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Surface Penetrating Technologies
Problem Statement

l General Problem – Objects of 
interest in an unknown, 
inhomogeneous media.

l The ultimate goal is to detect and 
identify the objects of interest 
while ignoring the clutter.

l The scope of the problem ranges
from initial object imaging,
to detection, to final 
classification.

l Classification also includes the
scheduling of confirmation 
sensors.
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l Landmine/UXO Detection
l Ground Penetrating Radar imaging.
l Detect and discriminate between landmines and 

various clutter objects.
l Sensor scheduling of confirmation sensors.

l See-Through-Wall Radar Imaging
l Provide authorities with accurate information 

concerning building interiors.
l This can include:  hidden weapons, building layouts, 

suspicious person tracking, methamphetamine labs.
l Sensor scheduling for adaptive imaging.

Applications



NOT 
Landmine

Landmine

Discriminate between landmines and
other objects using multiple sensors.

Applications
Landmine Detection/Classification



Applications
See-Through-Wall Imaging

l Problems of Interest
Layout Mapping of Inner Walls
Cache Detection
Suspicious Person Tracking

l Technical Challenges
Inhomogeneous Medium 

Causes multipath scattering - ghosts
Unknown phase delays through 

wall - blurring.
Walls may be metal reinforced.

E&M Penetration difficult.
Requires higher frequencies,
which attenuate faster. 



l Non-statistical Methods
SNR Enhancement
Radar and Metal Detectors for 

Landmine Detection

l Statistical Methods 
Landmine Scanning Sensors 
Sensor Scheduling of Landmine 

Confirmation Sensors

l Imaging 
Sensor Scheduling of STW Radar  
Near Real Time STW and Landmine 

Radar Imaging – 2D and 3D

Contribution Areas



Non-statistical Methods
of Signal-to-Noise Ratio Enhancement



l SNR Enhancement of GPR Signals
l Hyperbola Flattening Transform
l Makes use of the un-imaged point spread function of 

radar echoes from landmines.

l Metal Detector Signal Processing
l Electromagnetic Induction (EMI) Sensors
l Utilize a dipole response model to identify basis functions. 
l Form subspace filters to enhance SNR and identify

object depth and rudimentary shape.

l Vision System Methods
l Generate a focused image of the landmine.
l Draw a bounding box around the object to

extract size and depth info.

Non-statistical Methods



Radar SNR Enhancement

Plastic Landmine (VS1.6)Surface
Top of
Mine 
at 6”
Soil
Stratum

l Deeply buried plastic landmines face 
a low signal-to-noise ratio (SNR).

l Strata in the ground can create large 
radar returns that lead to false alarms.

l The Hyperbolic Flattening Transform 
seeks to exploit all the “energy” of the 
hyperbolic signature. 

The Hyperbola Flattening Transform
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Simulation Simulation

Original Hyperbola 45° Rotation
Simulation Simulation

Radar SNR Enhancement
Hyperbola Flattening Transform

Remapping:
1/yy

12

2

2

2

=−
a
x

d
y 1=xy 1=

y
x

The Hyperbola Flattening Transform converts a hyperbolic
signature into a straight line at 45°.



Application to Simulated Data

The RADON transform 
creates “projections” by
summing along lines.

Projections are oriented
for 0° to 180°.

Radon Transform of the   
“flattened” hyperbola has a

strong maximum at 45°
corresponding to the “energy” 
contained in the hyperbola.



Transform Location of
Hyperbolic Signature

Application to Real Data



VS1.6

Along Track

The HFT  will now be
applied as a detector.

A small kernel is moved
throughout the scene.  At
each location, the HFT is
applied.,

At each point the HFT is 
run for several values 
of the “a” parameter.  The
maximum result is placed
into a detection image.  

Original Image

Application to Real Data



VS1.6

The HFT is applied to all
locations in the scene.  
The detection image shown
here is the result.

Bright pixels correspond 
to hyperbolas.  Hyperbolic
signatures have been 
contrast enhanced, while
non-hyperbolas are 
suppressed.Along Track

Hyperbola Detection Image

Application to Real Data



VS1.6

Along Track

Pixels that break a certain
threshold are shown.
These pixels reveal the
locations of the “most 
hyperbola-like” signals
in the scene.

