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A Real World Problem 

Acquired light microscopic 
image with a wide field 
microscope after extensive 
preparation of  Sample. Image 
of lower quality than needed.

Buy confocal microscope,
Re-prepare slides and

reaquire image

Hardware solution

Acquire point
Spread function (PSF)

Plug into one of the many
Deconvolution algorithms

Software solution

• Changing to confocal might not 
improve Image quality (esp thick 
samples.
• Preparation of slides might be very 
time consuming and expensive.
• Confocal microscopes can be very
expensive.

• PSF determination can be very
time consuming.
• Deconvolution algorithms can be
very slow and may require a lot
of memory. Running them on
large images may be intractable.

• Many deconvolution problems 
only work for certain types of 
images

• Many algorithms (esp. linear) 
can cause artifiacts. This can be
a big cause for concern for the 
biological researcher (Don’t want to

“discover” new structures)



The answer 

A method that can restore images that is 

• Cheap
• Fast
• Simple to use
• Robust i.e. is not sensitive to type or image or noise
• Does not require PSF estimation (hopefully)

The panacea? 

Blind Deconvolution

“It’s not only impossible, it’s hopelessly impossible”
Julian C Christou
European Southern Observatory



Deconvolution: Problem Definition
Compact Support Case

y(n1,n2) = h(n1,n2)** u(n1,n2) + n(n1,n2)

DATA              PSF                OBJECT         NOISE

where u(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ M-1
h(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ L-1
y(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ N-1    N=L+M-1
n(n1,n2) is zero mean 2-D white Gaussian noise

PROBLEM
Given only data y(n1,n2) reconstruct the object u(n1,n2)
and the PSF h(n1,n2) 

This is the linear deconvolution model. It is only valid for 
incoherent imaging systems.



Compact Support
Support: Smallest rectangle encompassing area of interest.

Compact support: Support of the image is finite and within boundaries of 
convolved image.

** =

MxM

LxL

M+L-1 x M+L-1

In other words, for the compact support deconvolution problem the entire
object of interest is assumed to be contained in the image.



Partial Data Problem

No assurance that complete object is contained in the given image 

y(n1,n2) = h(n1,n2)** u(n1,n2) + n(n1,n2)

DATA              PSF                OBJECT         NOISE

where u(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ M-1
h(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ L-1
y(n1,n2) = 0 unless L-1≤ n1,n2 ≤ M-1

PROBLEM
Reconstruct MxM portion of the image from (M-L+1)x (M-L+1) portion
of data. (blurred image is smaller than the object)

Partial data problem is much harder than the compact support problem. 
As there is no unique solution even if PSF is known.



Blind Deconvolution of even point 
spread functions from compact support 

images

An algorithm that performs blind deconvolution that is

• Fast

• Parallelizable

• A linear algebraic formulation 

• Non iterative (at least for the Least Squares solution)

What we are going to show…



Problem Formulation

y(n1,n2) = h(n1,n2)** u(n1,n2) + n(n1,n2)

DATA              PSF                OBJECT         NOISE

where u(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ M-1
h(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ L-1
y(n1,n2) = 0 unless 0 ≤ n1,n2 ≤ N-1    N=L+M-1
n(n1,n2) is zero mean 2-D white Gaussian noise

PROBLEM
Given only data y(n1,n2) reconstruct the object u(n1,n2)
and the PSF h(n1,n2) 

CRITICAL
ASSUMPTION

h(n1,n2) = h(L-n1,L-n2) (even PSF)



Validity of Assumption

EXAMPLE

Many optical PSFs are symmetrical

The theoretical microscopic PSFs are always symmetric.
Hence, potential applications of this algorithm are in
• 2-D microscopy
• 3-D microscopy



Problem Ambiguities

1. Scale Factor: If {h(i1,i2,i3), u(i1,i2,i3)} is a 
solution, then {ch(i1,i2,i3),(1/c)u(i1,i2,i3)} is 
also a solution ( c is any real constant)

We consider the problem solved
when the image is determined to 
a scale factor.

