A closed-form linear algebraic solution to the

2-D phase retrieval problem

Andrew E. Yagle
Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— The 2-D discrete phase retrieval prob-
lem is to reconstruct an unknown image having
known finite spatial extent from the magnitude
of its discrete Fourier transform. Most meth-
ods for solving this problem are iterative but not
POCS, and they tend to stagnate. Here we solve
this problem by computing the null vectors of
two lower-triangular-Toeplitz-block-lower-triangular-
Toeplitz (LTBLT) matrices. The only assumption re-
quired (other than compact support) is that one cor-
ner pixel of the image have value zero and the opposite
corner pixel be nonzero. We also demonstrate how to
transform an arbitrary 2-D phase retrieval problem
into one of this form, by computing a single root of
one small polynomial. Several small and large exam-
ples illustrate the procedure.

Keywords— Phase Retrieval. EDICS: 2-REST
Phone: 734-763-9810. Fax: 734-763-1503
Email: aey@eecs.umich.edu.

I. INTRODUCTION
A. Phase Retrieval Querview

The problem of reconstructing an image known
to have compact support from its Fourier transform
magnitudes arises in several disciplines in optics [1].
The image is reconstructed if the missing Fourier
phase is recovered; hence the term ”phase retrieval.”
For details of the history and applications of this
problem see [1].

Since the image is assumed to have compact
support, its Fourier transform may be sampled in
wavenumber. Most images are approximately ban-
dlimited to the extent that they may also be sampled
spatially as well. This leads to the discrete version of
this problem, in which a discrete-space image known
to have finite spatial extent is to be reconstructed
from the magnitude of its 2-D discrete Fourier trans-
form (DFT). For details on discrete phase retrieval
problems see [2]-[3]. Note that this precludes meth-
ods based on oversampling of continuous images.
This is the problem solved in this paper.

The most common approach for phase retrieval
problems is to use an iterative transform algo-
rithm [4], which alternates between the spatial and
wavenumber domains. However, these algorithms
usually stagnate, failing to converge to a solution.
Other approaches require the computationally expen-
sive and extremely unstable numerical operation of

tracking zero curves of algebraic functions [5]-[7]. A
recursive procedure for images with triangular sup-
port given in [8]. We will not attempt to list all
approaches here.

B. Contributions of This Paper

This paper proposes a novel approach to discrete
2-D phase retrieval. We assume that one corner pixel
of the image is zero, and the opposite-corner pixel is
nonzero (but otherwise unknown); we call this the
“notched” phase retrieval problem. Note that this is
not an assumption of triangular support, for which a
recursive solution is known [8]; only one pixel need
be zero. This can also be viewed as a way to avoid
the image reversal ambiguity of 2-D phase retrieval
(see below).

We formulate the 2-D phase retrieval problem in
terms of lower triangular Toeplitz (LTT) polyno-
mial matrices, and show that the image can be com-
puted as the solution of a linear system of equa-
tions constructed recursively from the data. We then
show that the polynomial representation can be re-
placed with a lower-triangular-Toeplitz-block-lower-
triangular-Toeplitz (LTBLT) matrix one, in which
the null vector of a matrix constructed from the data
forms a linear system of equations whose solution is
the image. This is similar to many recent proposed
multichannel blind deconvolution algorithms.

We also give a procedure for transforming a non-
notched 2-D phase retrieval problem into a notched 2-
D phase retrieval problem, by computing a single root
of a small polynomial. It should be noted that we
have proposed a similar-looking algorithm for blind
deconvolution [9], but this algorithm only applies to
problems in which the unknown image and point-
spread function have different aspect ratios, hence it
cannot be applied to phase retrieval.

This paper is organized as follows. Section 2 for-
mulates and discusses ambiguities of the 2-D discrete
phase retrieval. Section 3 reviews lower triangular
Toeplitz (LTT) matrices; for more details see [10].
Section 4 presents the matrix polynomial form of
the algorithm. Section 5 presents the LTBLT matrix
formulation of the algorithm. Section 6 shows how
to transform a non-notched problem into a notched

problem. Several numerical examples illustrate the
procedures in all three of these sections. Section 7
concludes with a summary and suggestions for future
research.

