

21 Things I've Learned About Teaching

Professor Andrew E. Yagle Dept. of Electrical Engineering and Computer Science The University of Michigan Ann Arbor, Michigan USA

Outline of Presentation

- <u>#1-#6:</u> Planning to teach a new (to you) course.
- <u>#7-#12:</u> Giving lectures using a blackboard.
- <u>#13-#18:</u> Giving lectures using a laptop (like this).
- <u>#19-#21:</u> Miscellaneous

1. Why are you taking this course?

• WRONG ANSWERS:

University of

- "Because this is a required course." Translation: "Because we (the faculty) say so." How well does that work with your children?
- "Because you need to know this material." Actually, this is the same as the previous reason.
- "To keep you off the streets."

1. Why are you taking this course?

• **<u>BETTER ANSWERS</u>**:

University of

- "Because this course will teach you Fourier transforms, which you will use in your future communications and electromagnetics courses."
- "Because this course will teach you how to do image processing, which you can use in your optics, biomedical, or civil engineering JOBS."

1. Why are you taking this course?

University of

- At University of Michigan, a 4-hour course costs about \$6500 in tuition for out-of-state students.
- Students have a right to know why they should pay this for the course you are teaching.
- Following is what I do for the freshman course "Introduction to Engineering," which teaches basics of design and technical communication.

So you want to be an EE...

University of

- <u>Most important</u>: To know math & physics
- <u>Employers look for</u>: Technical competence (good grades in your engineering courses)
- <u>What you will do</u>: Apply directly what you learned in all of your engineering courses
- <u>Your job</u>: Electrical Engineer, obviously.
- Which statement/statements is/are wrong?

So you want to be an EE...

University of

- <u>Most important</u>: To know math & physics
- <u>Employers look for</u>: Technical competence (good grades in your engineering courses)
- <u>What you will do</u>: Apply directly what you learned in all of your engineering courses
- <u>Your job</u>: Electrical Engineer, obviously.
- ALL of the above statements are WRONG!

• Most important in their professional experience

<u>Most important in their professional experience</u>
1 Ability to function on a <u>team</u>

- Most important in their professional experience
- 1 Ability to function on a team
- 2 Oral <u>communication</u> skills

- Most important in their professional experience
- 1 Ability to function on a team
- 2 Oral <u>communication</u> skills

University of

- 3 Written communication skills
- 4 Engineering problem-solving ability
- 5 Math, science, and engineering skills (yes, <u>5th</u>)
- 6 Professional and <u>ethical</u> responsibility

2. Don't rely on course prerequisites

University of

- <u>"You saw the sampling theorem in a previous course,</u> so I will assume that you remember it and can use it."
- Students DON'T remember it and CAN'T use it since:
- (a) They took the course a year ago and have forgotten;
- (b) They never learned it then, even though they passed;
- (c) It was covered differently, quickly, or not at all!

2. Don't rely on course prerequisites

University of

- Just because they saw the sampling theorem doesn't mean they learned the sampling theorem.
- You only fully learn the contents of a course when you take the **next** course after that one.
- You must reteach material from previous course, especially about using it as a tool in your course.

3. Tips for problem sets (homework)

University of

- 1st problem should be straightforward (not easy).
 Students should immediately know how to do it.
 Get one under their belt and build up confidence.
- 2nd and later problems should be harder; some require several concepts be used together to solve
- Final problem should be some sort of design; students build something and use their skills.

3. Tips for problem sets (homework)

• In Digital Signal Processing, the last problem always involves filtering a real-world signal; previous problems often mostly mathematics.

University of

- Requires programming, so it will take longer.
- More satisfying to students when they finish it.

3. Tips for problem sets (homework)

Urge students to start sets as early as possible.

University of

- Make it **possible** for the students to start early: If a set is due Friday, should be able to start it over the weekend; finish after Monday lecture.
- DON'T require material from Wed. lecture!
 Some will wait until Thursday night (sigh). Be available to them by email that evening.

4. Tips for exams

University of

- 1st problem should be straightforward (not easy).
 Students should immediately know how to do it.
 Get one under their belt and build up confidence.
- Don't give students something they haven't seen. Exams should NOT be "learning experiences."
- Students should look at exam afterwards and be angry that they missed any questions. If they still don't know how to do it, question was too hard.

4. Tips for exams

University of

- Multiple-choice problem same as fill-in-the-blank (a) 10 (b) 20 (c) 40 (d) 60 (e) 80 Circle correct one
- Avoids partial credit "noise" and complaints;
- Helps students: error correction if no match;
- Is more fair: If a student can eliminate some choices, this improves chances of correct answer. This can be viewed as a form of partial credit.
- Is more realistic: no partial credit in real world!
- Admit it: Easy to grade. Fast return to students.

4. Tips for exams

- Many in EECS department use 12-16 page exam: One problem per page, plenty of room for work.
- But in grading, don't usually trace through work (too hard to redo computation from some error).
- Wastes much paper and copying expenses.

University of

ICHIGAN

• I use ONE sheet (two sides) for my exams. Write answers directly on exam, staple extra pages with any work (usually 1-2 pages). MUCH less paper!

EECS 451

Fall 2008

PRINT YOUR NAME HERE:

HONOR CODE PLEDGE: "I have neither given nor received aid on this exam, nor have I concealed any violations of the honor code." Closed book; 4 sides of 8.5×11 "cheat sheet."

