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Abstract— The goal is to reconstruct a sparse signal
or image from some, but not all, of its discrete Fourier
transform (DFT) values. We derive a condition that
ensures the sparse solution can be computed in closed
form by thresholding the inverse DFT of the known
DFT values, with unknown DFT values set to zero.
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I. INTRODUCTION

A. Problem Statement

The N-point DFT Xk of the length=N signal xn is

Xk =
N−1∑
n=0

xne
−j2πnk/N , k = 0 . . .N − 1. (1)

We are given the following facts about the problem:

• xn=0 unless n ∈ {n1 . . . nK} (the ni are unknown);
• Xk only known for k ∈ {k1 . . . kM} (ki are known);
• |xMIN| ≤ |xni | ≤ |xMAX| (bounded nonzero xn).

The goal is to recover the K-sparse signal xi from its
DFT values Xk known at M frequencies ki. Since
M<N, the problem is very underdetermined, so the
sparsity of xn is used to compute a unique solution.

B. Significance of Results

Reconstruction of signals and images from limited
frequency data occurs in problems such as:
• Limited-angle tomography in medicine;
• Synthetic-aperture radar (SAR) imaging;
• Magnetic resonance imaging (MRI).

Many signals and images of practical interest have a
sparse representation x̂mn in a wavelet basis, where

x̂mn =
N−1∑
i=0

xiψ(2mi− n). (2)

• ψ(n) is a wavelet basis function;
• x̂mn is sparse (mostly zero);
• The DFT of x̂mn is XkΨ( 2πk

2mN ).

Hence we can recover the sparse x̂mn from the known
Xk at various scales m, and compute xn from x̂mn.

II. LEAST-SQUARES RECONSTRUCTION

A. Derivation of Thresholding Algorithm

Define sn and its DFT Sk as

Sk =
{
Sk for k ∈ {ki}
0 for k /∈ {ki} (3)

where the known values of Sk are to be determined.
Then observing Xki is equivalent to observing Yk:

Yk = XkSk ⇔ yn =
K∑

i=1

xnisn−ni (4)

so each xni becomes a scaled and translated sn. Let

S = max
n�=0

|sn| = max
n�=0

1
M

|
M∑

m=1

Skme
j2πnkm/N | (5)

and note that by the triangle inequality we have

|yn| ≤
K∑

i=1

|xni | · |sn−ni | ≤ K|xMAX|S. (6)

Then we have the following:

• max{|yn|, n /∈ {ni}} = |xMAX|SK;
• min{|yn|, n ∈ {ni}} = |xMIN| − |xMAX|SK.

Thresholding |yn| will identify nonzero locations ni if

|xMIN| − |xMAX|SK > |xMAX|SK (7)

which can be rewritten as the sparsity condition

K <
1
2S

|xMIN|
|xMAX| (8)

Once the locations ni of nonzero xn have been iden-
tified, xni can be computed by solving an overdeter-
mined M × K linear system of equations (1) with
k ∈ {ki} and n ∈ {ni}. Or, a projection on convex
sets (POCS) algorithm can be used here, as follows:

• Given x̂L
n at iteration #L:

• Compute X̂L
k from x̂L

n using (1);
• Set X̂L

ki
= Xki=known Xk;

• Compute x̂L+1
n from X̂L

k using (1);
• Set x̂L+1

n = 0 for n /∈ {ni}. Continue.
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III. PERFORMANCE IMPROVEMENT

Clearly we would like sn to resemble an impulse as
much as possible. There are two ways to achieve this:

• Choose {ki} to minimize coherence S;
• Choose Ski to make sn ≈ δn.

A. Estimation of Coherence

The coherence S is a figure of merit for the utility
of various frequency location configurations. It is well
known that choosing ki randomly (while maintaining
conjugate symmetric locations) minimizes S.
Let the presence or absence of a specific frequency

k in the set of given frequencies {ki} be a Bernoulli
process with probability of success=M

N . Then the
expected number of known locations ki is M , and
Sk is an independent and independently distributed
(iid) random process with σ2

Sk
= M

N (1 − M
N ).

The inverse DFT from Sk to sn has a factor 1
M

instead of the 1√
N

that would make it unitary. Hence

σ2
sn

=

(√
N

M

)2

σ2
Sk

=
N

M2

M

N

(
1− M

N

)
(9)

and a reasonable estimate of the coherence S is

S ≈ √
2σsn =

√
2
M

− 2
N
. (10)

Of course, this is independent of the choice of xn.