2. Translation:  If {h(i1,i2,i3), u(i1,i2,i3)} is a 
solution then so is {h(i1+d1,i2+d2,i3+d3), 
u(i1-d1,i2-d2,i3-d3)} 

3. Exchange: We need to distinguish 
h(i1,i2,i3) from u(i1,i2,i3). 

We specify supports for PSF and
object.

We assume is not an even function
unlike the PSF which is even.

Or
Assume L≠M (usually L<<M)

Ambiguity Solution



Solution in 1D

Equating coefficients, we get the following matrix
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1D Example
Solve: {24,57,33}={h(0),h(0)}*{u(0),u(1)}
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Correct up to a scale factor



2D and 3D Solution
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3D Solution
),,()1,1,1()()1,1,1()(),,( 321

321
321

321
321321 zzzU

zzz
Yzzz

zzz
UzzzzzzY NM =

Equating coefficients we would get a doubly nested Toeplitz matrix

Matrix size: (2M + L-2)3 X (2M3)

Q: So we have solved the 3D problem ?
A: Not quite !! If M=17 and L=8 then the matrix size is 4913 X1024

It will be intractable to use this method “as is” in 3D !



Fourier Decoupling 
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Consider the 2-D case

Setting and M
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1 == we get 

The point ?

The last equation two equations are decoupled into a set of M 1D problems !



How about 3-D ?
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The last equation is decoupled into a set of M 2-D problems. We can
decouple each of these 2-D problems to M 1-D problems. 



Simplifying life 1-D at a time

So we broke down a huge 3D problem to M simpler 2D problems

What next ?

Substitute for xk in each 2D problem and you would get M 1D problems in z 

To summarize

We broke up a large 3D problem into M2 1D problems !
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But what about the scale factors ?



Weighing the scales… (2D)
Note that each 1D problem will be correct upto a scale factor. 

Decoupling 2D to 1D Each row is solved to a scaled factor. 

How do we get the whole 2D solution correctly ?

Solve along columns and compare coefficients 

1D FT
along columns

1D FT
along rows

solve

c1U(1,:)
c2U(2,:)

c3U(3,:)

c4U(4,:)

solve d
1 U

(:,1)

d
2 U

(:,2)

d
3 U

(:,3)

d
4 U

(:,4)

Compare and scale

U(x,y)



Weighing the scales… (3D)
We just learned how a 2D problem could be correctly scaled 

Decouple 3D to 2DSolve 3D Decouple 2D to 1D Solve 1D

Scale 1D SolnsScale 2D Solns 2D solutions

c1

c2

d1 d2

U(x,y,z)
Decouple along z

Solve 2D problems

Solve 2D problems

Decouple along x

Compare
and 
scale

2D problems



Fourier Decoupling Algorithm

Algorithm (3-D)

1. Take FFT along either rows, columns or depth
2. Now we have multiple problems in 2D (M problems in 2D)
3. For each 2D problem we take FFT along Rows or columns
4. For each 2D problem we get multiple 1D problem. (M2 

problems in 1-D)
5. So solve 1D Problem and then scale the 2-D problem.
6. Scale the 3-D problem.



What about noise ?

In presence of noise the nullspace of the toeplitz structure no longer exists. 

We can find “nearest” nullspace using Least Squares (LS) (fast)

Can use structure of matrix to solve by structured least squares (STLS)
(slow but more accurate)

We can show that such norm minimization will give us the Maximum Likelihood
Estimate of the object u(n1,n2) for white Gaussian noise random field.



Simulations
2-D: No Noise

Image 221X221. PSF 35X35

Convolved Reconstructed



Simulations
3-D: No Noise

Synthetic bead image (3X3X3), (3X3X3) PSF, no noise



Simulations: With noise

Least Squares v/s STLN comparison

Least squares does well at high
SNRs but at low and medium
SNRS STLN is better.

7X7X7 image. 3X3X3 PSF.
50 iterations per SNR



Comparison with Lucy 
Richardson

SNR SNR

MSE Time 

Our algorithm gave a lower MSE. In LR
Final accuracy even in absence of noise
depends on initial PSF estimate.

Our algorithm need only a fixed amount
of time to solve independent of the SNR.
LR needs more time and time to solve 
depends on the SNR.