EXAM #2

SIGN YOUR NAME HERE:

CIRCLE ONE:	Undergraduate	Graduate
•		e to the right of that question the-blank) worth 5 points each.
	$\{8\}$ is: (a) $\{8, 1+j2, 4, 1-j2\}$ + $j8\}$ (d) $\{8, 2, 0, 2\}$ (e) $\{32, 8, 9\}$	
	is: (a) $\{4,0,0,0,0,0,0,0,4\}$ (b) } (d) $\{0,4,0,0,0,0,4,0\}$ (e) $\{0,4,0,0,0,0,0,0,0,0\}$	
	nated by $y[n] - y[n-1] = x[n]$.) $\cos(\frac{\pi}{3}n)$ (d) $\cos(\frac{\pi}{2}n)$ (e) $\cos(\frac{\pi}{3}n)$	
	eliminates 375 Hz in a signal s -1,1} (c) {1,0,1} (d) {1,0,-1}	
	= 8x[n] + 3x[n-1] + 4x[n-2] os $(\frac{\pi}{2}n + 37^{\circ})$ (c) $15\cos(\frac{\pi}{2}n)$ (d	to $x[n] = \cos(\frac{\pi}{2}n)$ is:) $5\cos(\frac{\pi}{2}n - 37^{\circ})$ (e) $9\sin(\frac{\pi}{2}n)$
	$\cos(\pi n)$ then $y[n] = x[n] + x[n - \pi n)$ (c) $2\cos(\frac{\pi}{2}n) + 3\cos(\pi n)$ (
(a) $y[n-1] = \frac{1}{2}x[n] +$	equency response $[2e^{-j\omega}]/[1+3]{\frac{3}{2}x[n-2]}$ (b) $y[n]+3y[n-2]=2$ = $2x[n]$ (e) $y[n]+3y[n-1]=2$	x[n-1] (c) $y[n] = x[n] + 3x[n-2]$
	discrete-time frequencies $\omega = \{1, 0, 1.25, 0, 1\}$ (c) $\{1, 0, 1.75, 0\}$	
9. The frequency respon (a) $\tan(\omega)$ (b) $j \tan(\omega)$	use function of $y[n] + y[n-2] = \omega$ (c) $\cot(\omega)$ (d) $-j \cot(\omega)$ (e)	x[n] - x[n-2] is:) $\frac{1-e^{-j\omega}}{1+e^{-j\omega}}$
	n+1)+3x(n)+ax(n-1) has zero p d) 3 (e) No values of a	hase for all frequencies for a=:
	(n)+x(n-1)+ax(n-2) has a stable d) 3 (e) No values of a	and causal inverse for a=:
	ot be the DTFT of any $x[n]$: ω) (c) $\cos(\omega/2)$ (d) $ \sin(\omega/2) $	(e) $\sin(\omega)$
13 The cuclic convolutio	n 13 1 41@12 7 11 ie. (a) 16 1	23 18 20 AL

13. The cyclic convolution $\{\underline{3}, 1, 4\} \otimes \{\underline{2}, 7, 1\}$ is: (a) $\{\underline{6}, 23, 18, 29, 4\}$ (b) $\{\underline{24}, 52, 4\}$ (c) $\{\underline{6}, 52, 22\}$ (d) $\{\underline{10}, 52, 18\}$ (e) $\{\underline{35}, 27, 18\}$

14. Which system has gain function $\sqrt{(3+4\cos\omega)^2 + 16\sin^2\omega}/\sqrt{(1+2\cos\omega)^2 + 4\sin^2\omega}$? (a) $3y[n] + 4y[n-1] = x[n] + 2x[n-1]$ (b) $y[n] + 2y[n-1] = 3x[n] + 4x[n-1]$ (c) $4y[n] + 3y[n-1] = 2x[n] + x[n-1]$ (d) $2y[n] + y[n-1] = 4x[n] + 3x[n-1]$ (e) $y[n] = x[n] + x[n-1]$
[10] 15. For $H(\omega) = 1 + 4e^{-j\omega} + 3e^{-j3\omega}$, the response to $x[n] = 1 + 2\cos(\frac{\pi}{2}n) + 3\cos(\pi n)$ is $y[n] =:$ (a) 0 (b) $8 + 4\sqrt{2}\cos(\frac{\pi}{2}n - \frac{\pi}{4})$ (c) $4\sqrt{2}\cos(\frac{\pi}{2}n - \frac{\pi}{4}) - 18\cos(\pi n)$
(d) $8 + 4\sqrt{2}\cos(\frac{\pi}{2}n + \frac{\pi}{4}) - 18\cos(\pi n)$ (e) $8 + 2\sqrt{2}\cos(\frac{\pi}{2}n - \frac{\pi}{4}) - 18\cos(\pi n)$
$[10] 16. \text{ (Period=8, real, even) } x[n] \rightarrow \overline{[y[n] = x[n] - x[n-2] + x[n-4] - x[n-6]]} \rightarrow y[n]$
Make a stem plot of $u[n]$ on the axis below. Don't worry about the vertical scale

Make a stem plot of y[n] on the axis below. Don't worry about the vertical scale. HINT: $(z^6 - z^4 + z^2 - 1)(z^2 + 1) = (z^8 - 1)$. What do the zeros do to periodic x[n]?

0	1	2	3	4	5

[10] 17. A LTI system has $H(z) = [(z - e^{j2\pi/3})(z - e^{-j2\pi/3}]/[(z - 0.99e^{j\pi/3})(z - 0.99e^{-j\pi/3})].$ Sketch the relative magnitude of its frequency response (i.e., gain) on the plot below.

