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Abstract— The X-ray crystallography problem is to
reconstruct a crystalline structure from the Fourier
magnitude of its diffracted scattering data. This has
three major difficulties: (1) Only Fourier magnitude
(not phase) data are known; (2) There is no support
constraint (since the crystal is periodic); and (3) only
low-wavenumber scattering data are available. But
it also has two major advantages: (1) the crystal is
sparse (atomicity) since it consists of isolated atoms;
and (2) the crystal structure often has even symme-
try. We exploit atomicity to show that the crystal
can be reconstructed easily from only low wavenum-
ber Fourier data. We also propose new algorithms for
reconstruction of crystals with even or no symmetry
from low-wavenumber Fourier magnitude data using
two or one isomorphic replacements (4 algorithms).
Small numerical examples illustrate the algorithms.
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I. INTRODUCTION

A. Background

X-ray crystallography is the reconstruction of
molecular structures from X-ray scattering data. An
X-ray source generates a plane wave that probes the
structure and is scattered and diffracted from it. The
magnitude of the scattered field is measured. The
goal is to reconstruct the structure from measure-
ments of the Fourier magnitude of the scattered field.

Since scattering from individual atoms is very
weak, crystal structures are used. The periodicity
of crystal structures, which consist of many repeti-
tions of a unit cell, means that scattering from each
unit cell is reinforced across all the unit cells, result-
ing in a strong scattering signal, which creates an
interference pattern of spots. However, since there is
no lens for X-rays, only the Fourier magnitude of the
scattered field can be measured; the phase must be
determined separately (phase retrieval).

Each unit cell in turn consists of atoms, surrounded
by a cloud of electrons and arranged in an unknown
structure. Most of the unit cell can be modelled as
empty space, with atoms represented as impulses in
the electron density distribution (atomicity). In prac-
tice the empty space is filled with solvent, but its
effects can be subtracted off (solvent leveling).

B. Approaches

One important approach to X-ray crystallogra-
phy consists of direct methods developed by Karle &
Hauptman [1,2], for which they won the Nobel prize
in 1985. Non-negativity of the electron density mani-
fests itself in the scattering data as a set of matrix de-
terminant inequalities (derived below), and these de-
termine inequalities for the unknown Fourier phases.
Using probability density function models, the prob-
ability of an inequality determining the phase can be
explicitly computed, and a model of the crystal built
up. However, these methods are computationally in-
tensive and require much human analysis, interpreta-
tion, and modelling. In practice, direct methods are
only useful for small (less than 100 atoms per unit
cell) molecules, since the resolution is limited.

Another approach used for large molecules (e.g.,
proteins) is isomorphic replacement. A heavy atom
is inserted into each unit cell of the crystal struc-
ture, and scattering data for the crystal both before
and after this insertion is measured. Performing this
operation twice uniquely determines the phases, as
shown below. However, this requires extensive labo-
ratory work, time, and cost. Performing this opera-
tion only once, termed single isomorphic replacement
(SIR), would reduce time and cost by almost half.

Still another approach is anomalous dispersion.
The X-ray source is tuned to an absorption edge of
a heavy atom, altering its scattering o(x) and in fact
making it complex (due to absorption and disper-
sion). This has an effect analogous to SIR. Perform-
ing it twice, termed multiple anomalous dispersion
(MAD), again uniquely determines the phases. How-
ever, repeated bombardment with X-rays can “cook”
the crystal, so single anomalous dispersion (SAD) is
preferable to multiple anomalous dispersion (MAD).

For structures with more than about 500 atoms per
unit cell, interatomic distances within the unit cell
are less than the wavelength of the X-rays (about 1
Angstrom). This makes the problem much harder,
since atomicity can no longer be used (atomicity is
still true, but it does not appear in the data).

Most approaches use symmetries in the crystal
structure. There are two types of symmetry:



2

• Crystallographic symmetry (CS) in which the struc-
ture is invariant to rotations preserving the lattice
and thus apply throughout the crystal;
• Noncrystallographic symmetry (NCS) in which the
structure is invariant to rotations interpolating the
lattice and thus apply only locally.

NCS is discussed extensively in [3], in which the lat-
tice interpolation is used as additional data in an
iterative phase retrieval algorithm. It is not used in
this paper, so it is not discussed further. CS, specif-
ically even or centrosymmetric symmetry, is used in
this paper and is discussed in more detail below.

C. Contribution of This Paper

This paper presents a new approach to the X-ray
crystallography problem. It presents the following:

• A new superresolution algorithm that exploits
atomicity (sparseness) directly to reconstruct atomic
locations from low-wavenumber scattering data;
• Two new algorithms for reconstruction of sym-
metric and non-symmetric structures from SIR data.
Both are explicit and noniterative (closed form);
• Sets of equations for reconstruction of symmetric
and non-symmetric structures without using isomor-
phic replacement or anomalous dispersion. Solution
is computationally intensive, but provide sufficient
conditions for unique reconstruction.

This paper also presents new formulae for reconstruc-
tion using two isomorphic replacements that obviate
the need for human-assisted structure modelling.

D. Paper Organization

This paper is organized as follows. Section II re-
views diffraction imaging, and then specializes to X-
ray crystallography. The presentation illustrates how
the latter problem can be viewed as a special case of
the former one. Section III presents a new algorithm
for reconstruction of crystals from low-wavenumber
scattering data that exploits sparsity but requires
phase. Section IV presents new formulae for crystal-
lography with two isomorphic replacements. Section
V, the main contribution, presents new algorithms for
single isomorphic replacement (SIR) for crystals with
even symmetry or no symmetry; these algorithms
can also be applied to single anomalous dispersion
(SAD). Section VI presents equations for crystals
with even or no symmetry without requiring either
isomorphic replacement or anomalous dispersion. Al-
though computationally intensive, these equations
demonstrate sufficient conditions for uniqueness of
reconstruction, which is itself of interest. Section

VII is a table comparing terms in X-ray crystallogra-
phy with equivalent terms used in signal processing
Fourier analysis.

