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from 3 Sets of Downsampled Fourier Values
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Abstract— We present a simple closed-form algo-
rithm for reconstructing a sparse signal from three
different sets of downsampled discrete Fourier trans-
form (DFT) values. The algorithm, which requires
only three inverse DFTs, can be viewed as a dual of
harmonic product spectrum, which is used for musical
pitch detection. The ratio of number of observations
to sparsity is proportional to the cube root of the sig-
nal length. A Matlab program and a small sparse
image example are provided.
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I. INTRODUCTION

A. Problem Statement

The N -point DFT Xk of the length=N signal xn is

Xk =
N−1∑
n=0

xne−j2πnk/N , k = 0 . . .N − 1. (1)

• xn is real-valued and K-sparse. This means:
• xn=0 unless n ∈ {n1 . . . nK} (the ni are unknown).
• Nonzero values of xn are randomly distributed
among the possible locations n = 0, 1, 2 . . .N–1.

The DFT Xk is known for three sets of values of k:

• k ∈ {L1, 2L1, 3L1 . . . N − L1}
• k ∈ {L2, 2L2, 3L2 . . . N − L2}
• k ∈ {L3, 2L3, 3L3 . . . N − L3}
• L1, L2, L3 are all factors of N .
• L1, L2, L3 are pairwise relatively prime.
• The DC value X0=

∑N−1
n=0 xn is also known.

The goal is to recover the K-sparse signal xn from its
known DFT values Xk. Note half of the given DFT
values are complex conjugates of the other half.

B. Problem Significance

Many signals and images of practical interest have
a sparse representation in a wavelet basis. Computa-
tion of the wavelet transform can be viewed as con-
volutions with scaled wavelet and scaling basis func-
tions, which becomes multiplication in the DFT do-
main. Hence the results of this paper apply to both
sparse signals and wavelet-sparsifiable signals.

A common approach to sparse reconstruction is to
compute the minimum �1 norm solution, perhaps by
linear programming. If the DFT frequencies ki are
randomly chosen, and if enough of them are known,
then it has been shown that the minimum �1 norm
solution is in fact xn. In many practical situations we
do not have the luxury of choosing the ki at random-
they are pre-specified. And the number M of Xki re-
quired is O(K logN) (the exact number is unknown).

Other approaches include thresholded Landweber
iteration and orthogonal matching pursuit. These are
much faster computationally, but require more of the
problem in order to compute xn. Since our apporach
is completely different from all of these, we refer the
reader to the extensive literature on these methods.

The algorithm presented in this paper requires
O(KN1/3) observations of DFT values. This is more
than the minimum �1 norm solution requires, but the
computation is closed-form (three inverse DFTs) and
the DFT frequencies need not be random here.

II. Presentation of Algorithm

A. Replacing Unknown Xk with Zeros

Given data Xk, k ∈ {0, L, 2L, 3L . . .N–L}, define

Yk =
{

Xk for k = 0, L, 2L . . .N − L
0 otherwise

(2)

The inverse N -point DFT of Yk is then

yn =
1
N

N−1∑
k=0

Ykej2πnk/N

=
1
N

N/L−1∑
k1=0

Xk1Lej2πn(k1L)/N

=
1
L

L−1∑
i=0

xn+iN/L. (3)

So inserting zeros for the missing values of Xk and
computing the inverse N -point DFT gives L copies
of the nonzero values of xn, each shifted in n by an
integer multiple of N/L.

B. Algorithm

Repeat the above procedure for each of the three
sets of values of Xk. This gives
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y1n =
L1−1∑
i1=0

xn+i1N/L1 .

y2n =
L2−1∑
i2=0

xn+i2N/L2 .

y3n =
L3−1∑
i3=0

xn+i3N/L3 . (4)

Then define the indicator function

yn = y1ny2ny3n. (5)

The ij=0 terms in (4) show that yni �= 0. But yn

for n �= ni will be zero unless all three of yin �= 0.
If N is large and the nonzero xn are randomly dis-
tributed, this is unlikely (see the next section). yn is
an indicator for locations {ni} of nonzero xn.