 $-\pi$ 0 π

5. Teaching a course for the 1st time?

University of

- Decide what you want to accomplish in course: what should students know how to do afterward?
- Choose goals and objectives for the course, e.g., "Ability to design an FIR filter by placing zeros"
- Only THEN do you decide which topics to cover;
- Decide order so that one topic leads to another;
- Write syllabus; include time for review & exams.

COURSE: EECS 215.TITLE:Intro. to Circuits.PREREQUISITES:Math 116 & Physics 2	REQUIRED				
TEXTBOOK: R.E. Thomas & A.J.Rosa, Analysis and Design of Linear Circuits: Laplace Early; A. Ganago, Circuits Make Sense; Wiley, 4 th ed.					
CATALOG DESCRIPTION: Introduction to electrical circuits. Kirchhoff's voltage power. Time-domain and frequency-domain analysis of RLC circuits. Operational ampl					
 COURSE OBJECTIVES: To acquaint students with the basic concepts and properties of electrical c To provide basic laboratory experience with analyzing and building simple To teach students how to analyze and design simple electrical filters and at To teach students how to use phasors, s-plane analysis, and Bode plots fo To prepare students for follow-up courses in the Circuits area of the Electric 	filters and amplifiers; nplifiers using op-amps; r frequency response;	TOPICS COVERED: 1. Kirchhoff's voltage & current 2. Node and mesh analysis 3. Ohm's law and ideal sources 4. Thevenin & Norton 5. Ideal op-amp circuits 6. Inductors and capacitors 7. Transient circuit response 8. Phasors, s-plane, impedance			
COURSE OUTCOMES [Program Outcomes Addressed] 1. Ability to analyze circuits using Kirchhoff's voltage & current laws; node & mesh analysis; [1,13] 2. Ability to analyze circuits containing ideal op-amps, capacitors, and inductors using s-plane; [1,14] 3. Ability to compute transient responses of circuits containing capacitors and inductors; [1,14] 4. Ability to compute frequency responses of circuits containing capacitors and inductors; [1,13] 5. Ability to compute transfer functions and Bode plots for simple circuits, and vice-versa; [1,3,13] 6. Ability to compute power dissipation, power factor, and maximum power transfer; [1,13] 7. Ability to use digital oscilloscopes, meters, and waveform generators in laboratory; [2,5,11]		9. Bode plot & f 10. Filtering and s	requency response simple filter		
PROGRAM OUTCOMES ADDRESSED: 1,2,3,5,11 PROFESSIONAL COMPONENT ADDRESSED: 13,14 PREPARED BY: Andrew E. Yagle on Nov. 8, 2004	CLASS/LABORATORY SCHEDULE: LECTURES: 3 per week @ 50 minutes. LABORATORY: 1 per week @ 2 hours.	written report	ts [1,2,3,4,5,6]]; students work in pairs;		

COURSE DESCRIPTION: University of Michigan, College of Engineering, ELECTRICAL ENGINEERING PROGRAM

5. Teaching a course for the 1st time?

• Now take your syllabus and list of topics and CUT IT BY ONE-THIRD (1/3)! I mean it!

University of

- The 1st time you teach a course you always put too much material and tasks into it!
- When advising students: If you know someone is teaching a course for the 1st time; warn them! Don't advise not to take; will be unusually hard.

5. Teaching a course for the 2nd time?

University of

MICHIGAN

Now that you know it was too hard and too much:

- Better to teach some of the material very well than to teach all of the material not very well
- Emphasize those topics with which you are most comfortable, knowledgeable and able to teach
- Coverage will jitter about 10% term-to-term (this is one reason not to rely on prerequisites)

6. Yours isn't their only course

• Students typically take 4-5 courses each term. Your course is <u>only one</u> of those four or five.

University of

- Your course is the most important one they are taking (obviously); but students may disagree!
- Some of those other courses have associated labs. A lab takes as much time as another course.

6. Yours isn't their only course

University of

- Students often have jobs; student societies; other extracurricular activities; interviews; i.e., lives.
- You have their attention for about 1 night/week. Usually this is the night before homework is due.
- Asking too much work of students will result in buffer overflow. Teach less material, but better.

Outline of Presentation

- <u>#1-#6:</u> Planning to teach a new (to you) course.
- <u>#7-#12:</u> Giving lectures using a blackboard.
- <u>#13-#18:</u> Giving lectures using a laptop (like this).
- <u>#19-#21:</u> Miscellaneous

7. Why are we learning this topic?

• WRONG ANSWERS:

University of

- "Because it's in the syllabus." Well, why is it?
- "Because courses like this always cover this." Well, why do they always cover this?
- "Because it will be on the exam." Oh, OK.
- "To keep you off the streets."

7. Why are we learning this topic?

• **<u>BETTER ANSWERS</u>**:

University of

- "Learning Fourier transforms allows us to:
- (a) Recover signals from their digital samples, which makes digital signal processing possible;
- (b) Modulate signals for communications, and employ AM, single sideband, etc. schemes; and
- (c) Filter noisy signals to reduce the noise.
- We can do some neat stuff once we learn this!

DARPA

7. Why are we learning this topic?

• When introducing a topic:

University of

- (1) What is a Fourier Transform?
- (2) What is it FOR? (always a good question).
- (3) Where will we be using it? (show in syllabus).
- This is one sight on a tour, not one step on the Bataan death march! (sometimes seems that way)

8. KISS (Keep It Simple, Stupid!)

University of

- <u>Beginning of lecture</u>: List lecture topics on board. Big help to students looking through their notes.
- State when ending a topic and starting another.
- <u>End of lecture</u>: Quickly review what you've done. You will have to leave time at the end for this.
- Inform students what topics are really important (no, not everything you cover is really important)
- Always note how a topic relates to previous ones.

