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Abstract— Reconstruction of signals or images from
a few discrete Fourier transform (DFT) values has
applications in MRI and SAR. Many real-world sig-
nals can be sparsified by an invertible transformation,
such as wavelets, into a sparse (mostly zero, with K
nonzero values at unknown locations) signal. This K-
sparse signal can be reconstructed using the K lowest-
frequency DFT values using Prony’s method or MU-
SIC (2K frequencies are required for complex signals
or real-valued images). However, this does not work
in practice due to poor conditioning caused by the
clustering of the locations of the K nonzero values.
We use the scaling property of the DFT to uncluster
these locations and to spread out the frequencies of
known DFT values. We reconstruct a Shepp-Logan
phantom using only 2K DFT values, much fewer than
the number required by �1 norm minimization, and
using less computation than �1 norm minimization.

Keywords— Sparse reconstruction
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Problem Statement

The N -point DFT Xk of the length=N signal xn is

Xk =
N−1∑
n=0

xne
−j2πnk/N , k = 0 . . .N − 1. (1)

• There exists a sparsifying function ψn such that:
• zn=

∑N−1
i=0 xiψ(n−i)mod(N) is K-sparse, meaning:

• zn=0 unless n ∈ {n1 . . . nK} (the ni are unknown)
• Zk=XkΨk is known for k ∈ {k1 . . . kK} and for
the conjugate frequencies {N–ki} using ZN−k=Z∗

k .
• The DC value X0=

∑N−1
n=0 xn is also known.

Otherwise, knowledge of Xk and of Zk is equivalent.

The goal is to compute the K-sparse signal zn, and
then xn, from DFT values Xk known at K frequen-
cies ki, conjugate frequencies N–ki, and X0. Note
the problem is underdetermined without sparsity.

B. Problem Significance

Reconstruction of signals and images from limited
frequency data occurs in various problems such as:

• Limited-angle tomography in medical imaging;
• Synthetic Aperture Radar (SAR) radar imaging;
• Magnetic Resonance Imaging (MRI) in medicine.

Many signals and images of practical interest have a
sparse representation in a wavelet basis. Computa-
tion of the wavelet transform can be viewed as con-
volutions with scaled wavelet and scaling basis func-
tions, which becomes multiplication in the DFT do-
main. Hence the results of this paper apply to both
sparse signals and wavelet-sparsifiable signals.

C. Previous Approaches

A common approach to sparse reconstruction is to
compute the minimum 1 norm solution, perhaps by
linear programming. If the DFT frequencies ki are
randomly chosen, and if enough of them are known,
then it has been shown that the minimum 1 norm
solution is in fact zn. In many practical situations we
do not have the luxury of choosing the ki at random-
they are pre-specified. And the number of Zki re-
quired is O(K logN) (the exact number is unknown).
Other approaches include thresholded Landweber

iteration and orthogonal matching pursuit. These are
much faster computationally, but require more of the
problem in order to compute zn. Since our approach
is completely different from both of these, we refer the
reader to the extensive literature on these methods.

D. New Approach

If Zk is known for all |k| ≤ K (2K+1 consecutive
values of Zk), then zn can be reconstructed using
any of the well-known array processing techniques
such as Prony’s method, MUSIC, or ESPRIT. This
works well if the locations ni of nonzero zn are un-
clustered (spaced out in n). It may seem that using
only the lowest DFT frequencies should lead to an
ill-conditioned problem, but the DFT basis vectors
are all orthonormal, even for adjacent frequencies.
However, sparsified signals tend to have clustered

ni (see Fig. 3 below). This makes the problem ill-
conditioned. Consider these two extreme cases:

• ni={0, . . .K–1}. zn from {Zk, |k| ≤ K} is well-
known to be very ill-conditioned if 1 << K << N .
• ni={0, N

K , 2
N
K , . . . (K–1)

N
K }. zn from {Zk, |k| ≤

K} is perfectly conditioned since unknown values of
Zk are just the periodic extension of the given values.
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In order to use the deterministic version of MUSIC
(derived below) we must uncluster the ni of the spar-
sified signal to convert a problem like the former to
one more like the latter. This may account for the
lack of use of this approach in compressed sensing.
We do this below using the DFT scaling property.