Attempts at Regularization
• With real data algorithm is rather sensitive to noise. 

• For 3-D data with lots of black spaces, the algorithm found multiple null-spaces.

• Attempts at regularization were marginally successful (Tikhonov) 

Finding Lambda using L-Curve method

L-curve of one of the Fourier decomposed 
Problems is shown here

Note that the L-Curve is hardly a L here !

Regularization is hard as there is no optimal
point (at least using the least squares approach) 



Where we stand

• Algorithm successfully deconvolves 2-D and 3-D simulated data in both the 
presence and absence of noise.

• Performance better than the Lucy-Richardson algorithm

• Problems with “planes of zeros” for 3-D data and “lines of zeros” for 2-D 
data. Presently overcome with adding low amounts of white Gaussian noise

• Fast 3-D Blind Deconvolution of even point spread functions, Yagle AE and Shah S,
presented Photonics West 2004, San Jose, CA

Publications



QUILL Model based deconvolution

The Idea

By representing an image as a subsampled version itself convolved with a “basis” 
kernel we can reformulate the problem as a single input multiple output type of
problem. This problem is easily solvable using Bezout’s Lemma.

1D Example

Consider the following sequence 

x(n)={x(0),0,x(2),0,x(4),0,…}*{1/2,1,1/2}= ,...}
2

)4()2(),2(,
2

)2()0(),0({ xxxxxx ++

Downsampled data
Linear 
spline

Note: We can change the spline to any other one. However, the linear spline gave us
The best empirical results.



QUILL Model: 1D

)()(~)2()2()( nnxinixnx φφ ∗=−Σ=

If x(n) is a 1D signal then 

Where
Φ(n) is a basis of some kind and

)(~ nx Is obtained by setting x(n)=0 for odd n.



Quincunx Sampling
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16 Pixel Image Quincunx Version



QUILL model: 2D

1. Take its Quincunx sampled version. Call this 

If              is a 2D image, we do the following:),( 21 nnx

2. 2X2 Upsample this image along lines inclined at 45 and 135 degrees. We call
this ),(2~

21 nnx

3. We then convolve the upsampled version of the image with 2D linear spline
basis function so that ),(2~

21 nnx is now Interpolated Linearly

QUILL = Quincunx Upsampled Interpolated Linearly

),(2**),(1*),(2~),( 21212121 nnnnnnxnnxQUILL φφ∗=

Quincunx Upsampler Linear
Interpolator

),(~
21 nnx



QUILL in Action
The GoodBefore After

Excellent model fit.
It is a highly sampled
Image (1024 X 1024) so 
not much is lost during 
modelling.

Light microscopy image
of onion cell. Very good
fit as there is very little 
high frequency info.  



QUILL in Action
The Bad AfterBefore

Poor representation of
Point sized objects. This
Is because point sized
Objects are high 
Frequency information.

1. QUILL is a good algorithm of choice for large highly sampled images there is little 
high frequency information. (2D and 3D microscopy. Some MRI intensity images)

2. QUILL is a bad algorithm for images that are small and/or have point sized objects. 
This means that it would be bad for astronomical and ultrasound applications
(speckle)

),(~
21 nnx



Implicit assumptions in QUILL
(Maybe not so implicit!!)

),(2**),(1*),(2~),( 21212121 nnnnnnxnnxQUILL φφ∗=

The Fourier Spectrum of Φ
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Φ is fixed. So if we know x2 we know the image



A Link: QUILL as SIMO

Quincunx
sampled

Downsampled versions
Of PSF



A Link: QUILL as SIMO

Quincunx downsampled
version of object

PSF 1

PSF 2

PSF 3

PSF 4

Image 1

Image 2

Image 3

Image 4

Single Input

4 Output



Critical Result from SIMO
The 2D Bezout’s Lemma

This is NOT akin to finding an inverse filter



Solving the QUILL 
deconvolution problem

We can show easily that

Example: Consider the following problem



QUILL Deconvolution at work
Solution Steps
1.We know size of the deconvolver  (L-1)

That helps us set the y matrix. 
2. We know where the zeros are in the 

QUILL version of the image. 
3. So we can extract those rows and form

a matrix with the y values on the LHS
and the zeros on the RHS.