8. KISS (Keep It Simple, Stupid!)

University of

- <u>Lecture handouts</u>: I have had much success with handouts like the one shown in following slide.
- No staples! Keep to a page or two sides of a page.
- Reading decays geometrically with page number.
- President Ronald Reagan refused to read past the 1st page of any memo. Worked for him.
- Do you really read 25 page lecture handouts or homework solutions? (I didn't, and I was a nerd)

EECS 216 LECTURE NOTES REVIEW (?) OF COMPLEX NUMBERS

DEF: $j = \sqrt{-1}$. Use j not i in EECS since i=current in EECS! **DEF:** A complex number z can be written as $z = x + jy = Me^{j\theta} = M \angle \theta$ where: x + jy=rectangular form of z; $Me^{j\theta} = M \angle \theta$ =polar form of z. **AND:** x = Re[z]; y = Im[z]; M = |z|; $\theta = arg[z]$. Real part Imag part Magnitude Argument or phase

LEMMA: Euler's theorem: $e^{j\theta} = \cos \theta + j \sin \theta$. **WHY?** Insert $x = j\theta$ into the infinite series $e^x = 1 + x + x^2/2! + \dots$ **ALSO:** $\cos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}); \quad \sin \theta = \frac{1}{2i}(e^{j\theta} - e^{-j\theta}).$

Converting rectangular form \Leftrightarrow polar form:

P→R:	$Me^{j\theta} = x + jy$ where $x = M\cos\theta$ and $y = M\sin\theta$.
R→P:	$x + jy = Me^{j\theta}$ where $M = \sqrt{x^2 + y^2}$ and $\tan \theta = y/x$.
Summary:	$\begin{cases} x = M \cos \theta \\ y = M \sin \theta \end{cases}; M = \sqrt{x^2 + y^2}; \theta = \begin{cases} \arctan \frac{y}{x} & \text{if } x > 0; \\ \arctan \frac{y}{x} \pm \pi & \text{if } x < 0 \end{cases}.$
EX#1:	$+3 + j4 = 5e^{+j0.927}$ since $5 = \sqrt{3^2 + 4^2}$ and $+0.927 = \arctan \frac{\pm 4}{\pm 3}$.
EX#2:	$-3 - i4 = 5e^{-j2.214}$ since $5 = \sqrt{3^2 + 4^2}$ and $-2.214 = \arctan \frac{-4}{2} - \pi$

HINT: Draw an Argand diagram (Im[z] vs. Re[z]) to visualize. **Matlab:** abs(3+4j); angle(3+4j); real(3+4j); imag(3+4j)

Adding, Subtracting, Multiplying, Dividing:

• Add and subtract complex numbers in rectangular form. since: (a+jb)+(c+jd) = (a+c)+j(b+d). Note: Re[z+w] = Re[z]+Re[w]. EX: $5e^{j0.927} + \sqrt{2}e^{j0.785} = (3+j4) + (1+j) = 4+j5 = 6.4e^{j0.896}$.

• Multiply and divide complex numbers in polar form.

since: $(M_1e^{j\theta_1})(M_2e^{j\theta_2}) = (M_1M_2)e^{j(\theta_1+\theta_2)}$. Note: $|zw| = |z| \cdot |w|$. EX: $(3+j4)(1+j) = (5e^{j0.927})(\sqrt{2}e^{j0.785}) = 5\sqrt{2}e^{j1.71} = -1+j7$.

- Multiplying and dividing in rectangular form: $\begin{array}{c} a+jb(c+jd)=(ac-bd)+j(ad+bc); & \frac{a+jb}{c+jd}=\frac{a+jb}{c+jd}\frac{c-jd}{c-jd}=\frac{ac+bd}{c^2+d^2}+j\frac{bc-ad}{c^2+d^2} (\text{ugh}) \\ a+jb(1+j)=(3\cdot1-4\cdot1)+j((4\cdot1)+(3\cdot1))=-1+j7=5\sqrt{2}e^{j1\cdot71}. \end{array}$
- **EX:** Compute $2\sqrt{3}e^{j\pi/6} + 2e^{-j\pi/3}$. Convert polar to rectangular: = $(2\sqrt{3}\cos(\pi/6) + j2\sqrt{3}\sin(\pi/6)) + (2\cos(\pi/3) + j2\sin(-\pi/3))$ = $(2\sqrt{3}(\sqrt{3}/2) + j2\sqrt{3}(1/2)) + (2(1/2) - j2(\sqrt{3}/2)) = 4$. (!)
- **EX:** $(2\sqrt{3}e^{j\pi/6})/(2e^{-j\pi/3}) = \frac{2\sqrt{3}}{2}e^{j(\pi/6 (-\pi/3))} = \sqrt{3}e^{j\pi/2} = j\sqrt{3}.$

