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Abstract— We solve the 2-D and 3-D blind deconvo-
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and an unknown even (symmetric) spatially-varying
point-spread function (PSF) from their 2-D or 3-D
convolution. The image need not have any sort of sup-
port, so that (1) the image may be part of a bigger
scene; and (2) the PSF may be different for different
parts of the bigger scene. The image is assumed to be
spatially bandlimited; this replaces the support con-
straint. The procedure is direct, in that the image
is reconstructed directly from the data; deconvolution
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incorporation of image regularization into the recon-
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I. INTRODUCTION

A. Blind Deconvolution Overview

The problem of reconstructing a 2-D image from its
2-D convolution with an unknown blurring or point-
spread function (PSF) arises in several disciplines [1],
including image restoration from an unknown blur-
ring agent, remote sensing through the atmosphere,
and medical imaging. For a good review of the his-
tory and applications of this problem, see [1].

Most images are approximately bandlimited to the
extent that they may be spatially sampled. This
leads to the discrete version of this problem, in
which a discrete image is to be reconstructed from its
discrete convolution with an also-unknown discrete
point-spread function (PSF). If the PSF is known,
this becomes the solution of a linear system of equa-
tions, which is often ill-conditioned. When the PSF
is unknown, the problem is even harder.

A common approach for blind deconvolution prob-
lems is to use an iterative transform algorithm [1],[3]
which alternates between spatial and wavenumber
domains. However, these algorithms often stagnate,
failing to converge to a solution [3],[4]. Other ap-
proaches require the computationally expensive and
extremely unstable numerical operation of tracking

zero sheets of algebraic functions [4], or statistical
estimation algorithms that also may not converge.
Another iterative approach (NAS-RIF) [5] is guaran-
teed to converge, but it requires that an inverse filter
for the PSF exist and have small spatial support. We
will not attempt to list all approaches here.

The problem addressed in this paper should be dis-
tinguished from the problem of multiple-blur blind
deconvolution, which has been addressed in many re-
cent papers, e.g., [6]-[8]. In the latter problem, a
single unknown signal or image is filtered with sev-
eral unknown PSFs (which are assumed to be lin-
early independent), resulting in several known out-
puts. This is conceptually a much simpler problem
than the single-blur blind deconvolution problem ad-
dressed in this paper. To see this quickly, note that
an unknown 1-D signal with compact support can be
recovered from its convolutions with two unknown 1-
D PSFs with compact support by simply computing
the greatest common divisor of the z-transforms of
the two convolutions.

B. Partial Data Problem

In many applications, in particular remote sensing,
the unknown image does not have compact support.
Rather, it is just part of a bigger image of indefinite
spatial extent. The blurred image that is the data is
actually smaller than the image to be reconstructed.
This is called the partial data problem [7].

The difficulty of the partial data problem can be
seen by noting that even if the PSF is known, the

image cannot be uniquely determined. This is ev-
ident since the deconvolution problem with known
PSF becomes an underdetermined linear system of
equations. It is clear that in the single blur partial
data problem considered in this paper, some sort of
image model is required.

On the other hand, the partial data problem essen-
tially partitions the blind deconvolution into smaller
sub-problems. Each sub-problem is independent,
so PSFs for each sub-problem may be different.
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Hence an algorithm solving the partial data prob-
lem also solves the problem with a spatially-varying

PSF which is required not to vary only within a sub-
problem. The sub-problems need only share a single
image edge, in order to fix relative scale factors.

In many applications in optics, acoustics and elec-
tromagnetics, the PSF may be assumed to be an even
function of its spatial variables, by reciprocity. To
see this, let u(xo) be the electromagnetic or acoustic
field strength at spatial position xo. The response
u(yo) to an excitation or source s(xo) is u(yo) =
∫

G(yo, xo)s(xo)dxo, where G(yo, xo) is the Green’s
function. If the Green’s function is translation-
invariant, then G(yo, xo) = G(yo −xo). If reciprocity
holds, then G(yo, xo) = G(xo, yo) and G(·) is an even
function.

