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Abstract— Deconvolution has three major difficul-
ties: (1) the partial data issue–only the “valid” part
of the convolution (which uses no image edge informa-
tion) is known; (2) the lowpass nature of the impulse
response (1D) or point-spread (2D) function; and (3)
noise in the data. This paper shows that the second
issue can be used to solve the first, and that sparsity
side information can be used to obtain an exact re-
construction in the absence of noise, and an improved
reconstruction in its presence. The partial data is ex-
trapolated to the full cyclic convolution using its low-
pass nature, and the sparse signal or image computed
from its lowpass spectrum using a variation of TLS
MUSIC. Examples illustrate the proposed algorithms.
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I. INTRODUCTION

A. Problem Statement

The basic 1D problem is as follows. We observe

yn =

L
∑

i=1

hixn+1−i + vn, L ≤ n ≤ M (1)

where the variables are defined as follows:

• {xn, 1 ≤ n ≤ M} is a length=M segment of a larger
signal known to have more than half its values (3/4
in 2D) equal to zero (sparsity side information);
• {hn, 1 ≤ n ≤ L} is a length=L impulse response
function known to be lowpass (defined below);
• {yn, L ≤ n ≤ M} is the length=M-L+1 segment of
the convolution hn ∗ xn that does not use the edges
of xn, so that xn may be only part of a larger signal.
This “partial data” is called the “valid” convolution;
• {vn, L ≤ n ≤ M} is M-L+1 independent 0-mean
Gaussian random variables (white Gaussian noise).

We start our indexing at n = 1 instead of n = 0 for
convenience in matrix indexing. The M-point DFT

Hk =

L
∑

n=1

hne−j2π(n−1)(k−1)/M , 1 ≤ k ≤ M (2)

is assumed to be lowpass in that

Hk = 0 for (M − L)/2 < (k − 1) < (M + L)/2. (3)

B. Deconvolution Issues

The problem can be rewritten in matrix form as







yL
...

yM






=





hL · · · h1 0 0

0
. . . · · ·

. . . 0
0 0 hL · · · h1









x1
...

xM



+





vL
...

vM





(4)
This shows that the partial data problem is always
underdetermined: Even in the absence of noise we
have (M-L+1) equations in M unknowns. This proves
we need some prior information about the signal xn.
This information may be either statistical (e.g., xn is
Poisson) or deterministic (e.g., xn = 0 for more than
half the values of n). Statistical priors for the signal
and noise can be used to obtain an MAP estimator
of xn, but this will not give the correct answer even
in the absence of noise. A deterministic prior (side
information) for the signal should lead to the correct
answer in the absence of noise, although this is not
always the case for many algorithms (see below).

Another issue is that hn is often lowpass. Even
if full data are available, some frequencies of xn will
be zeroed out by hn. In the 1D case we can use z-
transforms to separate zeros of H(z) from those of
Y (z), leaving those of X(z), but this cannot be done
in 2D. Regularization techniques such as Tikhonov-
regularized least-squares choose the solution that
minimizes some criterion (this can also be interpreted
as a Gaussian prior on xn), but this does not lead to
the correct answer, even in the absence of noise.

Of course, in practice there is always noise in the
data. But an algorithm that gives the correct answer
in the noiseless case should give an answer close to
the correct answer if the noise level is low. And the
algorithm should make explicit use of side informa-
tion about xn, such as a sparsity assumption.

C. Relevant Previous Work

We will not attempt to survey the vast library of
deconvolution algorithms; instead we will restrict our
attention to those using sparse priors for the signal.

The idea of exploiting signal sparsity in deconvolu-
tion goes back at least as far as 1979 [1]. The common
approach of [1]-[9] was to minimize the ℓ1 norm (sum
of absolute values) of the signal, using linear pro-
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gramming. The idea was that the ℓ1 norm solution
lies on a vertex of the simplex, and thus is sparse [10].
In [4] an assumption of bounded noise led to a series
of inequality constraints in (1) again solved by linear
programming. The problem with this approach is the
enormous amount of computation required for linear
programming, especially in deconvolution of images.

