
1

Non-Iterative Sparse Image Reconstruction
from a Few 2-D DFT Frequency Values

Andrew E. Yagle
Dept. of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— We consider the problem of reconstruct-
ing a sparse image from a few of its 2-D DFT fre-
quency values. A sparse image has pixel values that
are mostly zero, with a few non-zero values at un-
known locations. The number of known 2-D DFT
values must exceed four times the number of non-
zero pixel values. We unwrap the 2-D problem to
a 1-D problem using the Good-Thomas FFT, and ap-
ply Prony’s method to compute the non-zero pixel
value locations. Thus we reformulate the problem
as a dual 2-D harmonic retrieval problem. Our so-
lution has three advantages over direct application of
2-D ESPRIT: (1) Instead of solving a huge generalized
eigenvalue problem, we compute the roots on the unit
circle of a huge polynomial; (2) the locations of the
known 2-D DFT values need not form a centrosym-
metric region; and (3) there are no matching issues.
Our algorithm is also applicable to 2-D beamforming.

I. INTRODUCTION

A. Problem Discussion

The problem of reconstructing an image from its
irregular frequency samples (arbitrary values of its
(N ×N) 2-D DFT where N is large) arises in many
applications. Some examples and the corresponding
locations where the DFT is known:

• SAR: On several arcs of points;
• CAT: On a polar raster of points;
• MRI: On a polar raster of points;
• fMRI: On a square spiral of points;
• Limited-angle tomography: In a bowtie region;
• 2-D FIR filter design: A prescribed response.

If the (N × N) 2-D DFT of an image is known
everywhere, then clearly we can recover the image
using an inverse 2-D DFT. But if the DFT is known
only for some of these DFT values, this will not work.
While interpolation can be used to resample the fre-
quency values to a rectangular lattice, this necessarily
involves some approximation and some computation.
And if only a few values of the 2-D DFT are known,
then the problem is grossly underdetermined.

Many images arising in medical imaging applica-
tions consist of several regions in which the pixel
values are constant. A Laplacian or similar edge-
enhancing operation transforms the image recon-
struction problem into one of reconstructing rela-

tively few non-zero pixel values. This should require
a much smaller number of 2-D DFT values (data),
and result in a much smaller-sized problem than re-
constructing the entire image from many more 2-D
DFT values.

Snakes have been used to parametrize image re-
gion boundaries, but these are computationally in-
tensive, and they can encounter problems for compli-
cated boundary curves. Linear programming, which
computes the minimum `1 norm, has been used to
reconstruct images whose pixel values are restricted
to a few values, but there is no guarantee these will
work, since the heuristic that `1 minimization leads
to solutions at simplex corners is not guaranteed.

B. Contributions of This Paper

This paper reformulates the sparse image recon-
struction problem as a (Fourier) dual 2-D harmonic
retrieval problem. Analogous quantities are:

sparse harmonic beam-
image retrieval forming
nonzero unknown source
pixels wavenums angles
2-d dft 2-d data array
support window pattern

This suggests use of one of the algorithms that have
been developed for 2-D harmonic retrieval. 2-D uni-
tary ESPRIT in particular seems well-suited to this
problem. But there are three problems associated
with simple application of 2-D harmonic retrieval to
the sparse image reconstruction problem:

• 2-D ESPRIT requires solution of a generalized
eigenvalue problem. While this is suitable for beam-
forming for a small number of sources, even a very
sparse image contains far too many non-zero pixel
values for this to be computationally practical;
• 2-D ESPRIT requires the array pattern to be cen-
trosymmetric. In limited angle tomography, known
2-D DFT values are not centrosymmetric;
• 2-D harmonic retrieval includes the matching prob-
lem of correctly associating wavenumber locations
along one axis with those along the other axis;
• 2-D ESPRIT avoids this problem by reformulating

2

the problem using the mapping from centrohermitian
matrices to real matrices, but this is often inapplica-
ble (see the above problem).