EECS 216 LECTURE NOTES PHASORS: COMPLEX NUMBERS REPRESENT SINUSOIDS

Phasors: Represent sinusoid $x(t) = M \cos(\omega t + \theta)$ with complex no. $X = Me^{j\theta}$. Note: $x(t) = Re[Xe^{j\omega t}] = Re[Me^{j\theta}e^{j\omega t}] = Re[Me^{j(\omega t+\theta)}] = M\cos(\omega t+\theta).$ **Why?** $A\cos(\omega t + \theta) + B\cos(\omega t + \phi) = Re[Ae^{j(\omega t + \theta)} + Be^{j(\omega t + \phi)}]$ $= Re[e^{j\omega t}(Ae^{j\theta} + Be^{j\phi})] = Re[e^{j\omega t}(Ce^{j\psi})] = C\cos(\omega t + \psi).$ where: $Ae^{j\theta} + Be^{j\phi} = Ce^{j\psi}$. Add sinusoids \Leftrightarrow add complex numbers! **EX#1:** Simplify $x(t) = 3\cos(\omega t) + 3\cos(\omega t + 120^\circ) + 3\cos(\omega t + 240^\circ)$. **Hard:** Use cosine addition formula \rightarrow mess. If do it right, get x(t) = 0 (?!) **Easy:** Phasors: $X = 3e^{j0} + 3e^{j120^\circ} + 3e^{j240^\circ} = 0 \rightarrow x(t) = Re[Xe^{j\omega t}] = 0!$ Why? Draw picture in complex plane: easy to see resultant of these=0! **EX#2:** Show that $5\cos(\omega t + 53^{\circ}) + \sqrt{2}\cos(\omega t + 45^{\circ}) = 6.4\cos(\omega t + 51^{\circ})$. Hard: Use cosine addition formula twice. Left as exercise for student. **Easy:** $5e^{j53^{\circ}} + \sqrt{2}e^{j45^{\circ}} = (3+j4) + (1+j) = (4+j5) = 6.4e^{j51^{\circ}}$. QED. 1. Sinusoids must all be at the same frequency to add their phasors. If different frequencies: partition into sums at same frequency. 2. Use $\sin(\omega t + \theta) = \cos(\omega t + \theta - \pi/2)$ as necessary. 3. Multiplying sinusoids is NOT equivalent to multiplying phasors! **OTHER COMPLEX NUMBER FACTS: DEF:** Complex conjugate z^* of z is $z^* = x - jy = Me^{-j\theta} = M \angle -\theta$. 1. $|z^*| = |z|;$ $|z|^2 = zz^*;$ $arg[z^*] = -arg[z];$ $(zw)^* = z^*w^*.$ 2. $\frac{1}{z} = \frac{1}{z}\frac{z^*}{z^*} = \frac{z^*}{|z|^2}.$ Compare to rectangular division formula. 3. $z = Me^{j\theta} \rightarrow z^* = Me^{-j\theta}; \quad \frac{1}{z} = \frac{1}{M}e^{-j\theta}; \quad -z = Me^{j(\theta \pm \pi)}.$ 4. $A\cos(\omega t + \theta) = \frac{1}{2}(X + X^*)$ where $X = Ae^{j(\omega t + \theta)} = Ae^{j\theta}e^{j\omega t}$. 5. $Re[z] = \frac{1}{2}(z + z^*)$ and $|e^{j|z|}| = 1$ for any complex z. **OTHER COMPLEX NUMBER TRICKS:** 1. Im[3+j4] = 4 NOT j4! VERY common mistake!. 2. $e^{\pm j\pi} = -1$. $j = e^{j\pi/2}$ and $-j = e^{j3\pi/2} \Leftrightarrow \cos(\omega t \pm 90^\circ) = \mp \sin(\omega t)$. 3. $j(3+j4) = -4 + j3 = (1e^{j90^{\circ}})(5e^{j53^{\circ}}) = 5e^{j143^{\circ}} : 90^{\circ}$ rotation. 4. Compute $\left|\frac{5(8+j)(8+j6)(5+j12)(5+j10)}{26(7+j4)(7+j24)(2+j11)}\right| = \sqrt{\frac{(25)(65)(100)(169)(125)}{(26)^2(65)(625)(125)}} = 1.$ 5. The following identity is true to an overall sign. Why? $\frac{(a+jb)(c+jd)}{(e+jf)(a+jb)} = \sqrt{\frac{(a^2+b^2)(c^2+d^2)}{(e^2+f^2)(a^2+b^2)}} \exp j[\tan^{-1}\frac{b}{a} + \tan^{-1}\frac{d}{c} - \tan^{-1}\frac{f}{e} - \tan^{-1}\frac{h}{a}]$

<u>9. Remember your audience</u>

University of

- Your lectures are given for THEM, not for you! (1st rule of [also non-]technical communication).
- Don't have to impress students with knowledge; they know that you are the teacher, not them.
- Don't impress faculty with how much you cover; they know what counts is how much you teach. Major issue for assistant (untenured) professors.

<u>9. Remember your audience</u>

University of

- A good lecture should go down easy with students Afterwards, they should be wondering why they didn't think of that before-seems so obvious now.
- Means you did a good job organizing material.
- But sometimes they will struggle with a topic.
- Will get a feel for which topics will give trouble after teaching a course the second time.

<u>9. Remember your audience</u>

University of

- **Comprehension of a difficult topic goes like this:**
- Students think they understand it, but they don't
- Students realize they **don't** understand it, and that they have to dig deeper into it and struggle;
- Students finally realize they understand it when they can USE the topic to solve some problem.

10. Have patience (and right now!)

University of

- Remember, back when you learned this material, you had trouble learning some of the topics, too.
 Did you ace all of your exams? (No, you didn't.)
- Worth reminding students of this every so often.
- Many students think everyone else in the course is having an easier time in it than they are.
- But don't rely too much on your own experience as a guide for which topics will be difficult.