The mid-1990’s saw a resurgence of interest in both
sparse deconvolution [8]-[10] and the more general
problem of subset selection [11]-[13] in which the
Toeplitz matrix in (4) above is replaced by a gen-
eral matrix. The “forward greedy” algorithm succes-
sively selects the matrix column closest (in the mean-
square sense) to the residual error resulting from
the previous matrix column selections. The “back-
ward greedy” algorithm starts with a general solu-
tion and successively removes the matrix column that
increases the mean-square residual error the least.
The latter algorithm has been shown to give the cor-
rect answer if the noise level is sufficiently small [13].
However, again the problem is the amount of compu-
tation required for subset selection algorithms.

A statistical approach used in the 1980’s was max-
imum likelihood [14],[15]. The mid-2000’s saw the
use of statistical priors on xn that implicitly (but not
explicitly) maximize sparsity. These tend to lead to
iterative algorithms with thresholding [16]-[18]. How-
ever, even in the absence of noise, convergence to an
optimally-sparse solution is not guaranteed. The re-
lation between minimum ℓ1 norm (computed using
linear programming) and minimum ℓ0 norm (maxi-
mum sparsity) has been only recently been clarified:
under certain conditions, minimizing the former also
minimizes the latter ([19],[20] et seq.). This research
is ongoing and will not be summarized here.

D. New Approach

This paper proposes a non-iterative algorithm for
the sparse deconvolution problem that computes the
maximally-sparse solution in the absence of noise,
and generates a solution close to this solution for
low noise levels. The algorithm is very fast; only
two Toeplitz systems of equations are solved. Unlike
other methods (besides computationally-intensive
backwards-greedy subset selection), it generates the
“correct” answer in the noiseless case.

The algorithm proceeds as follows:

1. hn is lowpass, so yn is lowpass, and the L-1 values
of yn needed to complete the cyclic convolution of hn

and xn are extrapolated quickly using the algorithm
of [13]-[14]. Alternatively, if hn is not lowpass but xn

is lowpass, the same procedure can also be used;
2. The low-frequency values Xk of the DFT of xn are

computed as Xk = Yk/Hk for those frequencies for
which Hk 6= 0. Only some of the Xk are known;
3. A variation of TLS MUSIC is used to compute the
locations of the nonzero values of xn from the low-
frequency values Xk. Since nonzero values can occur
only at integer times n, there are only a finite number
of possible locations. There is error correction to the
nearest possible location for low noise levels.

II. Noiseless Solution Procedure

A. Computation of Missing Data

We present a matrix depiction of the algorithm.
We extend (4) to the circulant system of equations



















yL
...

yM

yM+1 + y1

...
yM+L−1 + yL−1



















=

























hL · · · h1 0 0

0
. . .

. . .
. . . 0

0 0 hL
. . . h1

h1 0 0
. . . h2

h2 h1 0
. . . h3

. . .
. . .

. . .
. . .

. . .





























x1
...

xM





(5)
Note the following about the circulant system (5):

• The Toeplitz matrix has been extended vertically
to an (M × M) circulant matrix–each row consists
of the row above it, circularly shifted one position to
the right. The bottom row of the matrix is the top
row circularly shifted one position to the left;
• The {yM+n + yn, 1 ≤ n ≤ (L − 1)} are unknown;
• The noise [vn] is not shown here to save space.
Noise will be dealt with in the next section.

The eigendecomposition of the circulant matrix gives







yL
...

yM+L−1 + yL−1






= DH ·DIAG[H1 · · ·HM ]D





x1
...

xM



 .

(6)
D is the DFT matrix whose (n, k)th element is
e−j2π(n−1)(k−1)/M . Since the L-1 middle values of Hk

are zero, we can eliminate the corresponding columns
of DH and corresponding rows of D. This yields







yL
...

yM+L−1 + yL−1






= FH ·DIAG[Hk]F





x1
...

xM



 (7)

where F is the DFT matrix with its middle L-1 rows
discarded, and only the nonzero values of Hk appear.
Finally, discarding the final L-1 rows of FH gives
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





yL
...

yM






= GH · DIAG[Hk]F





x1
...

xM



 (8)

where GH is FH with its final L-1 rows discarded.
GH is the Hermitian transpose of the M×M DFT
matrix with middle L-1 rows and final L-1 columns
discarded, leaving an (M-L+1)×(M-L+1) matrix.

