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Abstract— Parallel-beam tomography in which the

projection angles are unknown arises in MRI imag-

ing, due to involuntary patient movement, and also

in electron microscopic imaging of biological macro-

molecules, due to random orientation of many iden-

tical macromolecules. Subject to mild assumptions,

uniqueness of the solution has been demonstrated.

However, all previous algorithms for actually solving

the problem have iteratively solved for both the un-

known angles and the unknown image simultaneously,

which is time-consuming and computationally inten-

sive. We employ a new approach, based on the cir-

cular harmonic expansion, which decouples the angle

estimation problem from the image estimation prob-

lem. We then show that the angle estimation problem

can be transformed into a matrix eigenvalue problem

of size equal to the number of angles, which is much

less than the number of image pixels. Small and large

numerical examples are provided.
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I. INTRODUCTION

A. Overview

The basic parallel-beam tomography problem is to
reconstruct an image from its projections at many
different angles. These angles are often assumed to
be equispaced, so that filtered backprojection can be
used directly. Due to non-uniform rotation speed,
the angles may not be equispaced, but they are at
least assumed to be known.

However, there are situations in which the angles
are unknown. In MRI, patient motion during long
scan times can result in unknown angles. This is
usually compensated by estimating the patient mo-
tion; however, this is not always possible. Another
situation is electron microscopy of biological macro-
molecules (viruses), in which projection data at a
single angle is taken for a large number of identi-
cal macromolecules at various random and unknown
orientations. Assuming no overlapping for a single
projection, so that individual particles can be distin-
guished, this is the same as having projection data
at multiple but unknown angles.

Recently [1],[2] it has been shown that the projec-
tion (view) angles need not be known. Specifically,
if projection data at more than 24 unknown and dis-
tinct view angles is known, a 2-D image is almost

surely uniquely determined, to the obvious rotational
ambiguity (Corollary 2 of Theorem 3 of [1]). This ap-
proach uses moments of the image and is quite com-
plicated; we will not try to summarize it here.

This result was anticipated for the 3-D problem
[3],[4]. In [3] a solution for the 3-D viral imag-
ing problem noted above was presented. Unique-
ness was demonstrated for the 3-D problem using the
projection-slice theorem in [3] and [4]. However, this
approach cannot be used for the 2-D problem [3].

Moments of the image have been used to recon-
struct an unknown image from its projections at un-
known angles in [1], [3] and [5]. The approach used
here involves the Helgasson-Ludwig consistency con-
ditions for the Radon transform, which involve the
moments of the image. Conjectures made by the au-
thors of [3] and [5] were discussed in detail in [1].
Other papers by the same authors will not be dis-
cussed here, to save space.

Reconstruction algorithms were proposed in [2]-[6].
However, all of these algorithms attempt to recon-
struct simultaneously the unknown image and the
unknown angles, which is a huge nonlinear problem.
The algorithms are all iterative and require the solu-
tion of a large problem at each iteration.

B. New Approach

This paper uses the circular harmonic expansion
(CHE) approach to image reconstruction from pro-
jections. The CHE is essentially a Fourier series ex-
pansion in the angular variable, which is of course
periodic with period 2π. In the CHE domain, the
Radon transform becomes a set of decoupled Abel
transforms of various orders (see below). The CHE
has been applied to image reconstruction from pro-
jections in [7]-[13], with considerable success.

The value of employing a CHE approach to the un-
known view angles problem is that the problem of de-
termining the angles decouples from the image recon-
struction problem. That is, a small nonlinear prob-
lem is solved first, and the solution to that problem
(the view angles) is used to solve a large linear prob-
lem (the image reconstruction problem). Of course,
use of various estimation algorithms may result in
nonlinear formulations for the angle determination
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(AD) and image reconstruction (IR) problems, but
decoupling them is still valuable in that it greatly re-
duces computation, regardless of the approach and
algorithms used subsequently.

It should be emphasized that this is not the
more general problem examined in [1] and [2]. Use
of a truncated (finite series) CHP regularizes and
parametrizes the problem. The problem is still of
practical interest.