The region corresponding 
to the VS1.6 has been 
enhanced by the HFT
detector.

Hyperbola-like Regions

Application to Real Data



l Marble,J., Yagle,A., “The Hyperbola Flattening Transform,” SPIE: Detection 
and Remediation Technologies for Mines and Minelike Targets IX,  April 2004,
Orlando, FL.

l Marble,J., Yagle,A., “Measuring Landmine Size and Burial Depth with Ground 
Penetrating Radar,” SPIE: Detection and Remediation Technologies for Mines 
and Minelike Targets IX,  April 2004, Orlando, FL.

l Marble,J.,Yagle,A., Wakefield,G, “Physics Derived Basis Pursuit in Buried
Object Identification using EMI Sensors,” SPIE: Detection and Remediation
Technologies for Mines and Minelike Targets X,  March 2005, Orlando, FL.

Non-statistical
Contributions



Statistical Methods
of Landmine Detection

and Classification



l Multimodal Landmine Detection
l Scanning Sensor Algorithm
l Joint Probability Densities of Two Sensors 
l Maximum A Posteriori (MAP) Detection/Classification

l Single Confirmation Sensor Scheduling
l Information Gain Metric – Rényi Divergence
l Deploy Sensor that Provides Greatest Information Gain

l Multiple Confirmation Sensor Scheduling
l Collaboration with GATech and Doron Blatt
l Develop an optimal policy for deploying multiple

sensors.  
l Reinforcement learning method used for training.

Statistical Methods



Scanning Sensor Observations
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Location of Objects

100 200 300 400 500 600 700 800 900 1000

10

20

Deep
MidShallow

GPR Sensor

100 200 300 400 500 600 700 800 900 1000

10

20

EMI Sensor

100 200 300 400 500 600 700 800 900 1000

10

20

EMI Acquired “Image”

GPR Acquired “Image”

Ground Truth Markings

Metal Landmines OnlySoil Type:  Clay

Multimodal Landmine Detection



X ={1,10} 

2,3,4 - Metal AT Landmine
deep, mid-depth,
shallow

5,6,7 – Low Metal AT Landmine
deep, mid-depth, shallow

1 - background

8,9,10 – Clutter Types:
aluminum, iron, and non-metal

Observations
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e – EMI observation

g – GPR observation

Gaussian Mixture Observation Model

Observation Vector

2D Gaussian Model for a Given Type

Simultaneous Detection and Classification



l Supervised Learning
l

l From available data the joint PDF of each
object type is determined.

l Bayes Rule

l

l From the learned distribution we use Bayes rule to translate
to the posterior distribution.

l Maximum A Posteriori Detection/Classification
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Note:  This approach is 
the same as multiple 
hypothesis testing on 
every pixel.

Simultaneous Detection and Classification



• Metal Landmine Composite PDF
• The statistics of metal landmines

are favorable for good detection
performance.

• A similar PDF could be generated 
for plastic landmines.  However,
the situation is much less favorable.

• Background pixel PDF shows
decorrelation between EMI
and GPR pixel values.  

• This decorrelation makes sensor 
fusion very useful for false-alarm
elimination.
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Detection Performance
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Sensor Scheduling

Platform
Motion
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Platform Scanning
Sensors
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Confirmation
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Other Available
Confirmation Sensors

Possible Confirmation Sensors:

• E&M:      Nuclear Quadrupole Resonance, Magnetometer, Broadband EMI

• Nuclear:  X-ray Backscatter, Neutron Excitation

• Other:     Chemical “Sniffer”, Acoustic Vibrometer, Mechanical Prodder



l Multiple Landmine Responses
l Four Generic Landmine Classes:

l Environment Impacts Response:  Soil Permittivity and Conductivity
l Object Depth Impacts Response

l Multiple Landmine Technologies
l Non-exhaustive List:  Metal Detectors, RADAR , Magnetometers,   

Radiometers, Seismic/Acoustic Vibrometers, Chemical Sensors, 
Quadrapole Resonance, Touch Probes…

l Each sensor responds differently to landmine types and is impacted
differently by depth and environment.

l Some sensors are practical in a “scanning” context while other are 
only practical as “confirmation” sensors.

l Low-metal Anti-Tank  
l High-metal Anti-Tank

l Low-metal Anti-Personnel
l High-metal Anti-Personnel

Sensor Scheduling
Motivation
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Scanning Sensor Simulations
Simulated scanning sensors are used to make the scanning process 

realistic.  It also gives experimental control over all system parameters 
and environmental parameters.