II. PROBLEM FORMULATION
A. Problem Statement

The 2-D discrete phase retrieval problem is as fol-
lows [2]-[3]. We observe

y(il,ig) = u(il,iz) * *U(M — 7:1,M — 7,2) (].)

where xx denotes convolutions in 4; and i5. The 1-D
convolution x is defined here as

h(n)xu(n) = Z h(n—1)u(i) = Z h()u(n—1). (2)

We will often omit commas between pairs of sub-
scripts.

We make the following assumptions:

1. Image u(i1,i2) = 0 unless 0 < iy,iz < M;

2. Autocorrelation y(i1,i2) = 0 unless 0 < 41,42 <
2M;

3. Notch: «(0,0) =0; u(M,M) #0;

4. All quantities are real functions.

The goal is to reconstruct the image u(iy,%3) from
its autocorrelation y(i1,i2). Taking the discrete
Fourier transform (DFT) of (1) shows that this is
equivalent to computing the DFT U(k;, k2) from its
squared magnitude Y (ki,k2) = |U(k1,k2)|?; hence
the term “phase retrieval.” We will not be using
the DFT in this paper. No stochastic assumptions
are made about u(i1,i2), precluding methods based
on cumulants, ARMA or Poisson image models, or
stochastic equalization.

B. Problem Ambiguities

There are four ambiguities in 2-D phase retrieval:
1. Scale factor: If u(iy,i2) is a solution, then the
scaled —u(i1,i2) is also a solution. For the complex-
valued problem, cu(iy,i2) is also a solution for any
constant such that |¢| = 1. If the image is known to
be non-negative, clearly this is not a problem;

2. Translation: If w(i1,i2) is a solution, then the
shifted u (i1 + dy, 42 + dz) is also a solution for any in-
tegers (di,d>). We eliminate this ambiguity by spec-
ifying the support 0 < 1,12 < M;

3. Reversal: Either u(i1,i2) or its reversal u(M —
i1, M — i2) can regarded as the “true” image. The
notch assumption eliminates this by taking u(0,0) =
0 and u(M, M) # 0 (our method requires it regard-
less);

4. Irreducibility: The 2-D z-transform

Uz,y) =Y > ulis, iz)a™y™ ®3)

31=0i2=0

is irreducible (U(z,y) cannot be factored). This is
almost surely true [11].

One way to see this last fact quickly is to note
that (1) can be viewed as £(2M + 1)? simultaneous
quadratic equations in (M + 1)? unknowns. Note
that about half of the (2M + 1)? equations (1) are
redundant since y(i1,42) = y(2M —i1,2M —i3). The
problem is overdetermined, so by Bezout’s theorem
there is almost surely at most one solution. Indeed,
generically there are no solutions; only from (1) do
we know a solution exists.

The 1-D phase retrieval problem has an additional,
non-trivial ambiguity. There are almost surely 2M/2
solutions to an (M + 1)-point 1-D phase retrieval
problem if M is even. This can be seen by noting
that the zeros of the 1-D z-transform of the autocor-
relation occur in reciprocal conjugate quadruples (if
2, is a zero, then z*,1/z,,1/2} are also zeros). Ei-
ther 2z, and 2z}, or their reciprocals, can be assigned
to the 1-D signal; since there are M/2 quadruples,
this assignment can be made in 2M/2 ways (fewer if
there are zeros on the unit circle or real axis).

ITII. LowER TRIANGULAR ToEPLITZ (LTT)
MATRICES

We quickly review some basic properties of LTT
matrices for later use. An (M +1) x (M +1) LTT
matrix A and its associated polynomial a(z) have the
forms

ao 0 e 0
A= a do - 0 (4&)
0
ap apm—-1 -t Qo
a(z) =ag+ a1z + ...+ ayz™. (4d)

A. Basic Properties

If B is another LTT with associated polynomial
b(z), then it is easy to see that the following matrices
are all LTT with associated polynomials

C=A+B; c2)=alz)+bz); (5a)

D = AB = BA; d(z) = a(2)b(z) mod(2M*1);
E=A"Y e(z)a(z) = 1mod(zM+1); E?Q
e(2)a(z) + f(z)z2MH =1 (5d)

for some (irrelevant) polynomial f(z).

These imply that the set of LTT matrices with
the usual matrix operations form a commutative ring
with identity whose units are the LTT matrices with
nonzero diagonal. That is, LTT matrices are closed
and commute under matrix addition and multipli-
cation, and they are invertible if the diagonal is
nonzero.