B. Computation of Low-Frequency Values of Xk

We now compute the low-frequency values Xk of
the M-point DFT of xn from this equation:

[Xk] = F





x1
...

xM



 = G−H







yL
...

yM






/DIAG[Hk] (9)

where G−H refers to solving an (M-L+1)×(M-L+1)
linear system of equations and the division by non-
zero Hk is pointwise in k. The problem now is to
compute xn from its low-frequency DFT values Xk.

In fact, it is much easier to extrapolate the un-
known aliased data {yM+n + yn, 1 ≤ n ≤ (L − 1)}
directly from the known data {yn, L ≤ n ≤ M}, as
the middle L-1 values of Yk are zero. This requires the
solution of a small (L-1)×(L-1) linear system. This
extrapolation can be done in closed form using [21].
The low-frequency values of Xk are computed using

Xk =

{

Yk/Hk for Hk 6= 0;
unknown for Hk = 0

. (10)

In practice Hk ≈ 0 is treated as Hk = 0.

This seems to contradict the statement that some
information about xn is necessary to solve the partial
data problem. There is no contradiction; we have not

reconstructed Xk, but only its low frequency compo-
nents. We cannot proceed further without some side
information about xn, as in the next subsection.

We also note that even if hn is not lowpass, but xn

is, then the high-frequency values of Yk are still zero.
Then we can proceed as above and reconstruct the
low-frequency values of Xk, so that we know all of
Xk and hence xn. This constitutes side information.

C. Computation of Sparse Solution xn

The problem now is to compute xn from its low-
frequency DFT values Xk. Under the assumption
that xn is sparse (specifically, less than (M-L)/2
(roughly half if L << M) values of xn are nonzero),
we reconstruct xn from the low-frequency values of
Xk as a line spectrum estimation problem with the
time and frequency domains exchanged.

As xn is nonzero only at K times {ni, 1 ≤ i ≤ K},

Xm−k =

K
∑

i=1

xni
e−j2π(ni−1)(m−k−1)/M . (11)

The circulant matrix [C] which has as its first row
{Xk, 1 ≤ k ≤ M} has the eigen-decomposition:

[C] = DH · DIAG[x1 · · ·xM ]D (12)

where D is again the DFT matrix having (n, k)th

element e−j2π(n−1)(k−1)/M .
Only K of the M diagonal values xn are nonzero.

Let F be the submatrix of D in which all but rows
numbered {ni, 1 ≤ i ≤ K} have been deleted, and
all but the first K+1 (out of M) columns have been
deleted. Then the (K+1)×(K+1) Toeplitz submatrix
[X ] of [C] can be factored as

[X ] =







X1 . . . XK+1

. . .
. . .

. . .

X∗

K+1

. . . X1






= FH · DIAG[xni

]F.

(13)
This (K+1)×(K+1) matrix clearly has rank K, so it
has a null vector ~a = [a1 . . . a∗

1]
′. FH has full rank

since it includes a Vandermonde matrix with distinct
rows as a submatrix, and the xni

are all nonzero by
definition. Postmultiplying by null vector ~a gives

[X ]~a = FH · DIAG[xni
]F~a = 0 → F~a = 0. (14)

Examination of F~a = 0 shows that ej2πni/M are the
roots of the polynomial having coefficients {an}.

However, there is another way to interpret F~a = 0:
Since F is a submatrix of the DFT matrix D, we can
compute D~a and see what values are zero. The rows
of D corresponding to those values are the rows of
F , and this identifies the {ni}. Thus, no root finding
is required; we need only compute D~a using an FFT
and look for zeros in the result. This is also more
numerically stable than computing polynomial roots.

III. Noisy Data: TLS MUSIC

Of course, in practice there is always noise in the
data. Here we propose an algorithm we term TLS
MUSIC to estimate locations {ni} from noisy data.