II. CRYSTAL DIFFRACTION IMAGING

The first subsection reviews general diffraction
imaging in optics; the second specializes to crystals.

A. Diffraction Imaging

Consider an object {o(x), x ∈ R3} known to be
zero outside the sphere |x| ≤ R for some finite radius
R (so o(x) has compact support) illuminated with a
plane wave δ(t − �eI · x/c) in a direction specified by
the unit vector �eI , travelling at wave speed c. Taking
temporal Fourier transforms to replace time depen-
dence with frequency dependence results in

Ft→ω{δ(t− �eI · x/c)} =
∫
δ(t− �eI · x/c)e−iωtdt

= e−iω( �eI ·x)/c = e−i2π( �eI ·x)/λ λ = wavelength (1)

Here wavelength replaces frequency over wave speed.
For each x ∈ R3, this plane wave is scattered

by o(x), producing a spherically-spreading scattered
field. In the direction specified by the unit vector �eS ,
the scattered field in the far field (large |x|) is

e−i 2π
λ �eI ·xo(x)

1
4π|x| e

i 2π
λ �eS ·x

We now make the Born approximation, which is that
the scattered field is not further scattered by o(x) at
other values of x. This amounts to assuming that
|o(x)| << 1, so that o(x1)o(x2) is negligible vs. o(x).
This linearizes the problem, and allows us to state
that the total measured field from all of o(x) is

e−i 2π
λ �eI ·x︸ ︷︷ ︸

INCIDENT

+
1

4π|x|
∫
e−i 2π

λ ( �eI− �eS)·xo(x)dx︸ ︷︷ ︸
SCATTERED

(2)

The goal is to reconstruct o(x) from this field. In the
sequel we subtract off the incident plane wave and
omit the geometric spreading factor 1/(4π|x|).

As the incident �eI and scattered �eS directions
sweep over the unit sphere, the 3-D Fourier trans-
form O(k) of o(x) is determined over a set of spheres
of radius 2π

λ centered on another sphere of radius 2π
λ .

This is also the set of all spheres of radius 2π
λ that

pass through the origin.
Some thought (picture a flyball governor spinning

around all possible axes) shows that this sweeps over
all wavenumbers with magnitudes ≤ 4π

λ . In fact,
we can omit half of the incident or scattered direc-
tions and still recover {O(k), |k| ≤ 4π

λ } (picture an
anemometer spinning around all possible axes and
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use reciprocity). Hence we can recover only a low-
wavenumber-filtered version of o(x); the shorter the
wavelength λ, the higher the o(x) cutoff wavenumber.
This is important in the development to follow.

For more details see any paper on diffraction scat-
tering or tomography. We have found the papers of
A.J. Devaney to be particularly helpful to us.

B. X-Ray Crystallography

We now specialize to the case of o(x) is a crystal:

• o(x) is periodic: o(x) = o(x+[Lx, Ly, Lz]) for some
lengths Lx, Ly, Lz. Each period of o(x) is a unit cell;
• o(x) is atomic: o(x) =

∑M
n=1 onδ(x− xn) for some

values and locations {(on, xn), n = 1 . . .M}. on is
proportional to the atomic number of the nth atom;
• o(x) is non-negative: o(x) ≥ 0;
• o(x) may be (centro)symmetric: o(x) = o(−x).

More precisely o(x) is sparse (mostly zero-valued)
and its nonzero values specify the electron density,
which is clustered around atomic nuclei. It thus may
be collections of small regions rather than impulses.

These properties of o(x) imply the following prop-
erties of its Fourier transform O(k):

• O(k) is discrete in wavenumber k (see below);
• O(k) is real-valued if o(x) is symmetric;
• Atomicity and non-negativity of o(x) lead to more
complicated properties of O(k) (see below).

More precisely O(k) can be written as∑
i,j,k

Oi,j,kδ(kx − i
2π
Lx

)δ(ky − j
2π
Ly

)δ(kz − k
2π
Lz

). (3)

More properly, the periodic o(x) can be expanded in
a 3-D Fourier series with Fourier coefficients Oi,j,k.

However, there are also consequences to the use of
X-ray wavelengths, which have λ ≈1 Angstrom:

• Only the o(x) Fourier magnitude |O(k)| can be
measured, since there is no lens for imaging X-rays;
• Only a low-wavenumber-filtered version of o(x) can
be recovered, with resolution about 1 Angstrom.

We thus have the two problems of phase retrieval
(recovering � O(k)) and superresolution or bandwidth
extrapolation (recovering O(k) for large |k|). There
are well-known iterative algorithms for both of these
problems that require a support constraint: o(x) = 0
for |x| > R for some R. However, these algorithms
cannot be applied here, since the periodicity of o(x)
implies there is no support constraint. It could be

assumed that in each unit cell there is a bounding
region in which the crystal is known to be empty of
atoms, but this is seldom true in practice.

The problem is as follows: How to take advantage
of sparsity and periodicity to recover the phase and
high-wavenumber information. Note sparsity cannot
be used as a support constraint: Although o(x) is
mostly zero, there are no regions in which o(x) is
known to be zero, so there is no fixed constraint.