Note that the following are equivalent:
Equation (5d) has a solution;

a(z) and zM*1 are relatively prime;

o Constant ag # 0;

o LTT matrix A is invertible.

It is also worth noting that (5) also holds for
circulant matrices, provided 2™+ is replaced with
zM+1 _ 1. That is, for LTT matrices overflow is
discarded, while for circulant matrices overflow is
aliased. For both of these matrices, the matrix prod-
uct C = AB is equivalent to the matrix-vector prod-
uct of A and the first column of B yielding the first
column of C.

B. LTT Matriz Inversion
Recall from high school algebra the formula

ATl = adj[A]/det[A] = adj[A]/ag"™", (6)

where adj[A] is the transpose of the matrix of cofac-
tors; (6) shows that adj[A] is LTT when A is LTT.
This also shows that the first column of adj[4] is a
null vector for A when A is singular.

From (5d), the Euclidian algorithm can be used to
compute the inverse of an LTT matrix. However, a
faster approach which is O(M log M) is to note that

4 0] Al 0 o
Ay Ay T -A A AT AT

Hence the inversion of a LTT matrix is equivalent
to the inversion of one LTT matrix of half the size
and two LTT matrix multiplications, which can be
computed using the FFT on (5b).

All of these results are well known. We found [10]
to be a useful reference.

IV. MATRIX POLYNOMIAL ALGORITHM

A. Problem Formulation

To avoid confusing u(iy,42) and u(M — i1, M —
i2), we solve not (1) but the 2-D blind deconvolution
problem

This can be written using (N +1) x (N +1) LTT
polynomial matrices as

Y(z) =U(2)H(2); (9a)
Yo(z) 0 0
y(z) = | 1) 1) R D
: 0
Yn(z) Yna(z) - Yo(2)
Y, (2) = y(0,n) +y(1,n)z + ...+ y(2M,n)z*" (9c)
where

1. N > 2M is an integer to be determined;

2. Y,(2)=0for 2M <n < N +1;

3. U(z) and H(z) are defined similarly;

4. One 1-D convolution in (8) is written as a product
of z-transforms;

5. The other 1-D convolution in (8) is written as a
product of LTT matrices (see (5b)).

We can rewrite (9a) as

Y(2)7'U(2) = H(z)™! (10)
and using (6) transforms (10) into
adj[Y (2)]U(2) = adj[H (2)]det[U(z)] (11)

since det[U(z)] = det[Y (z)]/det[H (2)].

B. Problem Solution

Now we make use of the
u(0,0) = 0. We have

“notched” assumption

1(0,0) = 0 = Up(2) = u(1,0)z + ... + u(M,0)zM

— det[Up(2)] = UM (2) = 2V Tp(2)

for some (irrelevant) polynomial p(z). Equating coef-

ficients of z in (11) and using (12) yields N + 1 equa-

tions (all equal to zero) in (M + 1)? — 1 unknowns

u(i1,is). If N > (M + 1)% — 2 these linear equations

can be solved for the unknown image wu(iy,i2)!
Defining the LTT polynomial matrix

(12)

W(2) = adj[Y (2)] (13)

the linear equations are the coefficients of (using the
notation of (9b))

Wn(2)Uo(2) + ... + Wn_m(2)Un(2) = OV)
(14)
where O(zV*1) is a polynomial in which the coeffi-

y(i1,i2) = u(iy, ia)*xh(i1,i2); h(i1,ia) = u(M—iy, M—igients of {1,z ... 2"} are all zero. Note the following:

(8)
The procedure actually solves the problem for arbi-
trary (M +1) x (M +1) h(i1,42) such that h(0,0) # 0.

1. The system matrix formed from (14) has M +
1 Toeplitz block columns, so it is Toeplitz-block-
Toeplitz (TBT) in wu(i1,i2);

2. W,(z) can be computed recursively from Y;,(z) us-
ing back substitution, with each polynomial multipli-
cation implemented using the FFT and then reduced
mod(zNt1);

3. u(i1,i2) is only determined to a scale factor, since
it is computed as the null vector of the system matrix
formed from (14). This is as expected from the scale
factor ambiguity;

4. The notch assumption u(0,0) = 0 and u(M, M) #
0 eliminates the reversal ambiguity.

Note that (14) is actually the last row of (11). It may
seem that using all the rows of (11) would enable
use of a much smaller value of N. However, each
row of (11) contributes only one new (independent of
previous ones) equation, so the last row includes the
contributions of all rows above it.