C. Approach Used in This Paper

This paper solves the 2-D and 3-D partial data
blind deconvolution problems by assuming that the
(sampled) discrete image is bandlimited, i.e., that the
original image was oversampled. This is certainly
a reasonable assumption in most image processing
problems. The bandlimit assumption amounts to a
support constraint in the wavenumber domain; this
replaces the support constraint in the spatial domain.

The approach used can be summarized as follows:

1. Partition the original problem into sub-problems,
for each of which the PSF is even and spatially in-
variant, and the sub-image is bandlimited;
2. Extrapolate the missing edge data in each blurred
sub-image. This can be done since each sub-image is
assumed to be bandlimited, so that the blurred sub-
image is also bandlimited, since the PSF is spatially
invariant. This converts the partial data sub-problem
into a full-data sub-problem;
3. Partition each full data sub-problem into 1-D full
data problems, using the discrete Fourier transform;
4. Solve each 1-D problem directly for the sub-image
using resultants. This makes the overall procedure
a “direct” procedure; the PSF is never used. Image
regularization techniques can be applied here;
5. Recombine the reconstructed sub-images, fixing
the relative scale factors as described below.

The Fourier decoupling and solution of 1-D problems
has been presented previously in [10] and [11] for the
2-D and 3-D problems, respectively. However, both
of these assumed an image having compact spatial
support. This paper shows how the assumption of
compact spatial support can be replaced with an as-
sumption of compact wavenumber support, which al-
lows application of our previous results to the partial
data problem. The technique presented here for es-

timation in noisy data is also new.
This paper is organized as follows. Section II for-

mulates the problem and the image and PSF models.
Section III presents the bandwidth extrapolation al-
gorithm, and uses the discrete Fourier transform to
decouple the 2-D or 3-D problem into 1-D problems.
Section IV presents a small illustrative example. Sec-
tion V presents and discusses numerical results. Sec-
tion VI concludes with a summary and suggestions
for future work.

II. PROBLEM FORMULATION

A. Problem Statement

The 2-D discrete blind deconvolution problem is as
follows [1]. We observe

y(i1, i2) = h(i1, i2) ∗ ∗u(i1, i2) + n(i1, i2) (1)

where ∗∗ denotes convolutions in variables i1 and i2.
The 1-D convolution ∗ is defined here as

h(n) ∗ u(n) =

n
∑

i=0

h(n − i)u(i) =

n
∑

i=0

h(i)u(n − i) (2)

We assume h(i1, i2) 6= 0 only for 0 ≤ i1, i2 ≤ L − 1.
We do not assume that the image u(i1, i2) has com-
pact support. The 2-D blind deconvolution problem
is to reconstruct the image u(i1, i2) (and presum-
ably the PSF h(i1, i2)) from the known data y(i1, i2),
hence the term “blind deconvolution.” No stochastic
assumptions are made about either the image or the
point-spread function. This precludes use of methods
based on cumulants, ARMA or Poisson image models
or stochastic equalization.

To solve the overall 2-D blind deconvolution prob-
lem, we partition it into sub-problems. For each sub-

problem, we make the following assumptions:

1. u(i1, i2) 6= 0 only for 0 ≤ i1, i2 ≤ M − 1;
2. h(i1, i2) 6= 0 only for 0 ≤ i1, i2 ≤ L − 1;
3. h(i1, i2) = h(L − 1 − i1, L − 1 − i2) (even PSF);
4. y(i1, i2) 6= 0 only for L − 1 ≤ i1, i2 ≤ M − 1;
5. n(i1, i2) is a zero-mean 2-D white Gaussian noise
random field;
6. All quantities are real functions.

For each sub-problem, the problem is to reconstruct
the M×M portion of the image from the (M−L+1)×
(M−L+1) portion of the data. Note that the blurred
image y(i1, i2) is smaller than the image u(i1, i2).
This means that y(i1, i2) for L − 1 ≤ i1, i2 ≤ M − 1
does not depend on any part of the image outside
the square 0 ≤ i1, i2 ≤ M −1. Hence, without loss of
generality, we can set the image equal to zero outside
this, making the sub-problem easier to visualize.
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B. Problem Ambiguities

There are three trivial ambiguities in the 2-D blind
deconvolution problem:

