
1

Compressed Sensing from Several Sets of
Downsampled Fourier Values using Only FFTs

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract—Reconstruction of signals or images from
a few Discrete Fourier Transform (DFT) values has
applications in MRI and SAR. Compressed sensing is
the reconstruction from a reduced set of observations
of a signal or image that can be sparsified. Many real-
world signals and images may be sparsified by convo-
lution with a differencing operator, such as a wavelet;
this multiplies the given DFT values by its known fre-
quency response. We present a simple procedure for
reconstructing the signal or image from a few sets of
downsampled DFT values, using only the Fast Fourier
Transform (FFT) algorithm and some multiplications.
Three examples and Matlab programs are provided.

Keywords—Sparse reconstruction
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Problem Statement

The N -point DFT Xk of the length=N signal xn is

Xk =
N−1∑
n=0

xne
−j2πnk/N , k = 0 . . .N − 1. (1)

We assume that xn is sparsifiable, meaning that:
• There exists a sparsifying function ψn such that:
• zn=

∑N−1
i=0 xiψ(n−i)mod(N) is K-sparse, meaning:

• zn=0 unless n ∈ {n1 . . . nK} (the ni are unknown)

DFT Zk=XkΨk is known for three sets of values of k:

• k ∈ {L1, 2L1, 3L1 . . . N − L1}
• k ∈ {L2, 2L2, 3L2 . . . N − L2}
• k ∈ {L3, 2L3, 3L3 . . . N − L3}
• L1, L2, L3 are all factors of N .
• L1, L2, L3 are pairwise relatively prime.
• The DC value X0=

∑N−1
n=0 xn is also known.

Otherwise, knowledge of Xk and of Zk is equivalent.

The goal is to compute the K-sparse signal zn, and
then xn, from the known DFT values Xk Note half
of the given DFT values are complex conjugates of
the other half by conjugate symmetry, if xn is real.

B. Problem Significance

Many signals and images of practical interest have
a sparse representation in a wavelet basis. Computa-
tion of the wavelet transform can be viewed as con-

volutions with scaled wavelet and scaling basis func-
tions, which becomes multiplication in the DFT do-
main. Hence the results of this paper apply to both
sparse signals and wavelet-sparsifiable signals.

A common approach to sparse reconstruction is to
compute the minimum �1 norm solution, perhaps by
linear programming. If the DFT frequencies are ran-
domly chosen, and if enough of them are known, then
it has been shown that the minimum �1 norm solution
is in fact zn. In many practical situations we do not
have the luxury of choosing the ki at random-they are
pre-specified. And the number M of Zki required is
O(K logN) (the exact number is unknown).

Other approaches include thresholded Landweber
iteration and orthogonal matching pursuit. These are
much faster computationally, but require more of the
problem in order to compute zn. Since our approach
is completely different from all of these, we refer the
reader to the extensive literature on these methods.

The algorithm presented in this paper requires
O(KN1/3) observations of DFT values. This is more
than the minimum �1 norm solution requires, but the
DFT frequencies need not be random, and only the
FFT algorithm is required. The locations {ni} of
unknown values of zn (along with some false alarm
locations) can be recovered in closed form using three
inverse DFTs, computed using the FFT. Reconstruc-
tion of zn from the given Zk and computed {ni} can
be computed using an alternating-projections POCS
algorithm, which again requires only FFTs. Finally,
xn is reconstructed from zn using FFTs in Xk=Zk

Ψk

II. Presentation of Algorithm

A. Replacing Unknown Zk with Zeros

Given data Zk, k ∈ {0, L, 2L, 3L . . .N–L}, define

Yk =
{
Zk for k = 0, L, 2L . . .N − L
0 otherwise

(2)

The inverse N -point DFT of Yk is then

yn =
1
L

L−1∑
i=0

zn+iN/L. (3)

So inserting zeros for the missing values of Zk and
computing the inverse N -point DFT gives L copies

2

of the nonzero values of zn, each shifted in n by an
integer multiple of N/L.

The easiest way to derive this result is to note

Yk =
N−1∑
n=0

yne
−j2πnk/N

=
1
L

N−1∑
n=0

L−1∑
i=0

zn+iN/Le
−j2πnk/N

=
1
L
Zk

L−1∑
i=0

ej2π(iN/L)k/N

=
{
Zk for k = 0, L, 2L . . .N − L
0 otherwise

(4)

This uses the time delay property of the DFT and
the sum of L equally-spaced points on the unit circle
is zero. But if L divides k, then ej2π(iN/L)(k/N)=1.