In the next section, we present algorithms that
solve the superresolution half of the problem.

III. SPARSE IMAGE SUPERRESOLUTION

A. Problem Formulation

We assume the Fourier transform |O(k)| = 0 for
|ki| > K for some large K. Then we can sample o(x)
on a lattice x=[i, j, k]∆ where ∆ = 2π

K . Alternatively,
nonzero values of o(x) may be constrained to lie only
on such a lattice for some ∆; we do not distinguish
these cases in the sequel. Then the spatial Fourier
transform, which has become a Fourier series due to
the periodicity of o(x), now further becomes a 3-D
discrete Fourier transform (DFT) with N=KL/(2π):

Ol,m,n =
∑
i,j,k

oi,j,ke
−2π

√−1(il+jm+kn)/N (4)

where we take Lx=Ly=Lz=L for convenience and

Ol,m,n = O([l,m, n]
2π
L

); oi,j,k = o([i, j, k]
2π
K

) (5)

Note that the DFT implicitly creates periodic exten-
sions of both oi,j,k and Oi,j,k. This is quite proper
since (showing only one of the three dimensions):

o(x) = o(n
2π
K

) = o(x+ L) = o((n +N)
2π
K

)

O(k) = O(n
2π
L

) = O(k +K) = O((n +N)
2π
L

) (6)

since we have the relations

N
2π
K

=
KL

2π
2π
K

= L; N
2π
L

=
KL

2π
2π
L

= K. (7)

Note O(k) can be made periodic without aliasing
since O(k) is assumed to be bandlimited.
oi,j,k is known to be nonzero only at M unknown

locations. The goal is to reconstruct oi,j,k from the
low-wavenumber data {Oi,j,k, |i|, |j|, |k| ≤M1/3}.

B. Problem Solution

Let si,j,k be the 3-D function having DFT Si,j,k:
• Si,j,k=0 unless |i|, |j|, |k| ≤ 1

2M
1/3 (not M1/3);

• Support of Si,j,k is 1
8 #known values of Oi,j,k;
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• si,j,k is the indicator function for nonzero oi,j,k:{
si,j,k = 0 if oi,j,k �= 0;
si,j,k �= 0 if oi,j,k = 0 . (8)

Then (∗ ∗ ∗ denotes 3-D cyclic convolution)

oi,j,ksi,j,k = 0 → Oi,j,k ∗ ∗Si,j,k = 0. (9)

Since there are only M nonzero values of oi,j,k, si,j,k

is uniquely determined, to an (irrelevant) scale factor.
The second of (9) can be written as a Toeplitz-

nested-Toeplitz (TNT) linear system of equations for
the unknown Si,j,k. This matrix is block Toeplitz,
and each block is itself block Toeplitz, and each block
of the blocks is Toeplitz. This TNT structure is de-
rived as a submatrix of a circulant-block-circulant
matrix in the alternate derivation to follow below.
Si,j,k are the elements of the null vector of this

TNT matrix constructed from the known Oi,j,k.
Then an inverse 3-D DFT computes si,j,k, which is
zero at the locations {(in, jn, kn), 1 ≤ n ≤M} of the
nonzero oi,j,k. Once the locations of the nonzero oi,j,k

are known, their values can be computed by solving
a second linear system of equations in M unknowns.

Finally, note that if oi,j,k=0 or 1 (binary object),
then we have Sayre’s equation (compare to (9))

oi,j,koi,j,k = oi,j,k → Oi,j,k ∗ ∗Oi,j,k = Oi,j,k. (10)

C. Matrix Derivation of Algorithm

We now present a second derivation of the above
algorithm, for reasons noted below. We can write

Oi1−i2,j1−j2,k1−k2 =
M∑

n=1

oin,jn,kne
− 2π

N

√−1[in(i1−i2)+jn(j1−j2)+kn(k1−k2)].

(11)

The (N3 × N3) circulant-block-circulant matrix [C]
having for its first row Oi,j,k can then be factored as

[C] = DH · DIAG[o1,1,1 · · · oN,N,N ]D (12)

where D is the Kronecker product of the 1-D DFT
matrix having (n, k)th element e−i 2π

N (n−1)(k−1) with
itself three times (this is the 3-D DFT matrix).

By assumption only M of the N3 diagonal val-
ues oi,j,k are nonzero. Let F be the submatrix
of D in which all rows but those corresponding to
{(in, jn, kn), 1 ≤ n ≤ M} have been deleted, and
all columns but those corresponding to the support
of si,j,k (which is defined above) have been deleted.
Then the (M+1)×(M+1) TNT submatrix [O] of [C]

can be factored as

[O] = FH · DIAG[o(in,jn,kn)]F. (13)

This (M+1)×(M+1) matrix clearly has rank M , so it
has a null vector �a = [a1 . . . aM+1]′. Postmultiplying
(13) by this null vector �a gives

[O]�a = FH ·DIAG[oin,jn,kn ]F�a = 0 → F�a = 0. (14)

Since F is a submatrix of the 3-D DFT matrix D, we
can compute D�a using a 3-D FFT and see which val-
ues are zero. The rows of D corresponding to those
values are the rows of F , and this identifies the loca-
tions {in, jn, kn} of nonzero oi,j,k.

