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Abstract— The problem of reconstructing an image
from irregular frequency samples arises in synthetic
aperture radar (SAR), magnetic resonance imaging
(MRI), limited angle tomography, and 2-D filter de-
sign. Since there is no 2-D Lagrange interpolation
formula, this problem is usually solved using an itera-
tive algorithm, such as POCS (Projection Onto Con-
vex Sets), or CG (Conjugate Gradient) applied to a
linear system of equations with the image pixels as
unknowns. However, these require many iterations,
and each iteration requires a non-uniform forward 2-
D Discrete Fourier Transform (DFT). We present a
non-iterative algorithm for the reconstruction of an
(M × M) image from a sufficient number of arbitrary
samples of its (N × N) 2-D DFT, where N >> M . The
algorithm requires only a single sparse (N × N) 2-D
DFT, followed by two roughly (M × M) 2-D DFTs.
Precomputation for a given configuration of irregular
(N × N) 2-D DFT samples is also required. Small and
large examples illustrate the algorithm.
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I. INTRODUCTION

A. Problem Statement

The goal is to reconstruct a real-valued (M × M)
discrete image x(i1, i2) from some of the values of its
(N × N) 2-D DFT

X(k1, k2) =

N−1
∑

i1=0

N−1
∑

i2=0

x(i1, i2)e
−j 2π

N2
(i1k1+i2k2). (1)

We formulate the problem for square image support
and DFT size; modification to the rectangular cases
is trivial. We assume that the given DFT values are
in complex conjugate pairs and that the frequency
locations are already known.

B. Problem Discussion

If the (N×N) 2-D DFT is known everywhere, then
clearly we can recover the (M × M) image using an
inverse 2-D DFT. But if the DFT is only known for
some of these DFT values, this will not work. While
interpolation can be used to resample the frequency
values to a rectangular lattice, this necessarily in-
volves some approximation and some computation.

The problem of reconstructing an image from its
irregular frequency samples (arbitrary values of its
(N × N) 2-D DFT where N is large) arises in many

applications. Some examples and the corresponding
locations where the DFT is known:

• SAR: On several arcs of points;
• CAT: On a polar raster of points;
• MRI: On a polar raster of points;
• fMRI: On a square spiral of points;
• Limited-angle tomography: In a bowtie region;
• 2-D FIR filter design: A prescribed response.

C. Previous Approaches

One approach is to use Projection Onto Convex
Sets (POCS). POCS alternately projects onto the
spatial domain (imposing finite (M × M) support)
and onto the DFT domain (imposing the known DFT
values). While this algorithm is guaranteed to con-
verge [1], there are several difficulties:

• Convergence requires many iterations, and algo-
rithms cannot be parallelized in iteration;
• The (N × N) DFT must be computed at each it-
eration. Even a pruned DFT requires much compu-
tation. Using an interpolated DFT [2],[3] helps;
• Roundoff error in DFTs over many iterations may
lead to problems in poorly conditioned problems,
since the inverse DFT is not an exact inverse to the
forward DFT in a finite-precision environment.

In [4] it is noted that, ”Since the computational cost
of the POCS method is several orders of magnitude
higher than other methods, and it provides only poor
rate of convergence, it is not included in our compar-
ison” (slightly edited).

Another approach is to compute the least-squares
solution by solving the (M2 × M2) linear system

(V HV )x = V Hb (2)

• V is a 2-D Vandermonde matrix;
• b is a vector of known DFT values;
• x is a vector of unknown pixel values.

The matrix V HV has Toeplitz-block-Toeplitz (TBT)
structure [4],[5]. TBT matrix multiplication can be
implemented using (2M×2M) 2-D DFTs, suggesting
the use of a preconditioned conjugate gradient (CG)
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algorithm. However, the following problems arise:

• Preconditioned CG still requires many iterations;
• Each iteration still requires three (2M × 2M) 2-D
DFTs to implement the convolution;
• Computing V Hb requires an (N × N) 2-D DFT;
• The condition number of V HV is the square of the
condition number of V . Since V is almost surely
already ill-conditioned, the noise amplification will
be enormous unless drastic regularization is used;
• The number of CG iterations increases (roughly)
with the condition number. Preconditioning helps,
but many iterations will still be required.

Other approaches unwrap the 2-D problem into 1-D
problems using either the Good-Thomas FFT [5] or
variable substitution [6],[7]. This allows the use of the
Lagrange interpolation formula, or a faster 1-D inter-
polation algorithm. An advantage of [5] is that given
DFT values can lie anywhere on a rectangular lattice.
The computation required has order N 2 log2 N .