B. Indicator Function

Repeat the above procedure for each of the three
sets of values of Zk. This gives

y1n =
L1−1∑
i1=0

zn+i1N/L1.

y2n =
L2−1∑
i2=0

zn+i2N/L2.

y3n =
L3−1∑
i3=0

zn+i3N/L3. (5)

Then define the indicator function

yn = y1ny2ny3n. (6)

The ij=0 terms in (5) show that yni �= 0. But yn for
n �= ni will be zero unless all three of yin �= 0. If N
is large and zn is sparse enough, this is unlikely, so
yn is an indicator for locations {ni} of nonzero zn.

This concept has some similarity to harmonic prod-
uct spectrum, as used for musical pitch detection,
except that the time and frequency domains are ex-
changed, and shifted copies of zn are used instead of
harmonics of musical pitch frequencies.

If zn is very sparse, then there will be no overlaps
among the {yin} for n /∈ {ni}. Then

yn =
{
z3

n for n ∈ {ni}
0 otherwise

(7)

So not only is yn an indicator function for locations
of nonzero zn, but the values of zn can be recovered
from the signed cube root of yn (e.g., 3

√−8=–2). The
following example shows closed-form reconstruction
of xn directly from Xk is possible using five FFTs.

C. Example #1: Closed-Form Reconstruction

The image shown in Figs. 1,2 consists of 4 cylinders
of various heights on a 315×315 plane. The data are
the 315 × 315 2-D DFT, downsampled by factors of
3,5,7, leaving the locations shown in Fig. 3. The
problem has 8141 observations (excluding complex
conjugates) in 3152=99225 unknowns, so the problem
is underdetermined by a factor of more than 12.

The sparsifying function used is ψn1,n2=
[

1
−1

]
.

This is the Haar wavelet in the vertical direction.
The unknown sparsified image is shown in Fig. 4.
This image is 152-sparse, so K=152 (also unknown).

The indicator function yn was computed by multi-
plying 3 inverse DFTs, computed using 3 FFTs, and
computing the signed cube root of each yn to get zn.
The result is shown in Fig. 5, and matches Fig. 4.

The formulaXk=Zk

Ψk
was then used to compute the

reconstructed original image. This required 2 more
FFTs, for a total of 5, to compute Zk from zn and
then to compute xn from Xk=Zk

Ψk
. But since the 2-D

DFT of ψn1,n2=
[

1
−1

]
is Ψk1,k2=ej2πk2/N–1, which is

zero for all k1 when k2=0, the 8141 given 2-D DFT
values were augmented with additional Xk1,0.

The final reconstructed image is shown in Fig. 6.

Matlab Program for Example #1
clear;N1=3;N2=5;N3=7;N=N1*N2*N3*3;
K1=[1:N1:N];K2=[1:N2:N];K3=[1:N3:N];
[x y]=meshgrid(1:N,1:N);%4 cylinders:
X1=((x-130).̂ 2+(y-140).̂ 2)<100;
X2=((x-150).̂ 2+(y-170).̂ 2)<100;
X3=((x-60).̂ 2+(y-40).̂ 2)<100;
X4=((x-90).̂ 2+(y-60).̂ 2)<100;
X=X1+2*X2+1.3*X3+1.8*X4;FI(N,N)=0;
figure,imagesc(X),colormap(gray)
figure,mesh(X),axis tight
FI(K1,K1)=1;FI(K2,K2)=1;FI(K3,K3)=1;
figure,imagesc(FI),colormap(gray)
FX=fft2(X);%Y=X(2:N,:)-X(1:N-1,:);
E=exp(-2j*pi*[0:N-1]/N);O=ones(N,1);
FY=FX.*(O*E).’-FX;%sparse image DFT.
figure,imagesc(real(ifft2(FY))),colormap(gray)
F1=FY(K1,K1);F2=FY(K2,K2);F3=FY(K3,K3);
%SOLUTION STARTS HERE:
G1(N,N)=0;G2(N,N)=0;G3(N,N)=0;
G1(1:N1:N,1:N1:N)=F1;Z1=real(ifft2(G1));
G2(1:N2:N,1:N2:N)=F2;Z2=real(ifft2(G2));
G3(1:N3:N,1:N3:N)=F3;Z3=real(ifft2(G3));
Z=Z1.*Z2.*Z3*N*N/9;Z=(abs(Z)).̂ (1/3).*sign(Z);
figure,imagesc(Z),colormap(gray)
H=(O*E).’-1;FXHAT=fft2(Z)./H;%Deconvolve H.
FXHAT(N,N)=0;FXHAT(1,:)=FX(1,:);%Known X(0,k).
figure,imagesc(real(ifft2(FXHAT))),colormap(gray)

3

ORIGINAL IMAGE OF 4 CYLINDERS

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 1. Original 315×315 Image.