B. Estimation of Minimum #Observations

Let xn be Bernoulli with probability of success=K
N .

Then the expected number of nonzero values is K.
Let nonzero values of xn be ±1, so

xn =


+1 probability K

2N

−1 probability K
2N

0 probability 1− K
N

(11)

Then σ2
xn

= K
N and (5) shows σ2

yn
=Nσ2

sn
σ2

xn
and so

σ2
yn

= N

(
2
M

− 2
N

)
K

N
= 2

K

M

(
1− M

N

)
(12)

assuming everything is zero-mean and uncorrelated.
Thresholding yn will work if

√
2σyn <

1
2 , or

K

M

(
1− M

N

)
<

1
16
. (13)

Note the following:

• If M ≈ N/2 this becomes K < M/8;
• This is consistent with reported bounds;
• Note the absence of any log(M) term:
• That applies to matrices with Gaussian entries.

C. Choice of Nonzero Sk: Approximation Theory

However, we do not always have the luxury of be-
ing able to choose the observed frequencies to be ran-
dom. In particular, it may be physically impossible
to measure high frequencies (this is often the case in
optics). So now we investigate choosing Ski 
= 1.
First we consider a minimax criterion

min
Ski

max
n�=0

|sn/s1| = min
Ski

S. (14)

The idea is to choose Ski to minimize the coherence.
This is similar to FIR filter design in digital signal
processing, except the filter support is no longer con-
tiguous, and the desired response is now impulsive.
We can apply the theory by solving the system

M∑
i=1

Skie
j2πnki/N = Nδn − ε(−1)n (15)

which can be rearranged into the linear system
1 · · · 1 1

cos(2πk1/N) · · · cos(2πkM/2/N) −1
cos(2π2k1/N) · · · cos(2π2kM/2/N) 1

... · · · ...
...

cos(2πN
2

k1
N ) · · · cos(2πN

2

kM/2

N ) (−1)N/2



×


Sk1

Sk2

...
SkN/2

−ε

 =


N
N/2
0
...
0

 the least
squares

solution. (16)

The alternation theorem of approximation theory
states that a minimax solution criterion will oscillate
between ±ε for some ε. According to the Remez ex-
change theorm, the points at which the criterion=±ε
can be found by assuming they are equally spaced,
as above, and then iteratively choosing the points to
be the maxima and minima of the criterion at the
previous iteration. This is the basic idea behind the
Parks-McClellan equiripple filter design procedure.
In practice, attempting to approximate sn ≈ δn

leads to relatively large coherence. If we alter the
definition of coherence to (4 is only illustrative here)

S = max
|n|>4

|sn| vs. S = max
n�=0

|sn| (17)

this new S can be made much smaller, at the price
of a loss of resolution of closely-spaced nonzero xn.
To demonstrate the improvement in coherence,

consider the problem where Xk is only known on the
lower half-band. Specifically, N=1024, M=512, and
Xk is known only for 1 ≤ |k| ≤ 256 (DC is excluded).
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The coherence with Ski = 1 is the upper plot in
Figure #1. Only the first 100 values are plotted.
The large sidelobe will produce false nonzero xn.
The coherence with Ski computed as above is the

lower plot in Figure #1. Again only the first few
values are plotted. The sidelobes are much smaller.
The Matlab code used to generate this example:

clear;N=1024;
K=[1:N/4];K=[K N-fliplr(K)];
M=length(K);F(N)=0;F(K+1)=1;
S=N/M*real(ifft(F));plot(S)
A=[cos(2*pi*[0:N/2]’*K(1:M/2)/N)];

A=[A -(-1).̂[0:N/2]’];%System matrix.
G=A\[N;0.8*N;0.5*N;0.2*N;zeros(N/2-3,1)];
H(K+1)=[G(1:M/2);flipud(G(1:M/2))];
FH=real(fft(H,N));FH=FH/FH(1);plot(FH)
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D. Choice of Nonzero Sk: Hamming Window

Based on examining the values of H in the above
result, we propose to use a Hamming (or some other)
data window on the range of observed frequencies:

Sk =
{
0.54 + 0.46 cos(πk/L) for k ∈ {ki}
0 for k /∈ {ki} (18)

where {ki} ⊂ {|k| ≤ L} and index N − k is now −k.
The effect of this change on sn can be seen in

Figure #2. The upper plot is sn when M=65 out
of N=128 known frequencies are all concentrated in
|k| ≤ 32. The sidelobes can create false positives for
locations ni of nonzero xn. The lower plot shows the
effect of a Hamming window. The sidelobes are virtu-
ally eliminated. Note that unlike typical filter design
problems, all sidelobes, not just the ones closest to
the main lobe, can interfere with other xn estimates.
The effect of the Hamming window on sparse re-

construction by thresholding can be seen in Figure
#3. Both plots feature K=9 out of N=128 nonzero

xn, equally spaced, with random zero-mean Gaussian
values, reconstructed from M=65 lowest frequencies
|k| ≤ 32. This tiny example is used for clarity.
The smaller nonzero xn are obscured by sidelobes

of other nonzero xn in the upper plot, which uses
Ski = 1. But all nonzero xn are apparent in the
lower plot, which uses a Hamming window.
In both cases the broad main lobe limits resolution

of two closely-spaced nonzero xn. Candidate loca-
tions ni can be determined, and xni can be reson-
structed, with some of them turning out to be zero.
The Matlab code used to generate this example:

clear;X(13:13:117)=randn(1,9);X(128)=0;
FX=fft(X,128);H=hamming(65);H=H’;
F1=128/65*[ones(1,33) zeros(1,63) ones(1,32)];
F2=256/65*[H(33:65) zeros(1,63) H(1:32)];
Y1=real(ifft(FX.*F1));plot(1:128,X,1:128,Y1)
Y2=real(ifft(FX.*F2));plot(1:128,X,1:128,Y2)
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IV. SAMPLING DIVERSITY

A. Problem Statement

A completely different solution to the problem of
reconstructing sparse signals from frequency samples
is to choose the samples to be two different sets of
equally-spaced frequencies with different spacings:

{ki} = {N1n1, 0 ≤ n1 < N/N1} (19)
∪ {N2n2, 0 ≤ n2 < N/N2}

where N1 and N2 are relatively prime (no common
factors) and both are factors of the length N of xn.
For example, if N=20 we might be given these Xk:

{X0, X5, X10, X15} ∪ {X4, X8, X12, X16}. (20)

B. Solution Procedure

Computing the N
N1

and N
N2

-point inverse DFTs

x1
n =

N1

N

N/N1−1∑
n1=0

XN1n1e
j

2πnn1
N/N1 (21)

x2
n =

N2

N

N/N2−1∑
n2=0

XN2n2e
j

2πnn2
N/N2

gives the two aliased reconstructions

x1
n =

N1−1∑
i=0

xn−iN/N1 ;x
2
n =

N2−1∑
j=0

xn−jN/N2 (22)

where the indices are reduced mod(N). Then

(x1
n)(x

2
n) = x2

n = 0, n /∈ {ni} (23)

(no sign ambiguity: x1
n = x2

n when both are nonzero)
if N is large enough that there is no solution to

n1 − iN/N1 = n2 − jN/N2. (24)

C. Numerical Example

A 16-sparse 144×144 image is to be reconstructed
from its downsampled ↓(3×3) and ↓(4×4) 2-D
DFTs. This is (144

3 )2 + (144
4 )2=3600 observations

in (144)2=20736 unknowns. The aliased reconstruc-
tions x1 and x2 and their product are shown; the lat-
ter matches the (not shown) original image exactly.
The Matlab code used to generate this example:
clear;rand(’seed’,0);N=144;N1=4;N2=3;
X=round(rand(N,N)-0.49908);%16-sparse
FX=fft2(X);FX1=FX(1:N1:N,1:N1:N);
FX2=FX(1:N2:N,1:N2:N);%DATA: FX1,FX2.
%GOAL: Reconstruct X from FX1 and FX2.
FY1(1:N1:N,1:N1:N)=FX1;FY1(N,N)=0;
FY2(1:N2:N,1:N2:N)=FX2;FY2(N,N)=0;
X1=N1*N1*real(ifft2(FY1));%Aliased X.
X2=N2*N2*real(ifft2(FY2));XHAT=X1.*X2;

ALIASED RECONSTRUCTION #1

Fig. 1. Aliased reconstruction from downsampled DFT

ALIASED RECONSTRUCTION #2

Fig. 2. Aliased reconstruction from downsampled DFT

RECONSTRUCTION=ORIGINAL

Fig. 3. Reconstructed matches original exactly
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V. CLASSICAL DERIVATION

If Ski=1, then sn is the coherence function C. For
comparison, we present an alternate derivation which
applies the “usual” derivation to the present problem.