It should be noted that only the view angles are
assumed to be unknown; an unknown translational
shift in the projection data itself is not included. In
the terminology of [1], this is the ARP problem, not
the SHARP problem. However, this problem can be
solved by translating the projection data so its collec-
tive center of mass is at the origin, and solving that
problem for unknown angles ([1], page 1102).

This paper is organized as follows. Section II re-
view the CHE and formulates the problem. Section
III decouples the angle determination (AD) problem
from the image reconstruction (IR) problem. Sec-
tion III then transforms the AD problem into a small
matrix eigenvalue problem. Section IV provides a
tiny illustrative example of this procedure. Section
V presents numerical examples. Section VI concludes
with a summary and suggestions for future research.

II. CIRCULAR HARMONIC EXPANSION

A. Fourier Series Expansions

The projection p(r, θ), at view angle θ and distance
r from the origin, of the image x(ρ, φ), expressed in
polar coordinates, is defined as the Radon transform

p(r, θ) =

∫

∞

0

∫ 2π

0

x(ρ, φ)δ(r − ρ cos(θ − φ))ρ dφ dρ

(1)

The goal of the parallel-beam tomography problem is
to reconstruct the image x(ρ, φ) from a sampled set
of its projections {p(r, θ)}.

Since θ and φ are periodic with period 2π, both
p(r, θ) and x(ρ, φ) are expanded in Fourier series

p(r, θ) =
∞
∑

n=−∞

pn(r)ejnθ (2)

x(ρ, φ) =
∞
∑

n=−∞

xn(ρ)ejnφ (3)

Here the nth harmonics pn(r) and xn(ρ) of the pro-
jections and image, respectively, are defined as

pn(r) =
1

2π

∫ 2π

0

p(r, θ)e−jnθdθ (4)

xn(ρ) =
1

2π

∫ 2π

0

x(ρ, φ)e−jnφdφ (5)

These harmonics are related by [7]-[13]

pn(r) = An{xn(ρ)}

An{xn(ρ)} = 2

∫

∞

r

xn(ρ)
Tn(r/ρ)

√

1 − (r/ρ)2
(6)

Tn(x) = cos(n cos−1 x)

where Tn(x) is the Chebyschev polynomial of the first
kind of order n.

B. Abel Transform Inversion

The nth-order Abel transform An can be inverted
in closed form using either of these two formulae:

xn(ρ) = −
1

π

∫

∞

ρ

p′n(r)Tn(r/ρ)
√

r2 − ρ2
dr (7)

xn(ρ) =
1

π

∫ ρ

0

Un(r/ρ)p′n(r)dr

−
1

π

∫

∞

ρ

exp[−n cosh−1(r/ρ)]
√

r2 − ρ2
p′n(r)dr (8)

Un(x) = sin((n + 1) cos−1 x)/ sin(cos−1 x)

where Un(x) is the Chebyschev polynomial of the sec-
ond kind of order n.

The first formula appeared in [7] and is called
the “causal unstable” form in [10]. It properly re-
flects the causality property of the Radon transform:
{x(ρ, φ), ρ > Ro} depends only on {p(r, θ), r > Ro}.
However, the integrand diverges as ρ → 0 or n → ∞.

The first formula was used in [13] to develop a
causal state-space model for each An, using a Brow-
nian branch model as a prior for the harmonic. A
Kalman smoothing filter then gave results in additive
white Gaussian noise that were slightly superior to
filtered backprojection.

The second formula appeared in [8] and [10] and
is called the “noncausal stable” formula, since the
integrands are bounded for large n. It was used in
[10] to obtain good reconstructions, even in noise.
It was also noted in [10] that filtered backprojection
produces an image inconsistent with the original pro-
jections (i.e., reprojection does not produce the exact
same projections), while the CHE produces a recon-
structed image consistent with the projections.

The major point of the CHE formulation is that
the reconstruction from projections problem decou-

ples in harmonic order n. Using N harmonics and N
discretization points for computation of A−1

n permits
inversion using O(N2 log N) parallelizable computa-
tions, since the inverse Abel transform formulae can
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be converted into convolutions using exponential ra-
dial sampling [10]-[13], so that the FFT can be used.
This has been applied to region-of-interest tomogra-
phy [12],[13], as exponential radial sampling is fine
near the origin and coarse far away from the origin.