1. Scale factor: If {h(i1, i2), u(i1, i2)} is a solution,
then {ch(i1, i2),

1

cu(i1, i2)} is also a solution for any
real constant c. If c cannot be determined from the
image energy, it usually is irrelevant. We consider the
problem to be solved when the image is determined
to a scale factor;
2. Translation: If {h(i1, i2), u(i1, i2)} is a solution,
then {h(i1 + d1, i2 + d2), u(i1 − d1, i2 − d2)} is also a
solution for any constants d1, d2. We eliminate this
ambiguity by specifying the supports;
3. Exchange: We need to be able to distinguish
h(i1, i2) from u(i1, i2). Since we need M > L above,
this is not a problem here.

We also assume that the 2-D z-transforms

H(x, y) =

L−1
∑

i1=0

L−1
∑

i2=0

h(i1, i2)x
−i1y−i2

U(x, y) =

M−1
∑

i1=0

M−1
∑

i2=0

u(i1, i2)x
−i1y−i2 (3)

are irreducible (they cannot be factored) for each sub-
problem. This is almost surely true [1].

C. Image and PSF Models

We assume that the sub-image u(i1, i2) is bandlim-
ited. This replaces the support constraint often im-
posed in the spatial domain. In particular, we assume
that, for some integer K,

U(k1, k2) = 0 for
M

2
− K ≤ i1, i2 ≤ M

2
+ K (4)

where the (M × M) 2-D discrete Fourier transform
(DFT) is defined as

U(k1, k2) =

M−1
∑

i1=0

M−1
∑

i2=0

u(i1, i2)e
−j2π

i1k1+i2k2

M2 . (5)

Note that bandlimitation of an image does not imply
bandlimitation of its sub-images. In practice the sub-
images also turn out to be bandlimited, provided they
are not too small.

The PSF is assumed to be an even function, as
noted above, so that

h(i1, i2) = h(L − 1 − i1, L− 1 − i2). (6)

In practice the PSF is often an even function, for rea-
sons noted above. Its significance in this paper is that

a 2-D or 3-D blind deconvolution problem with an
even PSF can be decoupled into 1-D problems with
even PSFs using the DFT. This decoupling greatly
speeds up the algorithm.

However, we do not need to know the size L of
the PSF. This is significant, since this information is
often not available. All we need is

((
M

2
+ K) − (

M

2
− K) + 1) >

((M + L − 1) − (M − L + 1) + 1)

→ K > (L − 1) (7)

so that the number of wavenumbers (k1, k2) at which
U(k1, k2) = 0 exceeds the number of unknown
blurred image pixels y(i1, i2) in the partial data prob-
lem. This suggests that the above quantities should
be squared or cubed, but since the 2-D or 3-D prob-
lem is decoupled into 1-D problems, the above ex-
pression is pertinent for our algorithm.

III. BANDWIDTH EXTRAPOLATION AND

FOURIER DECOUPLING

A. 1-D Extrapolation

Consider the problem of extrapolating a 1-D ban-
dlimited signal:

1. x(n) = 0 outside 0 ≤ n ≤ M − 1;
2. x(n) is known for K ≤ n ≤ M − 1 − K;
3. x(n) is unknown for 0 ≤ n ≤ K − 1;
4. x(n) is unknown for M − K ≤ n ≤ M − 1;
5. X(k) = 0 for M

2
− K ≤ k ≤ M

2
+ K

Here X(k) is the M -point 1-D DFT of x(n), defined
as above. The goal is to compute the unknown values
of x(n) from the known ones, using the fact that x(n)
is bandlimited.

The solution satisfies the linear system of equations

K−1
∑

n=0

x(n)e−j2π nk
M +

M−1
∑

n=M−K

x(n)e−j2π nk
M =

−
M−1−K

∑

n=K

x(n)e−j2π nk
M for

M

2
− K ≤ k ≤ M

2
+ K (8)

which is a linear system of 2K equations (if M is
odd) in 2K unknowns (2K+1 equations if M is even,
due to the extra equation at k = M/2). By taking
periodic extensions, the unknown values of x(n) can
be viewed as being contiguous, so that the system
matrix is Vandermonde and thus guaranteed to be
nonsingular.