Instead of using 2-D harmonic retrieval methods,
we use the Good-Thomas FFT to unwrap the 2-D
problem into a 1-D problem. This allows applica-
tion of 1-D harmonic retrieval methods, such as least-
squares Prony or Pisarenko. This results in the fol-
lowing advantages, which answer the problems above:

• These methods require only the solution of a struc-
tured linear system of equations, followed by comput-
ing the unit-circle zeros of a polynomial;
• The support of known 2-D DFT values need only
be a convex polygonal region. In particular, limited-
angle tomography is included;
• Since the 2-D to 1-D mapping is unique (provided
the 2-D DFT transform lengths are relatively prime),
there is no matching problem.

C. Problem Statement

The goal is to reconstruct a sparse image

x(i, j) =
{

x(ik, jk) for (ik, jk) ∈ Θ;
0 for (i, j) /∈ Θ. (1)

from some of its ((N − 1)×N) 2-D DFT values

X(k1, k2) =
{

X(k1, k2) for (k1, k2) ∈ Ω;
unknown for (k1, k2) /∈ Ω. (2)

where the ((N − 1)×N) 2-D DFT is

X(k1, k2) =
N−2∑

i1=0

N−1∑

i2=0

x(i1, i2)e−j2π(
i1k1
N−1+

i2k2
N) (3)

and where

• Ω=locations of known frequency values;
• Ω=known convex polygonal region;
• Θ=locations of non-zero image pixel values;
• Θ=unknown and entirely arbitrary;
• Size (cardinality) of Ω > 4(size Θ).

In matrices, we will use Xk1,k2 instead of X(k1, k2)
to save space.

II. DERIVATION OF DETERMINISTIC
PRONY’S METHOD AND ESPRIT

A. Derivation of ESPRIT

We now derive a deterministic 1-D ESPRIT algo-
rithm for the sparse signal problem. We have:

X(k) =
∑

n∈Θ

x(n)e−j2πnk/N (4)

where Θ is again the set of 0 ≤ n ≤ (N − 1) where
x(n) 6= 0. We then have

C0 = FHDF and C1 = FDEFH (5)

where

• C0(i, j) = X((i− j) mod N)=circulant
• C1(i, j) = X((i− j + 1) mod N)=circulant
• F (i, k) = e−j2πik/N=DFT matrix
• D=diag[x(0) . . . x(N − 1)]=diagonal
• E=diag[e−j2π0/N . . . e−j2π(N−1)/N]=diagonal

Note this is just the modulation theorem for the
DFT, or the Fourier dual of the time-delay theorem.

Next, delete all rows and columns of C0 and C1

that contain an unknown value of X(k). This leaves

T0 = V HDV and T1 = V HDEV (6)
• V =Vandermonde matrix, i.e., (Vij = vj

i)
• V = F with some rows and columns deleted
• T0 has Toeplitz blocks
• T1 has Toeplitz blocks
• D=diag[x(n), n ∈ Θ]=diagonal
• E=diag[e−j2πn/N , n ∈ Θ]=diagonal

Provided that the number of non-zero x(n) does not
exceed the size of T0 and T1, we have

λT0 − T1 = V HD(λI − E)V (7)

is singular if and only if λ = {e−j2πn/N , n ∈ Θ}.
Thus the locations n of the non-zero x(n) can be
found from the eigenvalues of the generalized eigen-
value problem for T0 and T1.

This procedure generalizes easily to 2-D ; the
only difference is that the matrix is circulant-block-
circulant instead of circulant. However, there is an
ambiguity in recovering (i, j) from a single eigenvalue
exponent. This is called the “matching problem.”

B. Derivation of Prony

Also, note that if the size of T0 exceeds the number
of non-zero x(n) by one, we have

T0a = V HDV a → V a = 0 (8)

This states that the zeros of the polynomial with co-
efficients an are {e−j2πn/N , n ∈ Θ}. Thus we can
determine the locations of the non-zero x(n) by com-
puting the null vector a of T0 and rooting the poly-
nomial having coefficients an (Prony’s method).

