since the
matrices AB and BA have same nonzero eigenvalues.

This creates a problem, since as many xN
n → 0 ma-

trix A diag[|xN
n |]AH becomes close to singular, and

convergence of the Landweber iteration will be slow.
So we again replace |xN

n | with |xN
n |+ε above for very

small ε > 0. This bounds the matrix A diag[|xN
n |]AH

away from singularity, accelerating convergence.

E. Basis Pursuit Acceleration: Random Frequencies

Let A be randomly-chosen rows of the DFT matrix
Fkn=(1/

√
N)exp(–j2πnk/N), Then AAH = I and

A diag[|xN
n | + ε]AH = A diag[|xN

n |]AH + εI. (16)

By the Cauchy interlace theorem, the eigenvalues of
A diag[|xN

n |]AH will (in this case) interlace those of
F diag[|xN

n |]FH , which are {|xN
n |}. Hence the com-

ponents V xN will converge as 1 − (1 − σ2
n)N , where

0 < ε < σ2
n < ε + max |xN

n |. (17)

The closer σ2
n are to unity, the faster the Landweber

iteration will converge. So including even a small
ε speeds up convergence. And the iteration can be
initialized by setting unobserved frequencies to zero,
and then computing the inverse DFT of the result.