50
100

150
200

250
300

50
100

150
200

250
300

0

0.5

1

1.5

2

3−D PLOT OF 4 CYLINDERS

Fig. 2. Original 315×315 Image.

LOCATIONS OF GIVEN DFT VALUES (3 DOWNSAMPLED SETS)

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 3. Locations of Given 2-D DFT Data.

SPARSIFIED IMAGE USING VERTICAL HAAR

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 4. (Unknown) Sparsified Image.

RECONSTRUCTED SPARSIFIED IMAGE (COMPARE TO #3)

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 5. Reconstructed Sparsified Image.

RECONSTRUCTED ORIGINAL IMAGE (COMPARE TO #1)

50 100 150 200 250 300

50

100

150

200

250

300

Fig. 6. Reconstructed Original Image.

4

D. Reconstruction Using POCS

Usually there will be overlaps among the {yin} for
n /∈ {ni}. Then yn �= z3

n, and it is necessary to
reconstruct the sparsified signal zn from the indica-
tor function yn. Worse, there will be some “false
alarms,” i.e., nonzero values of yn, even though the
corresponding zn=0, because copies of zn in all three
of the yin are all nonzero at some values of n.

There are two ways around this problem. One is
to set up and solve a linear system of equations to
compute zn from yn. The computed solution will
have zn=0 at the “false alarm” locations where yn �=
0. Matlab code for setting up and solving the system
of equations is provided for Example #2 below.

However, it is easier (but more time-consuming)
to use a Projection-Onto-Convex-Sets (POCS) algo-
rithm to compute zn from yn. The constraints are:
(1) the given DFT values Zk; and (2) the support
constraint zn=0 except at locations where yn �= 0.
Both are convex sets. The two projections for the
estimates zK

n and its DFT ZK
k at the Kth iteration:

• PA{ZK
k } =

{
Zk where known
ZK

k otherwise

• PB{zK
n } =

{
0 where yn = 0
zK

n otherwise

The POCS algorithm (which is often also called an
Alternating Projections (AP) algorithm) is then:

zK+1
n = DFT−1{PA{DFT{PB{zK

n }}}}. (8)

The algorithm requires no computation but FFTs,
and it is guaranteed to converge to the solution.

E. Example #2: Reconstruction Using POCS

The image shown in Fig. 7 consists of five cylin-
ders of various heights on a 210 × 210 plane. The
data are the 210×210 2-D DFT, again downsampled
by factors of 3,5,7. The problem has 3618 observa-
tions (excluding complex conjugates) in 2102=44100
unknowns, and is underdetermined by more than 12.

The vertical 2-D Haar wavelet ψn1,n2 from Exam-
ple #1 was again used to sparsify the image. The
190-sparse sparsifed image zn1,n2 is shown in Fig. 8.

The indicator function yn1,n2 is shown in Fig. 9.
Comparing Fig. 8 and Fig. 9 shows that there are 62
“false alarms,” since yn1,n2 is 252-sparse. To clarify
Fig. 9, all of the nonzero yn1,n2 were set to unity.

A POCS algorithm was used to compute zn1,n2

from yn1,n2 . The Frobenius norm (square root of sum
of squares) of the difference between successive itera-
tions was used to track convergence, and is plotted in

Fig. 10. Each iteration required two FFTs. The con-
vergence was soon linear (each error proportional to
the error in the previous iteration), so the norm de-
creased exponentially after an initial, faster decrease.
At this point, the usual acceleration procedures could
have been used to greatly speed up POCS.

The reconstructed sparsified image zn1,n2 is shown
in Fig. 11, and the reconstructed original image is
shown in Fig. 12. They match the actuals closely.

Alternatively, a 3618× 252 linear system of equa-
tions could have been solved, instead of using POCS.
Matlab code for this is commented out in the Matlab
program listed below. Complex conjugates and some
duplicate rows brought the size up to 7564× 252.