In fact, the extrapolation can be performed in
closed form [12],[13]. Let s(n) be the signal of length
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M − 2K defined from the coefficients of

S(z) = 1 +

M
2
−K−1
∏

k=K+1− M
2

(z − e
j2πk

M )

S(z) =

M−2K−1
∑

n=0

s(n)zn. (9)

Note that the M -point DFT S(k) of s(n) has the
property that

S(k) = 1 for

{

0 ≤ k ≤ M
2
− K − 1

M
2

+ K + 1 ≤ k ≤ M − 1

}

S(k) 6= 1 for
M

2
− K ≤ k ≤ M

2
+ K (10)

The statement above that x(n) is bandlimited can be
rewritten as

X(k)S(k) = X(k)

x(n) ∗ s(n) = x(n) (11)

which is an autoregression on x(n). This can be
used to compute the unknown values of x(n) from
the known values of x(n).

It should be noted that extrapolation is in general a
poorly-conditioned problem, in that the extrapolated
x(n) are sensitive to variations in the known x(n).
This is reflected in the large numbers that can arise
in s(n) [13]. This can be handled by regularization
of the linear system above.

B. 2-D and 3-D Extrapolation

Now consider the 2-D version of the 1-D problem:

1. x(i1, i2) = 0 outside 0 ≤ i1, i2 ≤ M − 1;
2. x(i1, i2) is known for K ≤ i1, i2 ≤ M − 1 − K;
3. x(i1, i2) is unknown for 0 ≤ i1, i2 ≤ K − 1;
4. x ∗ i1, i2) is unknown for M −K ≤ i1, i2 ≤ M − 1;
5. X(k1, k2) = 0 for M

2
− K ≤ k1, k2 ≤ M

2
+ K

Here X(k1, k2) is the M -point 2-D DFT of x(i1, i2),
defined above. The goal is to compute the unknown
values of x(i1, i2) from the known ones, using the fact
that x(i1, i2) is bandlimited.

Of course, this can be solved by setting up a linear
system as before. But note that a 2-D bandlimited
image is bandlimited in each spatial index separately.
So the 2-D extrapolation problem can be solved by:

1. Extrapolate each row of the image, regarding it as
a 1-D extrapolation problem;
2. Then, extrapolate each column of the image, re-
garding it as a 1-D problem. Also, extrapolate the
extra columns formed by the row extrapolations.

The 2-D extrapolation problem completely decouples
into 1-D problems. This is very significant in saving
computational time and storage.

The 3-D extrapolation problem also completely de-
couples into 2-D problems, which in turn decouple
into 1-D problems. In this case the computational
savings become enormous.

C. Fourier Decoupling

Here we follow [10]. Taking 2-D z-transforms (de-
fined above) of the basic equations for 2-D blind de-
convolution yields

Y (x, y) = H(x, y)U(x, y)

(xy)NY (
1

x
,
1

y
) = (xy)LH(

1

x
,
1

y
)(xy)M U(

1

x
,
1

y
)

H(x, y) = (xy)LH(
1

x
,
1

y
) (12)

These can be combined into

Y (x, y)(xy)M U(
1

x
,
1

y
) =

U(x, y)H(x, y)(xy)M U(
1

x
,
1

y
) =

U(x, y)(xy)LH(
1

x
,
1

y
)(xy)M U(

1

x
,
1

y
) =

U(x, y)(xy)NY (
1

x
,
1

y
) (13)

Let xk = ej2πk/N and yk similarly. Setting y = yk,

Y (x, yk)(xyk)MU(
1

x
,

1

yk
) = (xyk)NY (

1

x
,

1

yk
)U(x, yk) (14)

Since y(i1, i2) and u(i1, i2) are real, by conjugate
symmetry we have

U(
1

x
,

1

yk
) = U∗(

1

x∗
,

1

y∗
k

) = U∗(
1

x∗
, yk) (15)

and similarly for Y (·), since yky∗
k = 1. Hence

Y (x, yk)(ykx)MU∗(
1

x∗
, yk) =

(ykx)NY ∗(
1

x∗
, yk)U(x, yk) (16)

We recognize this as a decoupled (in k) set of 1-D
complex-valued blind deconvolution problems. Each
of these can be solved in parallel, as we show in the
next section.