D. New Approach

The approach used in this paper summarizes as fol-
lows (more details are provided in the next section):

• Precompute, for a given configuration of DFT sam-
ples, a filter which has zero magnitude response at all
unknown DFT sample locations;
• Compute the (sparse) (N × N) inverse 2-D DFT
of the image whose frequency content is known (and
filtered) and set to zero elsewhere;
• Deconvolve the original signal from this image and
the filter. This requires two (M × M) 2-D DFTs;
• The total computation is at most N 2 log2 N +
2M2 log2 M , or less if a sparse 2-D DFT is used.

II. NEW ALGORITHM

A. Filter Specification

Let Ω be the set of ordered pairs {(k1, k2)} for
which we know the (N × N) 2-D DFT X(k1, k2) of
the original image x(i1, i2). Then define the 2-D fil-
ter with 2-D impulse response h(i1, i2) and frequency
response H(k1, k2) as

h(i1, i2) = 0 for N − M + 1 ≤ i1, i2 ≤ N − 1

H(k1, k2) = 0 for (k1, k2) /∈ Ω

H(k1, k2) =

N−1
∑

i1=0

N−1
∑

i2=0

h(i1, i2)e
−j 2π

N2
(i1k1+i2k2) (3)

Note that the nonzero values of h(i1, i2) and
H(k1, k2) are known and determined (to an overall
scale factor) by the above conditions.

The filter is precomputed for each configuration of
known DFT values of interest. This is not a prob-
lem, since the frequency locations at which DFT val-
ues will be obtained are usually known in advance.
So filters for all configurations of interest can be pre-
computed and stored. Storage is more efficient in
the frequency domain, since fewer values of H(k1, k2)
than h(i1, i2) are nonzero.

B. Filter Size

The size of the filter is determined as follows:

• h(i1, i2) is (N − M + 1) × (N − M + 1);
• h(i1, i2) = 0 at N2 − (N − M + 1)2 points;
• H(k1, k2) = 0 at (N − M + 1)2 points;
• H(k1, k2) is arbitrary at N2−(N −M +1)2 points.

These numbers are specified as follows:

• h(i1, i2) ∗ x(i1, i2) must be N × N ;
• #unknowns=#equations in the linear system;
• H(k1, k2) known at N2 − (N − M + 1)2 points.

Note that if N >> M , then

N2 − (N − M + 1)2 ≈ 2NM = 2(
N

M
)M2 (4)

so that the original problem must be overdetermined
by a factor of 2N/M . This is not unreasonable; the
existence of a unique solution to the original prob-
lem may require more frequencies than the number
of image pixels [5]-[7]. Overdetermination is required
since the 2-D deconvolution into which the original
problem is transformed is itself overdetermined.

The filter could be computed by solving a large
linear system of equations, but POCS for this off-

line computation requires less storage. POCS was
used to determine the filters for the examples below.
No non-uniqueness issues have been encountered in
computing filters, but it is possible that the filters
themselves must also be overdetermined. Since this
means fewer frequencies would be required for the
original problem, this could only help.

C. Filter Approach

Now consider the filtered signal

y(i1, i2) =

N−1
∑

j1=0

N−1
∑

j2=0

h(j1, j2)x(i1 − j1, i2 − j2) (5)

Then the (N × N) 2-D DFT Y (k1, k2) of y(i1, i2) is

Y (k1, k2) =

{

H(k1, k2)X(k1, k2) for (k1, k2) ∈ Ω;
0 for (k1, k2) /∈ Ω

(6)
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Then we may compute x(i1, i2) by deconvolution of
the known h(i1, i2) from the known y(i1, i2) com-
puted from the known Y (k1, k2) using an (N × N)
inverse 2-D DFT. Note that Y (k1, k2) is sparse since
most of the (N × N) 2-D DFT values are zero.

Deconvolution can be accomplished by computing
the inverse 2-D DFT of the quotient of the 2-D DFTs
of y(i1, i2) and h(i1, i2). However, the 2-D DFT val-
ues of h(i1, i2) used for deconvolution must all be
nonzero. If N is an integer multiple of M , then an
(M×M) 2-D DFT must NOT be used here. Instead,
a DFT of slightly different order is used, so different
unit circle locations are sampled. Since M << N ,
this is not a problem computationally.