Matlab Program for Example #2
clear;N1=3;N2=5;N3=7;N=N1*N2*N3*2;
K1=[1:N1:N];K2=[1:N2:N];K3=[1:N3:N];
[x y]=meshgrid(1:N,1:N);%5 cylinders:
X1=((x-150).̂ 2+(y-150).̂ 2)<100;
X2=((x-160).̂ 2+(y-160).̂ 2)<100;
X3=((x-70).̂ 2+(y-30).̂ 2)<100;
X4=((x-80).̂ 2+(y-20).̂ 2)<100;
X5=((x-80).̂ 2+(y-70).̂ 2)<100;
X=X1+2*X2+1.5*X3+1.3*X4+1.8*X5;
figure,imagesc(X),colormap(gray)
FX=fft2(X);%Y=X(2:N,:)-X(1:N-1,:);
E=exp(-2j*pi*[0:N-1]/N);O=ones(N,1);
FY=FX.*(O*E).’-FX;%Sparsified image DFT.
figure,imagesc(real(ifft2(FY))),colormap(gray)
F1=FY(K1,K1);F2=FY(K2,K2);F3=FY(K3,K3);
%SOLUTION STARTS HERE:
G1(N,N)=0;G2(N,N)=0;G3(N,N)=0;
G1(1:N1:N,1:N1:N)=F1;Z1=real(ifft2(G1));
G2(1:N2:N,1:N2:N)=F2;Z2=real(ifft2(G2));
G3(1:N3:N,1:N3:N)=F3;Z3=real(ifft2(G3));
Z=Z1.*Z2.*Z3*N*N;Z(abs(Z)>0.001)=1;
%Z=indicator function for nonzero Y.
figure,imagesc(Z),colormap(gray)
%AP POCS ALGORITHM: Initialize YHAT=Z:
YH=Z;kmax=200;for k=1:kmax;OY=YH;FH=fft2(YH);
FH(K1,K1)=F1;FH(K2,K2)=F2;FH(K3,K3)=F3;
YH=real(ifft2(FH)).*Z;D(k)=norm(YH-OY,’fro’);
end;figure,plot(D) %LINEAR SYSTEM OF EQNS:

%[I J]=find(abs(Z)>0.00001);
%FF=[F1(:);F2(:);F3(:)];%Given data.
%KK1=[kron(ones(1,N/N1),K1-1);kron(K1-1,ones(1,N/N1))];
%KK2=[kron(ones(1,N/N2),K2-1);kron(K2-1,ones(1,N/N2))];
%KK3=[kron(ones(1,N/N3),K3-1);kron(K3-1,ones(1,N/N3))];
%KK=[KK1 KK2 KK3];A=exp(2j*pi/N*([I-1 J-1]*KK));
%YHAT1=A’\FF;YHAT(N,N)=0;%Computed sparsified
%for II=1:length(I);YHAT(I(II),J(II))=real(YHAT1(II));end;

figure,imagesc(YH),colormap(gray)
H=(O*E).’-1;FXH=fft2(YH)./H;%Deconvolve H.
FXH(N,N)=0;FXH(1,:)=FX(1,:);%Known X(0,k).
figure,imagesc(real(ifft2(FXH))),colormap(gray)

5

ORIGINAL IMAGE OF 5 CYLINDERS

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 7. Original 210×210 Image.

SPARSIFIED IMAGE USING VERTICAL HAAR

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 8. (Unknown) Sparsified Image.

INDICATOR FUNCTION FOR SPARSIFIED IMAGE

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 9. Computed Indicator Function.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

DIFFERENCE BETWEEN SUCCESSIVE Y
k

Fig. 10. Convergence of POCS: ||Y K+1 − Y K ||.

RECONSTRUCTED SPARSIFIED IMAGE (COMPARE TO #2)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 11. Reconstructed Sparsified Image.

RECONSTRUCTED ORIGINAL IMAGE (COMPARE TO #1)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

Fig. 12. Reconstructed Original Image.

6

F. Example #3: Slanted Shepp-Logan Phantom

The image shown in Fig. 13 is the 420×420 Shepp-
Logan phantom, multiplied by a 2-D ramp function
that varies from 1 at the upper left to 4 at the lower
right. So each cylinder now has a slanted top.

The data are the 420 × 420 2-D DFT, down-
sampled by factors of 3,4,5,7. The problem has
19080 observations (excluding complex conjugates)
in 4202=176,400 unknowns, so the problem is under-
determined by a factor of more than 9.

The sparsifying function used is now

ψn1,n2 = [1,−2, 1]T

Ψk1,k2 = ej2πk2/N + e−j2πk2/N − 2
= 2 cos(2πk2/N)− 2
≈ −(2πk2/N)2 (9)

for small k2. This sparsifies linear functions to zero
except at endpoints. Note the resemblance to a par-
tial second derivative in the vertical direction. This
shows that Ψk1,k2 ≈ 0 for all k1 when |k2| is small,
not just zero. So the 19080 given 2-D DFT values
were augmented with additional Xk1,k2 for |k2| ≤ 10.

The unknown, 3500-sparse, sparsified image is
shown in Fig. 14. Due to the dynamic range of
nonzero pixel values, this figure shows the base-10
logarithm of absolute values of the sparsified image.