4. Null space of this extracted matrix gives
us the deconvolver (g).

5. Once you have g , you can find the QUILL
image

),(2**),(1*),(2~),( 21212121 nnnnnnxnnxQUILL φφ∗=



Why is QUILL so fast ?
1. The degee of computational complexity for the nullspace problem depends on

the width of the matrix columns. Here it is 4*(L-1)^2. It only depends on L. Typical
PSFs are small (<14X14)

2. The complexity “does not care” if the image is large or small.  For a larger image
there will be more multiplication operations in the end to find the unknown non
zero points. Multiplication operations are very fast

3. Because of the QUILL model we are only finding the values of a fraction of the
points of the original image (12.5% of the points)

4. Memory requirements are not very high. A fraction of y values only need to be 
arranged in the Toeplitz-Block-Toeplitz form and the nullspace is easily found.

5. Many fast nullspace finding algorithms are available.

6. Last and most important, the algorithm is non-iterative.



Simulations
No noise  deconvolution

• Deconvolution while successful did not give us the original image
Modelling

error

• Restored large areas well but point features were not properly deconvolved.

Original
Convolved with

Gaussian shaped
PSF

Restored



Regularization: The fidelity noise 
tradeoff

Consider the least squares solution to the problem: Ax=b

bU
s

Vdiagx T

i








=

1 where  TUSVA = (SVD)

•Some matrices have a very small si

•Hence the small si’s dominate the solution.

This is bad news when there is noise in the image, since small singular values
are typically dominated by noise.

What can be done ?

You regularize the solution



Regularization: The fidelity noise 
tradeoff

What can be done ?

Get rid of the small
Singular values

Truncated Singular Value
Decomposition (TSVD)
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When si’s are small compared to 
α they are suppressed. When si’s
are large, the si terms dominate.
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The elusive Mr α
The most obvious question for Tikhonov regularization : How do you find α ?

• If you solve Tikhonov for different α and plot 
Log ||Lx|| v/s log ||Ax-b|| you get the adjacent
curve

• We want the alpha that gives us the corner 
point: The lowest product of Log ||Lx|| and 
log ||Ax-b||

Problems
1. Sometimes fails in practice. Finding α is still a black art
needing luck and patience.
2. Tikhonov over regularizes many times. Thus, while smoothing the 

image the method overall over blurs the edges. What we need is 
something that leaves the edges sharp yet smooths the noisy gradient 
areas.

Anisotropic Diffusion Edge Preserving regularization



Regularizing QUILL: Results with 
real 2-D microscopy data

Test: Microscopic images downloaded online (truly blind application)

Assume

PSF:4X4
TSVD





Comparison with Lucy-Richardson

I wish to thank Dr 
Mary-Ann-Mycek for
the image.



Comparison with Lucy-Richardson

•The QUILL algorithm improved visual image quality noticeably. 
• It did not take a long time for this 480X480 image as it is a 1 pass algorithm

• The Lucy-Richardson algorithm did not improve the image quality (visually). The
starting PSF was assumed to be Gaussian. This is a reasonable approximation.

• It took many iterations to come to a reasonably stable solution and even then
there are ringing artifacts in the solution.



Publications

• 2-D Blind Deconvolution from partial data using Bezout’s lemma and the QUILL
model, Yagle AE and Shah S, Accepted, IEEE Trans Image Processing



Deconvolution in Electron 
Microscopy

NqSqEqOqCTFqI ++= ),(),(),(),(),( φφφφφ

EM Imaging equation

For thin biological specimen, one can use the weak phase weak amplitude 
approximation to derive the image formation equation. 

In the frequency domain:

Goal: Recover ),( φqO

Image CTF Object NoiseBackground



The other terms

),( φqCTF

),( φqS

The Contrast Transfer Function. It is the Fourier transform 
of the PSF. Theoretically well defined.

Background signal due to inelastic scatter. Although it contains 
no object information, it is technically NOT noise.

N Noise due to photon counting and quantization. Mixture of Poisson
And Gaussian noise.