10. Have patience (and right now!)

University of

- You will have to explain many topics many times.
- You will have to show students how to use them. Don't assume they see how to apply a topic, even if they can work a simple problem with it.
- You will need to explain how topics inter-relate. This will help students understand topics as well.

<u>11. Carefully define notation</u>

University of

- **Define** terms and variables whenever introduced.
- A short glossary at the beginning of lecture to review notation can be very helpful to students-they can refer to it while reading through notes.
- Always give units (dimensions) of variables. Units always tell a story; very often they tell the answer
- Point out dimensionless quantities when arise; put equations in dimensionless form if possible.

Dimensional Analysis Example

University of

- <u>GOAL</u>: Determine formula for the period of a swinging pendulum, <u>without any physics</u>!
- <u>MODEL</u>: Period=(mass)^a(length)^bg^c where g=acceleration of gravity (32 ft/sec²) and a,b,c are unknown constants to be found.
- <u>SOLUTION</u>: Equate exponents on both sides of the formula using dimensional analysis:

Dimensional Analysis Example

- Period=(mass)^a(length)^bg^c. Dimensions:
- time=(mass)^a(length)^b (length/time²)^c
- Mass: a=0. Length: 0=b+c. Time: 1=-2c.
- Solve: a=0, b=1/2, c=-1/2

University of

- Formula: Period=[Length/g]^{1/2}
- Actually: Period=2π [Length/g]^{1/2}
- 2π dimensionless-can't infer dimensionally.

<u>12. Involve audience in the lecture</u>

- Ask students if they are familiar with a topic.
 Most raise hands: ask "can you work a problem"
 Many will put down hands, but gives you an idea
- Also do this after presenting a topic.

University of

MICHIGAN

• Ask simple questions during lecture. Usually someone will answer; that will break the ice.

Outline of Presentation

- <u>#1-#6:</u> Planning to teach a new (to you) course.
- <u>#7-#12:</u> Giving lectures using a blackboard.
- <u>#13-#18:</u> Giving lectures using a laptop (like this).
- <u>#19-#21:</u> Miscellaneous

13. Don't go too long if using slides

University of

- Gives students time to ask questions one-on-one.
- Gives students time to go to the bathroom, talk to other students in class, check or send messages.
- Good time for a break in this lecture-right now!

14. Don't go too fast if using slides

University of

- Students like lectures using a blackboard. Why? Because using chalk/marking pens keeps lecturer from going too fast! Acts as a speed governor.
- Lecturer has to write on the board everything that students have to write in their notebooks.
- Slides obviates this-now lecturer can go faster.

DARPA

15. Don't put too much on one slide

- Don't confuse this with "no staples" handouts.
- Slides are <u>different</u> from handouts:

University of

- <u>Slides</u> are read and heard in real time in class;
- Handouts are read at leisure, more slowly.
- Compare the next 3 slides. Which are clearer?

Slightly Underdetermined H: Procedure

- <u>THEN</u>: $y=Hx \rightarrow [H-y][x^T 1]^T=0$ (include y in H).
- Rename: H=[H-y] and $x^{T}=[x^{T} 1]^{T}$ in the sequel.
- $0=Hx=\sum h(i,j)x(j)=\sum H(i,k)^*X(k)=\underline{Hx}$ (DFT of H,x).
- <u>x</u>=<u>Gw</u> where <u>G</u> spans right nullspace of <u>H</u>.

University of

- <u>BUT</u>: <u>G</u> and vector <u>w</u> have dimensions N-M.
- SO: S(k)*∑G(i,k)w(k)=0 is N equations in (N-M) unknowns w(k) and K unknowns S(k), or N linear equations in (N-M)(K) unknowns S(k₁)w(k₂)

Slightly Underdetermined H: Procedure

• <u>THEN</u>: $y=Hx \rightarrow [H-y][x^T 1]^T=0$ (include y in H).

University of

- Rename: H=[H-y] and $x^{T}=[x^{T} 1]^{T}$ in the sequel.
- Now y=Hx has become 0=Hx. Using Parseval:
- $0=Hx=\sum h(i,j)x(j)=\sum H(i,k)^*X(k)=\underline{Hx}$ (DFT of H,x).
- $\underline{\mathbf{x}} = \underline{\mathbf{G}} \underline{\mathbf{W}}$ where $\underline{\mathbf{G}}$ spans right nullspace of $\underline{\mathbf{H}}$.

<u>16. Don't put much algebra on a slide</u>

- In fact, don't do much algebra in lecture at all.
- Students' eyes glaze over while frantically trying to copy down equations you are scribbling.
- They will miss or miscopy some equations.
- You may miss or miscopy some equations!
- Put derivations or examples on a handout.
- DON'T do what is on the next slide!