III. TINY EXAMPLE

A. Problem Specification

Consider the problem of reconstructing a 3×3 “im-
age” from its frequencies marked with an x below:



























x ∗ ∗ ∗ x ∗ ∗ ∗ x
∗ x ∗ ∗ x ∗ ∗ x ∗
∗ ∗ x ∗ x ∗ x ∗ ∗
∗ ∗ ∗ x x x ∗ ∗ ∗
x x x x x x x x x
∗ ∗ ∗ x x x ∗ ∗ ∗
∗ ∗ x ∗ x ∗ x ∗ ∗
∗ x ∗ ∗ x ∗ ∗ x ∗
x ∗ ∗ ∗ x ∗ ∗ ∗ x



























(7)

In this frequency sampling pattern:

• x denotes locations of known frequencies;
• ∗ denotes locations of unknown frequencies;
• The origin of the frequency plane is the center;
• The leftmost and rightmost columns are identical;
• The top and bottom rows are also identical;
• This polar raster is a type used in tomography;
• N = 8; M = 3; N2 − (N − M + 1)2 = 28;
• 28 values of (8 × 8) 2-D DFT are known;
• 36 values of (8 × 8) 2-D DFT are unknown.

This can be regarded as a tiny example of a tomog-
raphy problem, in which an image is reconstructed
from its projections at four angles.

B. Filter

The 6 × 6 filter h(i1, i2) is specified as follows:

h(i1, i2) = 0 for 6 ≤ i1, i2 ≤ 7

H(k1, k2) = 0 for (k1, k2) /∈ Ω

H(k1, k2) =

7
∑

i1=0

7
∑

i2=0

h(i1, i2)e
−j 2π

64
(i1k1+i2k2) (8)

Ω is the set of 28 locations marked with x above.
These 36 linear equations in 36 unknowns can be
solved either directly or by using POCS. The result
(rounded off) is

h(i1, i2) =

















1.1 .79 .56 .56 .79 1.1
.79 1.3 .84 .84 1.3 .79
.56 .84 1.4 1.4 .84 .56
.56 .84 1.4 1.4 .84 .56
.79 1.3 .84 .84 1.3 .79
1.1 .79 .56 .56 .79 1.1

















(9)

Note that the filter could be specified using either:

• 36 nonzero values of h(i1, i2);
• 28 nonzero values of H(k1, k2).

For this tiny example there is no reason to prefer
H(k1, k2) specification. But for realistic examples the
savings in storage can be substantial.

C. Solution

In particular, suppose we are given the (rounded)
(8 × 8) 2-D DFT values H(k1, 0 ≤ k2 ≤ 4) =

























45 36e−j0.9 −6− 15j 7.5ej1.4 15
38e−j1.12 32e−j2.0 ∗ ∗ ∗
−18− 15j ∗ −5 + 8j ∗ ∗

14ej1.9 ∗ ∗ 2.5ej2.8 ∗
15 ∗ ∗ ∗ 5

14e−j1.9 ∗ ∗ 1.5e−j0.9 ∗
−18 + 15j ∗ 5 + 4j ∗ ∗
38ej1.12 30ej0.2 ∗ ∗ ∗

























(10)
• H(0, 0) is now in the upper left corner;
• The polar raster pattern is thus altered;
• H(k1, 5 ≤ k2 ≤ 7) = H∗(8 − k1, 8 − k2);
• With conjugates, 28 of 64 values are known;
• The 36 unknowns are designated with ∗.

Now compute the (8 × 8) inverse 2-D DFT of

























45 36e−j0.9 −6− 15j 7.5ej1.4 15
38e−j1.12 32e−j2.0 0 0 0
−18− 15j 0 −5 + 8j 0 0

14ej1.9 0 0 2.5ej2.8 0
15 0 0 0 5

14e−j1.9 0 0 1.5e−j0.9 0
−18 + 15j 0 5 + 4j 0 0
38ej1.12 30ej0.2 0 0 0

























(11)

where again conjugate values have been omitted to
save space. The inverse 2-D DFT itself is omitted
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IMAGE RASTER RECON

Fig. 1. Square-Raster Reconstruction of Eye

here. Then deconvolving the filter h(i1, i2) above
from this inverse 2-D DFT results in the image

x(i1, i2) =





1 2 3
4 5 6
7 8 9



 (12)

Note that even for this tiny example, the computa-
tion of an (8×8) inverse 2-D DFT and a small decon-
volution is significantly smaller than that of solving
a linear system of equations with nine unknowns.

IV. SMALL EXAMPLE

Consider the problem of reconstructing a 10 × 10
image of an eye from its frequency values on the con-
centric squares lattice shown in Figure 1 below.

This square raster is applicable to tomography; dif-
ferent sampling rates are used for different projec-
tions to produce this pattern. In this case the DFT
transform size N need not be much larger than M ,
so that the tomography problem can be solved using
three 2-D DFTs, each of size roughly (M × M).
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