II. Derivation of New Algorithm

A. Sparsification of xn to zn

Let ψn be a sparsifying convolutional basis func-
tion, such as a wavelet basis function, and define the
sparsified zn as a cyclic convolution of xn and ψn:

zn =
N−1∑
i=0

xiψ(n−i) mod(N) (2)

Taking the N -point DFT of this equation gives

Zk = XkΨk and Xk = Zk/Ψk. (3)

• zn=0 except at K locations {ni, i = 1 . . .K}.
• Zk is known at K frequencies {ki, i = 1 . . .K}
and their complex conjugate frequencies {N–ki}.
• Z0=X0Ψ0=0 since Ψ0=0. But X0 is known.

For wavelets, Ψk=0 for a range of k. Then several
time-scaled versions of ψn must be used, so that Xk

may be recovered from the reconstructed Zk for all
k. No additional data is required, but the following
procedure must be repeated for each wavelet scale.

B. Deterministic form of MUSIC

Define the annihilating or indicator function sn as{
sn = 0 if zn �= 0
sn �= 0 if zn = 0

{
Sk �= 0 0 ≤ k ≤ K
Sk = 0 otherwise

(4)

where Sk is the N -point DFT of sn. Then we have

snzn = 0→
N−1∑
k=0

ZkS(n−k)mod(N) = 0. (5)

S(z) =
K∑

k=0

Skz
k (6)

has zeros {ejni/N}, where ni are the locations of K
nonzero values of zn. So the inverse DFT of Sk is
zero at locations ni of nonzero zn, indicating them.
This equation may be arranged into the system



Z0 Z1 · · · ZK

Z∗
1 Z0 · · · ZK−1

. . . . . . . . . . . .
Z∗

K Z∗
K−1 · · · Z0







SK

SK−1

...
S0


 =



0
0
...
0


 (7)

where we have used conjugate symmetry Z∗
k=ZN−k

to show that the matrix has Hermitian symmetry.
So the elements of the right null vector of this sin-

gular Hermitian Toeplitz matrix are the DFT Sk of
the function sn. An inverse DFT recovers sn, and
zero values of sn indicate locations ni of nonzero zn.
In Prony’s method the zeros {ejni/N} of S(z)

would be computed. But this is not necessary here,
since there are only N possible locations of the zeros,
and they can all be checked by evaluating S(z) at
z=ejk/N , k = 0 . . .N–1. This can be done using an
inverse DFT (due to the signs of the exponents).

C. Clustering of Nonzero zn

The problem with using MUSIC is that since zn is
a sparsified image, nonzero values of zn tend to clus-
ter (see Fig. 3 below). And if there are zeros, say,

{ej5/N , ej6/N , ej8/N , ej9/N}

then the DFT will be very close to zero at 7
N , so

s5 = s6 = s8 = s9 = 0; s7 ≈ 0. (8)

The zeros of S(z) can still be computed using Prony’s
method, but this is impractical for large K. And
roundoff error in computing the null vector will affect
locations of the zeros of S(z).

D. Declustering Using DFT Scaling Property

Let L be any integer 1 < L < N relatively prime
to N . Then L has a multiplicative inverse L̃mod(N):

LL̃ ≡ 1 mod(N) (9)

L̃ may be computed from L and N by using the Eu-
clidian algorithm to solve in integers the equation

LL̃+NQ = 1 (10)

for L̃ and Q (and then discarding Q afterwards).
Then the N -point DFT can be rewritten as

Zk =
N−1∑
n=0

zn exp[−j2π (nL̃)︸︷︷︸
n′

(Lk)︸︷︷︸
k′

/N ] (11)

where we define n′ ≡ nL̃ and k′ ≡ Lk mod(N).
Changing variables and reordering the sum gives

Z(L̃k′mod(N)) =
N−1∑
n′=0

z(Ln′mod(N))e
−j2πn′k′/N . (12)

The point is that z(Ln′mod(N)) is a reordering of zn

that unclusters the nonzero values of zn, since zn has
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been stretched by a factor of L with indices mod(N):

n′ = {0, 1, 2, 3 . . .} → {z0, zL, z2L, z3L . . .}

Similarly, Xk has been compressed by a factor of L.
So the original data should be obtained at indices

k′ = {0, 1, 2, 3 . . .} → {X0, XL̃, X2L̃, X3L̃ . . .}

So the original data is measured at widely spaced
frequencies. This may make data acquisition easier.