Although this derivation is more complicated than
the first one, it makes three important points:

• The conditioning of the problem is determined pri-
marily by the condition number of the matrix F . If
a compact support constraint is used, F is extremely
ill-conditioned. But if the M nonzero values oin,jn,kn

are (roughly) evenly spaced throughout the N3×N3

region, F will be reasonably well-conditioned;
• If there are in fact fewer than M nonzero values
of oi,j,k, the second derivation shows that the TNT
matrix [O] is rank-deficient by more than one; its
rank is the actual number of nonzero oi,j,k;
• Since the diagonal elements are oi,j,k ≥ 0, the ma-
trix [C] is positive semi-definite. Sylvester’s criterion
then states that all of the leading principal minors of
[C] are non-negative. These are the Karle-Hauptman
determinants, which are used in direct methods.

D. Missing Low-wavenumber Data

In practice, very low-wavenumber data is difficult
to obtain. The above procedure can easily be adapted
to missing low-wavenumber data, as follows.

Suppose that {Oi,j,k,KL ≤ |i|, |j|, |k| ≤ KH} is
known for some bounds KL and KH . This forms a
hollow cube in wavenumber. We merely alter the sup-
port of the indicator function si,j,k to the similarly-
shaped, but smaller, hollow cube{

3
4
KL +

1
4
KH ≤ |i|, |j|, |k| ≤ 3

4
KH +

1
4
KL

}
. (15)

Then (9) can still be written as a system of equations
for reconstructing si,j,k from the given Oi,j,k. This
can easily be visualized by sliding around the support
of si,j,k inside the support of the given Oi,j,k. Then a
3-D DFT (which can be computed quickly using the
FFT) still indicates the locations of non-zero values
of oi,j,k with zero values of si,j,k.
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Other topologies, such as a hollow sphere of Oi,j,k,
can be accommodated similarly. The indicator func-
tion si,j,k has a shape like that of the given Oi,j,k,
so that it can slide around inside the support of the
given Oi,j,k, generating a linear system of equations
for the unknown si,j,k.

This shows that atomicity of the crystal can be
exploited to reconstruct it exactly from the low-
wavenumber diffraction data obtained using X-rays.
However, this still requires phase retrieval from the
given magnitude data. We address this next.

IV. TWO ISOMORPHIC REPLACEMENTS

A. Problem Formulation

In isomorphic replacement a single atom is intro-
duced into the crystal at the same position in each
unit cell. This is a complicated laboratory procedure
that requires facilities, time and money. But it does
allow phase data to be obtained from the magnitude
of the diffraction data, as follows.

A single atom is introduced into the unit cell.
Without loss of generality, let this atom be an im-
pulse of unit area and its location be the origin. Then

|1 +Oi,j,k|2 − |Oi,j,k|2 = 1 + 2|Oi,j,k| cos θi,j,k (16)

so cos θi,j,k is determined from magnitude at each
wavenumber observed. This still leaves a sign am-
biguity in θi,j,k. This is resolved by using a second
isomorphic replacement at a different location, and
solving two simultaneous equations. A more elegant
presentation, which seems to be new, is as follows.

B. New Algorithm
Let the origin be defined as the midpoint of the two

included atoms, which are now at positions ±xo. We
observe |O(k)| and |O(k)+e±ik·xo | (vectors k and xo):

|O(k) + e−ik·xo |2 = 1 + |O(k)|2 − 2|O(k)| cos(θk + k · xo)

|O(k) + e+ik·xo |2 = 1 + |O(k)|2 − 2|O(k)| cos(θk − k · xo) (17)

Adding and subtracting gives the two equations

|O(k) + e−ikxo |2 + |O(k) + e+ikxo |2 =
2 + 2|O(k)|2 − 4|O(k)| cos(k · xo) cos(θk)
|O(k) + e−ikxo |2 − |O(k) + e+ikxo |2 =

4|O(k)| sin(k · xo) sin(θk) (18)

using the two trigonometry identities

cos(x− y) + cos(x + y) = 2 cos(x) cos(y)
cos(x− y) − cos(x+ y) = 2 sin(x) sin(y) (19)

Now we proceed as follows:

• Use the 1st equation to determine cos(θk) and the
2nd to determine the sign of θk from sin(θk), which
has the same sign as θk. This uniquely specifies θk;
• This has the advantage that magnitude (squared)
data are added, rather than subtracted, for a larger
signal-to-noise ratio. On the other hand, subtracting
can eliminate any common interference in the data;
• When |O(k)| = 0 the formulae break down, but
then the phase is irrelevant anyways;
• If cos(k ·xo) or sin(k ·xo) are zero, the formulae also
break down. Either cos(θk) or sin(θk) is determined,
but not both, leaving a sign ambiguity.

The superresolution algorithm presented in the
previous section can then be applied to the low-
wavenumber magnitude and phase data to recon-
struct the atomic structure exactly. This obviates
the need for human-assisted visualization from low-
wavenumber (blurred) electron density. This is a new
algorithm for X-ray crystallography. But only one
isomorphic replacement is needed, as we show next.

V. ONE ISOMORPHIC REPLACEMENT

The expense of isomorphic replacement means that
algorithms that require only one are greatly prefer-
able to algorithms requiring two. In this section, we
present two new algorithms for X-ray crystallography
that require only a single isomorphic replacement,
and thus require phase retrieval as well as superres-
olution. One algorithm is for the (centro)symmetric
objects, and the other is for non-symmetric objects.

A. (Centro)symmetric Objects

Suppose that the object is (centro)symmetric, so
that o(x) = o(−x). Then the object is invariant to
180o rotation about three orthogonal axes. Note:

• Symmetry about each individual axis is sufficient
but not necessary for overall (centro)symmetry;
• This is crystallographic symmetry, not lattice-
interpolating non-crystallographic symmetry (ncs);
• (Centro)symmetric objects have phases=0 or π.
This greatly simplifies the phase retrieval problem.