),( φqE Envelope Function. Due to the incoherence of the electron beam
the system response decays with increasing frequencies. This is 
Mathematically summarized in the envelope function. Its not
a big factor at low resolutions.



Why is EM deconvolution difficult ?

Cryo-EM micrograph of Tobacco Mosaic
Virus (TMV). Note the poor contrast

High background signal and high noise
levels are common in most cryo-EM 
images. This makes:

1. CTF estimation difficult.

2. Implementation of blind 
deconvolution algorithms difficult.



Strategy 

We adopt a two step approach to solve this problem

1. Develop a successful CTF estimation algorithm that can estimate the CTF
Accurately using little or no manual input. 

2. Deconvolve individual 2-D micrographs of EM images with the acquired 
CTF estimate using an edge preserving penalized least squares 
approach.

The deconvolved 2-D micrographs are then used to reconstruct a 3-D model. 



CTF Estimation

)),(cos()),(sin(1),( 2 φχαφχαφ qqqCTF −−=

CTF Formula

[ ])22cos(2(
2

),( 243
adiffmeans ffqqCq φφλλπφχ −∆+∆−=

Spherical aberration of e- lens

Wavelength of e- beam

Mean
defocus

Differential
defocus

Astigmatism
angle 

Amplitude contrast

Known parameter Unknown parameter



CTF Parameters
A Geometrical Perspective

2
bafmean

+
=∆

abfdiff −=∆

a

b

Φa

Differential defocus and astigmatism
angle are astigmatism parameters

Many algorithms attempt to solve this estimation by radially averaging the CTF first
to increase SNR. Obviously this will NOT capture the astigmatism.

α serves as a phase delay for the 
Sinusoidal wave



Mean defocus: Another view
Tilted case

Mean defocus at point U

0tan)sincos( fyxf tiltrotrotmean ∆++=∆ φθθ

Where 

rotθ

tiltφ Tilt angle of specimen plane

Angle made by rotation axis

0f∆ Mean defocus at rotation axis

For a tilted specimen mean defocus is not constant across the specimen plane.



Types of EM samples

Carbon film
area

Filament

Ice

Cryo

• Biological sample is flash frozen in ice.  
• Sample is preserved in native state.
• Images have low SNR 
• Many times there is an underlying 
carbon support film.

Negative Staining

• Biological sample is treated with heavy  
salts.
• Sample is dehydrated and may 
undergo significant transformation.
• Images have high contrast (SNR).
• Resolution is lower as it is limited to 
grain size of the staining salt.

Schematic Diagram of a cryo sample

Negative stain 
TEM of lipid droplets
isolated from 
macrophage foam 
cells.*

*Source: Image by Jay Jerome, Ginny Kellner-Weibel, George Rothblat Vanderbilt Website

http://images.google.com/imgres?imgurl=http://www.mc.vanderbilt.edu/research-em/Image%2520Gallery/aniso_drop.jpg&imgrefurl=http://www.mc.vanderbilt.edu/research-em/REMC%2520Files/Image_Gallery.htm&h=901&w=902&sz=83&hl=en&start=21&tbnid=95qftIUAGdH3_M:&tbnh�
http://images.google.com/imgres?imgurl=http://www.mc.vanderbilt.edu/research-em/Image%2520Gallery/aniso_drop.jpg&imgrefurl=http://www.mc.vanderbilt.edu/research-em/REMC%2520Files/Image_Gallery.htm&h=901&w=902&sz=83&hl=en&start=21&tbnid=95qftIUAGdH3_M:&tbnh�


‘Types’ of CTFs
Easy: Negative Staining

Hard: Cryo with carbon backing

Harder: Tilted Cryo with carbon backing

Hardest: Cryo with specimen in ice

3 orders of CTF
rings are seen

Fewer orders of CTF
rings are seen but 
Contrast is quite good.

Due to sampling
Within a stripe,
SNR is lower
than in the planar 
case

Barely any rings 
Seen. The power
Spectrum of the 
flagella filament is
clearly seen in the
CTF power spectrum.