The computed indicator function yn1,n2 is shown in
Fig. 15. Comparing Fig. 14 and Fig. 15 show that
there are 1510 “false alarms,” since yn1,n2 is 5010-
sparse. All of the nonzero yn1,n2 were set to unity.

The system of equations is 19080×5010, so a POCS
algorithm was used to compute zn1,n2 from yn1,n2 .
The Frobenius norm (square root of sum of squares)
of the difference between successive iterations was
used to track convergence, and is plotted in Fig. 16.
Each iteration required two FFTs. The convergence
was soon linear (each error proportional to the error
in the previous iteration), so the norm decreased ex-
ponentially after an initial, faster decrease. At this
point, the usual acceleration procedures could have
been used to greatly speed up POCS convergence.

The reconstructed sparsified image zn1,n2 is shown
in Fig. 17, and the reconstructed original image is
shown in Fig. 18. They match the actuals closely,
although some streak artifacts appear in the recon-
structed image. The streaks come from the “false
alarms” that have not completely decayed to zero,
and are amplified by division by Ψk1,k2 . Running the
POCS algorithm longer eliminates these artifacts.

The POCS algorithm could be accelerated. An-
other (simpler) approach is to threshold small values
of zn1,n2 to zero. This also eliminates the artifacts.

Matlab Program for Example #3
clear;N1=3;N2=4;N3=5;N4=7;N=N1*N2*N3*N4;
K1=[1:N1:N];K2=[1:N2:N];K3=[1:N3:N];K4=[1:N4:N];
X=phantom(N);L=linspace(1,2,N);X=X.*(L’*L);
figure,imagesc(X),colormap(gray)
FX=fft2(X);%Y=X(3:N,:)+X(1:N-2,:)-2*X(2:N-1,:);
E=exp(-2j*pi*[0:N-1]/N);O=ones(N,1);
H=(O*E).’+(O*conj(E)).’-2*(O*O’);
FY=FX.*H;Y=real(ifft2(FY));Y(N,N)=0;
figure,imagesc(log10(abs(Y))),colormap(gray)
F1=FY(K1,K1);F2=FY(K2,K2);F3=FY(K3,K3);F4=FY(K4,K4);
%GIVEN: F1,F2,F3,F4. SOLUTION STARTS HERE:
G1(N,N)=0;G2(N,N)=0;G3(N,N)=0;G4(N,N)=0;
G1(1:N1:N,1:N1:N)=F1;Z1=real(ifft2(G1));
G2(1:N2:N,1:N2:N)=F2;Z2=real(ifft2(G2));
G3(1:N3:N,1:N3:N)=F3;Z3=real(ifft2(G3));
G4(1:N4:N,1:N4:N)=F4;Z4=real(ifft2(G4));
Z=Z1.*Z2.*Z3.*Z4*N*N;Z(abs(Z)>0.00001)=1;
figure,imagesc(Z),colormap(gray)
%AP POCS ALGORITHM: Initialize with YHAT=Z:
kmax=1000;YH=Z;for k=1:kmax;OY=YH;FH=fft2(YH);
FH(K1,K1)=F1;FH(K2,K2)=F2;FH(K3,K3)=F3;
YH=real(ifft2(FH)).*Z;D(k)=norm(YH-OY,’fro’);end;
figure,plot(log10(D))
figure,imagesc(log10(abs(YH))),colormap(gray)
ky=10;FXH=fft2(YH)./H;K=[1:ky N+2-ky:N];
FXH(K,:)=FX(K,:);%Additional X(k1,k2)
figure,imagesc(real(ifft2(FXH))),colormap(gray)

7

ORIGINAL IMAGE OF RAMPED SHEPP−LOGAN

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Fig. 13. Original 420×420 Slanted Shepp-Logan.

LOG
10

 OF |SPARSIFIED IMAGE| USING VERTICAL HAAR

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Fig. 14. (Unknown) log10 ||Sparsified Image||.

INDICATOR FUNCTION FOR SPARSIFIED IMAGE

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Fig. 15. Computed Indicator Function.

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

LOG
10

 OF DIFFERENCE BETWEEN SUCCESSIVE ||Y
k
||

Fig. 16. Convergence of POCS: log10 ||Y K+1 − Y K ||.

LOG
10

 OF RECONSTRUCTED |SPARSIFIED IMAGE| (COMPARE TO #2)

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Fig. 17. Reconstructed log10 ||Sparsified Image||.

RECONSTRUCTED ORIGINAL IMAGE (COMPARE TO #1)

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Fig. 18. Reconstructed Original Image.