IV. SMALL ILLUSTRATIVE EXAMPLE

A. 1-D Problem Solution

The equations above can be solved by equating co-
efficients of xn, since two polynomials are equal if
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and only if their corresponding coefficients are equal.
This results in a Sylvester linear system of equations,
with the (complex) coefficients ũ(i1, k) of U(x, yk) as
unknowns. This is repeated for each value of yk. An
inverse 1-D DFT gives u(i1, i2).

Solution of the 1-D blind deconvolution problem
amounts to finding the polynomial greatest common
divisor of Y (x, yk) and its complex conjugate reversal
xNY ∗( 1

x∗
, yk). There is no ambiguity (besides scale

factor), provided Y (x, yk) has no zeros in conjugate
reciprocal pairs. In particular Y (x, yk) should have
no zeros on the unit circle. Note that bandlimited
signals seldom have zeros on (vs. near) the unit circle
(other than at −1, and this can be avoided by using
a DFT of odd order).

B. Illustrative Example: Problem Statement

The procedure is best illustrated with a simple and
small example. Consider the 2-D blind deconvolution
problem













a b c d e
f g h i j
k l m n p
q r s t u
v w x y z













∗
[

α β
β α

]

=















∗ ∗ ∗ ∗ ∗ ∗
∗ 106 331 179 242 ∗
∗ 403 579 298 171 ∗
∗ 219 298 563 379 ∗
∗ 258 259 419 138 ∗
∗ ∗ ∗ ∗ ∗ ∗















(17)

where ∗ denotes an unknown observation. This is a
partial data problem; the 5×5 “image” could be part
of a larger image, since no edge information is used
in the given observations of the blurred image. Note
that the 2 × 2 PSF is an even function, as required
by our algorithm.

Although we have no compact support constraint
for the image, we do know that the (6× 6)-point 2-D
DFT of the (zero-padded) image has form

U(k1, k2) =















∗ ∗ 0 ∗ 0 ∗
∗ ∗ 0 ∗ 0 ∗
0 0 0 0 0 0
∗ ∗ 0 ∗ 0 ∗
0 0 0 0 0 0
∗ ∗ 0 ∗ 0 ∗















(18)

This means that the 5×5 image is known to have its
2-D discrete space Fourier transform components at
ωx = π/3 and ωx = π/3 equal to zero. That is,

U(2, k2) = U(k2, 2) = 0

U(4, k2) = U(k2, 4) = 0 (19)

where U(k1, k2) is the (6 × 6)-point 2-D DFT of the
zero-padded image. Note that the highest wavenum-
ber component is not assumed to be zero.

C. Illustrative Example: Extrapolation

The second column of the blurred image is extrap-
olated as follows. Since Y (2, k2) = Y (4, k2) = 0,

y(0, 2) + y(5, 2)e−j2π 5·2
6 =

−106e
−j2π1·2

6 − 403e
−j2π2·2

6

−219e
−j2π3·2

6 − 258e
−j2π4·2

6 (20)

Taking real and imaginary parts yields

y(0, 2) − y(5, 2)
1

2
=

1

2
(106 + 403 + 258)− 219

y(5, 2)

√
3

2
=

√
3

2
(106 − 403 + 258) (21)

which yields

y(0, 2) = 145; y(5, 2) = −39. (22)

Extrapolating the other columns, and then rows, of
the blurred image yields the full blurred image

y(i1, i2) =

















111 145 292 35 1 −146
169 106 331 179 242 17
276 403 579 298 171 −5
35 219 298 563 379 300
−23 258 259 419 138 137
−130 −39 11 300 209 159

















(23)

D. Illustrative Example: Fourier Decoupling

Setting k2 = 1 produces the following 1-D blind
deconvolution problem:

ỹ(n, 1) = ũ(n, 1) ∗ h̃(n, 1)

where ỹ(n, 1) =
1

6

5
∑

k=0

Y (k, 1)ej2πnk/6 and

[

h̃(0, 1), h̃(1, 1)
]