This concept has some similarity to harmonic prod-
uct spectrum, as used for musical pitch detection,
except that the time and frequency domains are ex-
changed, and shifted copies of xn are used instead of
harmonics of musical pitch frequencies.

III. Analysis of Data Requirement

We analyze the relation between four numbers:

• N=number of unknown values of xn.
• K=number of nonzero values of xn.
• M=number of known DFT values of xn.
• p=Pr[Incorrect extra locations of nonzero xn].

To simplify the analysis, we assume that

L1 ≈ L2 ≈ L3 ≈ L. (6)

An easy way to make the Li pairwise relatively prime
is to make the Li consecutive integers, with median
Li even. Note that N can be zero-padded to the next
largest product of three consecutive integers.

In the following, we specifically exclude the ij=0
terms (and hence the n=ni terms) in (4).

Since nonzero xn are randomly distributed over
{0, 1 . . .N–1}, for each specific value of n we have

Pr[xn �= 0] = K/N

Pr[yin �= 0] = KL/N

Pr[yn �= 0] = (KL/N)3 (7)

since yn �= 0 only if all three of {y1n, y2n, y3n} �= 0.

For all n �= ni, we then have

Pr[yn = 0] = [1− (KL/N)3]N

� e−K3L3/N2

Pr[yn �= 0] = 1− e−K3L3/N2

Pr[yn �= 0] = p � K3L3/N2. (8)

using the definition of e=2.71828 and N is large.
The number of observations M is

M =
N

L1
+

N

L2
+

N

L3
≈ 3N

L
. (9)

Combining these gives the relation

M = K3N1/3p−1/3. (10)

For example, to attain p=0.001 requires M=30N1/3.
The minimum �1 norm requires M=O(K logN),

but also requires much more computation and also
requires random frequencies k.

IV. Numerical Example

We present a small example of reconstruction of a
44-sparse 210 × 210 image from three sets of down-
sampled 2-D DFT values. The example is small so
that each algorithm step can be seen. We have

N = 2102 = 44100;K = 44;L1 = 5;L2 = 6;L3 = 7.

The number of observations is

M = (
210
5

)2 + (
210
6

)2 + (
210
7

)2 = 3889. (11)

This includes conjugate symmetric values.
Results are shown in the figures on the next page.

A. Matlab Program

%N1,N2,N3:pairwise relatively prime
clear;N1=5;N2=6;N3=7;N=N1*N2*N3;
X=rand(N,N);X(X<0.999)=0;%So X sparse
FX=fft2(X);%Get X from downsampled FX:
F1=FX(1:N1:N,1:N1:N);%Downsample by N1
F2=FX(1:N2:N,1:N2:N);%Downsample by N2
F3=FX(1:N3:N,1:N3:N);%Downsample by N3
%Solution:
G1(N,N)=0;G2(N,N)=0;G3(N,N)=0;
G1(1:N1:N,1:N1:N)=F1;Y1=real(ifft2(G1));
G2(1:N2:N,1:N2:N)=F2;Y2=real(ifft2(G2));
G3(1:N3:N,1:N3:N)=F3;Y3=real(ifft2(G3));
%Y=indicator function for nonzero X:
Y=Y1.*Y2.*Y3*N*N;Y(abs(Y)>0.001)=1;
figure,imagesc(X),colormap(gray)
figure,imagesc(Y),colormap(gray)
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Fig. 1. Original 210×210 44-sparse image
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Fig. 2. Locations of 2-D DFT values used
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Fig. 3. Reconstructed 210×210 44-sparse image
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Fig. 4. Image from Xk1,k2 using L1=5
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Fig. 5. Image from Xk1,k2 using L1=6
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Fig. 6. Image from Xk1,k2 using L1=7