University of

EECS 216 LECTURE NOTES REVIEW (?) OF COMPLEX NUMBERS

DEF: $j = \sqrt{-1}$. Use j not i in EECS since i=current in EECS! **DEF:** A complex number z can be written as $z = x + jy = Me^{j\theta} = M \angle \theta$ where: x + jy=rectangular form of z; $Me^{j\theta} = M \angle \theta$ =polar form of z. **AND:** x = Re[z]; y = Im[z]; M = |z|; $\theta = arg[z]$. Real part Imag part Magnitude Argument or phase

LEMMA: Euler's theorem: $e^{j\theta} = \cos \theta + j \sin \theta$. **WHY?** Insert $x = j\theta$ into the infinite series $e^x = 1 + x + x^2/2! + \dots$ **ALSO:** $\cos \theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta}); \quad \sin \theta = \frac{1}{2i}(e^{j\theta} - e^{-j\theta}).$

Converting rectangular form \Leftrightarrow polar form:

P→R:	$Me^{j\theta} = x + jy$ where $x = M\cos\theta$ and $y = M\sin\theta$.
R→P:	$x + jy = Me^{j\theta}$ where $M = \sqrt{x^2 + y^2}$ and $\tan \theta = y/x$.
Summary:	$\begin{cases} x = M \cos \theta \\ y = M \sin \theta \end{cases}; M = \sqrt{x^2 + y^2}; \theta = \begin{cases} \arctan \frac{y}{x} & \text{if } x > 0; \\ \arctan \frac{y}{x} \pm \pi & \text{if } x < 0 \end{cases}.$
EX#1:	$+3 + j4 = 5e^{+j0.927}$ since $5 = \sqrt{3^2 + 4^2}$ and $+0.927 = \arctan \frac{\pm 4}{\pm 3}$.
EX#2:	$-3 - i4 = 5e^{-j2.214}$ since $5 = \sqrt{3^2 + 4^2}$ and $-2.214 = \arctan \frac{-4}{2} - \pi$

HINT: Draw an Argand diagram (Im[z] vs. Re[z]) to visualize. **Matlab:** abs(3+4j); angle(3+4j); real(3+4j); imag(3+4j)

Adding, Subtracting, Multiplying, Dividing:

• Add and subtract complex numbers in rectangular form. since: (a+jb)+(c+jd) = (a+c)+j(b+d). Note: Re[z+w] = Re[z]+Re[w]. EX: $5e^{j0.927} + \sqrt{2}e^{j0.785} = (3+j4) + (1+j) = 4+j5 = 6.4e^{j0.896}$.

• Multiply and divide complex numbers in polar form.

since: $(M_1e^{j\theta_1})(M_2e^{j\theta_2}) = (M_1M_2)e^{j(\theta_1+\theta_2)}$. Note: $|zw| = |z| \cdot |w|$. EX: $(3+j4)(1+j) = (5e^{j0.927})(\sqrt{2}e^{j0.785}) = 5\sqrt{2}e^{j1.71} = -1+j7$.

- Multiplying and dividing in rectangular form: $\begin{array}{c} a+jb(c+jd)=(ac-bd)+j(ad+bc); & \frac{a+jb}{c+jd}=\frac{a+jb}{c+jd}\frac{c-jd}{c-jd}=\frac{ac+bd}{c^2+d^2}+j\frac{bc-ad}{c^2+d^2} (\text{ugh}) \\ a+jb(1+j)=(3\cdot1-4\cdot1)+j((4\cdot1)+(3\cdot1))=-1+j7=5\sqrt{2}e^{j1\cdot71}. \end{array}$
- **EX:** Compute $2\sqrt{3}e^{j\pi/6} + 2e^{-j\pi/3}$. Convert polar to rectangular: = $(2\sqrt{3}\cos(\pi/6) + j2\sqrt{3}\sin(\pi/6)) + (2\cos(\pi/3) + j2\sin(-\pi/3))$ = $(2\sqrt{3}(\sqrt{3}/2) + j2\sqrt{3}(1/2)) + (2(1/2) - j2(\sqrt{3}/2)) = 4$. (!)
- **EX:** $(2\sqrt{3}e^{j\pi/6})/(2e^{-j\pi/3}) = \frac{2\sqrt{3}}{2}e^{j(\pi/6 (-\pi/3))} = \sqrt{3}e^{j\pi/2} = j\sqrt{3}.$

