
1

3-D Closed-Form Sparse Reconstruction from
Downsampled Discrete Fourier Transform Data

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— We present a simple closed-form algo-
rithm for reconstructing a sparse 3-D image from
three different sets of downsampled discrete Fourier
transform (DFT) values. Unlike our previous work
on this problem, we do not use an indicator function
or POCS. Instead, we compare the inverse DFTs of
the three sets of downsampled DFT values at each
point. Where two of the three values agree, the image
value is determined. We then bootstrap the problem
by subtracting off the DFT of these known image val-
ues, producing a problem like the original but with a
much sparser image. Repeating this two more times
produces either a zero image, or a problem so sparse
that it can be solved by solving a very small linear
system. A (60 × 60 × 60) 624-sparse example is given.

Keywords—Sparse reconstruction
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu.

I. INTRODUCTION

A. Problem Statement

The (N × N × N)-point 3-D DFT Xk1,k2,k3 of the
(N × N × N) 3-D image xn1,n2,n3 is

Xk1,k2,k3 =
N−1∑
n1=0

N−1∑
n2=0

N−1∑
n3=0

xn1,n2,n3e
−j 2π

N (n1k1+n2k2+n3k3)

(1)
where 0 ≤ k1, k2, k3 ≤ N–1. xn1,n2,n3 is mostly zero-
valued, and the locations of its nonzero values are
unknown. xn1,n2,n3 need not be real-valued; in fact,
the algorithm works better for complex xn1,n2,n3 .
The 3-D DFT Xk1,k2,k3 is known only for the fol-

lowing three sets of values of {k1, k2, k3}:

• ki ∈ {0, L1, 2L1, 3L1 . . .N − L1}, i = 1, 2, 3.
• ki ∈ {0, L2, 2L2, 3L2 . . .N − L2}, i = 1, 2, 3.
• ki ∈ {0, L3, 2L3, 3L3 . . .N − L3}, i = 1, 2, 3.
• L1, L2, L3 are all integral factors of N .
• L1, L2, L3 are pairwise relatively prime.

The goal is to recover the sparse image xn1,n2,n3 from
these known DFT values. Note half of the given DFT
values are complex conjugates of the other half.

B. Other Approaches

A common approach to sparse reconstruction is to
compute the minimum 
1 norm solution, perhaps by
linear programming. If the DFT wavenumbers are

randomly chosen, and if enough of them are known,
then it has been shown that the minimum 
1 norm
solution is in fact xn1,n2,n3 . Other approaches in-
clude thresholded Landweber iteration and orthog-
onal matching pursuit. Since our apporach is com-
pletely different from all of these, we refer the reader
to the extensive literature on all of these methods.

II. Presentation of Algorithm

A. Replace Unknown Values of Xk1,k2,k3 with Zeros

Given the above data, define

Yk1,k2,k3 =
{

Xk1,k2,k3 for ki=0, L, 2L . . .N–L
0 otherwise

(2)
The inverse (N × N × N)-point DFT of Yk1,k2,k3 is

yn1,n2,n3 =
1
L3

L−1∑
i1=0

L−1∑
i2=0

L−1∑
i3=0

xn1+i1
N
L ,n2+i2

N
L ,n3+i3

N
L

.

(3)
So inserting zeros for the missing data and computing
the inverse (N × N × N)-point DFT gives L3 copies
of the nonzero values of xn1,n2,n3 , each copy shifted
in each of the ni by an integer multiple of N/L.
Applying this to each of the three sets of data gives

y(1)
n1,n2,n3

=
1
L3

1

L1−1∑
i1=0

L1−1∑
i2=0

L1−1∑
i3=0

xn1+i1
N
L1

,n2+i2
N
L1

,n3+i3
N
L1

.

y(2)
n1,n2,n3

=
1
L3

2

L2−1∑
i1=0

L2−1∑
i2=0

L2−1∑
i3=0

xn1+i1
N
L2

,n2+i2
N
L2

,n3+i3
N
L2

.

y(3)
n1,n2,n3

=
1
L3

3

L3−1∑
i1=0

L3−1∑
i2=0

L3−1∑
i3=0

xn1+i1
N
L3

,n2+i2
N
L3

,n3+i3
N
L3

. (4)

B. Previous Algorithm: Indicator Function

Previously, we used the product

yn1,n2,n3 = y(1)
n1,n2,n3

y(2)
n1,n2,n3

y(3)
n1,n2,n3

(5)

as an indicator function for locations of nonzero val-
ues of xn1,n2,n3 . yn1,n2,n3 is nonzero only if all three
yi

n1,n2,n3
are nonzero, and this indicates a possible lo-

cation of a nonzero value of xn1,n2,n3 . However, there



2

are many false alarms, where all three yi
n1,n2,n3

are
aliases of xn1,n2,n3 , unless xn1,n2,n3 is very sparse.