3

A better procedure, if additional data are available,
is to compute the null vector of the covariance matrix

(TH
0 T0)a = TH

0 = 0 (9)

since this tends to collect additive zero-mean white
noise in the data as σ2I. Thus, we can compute
the minimum eigenvector of (TH

0 T0), or equivalently
the minimum singular vector of T0, and use that as
an estimate of a (the basic idea behind Pisarenko’s
method).

There are many other methods of 1-D harmonic
analysis; we will make no attempt to review them all.
However, note that Prony’s and Pisarenko’s method
do not extend directly to 2-D, since there is no 2-
D version of the fundamental theorem of algebra, so
that root-based methods cannot be used directly on
2-D problems.

ESPRIT avoids this problem, but it introduces the
”matching problem” of associating the components of
2-D frequencies along each axis. This can be avoided
if the 2-D data windown (2-D array configuration) is
centrosymmetric by transforming the complex prob-
lem into a real-valued one, but that is not applica-
ble to the present problem unless data X(k1, k2) are
known in a rectangular region, which is not always
the case (e.g., limited-angle tomography).

Next, we show how to unwrap the 2-D problem
into a 1-D problem, allowing use of 1-D methods.

III. REFORMULATION OF 2-D AS 1-D

A. Good-Thomas FFT

The Good-Thomas FFT reformulates a (N1×N2)-
point 2-D DFT as an (N1N2)-point 1-D DFT using
a residue number system (RNS) indexing scheme. It
requires N1 and N2 to be relatively prime. Here we
derive it for specifically N1 = N − 1 and N2 = N .
The exponent in the 2-D DFT (3) is

i1k1

N − 1
+

i2k2

N
=

Ni1k1 + (N − 1)i2k2

N(N − 1)

≡ (mod 1)
[i1 i2]

[
N 0
0 N − 1

] [
k1

k2

]

N(N − 1)

+
N(N − 1) [i1 i2]

[
1 1
−1 −1

] [
k1

k2

]

N(N − 1)

=
[i1 i2]

[
N

1−N

]
[N N − 1]

[
k1

k2

]

N(N − 1)
= ik

(10)
for i = Ni1 − (N − 1)i2

and j = Nk1 + (N − 1)k2

(11)
To obtain (i1, i2) from i, we use the following:

i ≡ i1 (mod N − 1)
i ≡ i2 (mod N)

(12)
which we recognize as the residue number system
(RNS) mapping.

B. Dual 2-D Harmonic Retrieval

Now define the region ω as having the same shape
as Ω but scaled by 1/2 in each dimension. The area
of ω is 1/4 the area of Ω; this equals the area of Θ.
Define s(i, j) using

{
s(i, j) = 0 for (i, j) ∈ Θ;
S(k1, k2) = 0 for (k1, k2) /∈ ω

(13)

After unwrapping, we can provide an explicit formula
for s(i, j). For now, note that there are just enough
linear equations to specify s(i, j) uniquely, except for
a scale factor. We now have

x(i, j)s(i, j) = 0 → X(k1, k2) ∗ ∗S(k1, k2) = 0 (14)

where ∗∗ denotes 2-D cyclic convolution. Since:

• X(k1, k2)=known for (k1, k2) ∈ Ω
• S(k1, k2) 6= 0 only for (k1, k2) ∈ ω
• ω has the same shape as Ω
• ω is 1/4 the area of Ω

X(k1, k2) ∗ ∗S(k1, k2) = 0 is a linear system of equa-
tions that determines S(k1, k2) to a scale factor.

This is the dual 2-D harmonic retrieval problem.
The problem is that while S(k1, k2) encodes the lo-
cations (ik, jk) of the non-zero image pixels, it is not
evident how to extract that information, since there
is no 2-D version of the fundamental theorem of al-
gebra. This is why 2-D harmonic retrieval is harder
than 1-D harmonic retrieval, which can be solved by
simply computing the zeros of a polynomial.