One heavy atom is inserted into the unit cell at
location xo. It’s represented by cδ(x − xo) for some
constant c proportional to the atomic number of the
atom. Translate the origin by xo, so the location of
the inserted atom is now the origin. We now observe

|c+ e−ik·xoO(k)|2 =
[c+O(k) cos(k · xo)]2 + [O(k) sin(k · xo)]2 (20)

since O(k) is real-valued. Then we can compute
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c+O(k) cos(k · xo) =

√
|c+ e−ik·xoO(k)|2 − [O(k) sin(k · xo)]2 (21)

provided c > |O(k)| so the positive square root is
used. The 1st term is observed and the 2nd term is
known since |O(k)|2=O(k)2 since O(k) is real-valued.
Hence O(k) is determined unless cos(k · xo)=0.

The condition c > |O(k)| should not be confused
with the original heavy atom condition c >> |O(k)|,
in which case all of the phases were approximately
zero. Here we only need that c is large enough that
the two-fold phase ambiguity can be resolved. Note
that if xo=0 (the point of inclusion is also the point
of symmetry), the condition c > |O(k)| means that
c+O(k) > 0 so that cδ(x)+o(x) can be reconstructed
directly from its low-wavenumber data using the su-
perresolution algorithm, without the above formulae.

B. Numerical Example

We present a numerical example of this algorithm.
An easy-to-follow small example is provided as part
of the small example for non-symmetric objects be-
low. For ease of visualization a 2-D problem is used.

624 non-zero values of a even binary function X
were randomly distributed throughout a 375 × 375
region by thresholding and rounding Matlab’s rand
function. The threshold was determined by trial and
error, and the signal added to its 2-D reversal. The
squared magnitudes of the DFT of the function and
the function with a unit inclusion at the origin were
computed at the lowest 25 × 25 wavenumbers, cen-
tered at the origin. The above algorithm was used.

Fig. 1 shows the original image and Fig. 2 shows
the reconstructed image. They can be seen to be
identical. Fig. 3 shows the reconstruction without
superresolution. Note the following about this:

• The minimum singular value of the 625×625 TNT
matrix is 4 × 10−11, so that Matlab’s null can be
used. The next-smallest singular value is 1.5× 10−6;
• Typical values of the indicator function indicating
non-zero locations of X are around 10−12. Other val-
ues are around 0.01. Fig. 2 displays the reciprocal of
the function+10−6 (added for display purposes);
• The low-wavenumber reconstruction Fig. 3, which
uses the correct phases and sets the unknown high
wavenumbers to zero, shows the significance of the
superresolution in specifying non-zero locations.

Student Version of MATLAB

Fig. 1. Original image.

Student Version of MATLAB

Fig. 2. Reconstructed image.

Fig. 3. Low-wavenumber image.
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clear;rand(’seed’,1);X=rand(375,375);
X(X<0.997905)=0;X=X+fliplr(flipud(X));
X=round(X);I1=[188:375 1:187];
F=fftshift(fft2(X(I1,I1)));
Y1=abs(F+ones(375,375)).̂2;
Y0=abs(F).̂2;Y2=(Y1-Y0-ones(375,375))/2;
Y3=Y2(164:212,164:212);Y4=real(Y3(:));
TT=toeplitz(flipud(Y4(1:1201)),Y4(1201:2401)’);
I2=[];for I=0:24;I2=[I2 [1:25]+49*I];end;
T=TT(I2,I2);S4=abs(ifft2(Y3,375,375));
N=null(T);S2=fft2(reshape(N,25,25),375,375);
I3=[189:375 1:188];
S3=1./(.000001+abs(S2(I3,I3)));
figure;imagesc(X),colormap(gray)
figure;imagesc(S3),colormap(gray)
figure;imagesc(S4),colormap(gray)

C. Non-Symmetric Objects

Now we no longer assume o(x) has any symmetry.
A single atom is inserted at the origin. Recall (16)

|1 +Oi,j,k|2 − |Oi,j,k|2 = 1 + 2Real[Oi,j,k] (22)

Define the even (symmetric) part ei,j,k and the odd
(antisymmetric) part xi,j,k of the object oi,j,k as

ei,j,k = [oi,j,k + oN−i,N−j,N−k]/2
xi,j,k = [oi,j,k − oN−i,N−j,N−k]/2
oi,j,k = ei,j,k + xi,j,k . (23)

The DFTs Ei,j,k of ei,j,k and Xi,j,k of xi,j,k are

Ei,j,k = Real[Oi,j,k]
Xi,j,k = jImag[Oi,j,k] (24)

so that Ei,j,k is known for low wavenumbers.
Since oi,j,k is sparse, ei,j,k and xi,j,k are both also

sparse, with at most 2M nonzero values of each.
Thus if Ei,j,k is known for 2M+1 low wavenumbers:

• ei,j,k can be computed using superresolution;
• xi,j,k �= 0 only where ei,j,k �= 0 (same support);

• Xi,j,k = ±
√
|Oi,j,k|2 − E2

i,j,k at low wavenumbers;
• Arbitrary-phase phase retrieval has become sign-
ambiguity phase retrieval, with support constraint.

This phase retrieval problem could be solved using
a variation of the hybrid input-output phase retrieval
algorithm, in which the known support constraint is
alternated with the known (to sign) low-wavenumber
Fourier values. This algorithm must combine super-
resolution with phase retrieval, and may not con-
verge. But we can solve the problem in closed form.