C. New Algorithm: Voting

Instead, we use the following procedure:

• For each location {n1, n2, n3}, 0 ≤ n1, n2, n3 < N :
• If any two of the three values of y

(i)
n1,n2,n3 agree,

then declare that xn1,n2,n3 is that agreed value;
• Otherwise, xn1,n2,n3 is declared unknown.

Next, bootstrap the problem as follows:

• Compute the 3-D DFT of the values of xn1,n2,n3

declared by this procedure, with zeros elsewhere.
• Subtract these 3-D DFT values from the data.
• This produces another problem like the original,
but with a much sparser image than the original,
since the declared values have been removed.

Bootstraping this problem in turn produces a prob-
lem like the original, but with a very sparse image.
Bootstraping can be performed again until either:

• No unknown values of xn1,n2,n3 are left;
• Few unknown values of xn1,n2,n3 are left
and these can be computed by solving a
very small linear system of equations.

III. Numerical Example

We reconstruct a 624-sparse (60×60×60) 3-D im-
age from 3 sets of downsampled 3-D DFT values with
L1=3;L2=4;L3=5. The number of observations is

M =
(
60
3

)3

+
(
60
4

)3

+
(
60
5

)3

= 13103. (6)

• This includes conjugate symmetric values.
• It also counts some DC values multiple times.
• 1

2
13103
603 =3% of all of the DFT values are known.

Each stage of the algorithm reduced the sparsity:

• 1st stage: 624→46. 2nd: 46→3. 3rd: 3→0.

The third stage could have been replaced by solving a
3×3 linear system of equations for the still-unknown
values of the 3-D image xn1,n2,n3 .
The original and reconstructed 3-D images coin-

cide, so only one figure is shown. The colors indicate
the values of the 3-D image xn1,n2,n3 .

0
10

20
30

40
50

60

0

10

20

30

40

50

60
0

10

20

30

40

50

60

Fig. 1. (60×60×60) 624-sparse 3-D image. The original and
reconstructed images coincide. Color denote image values.

A. Matlab Program

clear;N1=3;N2=4;N3=5;N=N1*N2*N3;
T=0.997;X=rand(N,N,N);X(X<T)=0;
X=X.*(rand(N,N,N)+1);%X random values
FX=fftn(X);%Get X from downsampled FX:
F1=FX(1:N1:N,1:N1:N,1:N1:N);%Downsample N1
F2=FX(1:N2:N,1:N2:N,1:N2:N);%Downsample N2
F3=FX(1:N3:N,1:N3:N,1:N3:N);%Downsample N3
%GOAL: X from F1,F2,F3. SOLUTION:
F1H(N/N1,N/N1,N/N1)=0;G1(N,N,N)=0;
F2H(N/N2,N/N2,N/N2)=0;G2(N,N,N)=0;
F3H(N/N3,N/N3,N/N3)=0;G3(N,N,N)=0;
XH(N,N,N)=0;XHAT(N,N,N)=0;
for I=1:3;%#of bootstraps
G1(1:N1:N,1:N1:N,1:N1:N)=F1-F1H;
G2(1:N2:N,1:N2:N,1:N2:N)=F2-F2H;
G3(1:N3:N,1:N3:N,1:N3:N)=F3-F3H;
X1=N1*N1*N1*real(ifftn(G1));
X2=N2*N2*N2*real(ifftn(G2));
X3=N3*N3*N3*real(ifftn(G3));
%If any 2 agree, use them for XH:
XH(abs(X1-X2)<0.00001)=X1(abs(X1-X2)<0.00001);
XH(abs(X1-X3)<0.00001)=X1(abs(X1-X3)<0.00001);
XH(abs(X2-X3)<0.00001)=X2(abs(X2-X3)<0.00001);
XHAT=XHAT+XH;FXHAT=fftn(XHAT);%BOOTSTRAP:
F1H=FXHAT(1:N1:N,1:N1:N,1:N1:N);
F2H=FXHAT(1:N2:N,1:N2:N,1:N2:N);
F3H=FXHAT(1:N3:N,1:N3:N,1:N3:N);end;
%"ind2sub" maps 1D index from "find" to 3D
[IX,JX,KX]=ind2sub([N,N,N],find(abs(X)>.001));
[IY,JY,KY]=ind2sub([N,N,N],find(abs(XHAT)>.001));
figure,title(’ORIGINAL IMAGE; COLOR IS VALUE’),
scatter3(IX,JX,KX,5,X(abs(X)>0.001),’filled’)
figure,title(’COMPUTED IMAGE; COLOR IS VALUE’),
scatter3(IY,JY,KY,5,X(abs(XHAT)>0.001),’filled’)