E. New Algorithm: Procedure

1. Measure these DFT values Xk of the original xn:
{X0, XL̃, X2L̃, X3L̃ . . .XKL̃ mod(N)}
2. Compute the DFT Zk of the sparsified signal zn:
Zk=XkΨk, where Ψk is the DFT of the wavelet ψn.
3. Form the Hermitian Toeplitz matrix from {Zk}.
These are then {Z0, Z1 . . . ZK} for unclustered zn.
4. Compute inverse N-point DFT of the null vector
of the Hermitian Toeplitz matrix. Its elements: sn.
5. The locations ni of the zero values of sn are the
locations of the nonzero values of the unclustered zn.
6. Reorder the unclustered zn to the original zn.
7. Compute Xk=Zk/Ψk from the DFT Zk of zn.
8. For k such that Ψk=0, repeat with other scalings
of the wavelet ψn. Note that X0 is known.

F. Modifications: Complex Signals and Images

For complex-valued signals xn, the same procedure
is followed. The only difference is that since conju-
gate symmetry no longer holds, twice as many DFT
values (N–ki as well as ki) are required to form the
Toeplitz matrix, which is no longer Hermitian.
For images, the Hermitian Toeplitz matrix be-

comes a Hermitian Block Toeplitz matrix with
Toeplitz blocks (BTTB) matrix. Since conjugate
symmetry does not hold within each block, again
twice as many DFT values are required to form the
matrix. The indices are now reordered separately
horizontally and vertically, and 2-D DFTs are used.
The polynomial zeros are now 2-D polynomial zero
curves, sampled only at the 2-D DFT frequencies.
For images, let the sparsified image be K-sparse,

and let ceil(x) be the smallest integer exceeding x,
e.g., ceil(3.2)=4. Then the BTTB matrix is K2

c ×K2
c ;

it has Kc ×Kc blocks, each of size Kc ×Kc, where

Kc = ceil(
√
K). (13)

The number M of 2-D DFT values required is

M = ((2Kc − 1)2 + 1)/2 (14)

excluding their complex conjugates.
For the following example, Kc=ceil(

√
1064)=33

and M=((2(33)–1)2+1)/2=2113. The BTTB matrix
is 332 × 332=1089× 1089.

III. NUMERICAL EXAMPLE

We demonstrate this procedure by reconstructing
the 256 × 256 Shepp-Logan phantom shown in Fig.
1 from the 2113 2-D DFT values and their complex
conjugates (4225 total values) at locations shown in
Fig. 2. This is significantly fewer than the number
required for 1 norm minimization. The regular pat-
tern of the frequency locations used may make data
acquisition of 2-D DFTs at these locations easier.

A. Clustered Sparsified Image

The sparsifying function used is ψn1,n2=
[

1
−1

]
.

This is the Haar wavelet in the vertical direction. The
unknown sparsified image is shown in Fig. 3. This
image is 1064-sparse, so K=1064 (also unknown).
Note the sparsified image has clustered nonzero

values. Attempts to reconstruct the sparsified image
in Fig. 3 using DFT values failed, due to this cluster-
ing, and are not shown. There was no clear threshold
to determine the locations of sparsifed values, and
even using the actual value of K=1064 yielded incor-
rect locations, so the procedure failed.

B. Unclustered Sparsified Image

The DFT scaling property was used with L=17 to
uncluster the sparsified image. This gave L̃=241:

(17)(241) ≡ 1 mod(256). (15)

The 2-D DFT values Zk1,k2 are required for k1, k2 ∈

{0,±1(241),±2(241), . . .± 32(241) mod(256)} (16)

where reduction mod(256) gives an integer between 0
and 255. Note half of these 2-D DFT values (exclud-
ing Z0,0) are complex conjugates of the other half.
The total number of 2-D DFT values used is then

(1 + 32 + 32)2 = 4225; (4225 + 1)/2 = 2113. (17)

The unclustered sparsified image (also unknown) is
shown in Fig. 4. Note the locations of nonzero values
now appears to be random. This greatly improved
the conditioning of the problem.
The problem of reconstructing the sparsified image

thus has 2113 observations in 65536 unknowns of a
1064-sparse image. Note that these are independent
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of L; different values of L can be used for declus-
tering, although this will lead to different 2-D DFT
frequencies at which the 2-D DFT must be measured.

C. Null Vector of BTTB Matrix

The BTTB matrix had 33×33 blocks of size 33×33
each, so the matrix was 332 × 332, i.e., 1089× 1089.
This required the sparsified image have K=1088 or
smaller, or the BTTB matrix would not be singular.
Fortunately, the sparsity K=1064 < 1089.
The reconstructed reclustered sparsified image

computed by finding a null vector of the BTTB ma-
trix and then computing its inverse 2-D DFT is shown
in Fig. 5, which should be compared to Fig. 3. The
sorted values of sn showed a sharp threshold:

s1064 = 27 · 10−10 and s1065 = 619 · 10−10 (18)

indicating clearly that there are 1064 nonzero values
at locations indicated by 1064 smallest values of sn.