C. Problem Formulation

Let x(ρ, φ) be an image known to have:

• N nonzero circular harmonics x0(ρ) . . . xN−1(ρ).
Thus the image is angularly bandlimited. Note that
x−n(ρ) = x∗

n(ρ) by conjugate symmetry, for a total
of (2N − 1) real-valued functions of ρ;
• Compact support 0 ≤ ρ ≤ Ro, for some known Ro;
• Radial bandwidth such that (2N − 1) samples of ρ
are sufficient to specify x(ρ, φ) for 0 ≤ ρ ≤ Ro;
• Linearly independent sampled harmonics.

We will not address the issue of radial sampling here,
as many others have dealt with this subject.

Given projections (1) p(r, θ) of x(ρ, φ) for:

• (2N + 1) unknown angles θi, known to be distinct,
such that no two differ by or add to π (otherwise they
are not distinct);
• (2N−1) known samples ri of r. These samples need
not be equidistant; exponential (or some quadrature)
sampling may be used; for a total of:
• (2N + 1)(2N − 1) total data points,

the goals are to:

• Reconstruct the unknown angles θi and
• Reconstruct the unknown image x(ρ, φ),
• Both to the unavoidable rotational ambiguity (any
rotation of a solution will also be a solution).

The overall procedure will be to:

• Compute unknown angles θi (nonlinear problem);
• Compute the unknown projection harmonics pn(r)
(a linear problem);
• Compute N independent Abel transforms (linear);
• Compute x(ρ, φ) from the image harmonics xn(ρ).

From a degrees-of-freedom perspective, we have:

• (2N+1)(2N−1) equations (projections at (2N+1)
unknown view angles with (2N − 1) radial samples)
• In (2N+1)+(2N−1)2 unknowns ((2N+1) view an-
gles, and (2N − 1) real-valued image harmonic func-
tions with (2N − 1) radial samples each);
• So the problem is slightly overdetermined; (2N)
view angles would make it underdetermined by one.

Also note that the numbers of nonzero projection and
image harmonic complex functions are both N .

III. UNKNOWN ANGLES COMPUTATION

A. New Formulation

Define the matrices

P =







p(r1, θ1) · · · p(r2N−1, θ1)
... · · ·

...
p(r1, θ2N+1) · · · p(r2N−1, θ2N+1)






(9)

V =





ej(1−N)θ1 · · · ej(N−1)θ1

... · · ·
...

ej(1−N)θ2N+1 · · · ej(N−1)θ2N+1



 (10)

H =







p1−N (r1) · · · p1−N(r2N−1)
... · · ·

...
pN−1(r1) · · · pN−1(r2N−1)






. (11)

Truncating (2) to N nonzero harmonics yields

p(r, θ) =
N−1
∑

n=1−N

pn(r)ejnθ (12)

Then substituting

r = ri, i = 1 . . . (2N − 1)

θ = θj , j = 1 . . . (2N + 1)

yields the matrix equation

P = V H (13)
• P is known from the data;
• V and H are both unknown;
• V has Vandermonde structure.

The goal is to compute V and H from P .
Note that this is not the problem solved by Prony’s

method. Prony’s method computes N unknown poles
pi and unknown residues ci from a known segment of
length (2N + 1) of a time series y(n) by solving







y(0)
...

y(2N)






=









1 · · · 1
p1
1 · · · p1

N
... · · ·

...
p2N
1 · · · p2N

N













c1
...

cN



 (14)

Note that the matrix in Prony’s method is the
transpose of a Vandermonde matrix (some reverse
the definitions we have used of a Vandermonde ma-
trix and its transpose). Either way, we cannot use
Prony’s method or array processing algorithm that
solves the same problem, to solve the present one.
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B. Angle Computation

One way to solve our problem is to compute the
two left null vectors NT

1 and NT
2 of the matrix P

(these exist since P is (2N + 1) × (2N − 1)). Then

[0] = NT
i P = NT

i V H → [0]H−1 = [0] = NT
i V (15)

assuming H has full rank. This yields (4N−2) simul-
taneous polynomial equations in (2N + 1) unknowns
ejθi . By Bezout’s theorem, this overdetermined poly-
nomial system will almost surely not have more than
the one solution it is known to have.