C. Small Nlustrative Example

We present a small example to illustrate the pro-
cedure. We wish to solve the phase retrieval problem

0 a c b 0 8 6
[b C]**[a 0]: 12 29 12 (15)
6 8 0
Of course, for a 2 x 2 problem the notched support
is equivalent to triangular support, so the algorithm
of [8] could be used here. But this is not true for
larger problems.
We have M = 1 (recall the image is (M + 1) x
(M + 1)) so that
N>M+1)?*-2—=N>2. (16)

Following the above procedure, we have the following
equations:

0+ 122 + 622 0 0
Y(z) = [8+292 4827 0+ 12z + 627 0
6+ 122+ 022 8+ 292+ 822 12z + 622
(17a)
Y3 (2) 0 0
W(z) = —Yo(2)Y1(2) i (2) 0
Y7 (2) = Yo(2)Ya(2) —Yo(2)Yi(2) Yg(2)
(17b)
14422 + 1442° + 3624 0 O
W(z) = | —=(96z + 39622+ 0(2%)) - 0] :
64 + 392z + O(2?)
(17¢)
(0+b2)
W(2) | (a+cz) | = O(2®); (17d)
0
144 — 96 0 a 0
96 64 0||b|=|0]; (17
396 —392 96 0

[a,b,c] =[2,3,4]; (to scale factor)

b= 15]

where the scale factor is found (to a sign) by inserting
(17f) back into (16).

(17£);

(179)

D. Larger Numerical Example

Next, consider the reconstruction of the 17 x 17
notched “eye” image in Figure la. Its 33 x 33 au-
tocorrelation is shown in Figure 1b. The recon-
structed image is shown in Figure lc, and matches
the original image perfectly. Since the image pixels
are known to be integers, all computations were per-
formed mod(65537); the 289 x 289 linear system was
solved using Gaussian elimination mod(65537). This
is extremely inefficient, since it does not exploit the
TBT structure of the linear system, but it works.

The Matlab program used is also shown. To avoid
the scaling issue, the opposite corner from the notch
is set to unity; this could easily be avoided. The
program will work on an integer-valued image of ar-
bitrary square size, provided the prime modulus is
large enough to avoid zero-valued pivots.

V. LTBLT MATRIX ALGORITHM
A. Problem Formulation

The large numbers (cf. “396”) that arise in even
the small example above suggest that numerical over-
flow problems will arise in the computation of W (z).
This suggests the need for an alternative formulation
of the procedure.

Since (14) has on its right side an unknown poly-
nomial O(zV*!), there is no reason not to per-
form all polyomial computations mod(zV+!), i.e.,
discard all terms of degree N + 1 or greater. From

. (5), this is equivalent to adding and multiplying

LTT matrices. Hence the polynomial operations
above can be replaced with LTT matrix operations,
and the procedure can be implemented by nest-

ing LTT matrices in LTT matrices, which result

in lower triangular-Toeplitz-block-lower-triangular-
Toeplitz (LTBLT) matrices.

The significance of this reformulation is that (13)
and (14) can now be rewritten as the (N +1)% x (N +
1)? matrix equations

YW =[0]; WU =]0] (18)
where W is the (N + 1) x (N + 1)? LTBLT matrix
W 0 a0
wo|mom 0
: . 0
Wn Wy Wo

with block LTT matrices (compare to (9))

w(0,n) 0 0
W, = w(1,n) w(0,n) 0
: 0

w(N,n) wN-1,n) --- w(0,n)

and U and Y are defined similarly.

B. Problem Solution

The point of this reformulation is that the compu-
tation (13) of the adjoint of the polynomial matrix
Y (z), which takes much computation and results in
numerical overflows, is really nothing but a very inef-
ficient computation of the null vector of the LTBLT
matrix Y, as noted below (6)!