D. 1st Sign Reconstruction Algorithm

The first algorithm requires

• More data: 1
2M(M+1) non-redundant values;

• Less computation: Solving a 1
2M(M+1)× 1

2M(M+1)
linear system of equations.
• Direct computation of the odd part xi,j,k so that
extrapolation of Xi,j,k is not required.

Squaring each of the M equations

M∑
n=1

xin,jn,kn sin(
2π
N

[inI + jnJ + knK]) = XI,J,K

(25)

yields a linear system of equations in the 1
2M(M+1)

unknowns {xim,jm,kmxin,jn,kn} with the known
X2

I,J,K as data. Arranging the solution into an
M ×M rank=1 matrix and computing its rank-one
decomposition yields xim,jm,km to an overall sign.

oi,j,k = ei,j,k ± xi,j,k. (26)

The sign ambiguity here produces the reversal am-
biguity inherent in phase retrieval of non-symmetric
objects. Since this amounts to looking at the crystal
from either of opposite sides, this is not an issue.

E. Numerical Example

We present a numerical example of this algorithm.
Again a 2-D problem is used for visualization.

40 non-zero values of a binary function X were ran-
domly distributed throughout a 128 × 128 region by
thresholding and rounding Matlab’s rand function.
The threshold was determined by trial and error. The
squared magnitudes of the DFT of the function and
the function with a unit inclusion at the origin were
computed at the lowest 41 × 41 wavenumbers, cen-
tered at the origin. The above algorithm was used.

Fig. 4 shows the original image and Fig. 5 shows
the reconstructed image. They can be seen to be
identical. Note the following about this example:

• oi,k,j has 40 non-zero values; ei,k,j and xi,k,j each
has 80 non-zero values but only 40 unknown ones by
symmetry; leading to 1

2 (40)(41)=820 unknowns;
• |Oi,k,j | is known for 41 × 41 values, half of which
are redundant leading to 1

2 ((41)2-1)=840 equations;
• si,j,k has 9 × 9 support and it is computed from
17 × 17 lowest wavenumbers (17=9+9-1), leading to
computing the null vector of an 81×81 TBT matrix;
• The supports of ei,k,j and hence xi,k,j are both
determined from the DFT of Si,k,j as before;
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• Numerical properties can be determined by run-
ning the following (very inefficient) Matlab program.

Student Version of MATLAB

Fig. 4. Original image.

Student Version of MATLAB

Fig. 5. Reconstructed image.

Matlab code used to generate this example:

clear;rand(’seed’,1);X=rand(128,128);
X=round(X-.49784);F=fft2(X,128,128);
Y=abs(F+1).̂2-abs(F).̂2-ones(128,128);
Y1=fftshift(Y);Y2=Y1(57:73,57:73);Y3=Y2(:);
TT=toeplitz(flipud(Y3(1:145)),Y3(145:289)’);
I2=[];for I=0:8;I2=[I2 [1:9]+17*I];end;
T=TT(I2,I2);N=null(T);
S2=fft2(reshape(N,9,9),128,128);
%figure,imagesc(1./(.00001+abs(S2)))
[M,N]=find(abs(S2)<0.0001);
K11=[0:20 44:63]’;K21=[0:20]’;
F1=abs(F(K11+1,K21+1)).̂2;F2=F1(:);
F3=Y(K11+1,K21+1).̂2;F4=F3(:)/16;

K1=kron(ones(21,1),K11);
K2=kron(K21,ones(41,1));
AA=[];A=[];for I=1:40;
W=pi/64*((M(I)-1)*K1+(N(I)-1)*K2);
AA=[AA -sin(W)];end
for K=1:41*21;C=[];B=AA(K,:)’*AA(K,:);
for I=1:40;C=[C B(I,I)];
for J=I+1:40;C=[C 2*B(J,I)];
end;end;A=[A;C];end;XOHAT=A\(F2/4-F4);
XE=zeros(128,128);XO=zeros(128,128);
for I=1:40;
XO(M(I),N(I))=2*XOHAT(I);XE(M(I),N(I))=1/2;
XO(130-M(I),130-N(I))=-2*XOHAT(I);
XE(130-M(I),130-N(I))=1/2;end;XHAT=XE+XO;
figure,imagesc(X),colormap(gray)
figure,imagesc(XHAT),colormap(gray)

F. 2nd Sign Reconstruction Algorithm

The second algorithm requires

• Less Fourier data: 125M non-redundant values;
• More computation: Solution of a 1

2125M(125M+1)
× 1

2125M(125M+1) linear system of equations;
• Direct computation of Xi,j,k for small (i,j,k) so that
extrapolation of Xi,j,k is now needed.

Si,j,k is now computed from Ei,j,k by writing

ei,j,ksi,j,k = 0 → Ei,j,k ∗ ∗ ∗ Si,j,k = 0
xi,j,ksi,j,k = 0 → Xi,j,k ∗ ∗ ∗ Si,j,k = 0 (27)

as a TNT linear system of equations. Now write
the second equation as an underdetermined TNT lin-
ear system of equations in which Si,j,k is known and
Xi,j,k is unknown. But Xi,j,k is known to a sign,
so that we have an underdetermined linear system of
equations for which each unknown is merely ±1.

This system is solved as follows. Multiplying each
equation by each unknown in succession, collecting
terms, and equating squares of the unknowns to
unity, we get a linear system of equations in prod-
ucts of the unknowns. This can then be solved, the
solution arranged into a matrix, and a rank one de-
composition computed to determine the unknowns.
The signs are attached to the known |Oi,j,k|.