Note this also decouples determination of the an-
gles from determination of the image, as desired.
Also note that (2N) angles, instead of (2N+1), would
result in an underdetermined problem, since there
will only be a single null vector, yielding (2N − 1)
equations in (2N) unknowns.

However, there is a better way, as we now demon-
strate. Define the matrices

P̃ =













p(r1, θ1) · · · p(r2N−1, θ1) 0
... · · · · · ·

...
p(r1, θ2N−1) · · · p(r2N−1, θ2N−1) 0
p(r1, θ2N+0) · · · p(r2N−1, θ2N+0) λ
p(r1, θ2N+1) · · · p(r2N−1, θ2N+1) µ













(16)

Ṽ =





ej(1−N)θ1 · · · ejNθ1

... · · ·
...

ej(1−N)θ2N+1 · · · ejNθ2N+1



 (17)

H̃ =









p1−N (r1) · · · p1−N (r2N−1) q0

... · · · · · ·
...

pN−1(r1) · · · pN−1(r2N−1) q2N−2

0 · · · 0 q2N−1









(18)

q(z) = q0 + q1z + . . . q2N−1z
2N−1

0 = q(z = ejθi), i = 1 . . . (2N − 1)

λ = q(z = ejθ2N ); λ unknown

µ = q(z = ejθ2N+1); µ unknown

(19)
Note that:

• P̃ = Ṽ H̃ is true, as was P = V H ;
• P̃ is known except for constants λ and µ;
• Ṽ is the Vandermonde extension of V ;
• H̃ is augmented by a row and column.

Now consider the effect of augmenting H̃ with any
column but its last circularly shifted down one. Us-
ing the Vandermonde structure of Ṽ , this augments

P̃ with its corresponding column with the nth ele-
ment multiplied by ejθn (this is essentially the delay
property of Fourier series).

This augmented P̃ has size (2N + 1) × (2N + 1),
and it is the product of the (2N + 1) × (2N) matrix
Ṽ and the (2N) × (2N + 1) matrix (augmented) H̃ .
Hence the augmented P̃ matrix is singular, and has
zero determinant. Computing this determinant and
setting it equal to zero yields a linear equation in the
unknown ejθi (except for the unknown λ and µ).

Performing this in turn for each of the first (2N−1)
columns of P̃ yields (2N − 1) linear equations in
(2N + 1) unknowns ejθi (except for the unknown λ
and µ). Augmenting these with the two linear equa-
tions obtained from the two left null vectors NT

1 and
NT

2 results in a generalized eigenvalue problem with
λ
µ

as the generalized eigenvalue and the ejθi as the
elements of the generalized eigenvector.

There is still one difficulty remaining. It is clear
that θn = 0 will satisfy all of the equations noted
so far, since setting ejθn = 1 means that all of the
determinants have two identical columns, so they are
all always zero. Unfortunately, the left null vectors
will not help here, since one of the columns of the
Vandermonde matrix consists of all ones. This is a
most unfortunate coincidence. Hence we need one
more equation for the ejθn . Of course, these are all
known to have unit magnitude, and this can be used,
but another linear equation would simplify matters.

IV. TINY EXAMPLE

To illustrate the above procedure for computing
the angles, we present a tiny example. For simplicity
we dispense with all of the Abel transform procedure,
since this is well-established [7]-[13]. We also do not
assume that the roots in the Vandermonde matrix lie
on the unit circle; instead we assume only that their
sum is zero (this is required to obtain an overdeter-
mined problem).

A. Problem Statement

We are given known projections at six angles, sam-
pled at four radii each. These are arranged into the
(6 × 4) matrix P

P =















22 20 20 18
−6 −12 −2 0
105 87 100 69
−210 −188 −200 −26
−513 −435 −500 −87
1278 996 1264 606















(20)

The goal is to determine a (6× 4) Vandermonde ma-
trix V and an arbitrary (4 × 4) matrix H such that
P = V H .
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B. Obtaining Linear Equations

Augmenting the matrices as discussed above, we
obtain















22ω1 22 20 20 18 0
−6ω2 −6 −12 −2 0 0
105ω3 105 87 100 69 0
−210ω4 −210 −188 −200 −26 0
−513ω5 −513 −435 −500 −87 λ
1278ω6 1278 996 1264 606 µ