= e−j2π/6

[

h̃(1, 1)∗, h̃(0, 1)∗
]

ỹ(0, 1) = y0 = 071 + j504.03

ỹ(1, 1) = y1 = 235 + j154.15

ỹ(2, 1) = y2 = 198 + j706.68

ỹ(3, 1) = y3 = 607− j140.30

ỹ(4, 1) = y4 = 443 + j209.58

ỹ(5, 1) = y5 = 480− j342.95 (24)
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E. Illustrative Example: 1-D Problem Solution

Next, we would normally solve the equation

ỹ(n, 1) ∗ ũ∗(5 − n, 1) =

e−j2π/6ỹ∗(5 − n, 1) ∗ ũ(n, 1) (25)

by computing the null vector of the (10 × 10) Syl-
vester matrix
































y0 0 0 0 0 y∗
5 0 0 0 0

y1 y0 0 0 0 y∗
4 y∗

5 0 0 0
y2 y1 y0 0 0 y∗

3 y∗
4 y∗

5 0 0
y3 y2 y1 y0 0 y∗

2 y∗
3 y∗

4 y∗
5 0

y4 y3 y2 y1 y0 y∗
1 y∗

2 y∗
3 y∗

4 y∗
5

y5 y4 y3 y2 y1 y∗
0 y∗

1 y∗
2 y∗

3 y∗
4

0 y5 y4 y3 y2 0 y∗
0 y∗

1 y∗
2 y∗

3

0 0 y5 y4 y3 0 0 y∗
0 y∗

1 y∗
2

0 0 0 y5 y4 0 0 0 y∗
0 y∗

1

0 0 0 0 y5 0 0 0 0 y∗
0

































(26)

The lower half of the null vector is ũ(n, 1), to a scale
factor.

However, for this particular problem there is an
ambiguity. Since the signal ũ(n, 1) does have two
zeros on the unit circle at e±j2π/3, there is an am-
biguity in the 1-D blind deconvolution problem. In
fact, the rank of the above (10× 10) matrix is seven,
as it should be here.

One way around this would be to note that since
signal ũ(n, 1) is known to have zeros at e±j2π/3,
ỹ(n, 1) also has these zeros, and they can be de-
convolved from ũ(n, 1). However, this is undesir-
able for numerical reasons (deconvolution is often ill-
conditioned).

A better way is to include the zeros e±j2π/3 in
h̃(n, 1). Thus, compute the null vector of the (8× 6)
Sylvester matrix

























y0 0 0 y∗
5 0 0

y1 y0 0 y∗
4 y∗

5 0
y2 y1 y0 y∗

3 y∗
4 y∗

5

y3 y2 y1 y∗
2 y∗

3 y∗
4

y4 y3 y2 y∗
1 y∗

2 y∗
3

y5 y4 y3 y∗
0 y∗

1 y∗
2

0 y5 y4 0 y∗
0 y∗

1

0 0 y5 0 0 y∗
0

























(27)

and then convolve the lower half of the result with
[1, 1, 1] to restore the zeros at e±j2π/3. The null vec-
tor of the above matrix is

[.5, .1 − j.06, .4 + j.2, .13− j.44, .11− j.04, .34− j.40]
′

Convolving the lower half of this with [1, 1, 1] gives

[.13 − j.44, .24− j.48, .58− j.87, .45− j.44, .34− j.40]′

which is ũ(n, 1) to a scale factor of 1+2.2j
1000

.

F. Illustrative Example: Conclusion

ũ(n, k) for k = 0, 3, 5 can be found similarly; note
that ũ(n, 2) = ũ(n, 4) = 0. The scale factor ambigu-
ity of each 1-D problem can be addressed by repeat-
ing the entire procedure with horizontal and vertical
axes exchanged (see [10],[11] for details). An inverse
6-point 1-D DFT of ũ(i1, k) taking k to i2 then yields
u(i1, i2):













37 73 146 109 73
81 101 202 121 101
146 218 372 226 154
109 145 226 117 81
65 117 170 105 53













(28)

to a scale factor. Although it isn’t used, the PSF is

h(i1, i2) =

[

3 −2
−2 3

]

(29)

again to a scale factor.
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