EECS 216 LECTURE NOTES PHASORS: COMPLEX NUMBERS REPRESENT SINUSOIDS

Phasors: Represent sinusoid $x(t) = M \cos(\omega t + \theta)$ with complex no. $X = Me^{j\theta}$. Note: $x(t) = Re[Xe^{j\omega t}] = Re[Me^{j\theta}e^{j\omega t}] = Re[Me^{j(\omega t+\theta)}] = M\cos(\omega t+\theta).$ **Why?** $A\cos(\omega t + \theta) + B\cos(\omega t + \phi) = Re[Ae^{j(\omega t + \theta)} + Be^{j(\omega t + \phi)}]$ $= Re[e^{j\omega t}(Ae^{j\theta} + Be^{j\phi})] = Re[e^{j\omega t}(Ce^{j\psi})] = C\cos(\omega t + \psi).$ where: $Ae^{j\theta} + Be^{j\phi} = Ce^{j\psi}$. Add sinusoids \Leftrightarrow add complex numbers! **EX#1:** Simplify $x(t) = 3\cos(\omega t) + 3\cos(\omega t + 120^\circ) + 3\cos(\omega t + 240^\circ)$. **Hard:** Use cosine addition formula \rightarrow mess. If do it right, get x(t) = 0 (?!) **Easy:** Phasors: $X = 3e^{j0} + 3e^{j120^\circ} + 3e^{j240^\circ} = 0 \rightarrow x(t) = Re[Xe^{j\omega t}] = 0!$ Why? Draw picture in complex plane: easy to see resultant of these=0! **EX#2:** Show that $5\cos(\omega t + 53^{\circ}) + \sqrt{2}\cos(\omega t + 45^{\circ}) = 6.4\cos(\omega t + 51^{\circ})$. Hard: Use cosine addition formula twice. Left as exercise for student. **Easy:** $5e^{j53^{\circ}} + \sqrt{2}e^{j45^{\circ}} = (3+j4) + (1+j) = (4+j5) = 6.4e^{j51^{\circ}}$. QED. 1. Sinusoids must all be at the same frequency to add their phasors. If different frequencies: partition into sums at same frequency. 2. Use $\sin(\omega t + \theta) = \cos(\omega t + \theta - \pi/2)$ as necessary. 3. Multiplying sinusoids is NOT equivalent to multiplying phasors! **OTHER COMPLEX NUMBER FACTS: DEF:** Complex conjugate z^* of z is $z^* = x - jy = Me^{-j\theta} = M \angle -\theta$. 1. $|z^*| = |z|;$ $|z|^2 = zz^*;$ $arg[z^*] = -arg[z];$ $(zw)^* = z^*w^*.$ 2. $\frac{1}{z} = \frac{1}{z}\frac{z^*}{z^*} = \frac{z^*}{|z|^2}.$ Compare to rectangular division formula. 3. $z = Me^{j\theta} \rightarrow z^* = Me^{-j\theta}; \quad \frac{1}{z} = \frac{1}{M}e^{-j\theta}; \quad -z = Me^{j(\theta \pm \pi)}.$ 4. $A\cos(\omega t + \theta) = \frac{1}{2}(X + X^*)$ where $X = Ae^{j(\omega t + \theta)} = Ae^{j\theta}e^{j\omega t}$. 5. $Re[z] = \frac{1}{2}(z + z^*)$ and $|e^{j|z|}| = 1$ for any complex z. **OTHER COMPLEX NUMBER TRICKS:** 1. Im[3+j4] = 4 NOT j4! VERY common mistake!. 2. $e^{\pm j\pi} = -1$. $j = e^{j\pi/2}$ and $-j = e^{j3\pi/2} \Leftrightarrow \cos(\omega t \pm 90^\circ) = \mp \sin(\omega t)$. 3. $j(3+j4) = -4 + j3 = (1e^{j90^{\circ}})(5e^{j53^{\circ}}) = 5e^{j143^{\circ}} : 90^{\circ}$ rotation. 4. Compute $\left|\frac{5(8+j)(8+j6)(5+j12)(5+j10)}{26(7+j4)(7+j24)(2+j11)}\right| = \sqrt{\frac{(25)(65)(100)(169)(125)}{(26)^2(65)(625)(125)}} = 1.$ 5. The following identity is true to an overall sign. Why? $\frac{(a+jb)(c+jd)}{(e+jf)(a+jb)} = \sqrt{\frac{(a^2+b^2)(c^2+d^2)}{(e^2+f^2)(a^2+b^2)}} \exp j[\tan^{-1}\frac{b}{a} + \tan^{-1}\frac{d}{c} - \tan^{-1}\frac{f}{e} - \tan^{-1}\frac{h}{a}]$

<u>17. Keep examples simple as possible</u>

University of

- Examples should be just complicated enough to illustrate the procedure, or the point being made. Anything longer will only obscure these.
- Use small integers so students can trace through your computations-makes them easier to follow.
- Try to make result seem numerically reasonable.

- <u>Solution</u>: Use phasors. Inductor Z=j100(.04)=j4.
- Current=I= $5/(3+j4)=1e^{-j53}$ where 53 in degrees.
- i(t)=cos(100t-53°). Easy to trace these numbers.
- Not realistic values, but can now do with them.

<u>17. Keep examples simple as possible</u>

University of

- Some engineering educators criticize this-they believe numbers should be real-world realistic, e.g., "120.4 volt" vs. "5 volt" voltage source.
- I disagree-use real-world numbers in homework.
- Use simple numbers in lecture (comprehension) and on exams (to demonstrate comprehension).

18. Liven lectures up with sound

- Adobe Acrobat 9.0 (free!) reader can play sounds
- Keeps students from going to sleep, at least.

University of

MICHIGAN

• Also, vary background and format of slides; dark background may make the room too dark for students to take notes (and stay awake).

Following sound is from Intro. to Engineering.

Outline of Presentation

- <u>#1-#6:</u> Planning to teach a new (to you) course.
- <u>#7-#12:</u> Giving lectures using a blackboard.
- <u>#13-#18:</u> Giving lectures using a laptop (like this).
- <u>#19-#21:</u> Miscellaneous

19. Use an outline to mark progress

• Occasionally repeat the original outline slide, with the next topic in lecture highlighted on it.

University of

- Allows audience (and you!) to keep track of time (and avoids audience looking at their watches).
- Also reminds audience of where the next topic fits into the overall lecture, and what the students should (you hope) have already learned from it.

20. Use wisecracks and jokes

University of

- Shows you have a sense of humor, breaks tension.
- Makes students look forward to coming to class.
- Can (slightly) help understand the present topic.
- Makes students pay attention (if funny enough).

21. Have fun!

- "Nothing was ever achieved without enthusiasm" –Ralph Waldo Emerson
- If you are enthusiastic, students will be also. Enthusiasm is contagious!
- Students can always tell how much you care.

• If you enjoy teaching, students may think you're nuts, but they will enjoy taking your course more

Thank you for listening!

- Thanks to Benson (P.C. Yeh) for inviting me to give this talk to you while I was here in Taiwan.
- Thanks to Benson for his help in teaching Digital Signal Processing for 3 terms at U-M (2002-03).
- Remember, have fun teaching and presenting!
- Any questions?

University of