For this to work, we need the number of equations
to be at least half the number of unknowns. After
multiplying M equations by each of 2M unknowns,
we have 2M2 equations in 1

22M(2M–1) unknowns,
since 2M of these unknowns are known to be unity.
Note that without that condition, the larger system
is still underdetermined by M . Also note that multi-
plying each equation by every other equation would
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yield an equivalent system of equations, since each
equation is a linear combination of the unknowns.

For the X-ray crystallography problem, there is a
problem: The number of equations is only one-eighth
the number of unknowns, since

• Si,j,k has known M1/3 ×M1/3 ×M1/3 values;
• Oi,j,k has unknown 2M1/3× 2M1/3× 2M1/3 signs;
• So #equations is M1/3 ×M1/3 ×M1/3.

But if we increase the number of known |Oi,j,k|, then

• Si,j,k has known M1/3 ×M1/3 ×M1/3 values;
• Oi,j,k has unknown 5M1/3× 5M1/3× 5M1/3 signs;
• So #equations is 4M1/3 × 4M1/3 × 4M1/3.

Since 53 < 2 · 43 we can now use this approach.

G. Example of Computing ±1

We provide a simple example to illustrate all this.
We wish to solve the underdetermined linear system

[
1 1 1 1 0
2 1 2 2 1

]
v
w
x
y
z

 =
[

0
0

]
(28)

where each unknown equals ±1, which is written as

v2 = w2 = x2 = y2 = z2 = 1 (29)

Multiplying both equations by the five unknowns and
collecting terms gives the linear system of equations

1 1 1 0 0 0 0 0 0 0
1 2 2 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0
2 0 0 0 2 2 1 0 0 0
0 1 0 0 1 0 0 1 0 0
0 2 0 0 1 0 0 2 1 0
0 0 1 0 0 1 0 1 0 0
0 0 2 0 0 1 0 2 0 1
0 0 0 1 0 0 1 0 1 0
0 0 0 2 0 0 1 0 2 1





vw
vx
vy
vz
wx
wy
wz
xy
xz
yz


= −



1
2
1
1
1
2
1
2
0
1


(30)

We solve this and arrange the solution into a matrix
v2 vw vz vy vz
wv w2 wx wy wz
xv xw x2 xy xz
yv yw yx y2 yz
zv zw zx zy z2

 =


v
w
x
y
z

 [v, w, x, y, z]

(31)

from which we obtain

[v, w, x, y, z] = ±[1, 1,−1,−1, 1] (32)

H. Small Numerical Example

Applying this procedure to the previous numerical
example would require the following:

• 40 non-zero values of oi,j,k, implying as many as 80
nonzero values of xi,j,k;
• Si,j,k has 9 × 9 (80+1 values) support as before;
• Fourier data for 29 × 29 lowest wavenumbers;
• We have 212=441 equations in 292=841 unknowns
±1, where 29=21+9-1;
• Half of the equations and unknowns are redundant,
leaving 220 equations in 420 unknowns;
• The linear system is then 87990 × 87990 where
87990=(420)(419)/2.

This is quite large, so we present a small illustrative
example. We are given the following low-wavenumber
squared magnitude data, with and without an inclu-
sion at the origin (4 × 4 2-D DFT):

Y 1 =


∗ ∗ ∗ ∗ ∗
∗ 64 40 0 ∗
∗ 20 100 20 ∗
∗ 0 40 64 ∗
∗ ∗ ∗ ∗ ∗

 (33)

Y 0 =


∗ ∗ ∗ ∗ ∗
∗ 81 29 1 ∗
∗ 29 81 29 ∗
∗ 1 29 81 ∗
∗ ∗ ∗ ∗ ∗

 (34)

• DC (wavenumber=0) is at the center
• ∗ denotes an unknown magnitude value
• Top and bottom rows are unknown and identical
• Leftmost and rightmost columns are likewise
• The object has only three nonzero values

The goal is to reconstruct the object.
For a problem of this size (27) become
E0,0 E−1,0 E0,−1 E−1,−1

E1,0 E0,0 E1,−1 E0,−1

E0,1 E−1,1 E0,0 E−1,0

E1,1 E0,1 E1,0 E0,0



w
x
y
z

 =


0
0
0
0


(35)

for computing the indicator function
[
w y
x z

]
of the
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even part ei,j and


z y 0 x w 0 0 0 0
0 z y 0 x w 0 0 0
0 0 0 z y 0 x w 0
0 0 0 0 z y 0 x w





E−1,−1

E0,−1

E1,−1

E−1,0

E0,0

E1,0

E−1,1

E0,1

E1,1


=



0
0
0
0
0
0
0
0
0


(36)

for computing the signs of the DFT of the odd part
Xi,j (|Xi,j | is known). Note the TNT structure.

The Fourier transform of ei,j is

1
2

[Y 1 − Y 0 − 1] =


∗ ∗ ∗ ∗ ∗
∗ −9 5 −1 ∗
∗ −5 9 −5 ∗
∗ −1 5 −9 ∗
∗ ∗ ∗ ∗ ∗

 . (37)

The support of ei,j is found by solving the TNT lin-
ear system of equations

9 −5 5 −9
−5 9 −1 5
5 −1 9 −5
−9 5 −5 9



w
x
y
z

 =


0
0
0
0

 (38)

which has the solution
w
x
y
z

 =


1
0
0
1

 →


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (39)

The squared magnitude of the 2-D DFT is

DFT


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 =


2 1 0 1 2
1 0 1 2 1
0 1 2 1 0
1 2 1 0 1
2 1 0 1 2

 (40)

The zeros indicate positions of the nonzero ei,j . ei,j

is then found by solving a linear system and is

ei,j =


0 0 0 0 0
0 2 0 0 0
5 0 0 0 5
0 0 0 2 0
0 0 0 0 0

 (41)

One of the indicated nonzero values of ei,j is in fact
zero; this only happens because the problem is so
small. Recall that the top and bottom rows are iden-
tical to clarify the image symmetry.