CTF Parameter Estimation
Step 1: Acquiring CTF power spectrum 

estimate

1. Calculate the power spectrum of 
50-100 sample windows whose 
locations are randomly chosen.

2. Average the power spectrum to
qet (hopefully) a good CTF power
spectrum estimate.

Random sampling strategy was 
chosen over overlapped periodogram 
averaging to reduce influence of 
object power spectrum. 



Step 2: Estimating CTF power 
spectrum background

The background S(q,Φ) is quite significant and much larger than the signal of 
Interest. So background must be estimated and subtracted.

Signal of Interest

Present strategy: Radially average CTF and estimate background by fitting a 1-D
mixed exponential signal. 

Problem: No one said the background was circular  ! 

Background must be estimated in 2D



Step 2: Estimating CTF power 
spectrum background

Problem with 2D approach

1. Noise. Averaging smooths out the signal
for a good fit.

2. What equation to use for a 2D fit ?

A conservative compromise

1. Divide up the image into 8 sectors.
2. Calculate fits using a quartic polynomial
for radially averaged CTF in each sector. 

Accounts for astigmatism somewhat….



Step 2: Estimating CTF power 
spectrum background

How about a mixed exponential fit ?

I found the polynomial fit does better,
although it does gives rise to ripples
at the higher frequencies.

After subtraction we get a residual CTF.



Step 3: Masking

Region of interest

The masked residual CTF



Step 3: Masking

1. Make a very conservative guess and do a 8 point grid search with CTF 
parameters to get initial guess Parameters for CCG.

2. Use guess parameters to calculate approximate location of first zero of CTF. 
3. Set inner mask radius using guess parameters.

Inner Mask

Outer Mask

1. Radius can be set automatically by choosing radius at which 95-99% of the 
residual CTF signal is contained.



Step 4: Parameter Estimation

44

22

1
res

res

CTFCTF
CTFCTF
ΣΣ

Σ
−=ψGoal :Minimize

Use Constrained Conjugate Gradients to minimize a cross-correlation cost function.

Parameter Min Max
Mean defocus 0.05 μm 10 μm
Differential defocus 0 μm 1 μm

Astigmatism tilt (deg) 0 180

Parameter constraints

Amplitude contrast is very difficult to estimate accurately and is NOT estimated.



Flowchart of planar and tilted CTF 
estimation algorithms



Results
Defocus Series experiment: Cryo sample backed with carbon support film

Mean defocus read from 
instrument has a zero error 
and is a not a reliable 
measurement. 

The difference between two 
measurements is accurate 
as zero error is cancelled 
out.

Zero defocus offset: 0.099 μm
Slope of fit line: 1.005
Correlation of fit: 0.999

Estimated mean defocus (μm)
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Results
Defocus Series experiment: Sample backed with carbon support film tilted to 45º

The cryo sampled was tilted to 
45 degrees. Images were 
recorded at different defocii.

Defocus parameter estimates 
Were obtained along stripes 
parallel to the rotation axis.

Mean defocus at rotation axis
Was recorded.

For the line fit, the tilt angle 
measured from the instrument
Was used.

Zero defocus offset: -0.156 μm
Slope of fit line: 1.045
Correlation of fit: 0.997

Estimated mean defocus (μm)
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Results
Validation

10 Carbon film estimates were 
compared to estimates using 

Automatic CTF Estimation (ACE)
Uses edge detection for estimating 
astigmatism and then performs 
elliptical averaging to estimate 
CTF in 1-D

PLTCTFX
Semi automatic CTF estimation
algorithm that performs 1-D CTF 
estimation in 5 sectors.

Good agreement among all algorithms.

Comparison of CTF parameters

Sample Number

Sample Number

Sample Number

Shah
Tani
ACE

M
ea

n 
de

fo
cu

s
D

iff
er

en
tia

l d
ef

oc
us

A
st

ig
m

at
is

m
 T

ilt



By far the hardest case

a. There is no carbon film  support.
b. The power spectrum of the protein interferes with the CTF
c. Noise levels are very high
d. Specimen are often very thin. So one cant sample over a large area.
e. Fewer if any CTF rings are seen. More rings are vital to getting astigmatism 

information.

Results
Protein Embedded in Ice case

Until now, no algorithm has completely succeeded in estimating defocus 
parameters for this case.