A. Other Spectral Estimation Algorithms

Most spectral estimation algorithms, such as Pis-
arenko method, MUSIC, and ESPRIT, operate not
on the data but on the autocorrelation function es-
timated from the data. This has the advantage that
additive white noise tends to be concentrated in the
subspace spanned by the singular vectors associated
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with the minimum singular values, since the autocor-
relation of zero-mean white noise is an impulse.

However, autocorrelation-based methods are inap-
propriate here, for the following three reasons:

• Only a small number of data points are available,
not a long time series of data;
• Estimation of autocorrelation from data, which is
always inexact due to end effects, is impractical;
• In practice, the additive noise is often neither white
nor uncorrelated with the data.

Hence an approach that operates directly on the data,
rather than on the autocorrelation, is necessary.

The approach used in this paper has been termed
MUSIC since it is conceptually similar to MUSIC,
but differs from it in these four (minor) ways:

• It works directly on the data, not autocorrelation;
• Noise is dealt with not by exploiting its (approxi-
mately) impulsive autocorrelation added to data cor-
relation, but by perturbing data directly;
• Time and frequency domains are exchanged;
• The finite number of possible locations introduces
some error correction for very low noise levels.

A simple likelihood function argument shows that if
the noise is an additive zero-mean white Gaussian
random process or field, then the likelihood is maxi-
mized when the given Fourier data Xk are perturbed
as little as possible (in the mean square norm sense)
to make the Toeplitz matrix (13) drop rank. Two
major approaches are known for this problem.

The first is an iterative algorithm that alternates
between the following two constraints:

• Computing the nearest (in Frobenius norm) lower
rank matrix using the singular value decomposition,
by subtracting the outer product of the minimum
singular vectors times the minimum singular value;
• Computing the nearest (in Frobenius norm)
Toeplitz matrix by averaging along the diagonals (the
Hermitian structure is preserved throughout).

The other is structured total least squares, which it-
eratively perturbs the matrix closer to singularity,
averaging diagonals to preserve Toeplitz structure.

Both of these approaches have been applied suc-
cessfully to other problems. However, they have two
problems rendering them inappropriate here:

• The size of (13) makes repeated computation of its
singular value decomposition quite impractical;

• The Frobenius norm (sum of squared magnitudes
of matrix elements) weights lower frequency compo-
nents Xk more, since they occur more often in (13).

B. Background for Noisy Data Algorithm

Consider (14) with noiseless data {Xk} replaced
with noisy {Xk}. Then [X ]~a 6= 0. What happens
now is that F~a computes the DFT of ~a, “filters” it
with {xn}, and then FH computes the inverse DFT
of the result. In the noiseless case, only K of the {xn}
are nonzero, and choosing the DFT of ~a to be zero at
those nonzero locations makes [X ]~a=0. In the noisy
case, all of the {xn} are nonzero, so there is no way
to make [X ]~a=0, since ~a only has length M+1.

However, if the noise level is not too high, K of the
{xn} will be larger than the remaining M-K values.
Heuristically, [X ]~a will be minimized by choosing the
DFT of ~a to be zero at the locations of the largest
{xn} values, and nonzero elsewhere. Hence comput-
ing the value of ~a that minimizes [X ]~a (in the mean
square norm) can be expected to pick out the lo-
cations of the largest {xn}, which are assumed to be
the true nonzero {xn}. This value of ~a is the singular
vector of [X ] associated with the minimum singular
value of [X ]. In the sequel, we refer to this as the
“minimum singular vector” of the matrix [X ].

This will not work perfectly, of course, since the
DFT of ~a has varying nonzero values. Hence the
minimum of [X ]~a will be attained by a weighting of
{xn}. But it can be expected that the DFT of ~a
will be significantly smaller at the K locations of the
true nonzero {xn}. Note that choosing ~a to be the
minimum singular vector of [X ] also minimizes the
perturbation (in Frobenius norm) of [X ] that makes
[X ] drop rank, without regard to structure. This is
the non-structured total least squares (TLS) solution.
TLS has been used effectively with Prony’s method.
Accordingly, we refer to our method as TLS MUSIC.