D. Reconstruction of Original Image

Once the locations of nonzero values of the sparsi-
fied image were found, reconstruction of zn required
solution of an 4225×1064 linear system of equations.
Then using Xk=Zk/Ψk recovered the missing Xk.
However, since the 2-D DFT of ψn1,n2=

[
1
−1

]
is

ψn1,n2 =
[
1
−1

]
→ Ψk1,k2 = ej2πk2/256 − 1, (19)

which is zero for all k1 when k2=0, the 2113 2-D
DFT values had to be augmented with the addi-
tional values Xk1,0 not already specified. Alterna-
tively, the entire procedure could be repeated using
ψn1,n2=[1,−1], the Haar wavelet in the horizontal di-
rection, but this sparsfied image is only 1482-sparse,
so even more 2-D DFT values would be needed.
The final reconstructed image is shown in Fig. 6.

It matches the original image in Fig. 1, so the original
image was successfully reconstructed.

E. Matlab Program

clear;N=256;X=phantom(N);FX=fft2(X);
figure,imagesc(X),colormap(gray)
E=exp(-2j*pi*[0:N-1]/N);O=ones(N,1);
FY=FX.*(O*E).’-FX;%DFT of sparsified image
Y=real(ifft2(FY));%(Unknown) sparsified image
figure,imagesc(Y),colormap(gray)
Y=Y(rem(17*[0:255],N)+1,rem(17*[0:255],N)+1);
figure,imagesc(Y),colormap(gray)
%(Unknown) reordered sparsified image.
%Y not used below-only given to illustrate
Ka=rem(241*[0:32],N)+1;L=length(Ka);L2=2*L-1;
K=[Ka N+2-fliplr(Ka(2:L))];%241*17=1(mod 256)
FI(N,N)=0;FI(K,K)=1;%Locations of known DFT
figure,imagesc(FI),colormap(gray)
FF=FY(K,K);UU(N,N)=0;
%GOAL: Compute Y, then X, from given DFT FF.
%Form Toeplitz-Block-Toeplitz matrix:
for I=1:L;IL=[1 L2:-1:L+1];
T=toeplitz(FF(I,IL),FF(I,1:L));
T=toeplitz(FF(I,IL),FF(I,1:L));
for J=I:L;J1=(J-1)*L;IJ=(J-I)*L;
TT([1:L]+J1,[1:L]+IJ)=T’;
TT([1:L]+IJ,[1:L]+J1)=T;
end;end;%Matrix assembly complete
[U,E1]=eig(TT);%Minimum not last one
[Q,EMIN]=min(log10(abs(diag(E1))));
UU(Ka,Ka)=reshape(U(:,EMIN),L,L);
FU=fft2(UU,N,N)’;
figure,imagesc(log10(abs(FU))),colormap(gray)
S=sort(abs(FU(:)));S(1062:1067)%sparsity=1064:
%10−6[.0014,.0027,.0027,.0619,.0628,.0776]
[I J]=find(abs(FU)<S(1065));%We now know 1064
KK=[kron(ones(1,L2),K-1);kron(K-1,ones(1,L2))];
A=exp(2j*pi/N*([I-1 J-1]*KK));%System matrix:
ZY=A’\FF(:);ZZ(N,N)=0;%Sparsified image
for II=1:length(I);ZZ(I(II),J(II))=real(ZY(II));end;
H=(O*E).’-1;FXHAT=fft2(ZZ)./H;%Deconvolve H
FXHAT(N,N)=0;FXHAT(1,:)=FX(1,:);%Known X(0,k)
figure,imagesc(real(ifft2(FXHAT))),colormap(gray)
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Fig. 1. Original 256×256 Shepp-Logan Phantom.
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Fig. 2. Locations of the 4225 2-D DFT Values Used.

50 100 150 200 250

50

100

150

200

250

Fig. 3. Sparsified Image. Note the Clustering.
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Fig. 4. Declustered Sparsified Image After DFT Scaling.
Note the Lack of Clustering of Nonzero Values.
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Fig. 5. Reconstructed Sparsified Image.
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Fig. 6. Reconstructed Original Image.