The DFT of the odd part xi,j is

X2
i,j = −


∗ ∗ ∗ ∗ ∗
∗ 81 − 81 29 − 25 1 − 1 ∗
∗ 29 − 25 81 − 81 29 − 25 ∗
∗ 1 − 1 29 − 25 81 − 81 ∗
∗ ∗ ∗ ∗ ∗

 .
(42)

We still need the signs of jXi,j . Xi,j ∗ ∗ ∗ Si,j=0 can
be solved for Xi,j , yielding

Xi,j = j


∗ ∗ ∗ ∗ ∗
∗ 0 −2 0 ∗
∗ −2 0 2 ∗
∗ 0 2 0 ∗
∗ ∗ ∗ ∗ ∗

 (43)

xi,j is the inverse DFT of this. The final answer is

oi,j =


0 0 0 0 0
0 1 0 0 0
5 0 0 0 5
0 0 0 3 0
0 0 0 0 0

 (44)

VI. ZERO ISOMORPHIC REPLACEMENTS

We now consider the case of no isomorphic replace-
ment. This is the purest form of the X-ray crystal-
lography problem, and its solution saves much lab-
oratory time and money. Direct methods work for
crystals with less than about 100 atoms. It is not
known whether the problem has a unique solution.

Here we present new equations for (centro)symmetric
and non-symmetric objects. These equations at the
very least establish sufficient conditions for unique-
ness, although we do not claim they are necessary
conditions as well.

A. (Centro)symmetric Objects

First we note that if we are fortunate enough to
have a heavy atom at the origin (point of symmetry),
then the DFT values are all real and non-negative, so
we just use the superresolution algorithm.

In general, we must recover the signs of Oi,j,k from
|Oi,j,k|. In principle we could try all possible combi-
nations of signs and see which one yields a singular
TNT matrix, since there is only a finite number of
possibilities. Generically, only one choice will work,
since O0,0,0 > 0.

This does establish a sufficient (and likely neces-
sary) condition for unique reconstruction: Knowl-
edge of {|Oi,j,k|, |i|, |j|, |k| ≤M1/3}, and a procedure
for computing it. A practical procedure is not known
(although see below).
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B. Non-Symmetric Objects

The problem is to compute the Fourier phases θi,j,k

from the magnitudes |Oi,j,k|, for low-wavenumber
data only, using the sparsity condition. In principle
this can be done as follows.

Let ni,j,k (rather than si,j,k) be the indicator func-
tion for nonzero values of ei,j,k and xi,j,k, which are
nonzero for (at most) (2M)3 (not 2M) locations. Let
ci,j,k = cos(θi,j,k) and si,j,k = sin(θi,j,k). Then

[ |Oi,j,k|ci,j,k . . .
...

. . .

] n0,0,0

...
nM,M,M

 =

 0
...
0

 (45)

[ |Oi,j,k|si,j,k . . .
...

. . .

] n0,0,0

...
nM,M,M

 =

 0
...
0

 (46)

c2i,j,k + s2i,j,k = 1 (47)

This is an overdetermined system of simultaneous
quadratic equations in the unknowns ci,j,k, si,j,k and
ni,j,k. Generically, it will have as its only solution
the correct values of the unknowns, to sign ambigu-
ities. These sign ambiguities create the well-known
reversal (oi,j,k vs oN−i,N−j,N−k) and sign (±oi,j,k)
ambiguities of phase retrieval. Of course, oi,j,k ≥ 0.

This establishes a sufficient condition for unique-
ness. Of course, solving this system of simultaneous
quadratic equations is another matter. Continuation
or homotopy methods, in which an easily-solved sys-
tem is perturbed towards the desired system, with
the solution updated using gradient methods at each
step, can work, but require much time and computa-
tion. On the other hand, existing algorithms for X-
ray crystallography also require much time and com-
putation, as well as extensive human interaction.

Another approach would be to form the TNT ma-
trix of Oi,j,k using initial guesses for the phases, and
gradually perturb the TNT matrix towards singular-
ity using structured total least squares. This would
require a large amount of time and computation.

Note that for symmetric objects we have si,j,k=0
and ci,j,k=±1. More importantly, oi,j,k and ei,j,k

have the same supports, so the number of data points
|Oi,j,k| need only exceed the number of nonzero oi,j,k

by a factor of 8, not 16.

VII. GLOSSARY

X-RAY CRYSTAL. SIGNAL PROC.
Electron density image or object
Crystal structure space-periodic
Unit cell lengths spatial periods

Atomicity object sparsity
P1̄ group even symmetry

Reciprocal space Fourier domain
Structure factors F{object}

Structure amplitude |F{object}|
Patterson map autocorrelation

Karle-Hauptman Circulant matrix
determinants≥0 pos.semi-definite
Sayre equation F{o(x)(o(x) − 1)}
Isomorphous Inserting atoms
replacement into the object
Anomalous Vary λ excite
dispersion heavy atoms

Crystallographic Rotation invariant
symmetry within the lattice

Noncrystallogra- Rotation invariant
phic symmetry extending lattice
Born approx. Linearization
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