C. Unwrapping 2-D to 1-D

In present context the solution is evident: unwrap
the 2-D problem to a 1-D problem. Repeating the
above 2-D exposition in 1-D, we define s(n) using

{
s(n) = 0 for n ∈ Θ′;
S(k) = 0 for k /∈ ω′

(15)

where Θ′, Ω′ and ω′ are the unwrapped versions of
Θ, Ω and ω, respectively. We now have

x(n)s(n) = 0 → X(k) ∗ S(k) = 0 (16)

4

where ∗ denotes 1-D cyclic convolution. This is a lin-
ear system of equations Xs = 0 with Toeplitz blocks
for the nonzero values of S(k). Solving this system
determines S(k) to a scale factor.

The difference from the 2-D case is that S(k) di-
rectly determines the locations (ik, jk) of the non-zero
image pixels–we need only compute the zeros of the
polynomial having S(k) as coefficients. While root-
ing a polynomial is far from trivial, we are searching
specifically only for zeros on the unit circle.

Alternatively, we can avoid polynomial rooting in
1-D problems by noting that the Toeplitz matrix X
is singular, since it has a non-zero null vector s. The
Toeplitz matrix can be extended by noting that every
(M ×M) minor of a matrix of rank M is zero. This
can be used to extrapolate S(k) until all its values
are known. An inverse DFT of S(k) yields s(n).

Another alternative, if more data are available, is
to use Pisarenko’s method instead of Prony’s method:

(XHX)s = XH0 = 0 (17)

This tends to collect any additive white noise in an
additive term σ2I, so that computing the eigenvector
associated with the minimum eigenvalue of (XHX)
(equivalently, the minimum singular vector of X)
yields a noise-resistant estimate of s. We will not
attempt to discuss here all of the methods for 1-D
harmonic retrieval. Also note the following:

• Unwrapped X(k) has strings of unknown values
• Unwrapped S(k) has strings of zeros
• Unwrapped X(k) ∗ S(k) is known=zero in strings
• Hence the linear system has Toeplitz blocks:
– Many matrix columns are multiplied by zero;
– Many matrix rows are discarded, since many rows

lead to an unknown right side of the equation.
• The 2-D cyclic convolution can be unwrapped to a
1-D cyclic convolution directly using Agarwal-Cooley
convolution, which uses the same RNS mapping as
the Good-Thomas FFT.

IV. NUMERICAL EXAMPLES

A. Example #1: Small 1-D Example

We use a small 1-D example to illustrate how a
piecewise-constant signal can be reconstructed from
a few DFT values. We are given the following 32-
point 1-D DFT values of a piecewise-constant signal
known to be zero at its endpoints:

X0 = 106.00 X1 = 7.62 + j37.04
X2 = −28.60 + j24.14 X3 = −9.89− j10.55
X4 = −26.73− j11.41 X5 = −7.04− j8.74
X6 = 1.39− j4.60 X7 = −7.56− j1.62

(18)
The DFTs of the differences x(n)−x(n−1) are com-
puted from these given DFT values by multiplying
Xk by (1 − e−j2πk/32). Using these new values, we
set up the following Hermitian Toeplitz matrix:




X0 X1 X2 X3 X4 X5 X6 X7

X−1 X0 X1 X2 X3 X4 X5 X6

X−2 X−1 X0 X1 X2 X3 X4 X5

X−3 X−2 X−1 X0 X1 X2 X3 X4

X−4 X−3 X−2 X−1 X0 X1 X2 X3

X−5 X−4 X−3 X−2 X−1 X0 X1 X2

X−6 X−5 X−4 X−3 X−2 X−1 X0 X1

X−7 X−6 X−5 X−4 X−3 X−2 X−1 X0




(19)
and compute its null vector

[A7 A6 A5 A4 A3 A2 A1 A0]′ (20)

This (8×8) matrix is found to have rank=7, so there
are only seven jumps in x(n). We obtain

A0 = −0.2085 + 0.5034j A1 = −0.1047− 0.3882j
A2 = 0.0972 + 0.0496j A3 = −0.1174− 0.1255j
A4 = 0.0710 + 0.1565j A5 = −0.0086− 0.1088j
A6 = 0.3186 + 0.2453j A7 = −0.5449 + j0.0000