Experiment: Estimated defocus parameters from a micrograph of bacteria flagella 
Filaments and compared it with carbon film estimates from a neighbouring areas

Carbon film
area

Filament

Ice
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Protein Ice  
Carbon

Sample Number

Sample Number

Comparison of CTF parameters
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Results
Protein Embedded in Ice case

Until now, no algorithm has
completely succeeded in
estimating defocus parameters
for this case.

Mean defocus estimates appear 
quite accurate but astigmatism
parameters are off.

Estimate #1 Estimate #2



Results
Tomographic Tilt Series

Nominal Tilt Angle
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Set of low dose images acquired from 
-60 to +60 degrees. For each image, 
defocus parameters at rotation 
axis were estimated estimated.

Angle estimates are not very accurate
But the general trend is good.

Mean defocus at axis, exhibits inverse  U shaped profile. This is because sample under 
observation is not exactly at rotation axis but slightly above it. As a result when it is 
rotated it becomes closer to the observation plane. This is called Eucenricity.



GUI Demo



Publications and other 
developments

Automatic Contrast Transfer Function estimation for cryo and 
cryo-tomographic EM images, Siddharth Shah, Erik Hom, Koji 
Yonekura, John Sedat, David Agard, in review, Journal of 
Structural Biology



To simplify the equation, we ignore the background. It shall be treated
as ‘noise’.

For the time being, we will only aim to deconvolve out the CTF and not the 
envelope function. In other words we recover the envelope function filtered 
version of the object.

EM Deconvolution

NqSqEqOqCTFqI ++= ),(),(),(),(),( φφφφφ

The imaging equation

NqOqCTFqI += ),(),(),( φφφ

Simplified Equation 



Look familiar ?

NqOqCTFqI += ),(),(),( φφφ

Previous

Current

NqOqHqY += ),(),(),( φφφ

It is the same problem after the approximations. 
Standard deconvolution methods can be applied

Using the previous algorithm the CTF can be estimated easily. The question
remains as to what algorithm should be used.



Present ‘State of the Art’: Phase Flipping

Phase Flipping: This is the most commonly used CTF correction method. Only 
Corrects for the phase distortions of the CTF. Does not correct for amplitude 
effects.

Multiply frequencies corresponding to orange areas by -1. 
This is only correct if the CTF were a rectangular wave !



Present ‘State of the Art’: Wiener Filtering

Wiener Filtering: Also very common. Attempts to solve the deconvolution problem
in a regularized linear least squares framework.

What is the framework ?

Consider Linear least squares

2
minargˆ OHIO
O

−=

This approach will never give a good solution due to the ill-conditioned and ill-posed
Nature of the problem. Therefore all deconvolution algorithms use a regularizing term 

ROHIO R
O

λ+−=
2

minargˆ

The key here is the choice of R



Wiener Filter
2OR =When the solution to the previous equation is a simple inverse filter

IWO =ˆ ,where 
RCTF

CTFW
λ+

=
*

This is the Wiener filter. The chief advantage is that it is fast and easy to implement.

Disadvantage
• From a statistical perspective this choice of R discourages large values of the object O.
Most images are non-zero, so this is not a good choice.

Visually,
• When λ is small, the high frequency information appears sharp but there is a lot of noise.
•When λ is large, the noise is diminished but the object edges appear blurred.

A more sensible regularizer would prevent sudden discontinuities, i.e. preserve smooth
Surfaces while discouraging ‘jaggedness’.



Quadratic Gradient Regularizer
2OR ∇=When we minimize large gradients in the deconvolved image.

The solution for this choice of R is also very simple and easy to implement. 

Disadvantage
The same noise-resolution problem as Wiener filtering.  No choice of λ appears to 
preserve noise and edge information simultaneously. 

Both choice of R are not optimal because they are linear regularizers.

We need a regularizer that 
• Strongly penalizes small gradients that are due to noise
• Weakly penalizes large gradients that are due to edges and perhaps some noise.

Such an edge-preserving behavior is exhibited by Huber functionals.



Edge preserving regularizer

)1ln( OOR ∇+−∇=

Consider

For small R

2

2OR ∇
=

For large R

OR ∇=
Quadratic

Linear

For this choice of R, no analytical solution exists. So we use an optimization
Algorithm such as Constrained Conjugate Gradients.