Note that the SVD of [X ] need not be computed–
only its minimum singular vector is required. This
can be computed fairly quickly using a few iterations
of the inverse power method. Each iteration requires
solving a linear system of equations with structured
(Toeplitz or TBT) matrix [X ]. Also note that there
are only M possible locations of the {xn} (along each
dimension). Error correction to nearest possible lo-
cation happens if the noise level is sufficiently small.

C. Noisy Data Algorithm

1. Extrapolate data {yn} to an aliased {yM+n + yn}
using the extrapolation algorithm given in [21] (this
is very effective in 2D since it operates in parallel);
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2. Compute low-frequency values of Xk = Yk/Hk for
Hk 6= 0. Xk is unknown when Hk = 0;
3. Assemble the Toeplitz (1D) or TBT (2D) matrix
[X ] from the known values of the data Xk;
4. Compute the minimum singular vector ~a of [X ]
using a few iterations of the inverse power method;
5. Compute the M-point (1D) or (M×M)-point (2D)
DFT of ~a, (unwrapping ~a into rows in the 2D case);
6. Identify the locations of the K smallest (in mag-
nitude) values of the 2D DFT of ~a. Use these as
estimates of the locations of nonzero values of {xn};
7. Compute estimates of the values of nonzero {xn}
by solving an overdetermined linear system of equa-
tions in the least-squares sense.

IV. Illustrative Micro-Examples

These examples only illustrate the new algorithm.
Numerical simulations are given in the next section.

A. 1D Problem Micro-Example

The goal of this example is to solve the underde-
termined convolution linear system of equations











y1

y2

y3

y4

y5











=











h4 h3 h2 h1 0 0 0 0
0 h4 h3 h2 h1 0 0 0
0 0 h4 h3 h2 h1 0 0
0 0 0 h4 h3 h2 h1 0
0 0 0 0 h4 h3 h2 h1

































x1

x2

x3

x4

x5

x6

x7

x8























(15)
where we know only two xn are nonzero and











y1

y2

y3

y4

y5











=











1.7071
3.1213
4.1213
3.4142
1.4142











;







h1

h2

h3

h4






=







.7071
1.7071
1.7071
.7071






. (16)

The 8-point DFT of hn is easily computed. Then the
8-point DFT of yn is computed by extrapolating the
known values of yn using [13] and is

H1 = 4.8284 Y1 = 14.4853
H2 = 1.414−

j3.414 Y2 = −6.2426+
j5.4142

H3 = −1 − j Y3 = −1 − j
H4 = 0 Y4 = 0
H5 = 0 Y5 = 0
H6 = 0 Y6 = 0
H7 = −1 + j Y7 = −1 + j
H8 = 1.414+

j3.414 Y8 = −6.2426−
j5.4142

(17)

from which we compute the low-frequency values

X1 = 3; X2 = X∗

8 = −2−j; X3 = X∗

7 = 1. (18)

X4, X5, X6 are unknown since H4, H5, H6 are zero.

Since there is no noise we can use Prony’s method:





X1 X2 X3

X∗

2 X1 X2

X∗

3 X∗

2 X1









a
b
a∗



 =





0
0
0



 . (19)

Inserting the known values of Xk gives





3 −2 − j 1
−2 + j 3 −2 − j

1 −2 + j 3









a
b
a∗



 =





0
0
0



 (20)

which has the solution

[a b a∗] = [1 + j 2 1 − j]. (21)

Roots of the polynomial with these coefficients are

(1 + j)z2 + 2z + (1 − j) = 0 →

z = j = 1ej2π(3−1)/8; z = −1 = 1ej2π(5−1)/8 (22)

so the nonzero xn are at n=3 and n=5. Solving











1.7071
3.1213
4.1213
3.4142
1.4142











=











1.7071 0
1.7071 .7071
.7071 1.7071

0 1.7071
0 .7071











[

x3

x5

]

(23)

from which x3 = 1 and x5 = 2, so finally we have

{xn} = {0, 0, 1, 0, 2, 0, 0, 0}. (24)

Alternatively, we can avoid computing polynomial
roots by computing the 8-point DFT of [1+j,2,1-j]:

[4,
√

2(1−j), 0, (2−
√

2)(1+j), 0,
√

2(j−1), 4j, (2+
√

2)(1+j)].

