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Abstract— The problem of reconstructing images
from irregular frequency samples arises in synthetic
aperture radar (SAR), magnetic resonance imaging
(MRI), limited angle tomography, and 2-D filter de-
sign. Since there is no 2-D Lagrange interpolation for-
mula, this problem is usually solved using an iterative
algorithm such as POCS (Projection On Convex Sets)
or CG (Conjugate Gradient) applied to a linear sys-
tem of equations with the image pixels as unknowns.
However, these require many iterations, each requir-
ing a non-uniform forward 2-D Discrete Fourier Trans-
form (DFT). We present a non-iterative algorithm for
the reconstruction of an (M × M) image from a suffi-
cient number of 2-D Discrete-Time Fourier-Transform
(DTFT) samples. The algorithm uses Gabor logons,
localized in space and wavenumber, to partition the
problem into a set of smaller problems (divide-and-
conquer), each of which is solved and then combined
into the final reconstruction. The algorithm also can
be used to obtain a low-resolution but unaliased recon-
struction, and to regularize the problem by discarding
sub-problems that are themselves ill-conditioned.
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I. INTRODUCTION

A. Problem Statement

The goal is to reconstruct an (M × M) discrete
image x(i1, i2) from some of the values of its 2-D
Discrete-Time-Fourier-Transform (DTFT)

X(ω1, ω2) =

M−1
∑

i1=0

M−1
∑

i2=0

x(i1, i2)e
−j2π(ω1i1+ω2i2). (1)

We formulate the problem for square image support;
modification to non-square support is trivial. We as-
sume that the frequency locations are already known.

B. Problem Discussion

If the (M×M) 2-D DFT is known everywhere, then
clearly we can recover the (M × M) image using an
inverse 2-D DFT. But if the DFT is only known for
some of these DFT values, this will not work. While
interpolation can be used to resample the frequency
values to a rectangular lattice, this necessarily in-
volves some approximation and some computation.

The problem of reconstructing an image from its
irregular frequency samples arises in many applica-
tions. Some examples and the corresponding loca-
tions where the DTFT is known:

• SAR: On several arcs of points;
• CAT: On a polar raster of points;
• MRI: On a polar raster of points;
• fMRI: On a square spiral of points;
• Limited-angle tomography: In a bowtie region;
• 2-D FIR filter design: A prescribed response.

C. Previous Approaches

One approach is to use Projection Onto Convex
Sets (POCS). POCS alternately projects onto the
spatial domain (imposing finite (M × M) support)
and onto the DFT domain (imposing the known DFT
values). While this algorithm is guaranteed to con-
verge [1], there are several difficulties:

• Convergence requires many iterations, and algo-
rithms cannot be parallelized in iteration;
• The forward DTFT must be computed at each iter-
ation; this is a major problem in its own right. Using
an interpolated DFT [2],[3] helps;
• Roundoff error in DFTs over many iterations may
lead to problems in poorly conditioned problems,
since the inverse DFT is not an exact inverse to the
forward DFT in a finite-precision environment.

In [4] it is noted that, ”Since the computational cost
of the POCS method is several orders of magnitude
higher than other methods, and it provides only poor
rate of convergence, it is not included in our compar-
ison” (slightly edited).

Another approach is to compute the least-squares
solution by solving the (M2 × M2) linear system

(V HV )x = V Hb (2)
where
• V is a 2-D Vandermonde matrix;
• b is a vector of known DFT values;
• x is a vector of unknown pixel values.
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The matrix V HV has Toeplitz-block-Toeplitz (TBT)
structure [4],[5]. TBT matrix multiplication can be
implemented using (2M×2M) 2-D DFTs, suggesting
the use of a preconditioned conjugate gradient (CG)
algorithm. However, the following problems arise:

• Preconditioned CG still requires many iterations;
• Each iteration still requires three (2M × 2M) 2-D
DFTs to implement the convolution;
• Computing V Hb requires an (N × N) 2-D DFT;
• The condition number of V HV is the square of the
condition number of V . Since V is almost surely
already ill-conditioned, the noise amplification will
be enormous unless drastic regularization is used;
• The number of CG iterations increases (roughly)
with the condition number. Preconditioning helps,
but many iterations will still be required.

Other approaches unwrap the 2-D problem into 1-D
problems using either the Good-Thomas FFT [5] or
variable substitution [6],[7]. This allows the use of the
Lagrange interpolation formula, or a faster 1-D inter-
polation algorithm. An advantage of [5] is that given
DFT values can lie anywhere on a rectangular lattice.
The computation required has order N2 log2 N .

D. New Approach

The approach used in this paper summarizes as fol-
lows (more details are provided in the next section):

1. Project the image onto an over-complete set of
Gabor logons, with some overlap between subbands;
2. Each projection yields a self-contained finite-
support image reconstruction subproblem from irreg-
ular 2-D DTFT samples, which are now in a subband
of the original problem;
3. Each of these subproblems is solved separately, us-
ing any procedure. Any badly conditioned problem
can be regularized or even discarded;
4. The 2-D DFT of the solution to each subproblem
is computed, and the 2-D DFT of the Gabor logon
divided out where the latter is not close to zero;
5. The computed 2-D DFTs for each subband are
combined to give the 2-D DFT of the original image,
which is then computed with an inverse 2-D DFT.