The experiment

•5 samples of the bacterial flagella filament were deconvolved. This was chosen 
because the bacterial flagella has been resolved to atomic resolution. So we have 
a good reference.

•They were also deconvolved using other conventional algorithms such as phase 
flipping, wiener filtering, phase flipping with amplitude correction ( two stage 
deconvolution using phase flipping and wiener filtering.

• The filaments were reconstructed in 3-D using the programs of Mimori et al. 

• Visual inspection.

• Numerically, we compared the error in phase of the Fourier transform between the 
deconvolution reconstruction and the reference atomic resolution dataset at various 
resolutions.

Analysis

Experimental Design



Flowchart

The main part



Results

α helices are better
seperated

Stacked disk like shape

Shape is better preserved



Results
Why is the edge-preserving method not the best at this resolution ?

• Across all but one resolution, the edge preserving method gave superior phase 
residuals.
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Conclusions
The 2-D and 3-D blind even PSF algorithm

1. Simulation results indicate that the algorithm is able to restore images with finite
support that have been convolved with even PSFs in 2-D and 3-D.
2. The algorithm is very fast due to the Fourier decoupling steps that breaks up a
Single large problem into many small tractable 1-D problems. 

1. Will only work well for compact support images.
2. PSF is often not symmetric, so algorithm will not work well for those images.

Salient Features

Problems



Conclusions
The 2-D blind deconvolution algorithm of QUILL images

1. Algorithm performs blind deconvolution of images that are modeled well by
the QUILL approximation.

2. As algorithm is non-iterative, it is fast.

1. Algorithm will not work for objects that are poorly approximated by the model. 

Problems

Salient Features



Conclusions
Automatic CTF estimation algorithm

1. Only one of two algorithms to date that is fully automatic
2. Only algorithm that can estimate defocus parameters of tilted images.
3. User friendly implementation using a GUI in open source, Numerical Python

platform.

1. Background is fit using a polynomial least squares fit. It should be fit in a 
constrained least squares approach.

2. Background is fit in 1-D radial averages of sectors. A full 2-D fit would be better.
3 Envelope function is not estimated.

Salient Features

Problems



Conclusions
Edge-preserving deconvolution of EM images

1. The first edge-preserving deconvolution algorithm for EM images.
2. Preliminary results indicate performance better than other state-of-the-art 

algorithms at the lower resolutions.

1. Results are still preliminary. More testing is needed.
2. Why did we get poor results at one of the resolutions ?
3. Envelope function needs to be included as part of the problem formulation. 

Salient Features

Problems



Future Work
Blind Deconvolution Algorithms

1. Both even PSF and QUILL deconvolution algorithms need to be tested more
on biological datasets. 

2. The QUILL algorithm in particular is suited to high speed deconvolution of low
resolution images, which is common in optical microscopy.

3. The QUILL algorithm needs to be tested with other regularizers. The use of 
edge-preserving regularizers with the QUILL algorithm appears to be promising.



Future Work
CTF Estimation Algorithm

1. Perform background estimation in 2D using a constrained least squares approach.
2. Constrained least squares can also be used to perform envelope function

estimation.

Estimate background
Using constrained LS Residual CTF

Demo



Future Work
CTF Estimation Algorithm

1. Perform background estimation in 2D using a constrained least squares approach.
2. Constrained least squares can also be used to perform envelope function

estimation.

Fit Envelope to residual
CTF

Residual CTF/ Envelope Fit



Future Work
EM Deconvolution Algorithm

1. Algorithm needs to be tested for a number of EM samples, not just helical 
particles.

2. We need to understand why the algorithm did not perform well at 17.5 A resolution
3. Envelope function needs to incorporated into the problem formulation.

Immediate

Long term

1. Adapt algorithm for tomographic data. Two possible approaches

a. Break up image into strips where CTF is assumed constant.
b. Formulate it as a single 2-D problem with spatially varying PSF. More difficult but

elegant.

2. Myopic deconvolution approach of AIDA/MISTRAL.



The End ?
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