=















ω0
1 ω1

1 ω2
1 ω3

1 ω4
1

ω0
2 ω1

2 ω2
2 ω3

2 ω4
2

ω0
3 ω1

3 ω2
3 ω3

3 ω4
3

ω0
4 ω1

4 ω2
4 ω3

4 ω4
4

ω0
5 ω1

5 ω2
5 ω3

5 ω4
5

ω0
6 ω1

6 ω2
6 ω3

6 ω4
6















×











0 h11 h12 h13 h14 q0

h11 h21 h22 h23 h24 q1

h21 h31 h32 h33 h34 q2

h31 h41 h42 h43 h44 q3

h41 0 0 0 0 q4











(21)

The (6 × 6) matrix is the product of (6 × 5) and
(5 × 6) matrices, so it is singular. Setting its deter-
minant equal to zero gives

[−1164240ω1 − 352800ω2 + 2469600ω3

+11113200ω4 − 12065760ω5]µ =
[9313920ω1 + 1128960 + ω2 − 31610880ω3

−8890560ω4 + 30058560ω6]λ (22)

C. Generalized Eigenvalue Problem

Proceeding similarly with columns #2-4 gives
three similar equations. Augmenting this with the
two left null vectors of the known (6 × 4) matrix P ,
and a row of ones (since the sum of the ωi is zero)
yields the generalized eigenvalue problem (matrix en-
tries are rounded)

µ



















−.116 −.035 .247 1.111 −1.21 0
−.106 −.071 .205 .995 −1.02 0
−.106 −.012 .235 1.06 −1.18 0
−.095 0 .162 .138 −.205 0
.769 −.277 −.57 −.011 .043 .05
0 .539 .216 −.73 .360 .05
0 0 0 0 0 0

































ω1

ω2

ω3

ω4

ω5

ω6















= λ



















.931 .113 −3.16 −.89 0 3.01

.847 .226 −2.62 −.80 0 2.34

.847 .038 −3.01 −.85 0 2.97

.762 0 −2.08 −.11 0 1.43
0 .540 −.216 −.73 .36 .045

.769 −.28 −.573 −.011 .04 .048
1 1 1 1 1 1

































ω1

ω2

ω3

ω4

ω5

ω6















(23)

Solving this generalized eigenvalue problem yields the

six generalized eigenvalues

λ

µ
= [0, 1,−1,

5

32
,

5

32
,

5

32
] (24)

There are always generalized eigenvalues at {0,±1};
the others are all clustered at the actual value of λ

µ
.

The generalized eigenvector associated with these is
the actual solution

[ω1, ω2, ω3, ω4, ω5, ω6] = [1,−1, 2,−3,−4, 5] (25)

to a scale factor.
The matrix H of sampled projection harmonics is

H =







3 1 4 1
5 9 2 6
5 3 5 8
9 7 9 3






(26)

which was constructed from the digits of π.
The polynomial q(z) and actual values of λ and µ:

q(z) = 6 − z − 7z2 + z3 + z4; λ = 90; µ = 576 (27)

D. Discussion

Note that there is an unavoidable scale factor am-
biguity in computing the ωi. In the unknown-angles
tomography problem it is known that

|ωi| = |eθi | = 1 (28)

and this scale-factor ambiguity implies that θi are
only determined to an additive constant. This is the
unavoidable rotational ambiguity noted earlier, aris-
ing automatically in our proposed procedure.

Also note that, due to algorithm error, the multiple
eigenvalue at 5/32 is split slightly among several close
values in a circle around the true value. Hence the
true value of λ

µ
can be found by averaging. Insert-

ing this value into the generalized eigenvalue prob-
lem yields a unique eigenvector since the problem is
overdetermined ((7 × 6) in this case).

Looking back at the problem statement, one may
wonder where the Vandermonde structure of V was
used. This is used implicitly when augmenting H̃
with one of its columns that has been circularly
shifted. The effect of this on P̃ is to multiply the
corresponding column point-by-point with {ωi}, due
to the Vandermonde structure of Ṽ .

V. EXAMPLES

VI. CONCLUSION
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