(21)
The polynomial equation

A0z
7 + A1z

6 + . . . + A6z + A7 = 0 (22)

has the following roots:

{ej2.36, e−j2.75, ej1.37, e−j1.96, ej.40, e−j.98, e−j.39}
(23)

and − 32
2π times the phases of these roots is

{−12, 14,−7, 10,−2, 5, 2} ≡ {2, 5, 10, 14, 20, 25, 30}
(24)

These specify the locations of the jumps in x(n).
To compute the actual values of x(n), we solve the

following (7× 7) linear system of equations



e−j 2∗pi
32 (1)(2) e−j 2∗pi

32 (1)(5) e−j 2∗pi
32 (1)(10)

e−j 2∗pi
32 (2)(2) e−j 2∗pi

32 (2)(5) e−j 2∗pi
32 (2)(10)

e−j 2∗pi
32 (3)(2) e−j 2∗pi

32 (3)(5) e−j 2∗pi
32 (3)(10)

e−j 2∗pi
32 (4)(2) e−j 2∗pi

32 (4)(5) e−j 2∗pi
32 (4)(10)

e−j 2∗pi
32 (5)(2) e−j 2∗pi

32 (5)(5) e−j 2∗pi
32 (5)(10)

e−j 2∗pi
32 (6)(2) e−j 2∗pi

32 (6)(5) e−j 2∗pi
32 (6)(10)

e−j 2∗pi
32 (7)(2) e−j 2∗pi

32 (7)(5) e−j 2∗pi
32 (7)(10)




. . .

5

. . .




e−j 2∗pi
32 (1)(20) e−j 2∗pi

32 (1)(25) e−j 2∗pi
32 (1)(30)

e−j 2∗pi
32 (2)(20) e−j 2∗pi

32 (2)(25) e−j 2∗pi
32 (2)(30)

e−j 2∗pi
32 (3)(20) e−j 2∗pi

32 (3)(25) e−j 2∗pi
32 (3)(30)

e−j 2∗pi
32 (4)(20) e−j 2∗pi

32 (4)(25) e−j 2∗pi
32 (4)(30)

e−j 2∗pi
32 (5)(20) e−j 2∗pi

32 (5)(25) e−j 2∗pi
32 (5)(30)

e−j 2∗pi
32 (6)(20) e−j 2∗pi

32 (6)(25) e−j 2∗pi
32 (6)(30)

e−j 2∗pi
32 (7)(20) e−j 2∗pi

32 (7)(25) e−j 2∗pi
32 (7)(30)




×




x(2)− x(1)
x(5)− x(4)
x(10)− x(9)
x(14)− x(13)
x(20)− x(19)
x(25)− x(24)
x(30)− x(29)




=




X1

X2

X3

X4

X5

X6

X7




;




x(2)− x(1)
x(5)− x(4)
x(10)− x(9)
x(14)− x(13)
x(20)− x(19)
x(25)− x(24)
x(30)− x(29)




=




3
−2
3
−3
4
4
−9




(25)

Since we are given that x(0) = x(31) = 0 we have

x(n) = {00 3︸︷︷︸
3

1︸︷︷︸
5

4︸︷︷︸
4

1︸︷︷︸
6

5︸︷︷︸
5

9︸︷︷︸
5

00} (26)

Matlab code for implementing this example:

X=[0 0 3 3 3 1 1 1 1 1 4 4 4 4 1 1 1 1 1 1];
X=[X 5 5 5 5 5 9 9 9 9 9 0 0];
FX=fft(X);F=FX.*(1-exp(-j*2*pi*[0:31]/32));
T=toeplitz(F(1:8)’,F(1:8));A=flipud(null(T));
R=roots(A);N=-32*angle(R)/2/pi;
M=exp(-j*2*pi*[0:7]’*N/32);XX=M\F([1:8]).’;
B. Example #2: Small 2-D Example

We use a small limited-angle tomography problem
to illustrate the 2-D procedure. We are given these
values of the (10× 9) 2-D DFT of a sparse image:




X00 X11 X22

X01 X12 X23

X02 X13 X24

X03 X14 X33

X04 X44 X34


 =




14 + j21 −11.11 + j17.33 −4.65 + j13.66
−4.8− j1.27 −11.78 + j5.52 2.39− j3.04
−16.59− j7.7 −9.8− j1.52 −3.46− j14.27
−1.23− j6.87 4.13 + j4.75 −19.23 + j.339
−.716− j7.13 5.09− j4.81 −7.39 + j11




(27)
Note these values form a wedge shape in the Fourier
plane, as in a limited-angle tomography problem.
The complex conjugate values are unknown, since the
image is complex valued.

All but five of the image pixel values are zero. The
goal is to compute the locations and values of those
five non-zero pixels.

For this example, we have:

• Θ=locations of non-zero values of x(i, j);
• Θ has 5 elements but is otherwise unknown.
• Ω=locations of known values of X(k1, k2);

• Ω has 15 elements and is half of a (5× 5) square.
• ω=locations of non-zero values of S(k1, k2);
• ω has 6 elements and is half of a (3× 3) square.

The equation X(k1, k2) ∗ ∗S(k1, k2) = 0 becomes
the linear system of equations




X00 X11 X22 X01 X12 X02

X11 X22 X33 X12 X23 X13

X22 X33 X44 X23 X34 X24

X01 X12 X23 X02 X13 X03

X12 X23 X34 X13 X24 X14

X02 X13 X24 X03 X14 X04







S00

S11

S22

S01

S12

S02




=




0
0
0
0
0
0




(28)
Here we have pre-reversed (k1, k2) in k1 and k2 to
make the 2-D convolution easier to envision. Hence
the matrix have Hankel blocks, rather than Toeplitz
blocks. The reader should unwrap the 2-D convo-
lution into a 1-D convolution to envision how the
convolution works in 1-D.

The unwrapped S(k) consists of the just-computed
values of S(k1, k2) with bands of zeros inserted:

S(k) = {S00, S11, S22 , 0,︸︷︷︸
7

S01, S12 , 0,︸︷︷︸
8

S02} (29)

Next, we compute the zeros of the polynomial

S00z
20 + S11z

19 + S22z
18 + S01z

10 + S12z
9 + S02 = 0

(30)
Note that since the coefficients S(k1, k2) are complex,
polynomial zeros do not occur in complex conjugate
pairs. 5 of the 20 zeros of this polynomial lie on the
unit circle. These zeros are:

{e−j1.047, e−j0.768, e−j3.002, e−j3.072, e−j0.070} (31)

Multiplying the arguments by 90
2π yields the integers

{−15,−11,−43,−44,−1} (32)

These rewrap to x(i, j) by computing residues
mod(10) and mod(9), respectively, and reversing i
(due to the combination of reversing S(k1, k2) and
exchanging the spatial and wavenumber domains).

The locations, and their associated values (whose
computation is not shown here), turn out to be

x(3, 2) = 3 + j2;x(1, 7) = 1 + j7; x(4, 1) = 4 + j1
x(1, 8) = 1 + j8; x(5, 3) = 5 + j3

(33)

Matlab code for implementing this example:

X(4,3)=3+2j;X(2,8)=1+7j;X(5,2)=4+j;X(2,9)=1+8j;
X(6,4)=5+3j;X(10,9)=0; F=fft2(X);
T1=[F(1,1) F(2,2) F(3,3) F(1,2) F(2,3) F(1,3)];

6

T2=[F(2,2) F(3,3) F(4,4) F(2,3) F(3,4) F(2,4)];
T3=[F(3,3) F(4,4) F(5,5) F(3,4) F(4,5) F(3,5)];
T4=[F(1,2) F(2,3) F(3,4) F(1,3) F(2,4) F(1,4)];
T5=[F(2,3) F(3,4) F(4,5) F(2,4) F(3,5) F(2,5)];
T6=[F(1,3) F(2,4) F(3,5) F(1,4) F(2,5) F(1,5)];
T=[T1;T2;T3;T4;T5;T6];N=null(T);N=N.’;
A=[N(1:3) zeros(1,7) N(4:5) zeros(1,8) N(6)];
R=roots(A);I=45/pi*angle(R(abs(abs(R)-1)<.001));

I1=11-mod(I,10);I2=mod(I,9)+1;[I1 I2]

C. Example #3: Generalized Eigenvalue Problem

We now redo the above 2-D example using 2-D
unitary ESPRIT. Since the region of known values
of X(k1, k2) is not centrosymmetric, the matching
problem arises. We present a new procedure that
shows how to solve the matching problem.