Advantages of the new approach are as follows:

• A large problem is replaced with many smaller and
similar problems (divide-and-conquer);
• Each subproblem can be regularized independently,
depending on its conditioning. Poorly conditioned
or underdetermined subproblems (not enough fre-
quency samples in that subband) can be discarded

altogether, regularizing the overall problem;
• An unaliased low-resolution image can be recon-
structed using the lowest-frequency subband. This
may be sufficient for recognition in some applications.

II. NEW ALGORITHM

A. Gabor Logon

A Gabor logon is essentially a modulated Gaussian

φ(t, to, ω0) =
1√
2πσ

e−(t−to)2/(2σ2)ejωot (3)

Its exponential-squared dropoff in both time t and
frequency ω means that the Gabor logon has vir-
tually compact support in both time and frequency
centered in time at t = to and frequency at ω = ωo.
A Gaussian is used since it is most heavily concen-
trated in time and frequency; a parameter σ2 trades
off concentration in time and frequency.

Gabor logons are common choices for window func-
tion in the Short-Time Fourier Transform (STFT).
However we are NOT peforming a time-frequency de-
composition of the image reconstruction from irreg-
ular Fourier samples problem, since no explicit time-
frequency representation interpretation is necessary.

Here we make the following changes to the Gabor
logon basis function:

• We use discrete-time n instead of continuous-time;
• We use DTFT instead of Fourier transform to de-
fine its spectrum;
• We truncate in time n so that it has finite support;
• Despite these changes the spectrum has essentially
compact support.

Empirically we have observed that the basis function

φ(n, k) =

{

0.9n2/k for |n| ≤ 6
√

k
0 for |n| > 6

√
k

(4)

works well as a (1/2)k-band filter (e.g., k = 0 →
half-band filter). Note that since its dropoff is
exponential-squared in time, the duration of basis
function φ(n, k) does NOT increase by a factor of
k, but by

√
k. This means that the procedure of this

paper is more efficient for large k. Also note that
φ(n, k) has duration 12

√
k + 1.

B. Subband Subproblems

The 2-D DTFT of the projection having compact
(N × N) support (here ∗∗ denotes 2-D convolution)

y(i1, i2) = x(i1, i2) ∗ ∗φ(i1, k)φ(i2, k) (5)
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is essentially zero except for frequencies

|ω1|, |ω2| < π(1/2)k (6)

Downsampling y(i1, i2) by k leads to the following
subband subproblem:

• Reconstruct N × N subimage y(ki1, ki2), where
• N = (M + 12

√
k)/2k from

• Frequency samples X(ω1, ω2)Φ(ω1)Φ(ω2);
• all in the original subband |ω1|, |ω2| < π(1/2)k;
• now expanded to the full band |ω1|, |ω2| < π.

For example, let the original image is (128 × 128).
Using k = 3, we decompose the original problem into

2k2
= 232

= 64 subproblems, each requiring recon-
struction of an (N × N) subimage where

N = (128 + 12
√

8)/23 = 20.2 → N = 21 (7)

from its 2-D DTFT frequency samples

X(8ω1i, 8ω2i)), |ω1|, ω2| < π/8 (8)

in a subband of the original problem. This requires
the solution of 64 linear systems with 212 = 441 un-
knowns, instead of one with 1282 = 16384 unknowns.

C. Complete Procedure

1. Define 2k2
subproblems as above, using modula-

tion either to shift the subproblem to the origin, or
to shift the basis function to the frequency subband;
2. Solve each subproblem separately;

3. Do this in parallel for each of the 2k2
subproblems;

4. Compute an (N × N) 2-D DFT of the solution;
5. Divide this point-by-point by the 2-D DFT of the
downsampled φ(n, k)

6. Combine these 2k2
2-D DFTs (one for each of 2k2

subbands) into the 2-D DFT of the overall image;
7. Use overlapping subbands so frequencies at which
φ(n, k) is small can be discarded.

III. EXAMPLE

The image “Lena” was downsampled for the (128×
128) original image. Its (512 × 512)-point 2-D DFT
was computed, and sampled irregularly. To make
the computational savings even more dramatic, the
sampling was chosen to be separable, but differently

separable, within each of the 64 (64 × 64) subbands.
As noted above, each subproblem was to recon-

struct a (21 × 21) image from samples within a

(64 × 64) subband. Separable sampling used 22 out
of 64 frequency values in each of the two subband di-
mensions. This yielded 44 systems of 22 equations in
21 unknowns for each subproblem (a (21×21) matrix
inversion and two matrix multiplications).

The unaliased low-resolution reconstruction from
the lowest subband is shown.

Student Version of MATLAB

Fig. 1. Low-resolution reconstruction

load lena.mat;X=xx(1:2:256,1:2:256);FX=fft2(X,512,512);
G=0.993.̂([-20:20].̂2);GG=G’*G;FGG=fft2(GG,512,512);
FY=FX.*FGG;FG21=FGG([1:33 482:512],[1:33 482:512]);
K=[2 4 7 8 9 13 17 20 24 28 31];
A=exp(-2j*pi*([K 66-fliplr(K)]-1)’*[0:20]/64);
Y4H=A\FY(:,[K 514-fliplr(K)]).’;
Y4HAT=A\Y4H(:,[K 514-fliplr(K)]).’;
Y=ifft2(FY);Y4=64*Y(1:8:168,1:8:168);
X4HAT=ifft2(fft2(Y4HAT,64,64)./FG21);
imagesc(real(X4HAT(1:32,1:32))),colormap(gray),axis off
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