The original problem can be reformulated as a (N+
1)2x (N +1)? system Y = HU where Y, H,U are all
LTBLT matrices. We then have
1. u(0,0) = 0 — y(0,0) = 0;

2. u(0,0) = 0 — det[U] = 0;
3. 9(0,0) = 0 — det[Y] = 0;
4. uw(M,M) #0 — det[H] # 0.
since 4(0, 0) is the diagonal element of U and y(0,0)
the one for Y. Since Y and U are singular, they have
a common null vector w since H is nonsingular. That
is,

Y=HU -0=Yw=H{Uw)

2 0=H'0=Uw—[0]=UW —-0=Wu (21)

since matrix multiplication of LTBLT matrices is
equivalent to matrix times first column equals first
column multiplication. Here 0 is a zero vector and
[0] is a zero matrix, and similarly for w.

This lead to the following alternative procedure:
1. Form the LTBLT matrix Y from y(i1,142);
2. Compute a null vector w of Y;
3. Form the LTBLT matrix W with first column w;
4. Compute the null vector u of W with zeros in all
but the appropriate (M + 1)? places;
5. Read off u(iy,i2) from w.

Note the following;:
1. While the matrix adjoint (6) could be used to com-
pute w, almost any other method would be faster and
lead to smaller numbers;
2. There are in fact N + 1 null vectors of Y; any or
all of them can be used to form the second LTBLT
system;
3. Although Y is (N + 1)? x (N + 1), its LTBLT
structure means that matrix manipulations can be
performed using the 2-D FFT and discarding half of
the results. So the computational load is actually no
greater than the matrix polynomial method.

4. Tt might seem from (21) that N need not be as
large as (M + 1)2 — 2 for this to work. But running
the procedure on a notched 3 x 3 image (8 unknowns)
with N = 4 results in a 25 x 8 system using any one
null vector, and a 125 x 8 system using all five null
vectors. Remarkably, the 125 x 8 system matrix has
rank four! The minimum value of N is seven, as
expected.

C. Small Nlustrative Example

We apply this procedure to the 2-D phase retrieval
problem (15). Following the above procedure, we
have the following equations:

"0 0 0 0 0 0 0 0 07
12 0 00 00 0 0 0
6 12 0 0 0 0 0 0 0
8 00 0 00 0 0 0
vy=[20 8 012 0 0 0 0 0| (22
8 208 6 12 0 0 0 0
6 0 0 8 0 0 0 0 0
12 6 029 8 0 12 0 0
[0 12 6 8 29 8 6 12 0]

which has as expected a (right
sion three spanned by

~—

nullspace of dimen-

© 0 0 07
0 0 0
9 9 0
0 0 0
-6 -6 0 (23)
3.7992 —1146 0
4 4 0
54672 7718 0
L o 0 1.

where we have scaled the three column vectors to
show their similarity.

Omitting 0 = 0 rows and the columns of the system
matrix multiplied by zero, the second system of (21)
is

9 —6 0 a 0
—6 4 0 bl =10]; (24a)
3.7992 5.4672 -6 c 0
[a,b,c] =[2,3,4]; (to scale factor) (24b);
0 a 0 2
[b c] = [3 4] (24c)

where the scale factor is found (to a sign) as before.

Note how much smaller the entries in the system
matrix are compared to (17f). Of course, the systems
are equivalent to each other, but numbers generated
by finding the nullspace are smaller than those gen-
erated using the adjoint.

VI. NON-NOTCHED TO NOTCHED PROBLEM
TRANSFORMATION

A. Problem Solution

Now consider the general discrete 2-D phase re-
trieval problem for which «(0,0) # 0. In order to
apply either of the above procedures, we must trans-
form this problem into another problem for which
4(0,0) = 0. This can be accomplished as follows.

The first row of (9a) is

YE)(Z) = UO(Z)HO(Z) < y(n,O) = ’LL(TL,O) * h(n,O)
(25)

Yo(z) is known, and this 1-D blind deconvolution
problem has multiple non-trivial solutions, similarly
to the 1-D phase retrieval problem. So there is no
way to recover Ug(z) and Hg(z) directly from Yy (2).

Let zp be any non-multiple zero of Yp(z) such
that |29| # 1. Then zj is a zero of either Uy(z) or
Hy(z); without loss of generality let Up(zp) = 0 and
Hy(z9) # 0. Note that this eliminates the reversal
ambiguity of distinguishing u(i1,42) and h(i1, i2).