First, the data given above is not sufficient to solve
the problem. We need the additional data points:

X05 = −7.55 + j1.01 X15 = 4.53− j4.41
X25 = −11.8 + j2.76 X35 = 6.21 + j5.40
X45 = −.825− j.819 X55 = −.65− j.151

(34)

This is still a limited-angle problem, but the maxi-
mum wavenumber of the data is larger by one. This
is another reason for favoring our previous method:
We now require 21/90 DFT values, instead of 15/90.

With this additional data, we can now form both

T0 =




X00 X11 X22 X01 X12 X02

X11 X22 X33 X12 X23 X13

X22 X33 X44 X23 X34 X24

X01 X12 X23 X02 X13 X03

X12 X23 X34 X13 X24 X14

X02 X13 X24 X03 X14 X04




(35)

T1 =




X11 X22 X33 X12 X23 X13

X22 X33 X44 X23 X34 X24

X33 X44 X55 X34 X45 X35

X12 X23 X34 X13 X24 X14

X23 X34 X45 X24 X35 X25

X13 X24 X35 X14 X25 X15




(36)

Solving the generalized eigenvalue problem for these
two matrices yields the eigenvalues

{e−j1.047, e−j0.768, e−j3.002, e−j3.072, e−j0.070, 0}
(37)

Multiplying the arguments of the non-zero eigenval-
ues by 90

2π yields the integers

{−15,−11,−43,−44,−1} (38)

and from this point we proceed as above.
The zero eigenvalue means that we could have re-

covered a sixth non-zero x(i, j). However, with more
data {Xk6, 0 ≤ k ≤ 6} (28/90 data points), we may
recover 1+2+3+4-1=9 non-zero x(i, j) using the 1-D

method, which requires only rooting a polynomial,
instead of a generalized eigenvalue problem.

Matlab code for implementing this example:

X(4,3)=3+2j;X(2,8)=1+7j;X(5,2)=4+j;X(2,9)=1+8j;
X(6,4)=5+3j;X(10,9)=0; F=fft2(X);
T1=[F(1,1) F(2,2) F(3,3) F(1,2) F(2,3) F(1,3)];
T2=[F(2,2) F(3,3) F(4,4) F(2,3) F(3,4) F(2,4)];
T3=[F(3,3) F(4,4) F(5,5) F(3,4) F(4,5) F(3,5)];
T4=[F(1,2) F(2,3) F(3,4) F(1,3) F(2,4) F(1,4)];
T5=[F(2,3) F(3,4) F(4,5) F(2,4) F(3,5) F(2,5)];
T6=[F(1,3) F(2,4) F(3,5) F(1,4) F(2,5) F(1,5)];
T=[T1;T2;T3;T4;T5;T6];
U1=[F(2,2) F(3,3) F(4,4) F(2,3) F(3,4) F(2,4)];
U2=[F(3,3) F(4,4) F(5,5) F(3,4) F(4,5) F(3,5)];
U3=[F(4,4) F(5,5) F(6,6) F(4,5) F(5,6) F(4,6)];
U4=[F(2,3) F(3,4) F(4,5) F(2,4) F(3,5) F(2,5)];
U5=[F(3,4) F(4,5) F(5,6) F(3,5) F(4,6) F(3,6)];
U6=[F(2,4) F(3,5) F(4,6) F(2,5) F(3,6) F(2,6)];

U=[U1;U2;U3;U4;U5;U6];45/pi*angle(eig(T,U))