The locations of the two zero values of this DFT
shows the locations n=3,5 of nonzero values of xn.

B. 2D Problem Micro-Example

The procedure extends in a straightforward way to
2D (reconstruction of sparse images). Note that:

• The extrapolation of the aliased data can be per-
formed very quickly and in parallel using the algo-
rithm of [21]. The problem decouples into indepen-
dent (L-1)×(L-1) linear systems of equations;
• The TLS MUSIC algorithm extends directly to 2D.
The null vector of a Toeplitz-Block-Toeplitz matrix,
instead of Toeplitz, must now be computed.
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The goal of this example is to solve the partial-data
2D deconvolution problem







x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44






∗

[

1 1
1 1

]

=











∗ ∗ ∗ ∗ ∗
∗ 3 4 1 ∗
∗ 4 1 1 ∗
∗ 4 0 0 ∗
∗ ∗ ∗ ∗ ∗











(25)
where ∗ denote unknown data values (and a 2D con-
volution) and only three of xij are known nonzero.
The point-spread function has the 2D DFT

DFT

{[

1 1
1 1

]}

=







4 2 − 2j 0 2 + 2j
2 − 2j −2j 0 2

0 0 0 0
2 + 2j 2 0 2j







(26)
Note that H3m = Hn3 = 0 so that the point-spread
function is lowpass. The (aliased) missing values of
yij can be extrapolated using the two formulae [21]

yi1 = yi2 − yi3 + yi4

y1j = y2j − y3j + y4j .

(27)

resulting in the 2D cyclic deconvolution problem







x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44







c©

[

1 1
1 1

]

=







0 3 3 0
0 3 4 1
4 4 1 1
4 4 0 0







(28)
where c© denotes 2D cyclic convolution. The 2D
DFT of the aliased data yij (right side of this) is

DFT{yij} =







32 −12j 0 12j
−4 −4 + 8j 0 −8 + 8j
0 0 0 0
−4 −8 − 8j 0 −4 − 8j






. (29)

Note the zeros in the spectrum of the data caused
by the lowpass nature of the point-spread function.
The 2D DFT of the image xij can be computed by
dividing the above two 2D DFTs. This yields

DFT{xij} =







8 3 − 3j ∗ 3 + 3j
−1 − j −4 − 2j ∗ −4 + 4j

∗ ∗ ∗ ∗
−1 + j −4 − 4j ∗ −4 + 2j






.

(30)
Now construct the 16×16 circulant-block-circulant
matrix having for its first block row the circulant
matrices having as first rows the rows of the DFT of
xij . Taking the {1, 2, 5, 6} rows and columns yields
the Toeplitz-block-Toeplitz matrix and null vector







8 3 − 3j −1 − j −4 − 2j
3 + 3j 8 −4 + 4j −1 − j
−1 + j −4 − 4j 8 3 − 3j
−4 + 2j −1 + j 3 + 3j 8






×

[1,−1 − 2j, 1 − 2j,−1]T = [0, 0, 0, 0]T . (31)

Unwrapping the null vector into two rows and then
computing its 2D DFT yields

DFT

{[

1 −1 − 2j
1 − 2j −1

]}

=






−4j 0 4 4 − 4j
−2 − 2j −2 0 −2j

0 −2 + 2j 4j 2 + 2j
2 − 2j 2j 4 + 4j −6






. (32)

The zeros in this DFT are at the locations of the
nonzero xij . These three nonzero values are easily
computed, yielding a final answer of

[xij ] =







0 3 0 0
0 0 1 0
4 0 0 0
0 0 0 0






. (33)

Note the following about this problem:

• The null vector is anti-Hermitian. This is only co-
incidence; recall that this is a 2D problem;
• For tiny examples like this, it is possible that the
2D DFT of the null vector will have additional ze-
ros in locations other than those of the nonzero xij .
This is due to coincidence and does not happen for
realistic-sized problems.
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