Now change variables from z to y = z — z5. Then
(25) becomes

yYo(y) = yUo(y)Ho(y)

and similar transformations yield the other U;(y) and
H;(y). The transformed problem is a notched 2-D
blind deconvolution problem, which can be solved us-
ing either of the algorithms given above.

(26)

B. Small Nlustrative Example

Consider the 2-D phase retrieval problem

6 11 4
[‘3 g]**[i :1))]= 14 30 14 27)
4 11 6

We now also supply the image to illustrate the trans-
formation. We have
. 1
Yo(z) =6+ 14z +42° = 4(z + 3)(z + 5) (28)
Without loss of generality, associate the zero at —3
with Up(z) and let y = z + 3. We then have

yYo(y) = 6 + 14(y — 3) + 4(y — 3)? = 0 — 10y + 4y/*
} (29a)
Yi(y) = 114+30(y—3) + 11(y — 3)* = 20 — 36y + 11y°

Ya(y) = 4+ 14(y — 3) + 6(y — 3)> = 16 — 22y + 63>
(29¢)
as well as

yUo(y) = 3+1(y=3) =y; Ui(y) = 4+2(y—3) = 2y—2 13

(30a)

Hy(y) = 2+4(y—3) = 4y—10; Hy (y) = 1+3(y—3) = 3y—8.

(300)
This results in the transformed and now notched
problem

0 —2 10 -8 0 20 16
1 9 * % 4 3 =|-10 -36 -22
4 11 6

(31)

which can be solved using the methods described
above. Then the transformation z = y — 3 recov-
ers the solution to the original problem. Horner’s
method [10] is the most efficient procedure for per-
forming these polynomial transformations.

VII. CONCLUSION

We have presented a new algorithm for the 2-D dis-
crete phase retrieval problem. Unlike previous “ex-
act” algorithms, no tracking of zero curves or surfaces
is required. The only operations required are compu-
tations of the null vectors of two heavily structured
and sparse LTBLT matrices. The 2-D FFT can be
used to compute the matrix-vector product in an iter-
ative algorithm. However, when the image pixels are
known to be bounded integers, so that the autocor-
relation pixels are also bounded integers, finite field
computations (modulo a large prime) can be used
to reconstruct the image perfectly. Our experiments
indicate that the prime modulus should be several
times the number of pixels in the image, to avoid
zero-valued pivots.

The performance of these algorithms in noise still
requires extensive numerical testing. The computa-
tion of null vectors and their subsequent use to com-
pute the image is the same as that in many so-called
“direct” algorithms for multichannel blind deconvo-
lution. Hence the many results that have been ap-
plied to that problem in the 1990s are applicable to
the present problem as well, with similar expected
results.

VIII. ACKNOWLEDGMENT

The work of the author was supported in part
by DARPA and ARO under grant #DAAD-19-02-
1-0262.

REFERENCES

[1] J.C. Dainty and J.R. Fienup, “Phase retrieval and image
reconstruction for astronomy,” in Image Recovery: The-
ory and Application, ed. by H. Stark, Academic Press,
San Diego, 1987, pp. 231-275.

[2] M.H. Hayes, “The reconstruction of a multidimensional

sequence from the phase or magnitude of its Fourier trans-

form,” IEEE Trans. ASSP 30(2), 140-154 (1982).

M.H. Hayes, J.S. Lim, and A.V. Oppenheim, “Signal

reconstruction from phase or magnitude,” IEEE Trans.

ASSP 28(6), 672-680 (1980).

[10] V. Pan and D. Bini, Polynomial and Matriz Computa-

[11] J.L.C. Sanz and T.S. Huang, “Polynomial systems of

MATLAB PROGRAM USED TO GENERATE FIGURES 1

J.R. Fienup, “Phase retrieval algorithms: a comparison,” FIG. 1a: ORIGINAL
Applied Optics 21, 2758-2769, 1982.

H.V. Deighton, M.S. Scivier, and M.A. Fiddy, “Solution
of the two-dimensional phase retrieval problem,” Opt.
Lett. 10, 250-251 (1985).

D. Izraelevitz and J.S. Lim, “A new direct algorithm for
image reconstruction from Fourier transform magnitude,”
IEEE Trans. ASSP 35(4), 511-519 (1987).