A. Thresholding Algorithm for ni

The known DFT values Xk of xn are

Xki =
K∑

j=1

xnje
−j2πnjki/N , i = 1 . . .M. (25)

The estimates x̂n of reconstructed xn are

x̂n =
1
M

M∑
i=1

Xkie
j2πnki/N , n = 0 . . .N − 1. (26)

Substituting the first equation in the second gives

x̂n =
1
M

M∑
i=1

K∑
j=1

xnje
j2πki(n−nj)/N (27)

Exchanging the order of the summations gives

x̂n =
1
M

K∑
j=1

xnj

M∑
i=1

ej2πki(n−nj)/N (28)

Now let n = njo for some j = jo. Then

x̂n = xnjo

1
M

M∑
i=1

ej2πki(njo−njo )/N (29)

+
K∑

j=1
j �=jo

xnj

1
M

M∑
i=1

ej2πki(n−nj)/N

= xnjo
+

1
M

K∑
j=1

j �=jo

xnj

M∑
i=1

ej2πki(n−nj)/N

So the result of the inverse DFT is x̂n=:{
xnjo

+ 1
M

∑K
j=1

j �=jo

xnj

∑M
i=1 e

j2πki(n−nj)/N n = njo

0 + 1
M

∑K
j=1 xnj

∑M
i=1 e

j2πki(n−nj)/N n 
= njo

The two interference terms are not quite identical.
Hence a simple threshold of |x̂n| will work if

|xMIN| −KC|xMAX| > KC|xMAX| (30)

which becomes the condition

K <
1
2C

|xMIN|
|xMAX| . (31)

B. Convergence of POCS for xni

To analyze convergence behavior, define

• Xk=DFT[xn]=known for k = ki;
• X̂L

k =DFT[x̂
L
n ] at L

th iteration;
• eL

n = x̂L
n − xn=error at Lth iteration;

• EL
k =DFT[e

L
n ]=DFT[error] at L

th iteration.

The effect of the Lth iteration in DFT domain is

X̂L+1
k =

{
X̂L

k for k 
= ki

Xk for k = ki

(32)

Subtracting Xk from this gives

EL+1
k =

{
EL

k k 
= ki

0 k = ki
= EL

k −
{
0 k 
= ki

EL
k k = ki

(33)

Since locations ni are correctly identified at each it-
eration, starting with the first, an inverse DFT yields

eL+1
ni

= eL
ni

− 1
M

M∑
k=1

K∑
j=1

ej2πkk(ni−nj)/NeL
nj
. (34)

Noting the cancellation when j = i gives

eL+1
ni

= − 1
M

M∑
k=1

K∑
j=1
j �=i

ej2πkk(ni−nj)/NeL
nj
. (35)

which immediately leads to the bound

|eL+1
MAX| ≤ (KC)|eL

MAX| (36)

so that the error decreases geometrically as (KC)L.
Recalling the interference is bounded by

|x̂1
n − xn| ≤ KC|xMAX| (37)

shows that the relative (dimensionless) error is

|x̂1
n − xn|
|xn| ≤ |x̂1

n − xn|
|xMIN| ≤ KC

|xMAX|
|xMIN| . (38)

Then the relative error at the Lth iteration is

|x̂L
n − xn|
|xn| ≤ |xMAX|

|xMIN| (KC)
L ≤ (1/2)L. (39)

The smaller the coherence C, the more nonzero val-
ues K of xn that can be handled, and the faster the
POCS algorithm converges. A relative error less than
(1
2 )

10 ≈ 0.001 can be achieved in ten iterations.
In practice, these bounds are very conservative. A

major point of this work is that the coherence C can
be computed very quickly (a single inverse DFT) for
a given configuration of known frequencies, and the
effect of varying the locations of known frequencies
can be determined quickly, to optimize the locations.