R.G. Lane, W.R. Fright and R.H.T. Bates, “Direct phase
retrieval,” IEEE Trans. ASSP 35(4), 520-526 (1987).
M.H. Hayes and T.F. Quatieri, “Recursive phase retrieval
using boundary conditions,” J. Opt. Soc. Am 73, 1427-
1433 (1983). r]
A.E. Yagle, “A simple closed-form linear algebraic solu-

tion to the single-blur 2-D blind deconvolution problem .

for compactly-gupported images,” submitted to Linear FIG. 1b: AUTOCORRELATION

Algebra and its Applications, March 2003.

tions, Birkhaeuser, Boston, 1994.

equations and its application to the study of the effect
on noise of multidimensional Fourier transform phase re-
trieval from magnitude,” IEEE Trans. ASSP 33(8), 997-
1004 (1985).

Should combine these FOR loops! But easier to follow.
Need: Upper left corner=0;Lower right corner=1

(for scale; can easily get around that at the end). FIG. 1c: RECONSTRUCTED
load lena.mat;U=xx(125:141,125:141);U(1,1)=0;U(17,17)=1;
Y=conv2(U fliplr(flipud(U)));M=length(U);N=65537;All mod(N) u
Z(M*M,2*M-1)=0;Z(1,1)=1;Z(1:2*M-1,2)=Y(:,2);
W(M*M,2%M-1)=0;W(1,1)=1;W(1:2*M-1,2)=-Y(:,2);

Multiply each Yi(z) by Ylexp(i-2)(z), as in example above:

for I=3:2*M-1;ZZ=Y(:,I);for J=1:1-2;ZZ=rem(conv(ZZ,Y (:,1)),N)
if(length(ZZ); M*M);Z(:,1)=ZZ(1:M*M);else
7(1:length(Z7),1)=ZZ;end;end

Implement back substitution recursion:

for J=1:1-1;WW=rem(conv(Z(:,I-J+1),W(:,J)),N);
if(length(WW); M*M); W (:,1) =W (:,I)-WW(1:M*M);else;
W(1:length(WW),I)=W(1:length(WW),I)-WW ;end;end;end

Use only most recent (2M-1) 1/Yn:

for I=2*M:M*M;for J=2:2¥*M-1;W(:,J-1)=W(:,J);end;
W(:,2*M-1)=zeros(M*M,1);

for J=I1-2*M+2:1-1;
WW=rem(conv(Z(:,I-J+1),W(:,J+2*M-1-1)),N);

if(length(WW); M*M); W (:,2%M-1)=W (:,2%M-1)-WW (1:M*M);else
W(1l:length(WW),2*M-1)=W (1:length(WW),2*M-1)-WW;end;end;end
Multiply each Xi(z) by Ylexp(N-i)(z):

for I=1:2*M-2;ZZ=W(:,I);for J=1:2*M-2;ZZ=rem(conv(ZZ,Y(:,1)),N);end
if(length(Z7) M*M); W (:,1)=ZZ(1:M*M);else;
W(1:length(ZZ),1)=7Z;end;end

Assemble Toeplitz matrix and find its null vector=solution:
T(M*M*M*M,1)=0;for I=1:M;TT=toeplitz(W(:,2*M-I),zeros(1,M));

for J=1:M*M;

T(M*MH*(J-1)+1(I-1)*M:M*M*(J-1)+ M4(I-1)*M)=TT(J :)’;

end;end; Use Gaussian elimination to find nullvector of T:

for I=1:M*M;[G,TI,B]=gcd(T(I+M*M*(I-1)),N);

I=M*M*(I-1) +1:M*M*I;

for I=1:M*M;[G,TI,B]=gcd(T(L,I),N);T(I,:)=rem(T(I,:)*TI,N);
T(IT)=rem(T(I1)*TI,N);for J=I+1:M*M;JJ=M*M*(J-1)-+1:M*M*J;
T(JJ)=rem(T(JJ)-T(II)*T(I+M*M*(J-1)),N);end;end; X(M*M,1)=1;

for I=1:M*M-1;

X(M*M-T)=rem (-T(M*M*(M*M-I-1)+1:M*M*(M*M-I)) *X,N);

(X (M*M-T){0);X (M*M-T)=X (M*M-T)+N;end;end;
UHAT=reshape(X,M,M);

subplot(331),imagesc(U),colormap(gray)
subplot(334),imagesc(Y),colormap(gray)
subplot(337),imagesc(UHAT),colormap(gray)