Clutter objects (iron, aluminum, and non-metal) have been introduced to 
study false alarm rejection capabilities of algorithms.



EMI Sensor Simulation
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Confusion Matrix for Scanners
(MAP Detector/Classifier)

X ={1,10} 2,3,4 - Metal AT Landmine
deep, mid-depth, shallow

5,6,7 – Low Metal AT Landmine
deep, mid-depth, shallow

1 - background

8,9,10 – Clutter Types:
aluminum, iron, and non-metal

Object Types
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l Sensor Models
l

l ya is the observation to be made by deploying Sensor a
against Object x.

l Performance Predictions

l Let:

l From the sensor response distributions we use Baye’s Rule to   
translate to the expected posterior distribution for each
object type.

l Rényi Information Gain in Discrete Form
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Confirmation Sensor Scheduling

Note:  y implies all
previously obtained
observations.



Confirmation Sensor Statistics Assignments
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Confirmation Sensor Scheduling
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Shown are the raw signatures from
the two sensors and the actions 
chosen.

Until the sensors reach the object, 
Sensor 2 is always chosen.  When
the object is encountered, Sensor
5 and 6 are deployed. 

Confirmation Sensor Scheduling
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Initial Scanning Mode Confirmation

Active Sensing estimates the amount of “information gain” achievable 
from each of the 6 confirmation sensors. Information gain is a measure
of the decreased entropy of the state PDF after making an observation.

Clutter objects (iron, aluminum, and non-metal) have been introduced to 
study false alarm rejection capabilities of algorithms.

Confirmation Sensor Scheduling
Iron Clutter Object Example



Confusion Matrix after Confirmation
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• Sensors under development at Georgia Tech (Waymond Scott)
• Data set used is the GATech “Three Sensor Dataset” (Feb.2004)

• Includes metal detector, radar, and seismic vibrometer.
• Collection performed on three scenarios of mine/clutter arrangements.
• Data used to guide sensor statistical simulations at U.Mich.

EMI SeismicGPR

Sensors from the Three Sensor Dataset

Downloadable Demo

Multiple Confirmation Sensor Scheduling



Optimal Policy
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Always deploy 
three sensors

Always deploy best of two 
sensors: GPR + Seismic

Always deploy best  single 
sensor: EMI

Suboptimal SM 
using best fixed 
sensor allocation

+ Optimal SM using 
weighted classifier
reduction

Optimal sensor 
scheduling improves 
detection performance 
while reducing average 
dwell time.

Performance Comparison 
(Pc vs E[N])

+

+

++

+

+

+ Suboptimal SM  
using unweighted 
classifier



Statistical
Contributions

l Marble,J., Blatt,D., Hero,A., ``Confirmation Sensor Scheduling using a
Reinforcement Learning Approach,'' SPIE: Detection and Remediation
Technologies for Mines and Minelike Targets XI,  March 2006, Orlando, FL.

l Marble,J., Yagle,A., Hero,A, ``Sensor Management for Landmine Detection,''
SPIE: Detection and Remediation Technologies for Mines and Minelike Targets
X,  March 2005, Orlando, FL.

l Marble,J., Yagle,A., Hero,A, ``Multimodal, Adaptive Landmine Detection 
Using EMI and GPR,'' SPIE: Detection and Remediation Technologies for 
Mines and Minelike Targets X,  March 2005, Orlando, FL.



Imaging
See-Through-Wall Radar

and Volumetric Landmine Imaging 



l I.R.I.S. Adaptive Imaging
l Iterative Redeployment of Imaging and Sensing
l Adaptively build a large scene out of small aperture

radar measurements.
l Use sensor scheduling to redeploy small aperture radar. 

l Phase Delay Estimation and Correction
l Two methods proposed for homogeneous external walls.
l The magic parameter:   
l Autofocus techniques required in real world system.

l Near Real Time Imaging of Large Scenes
l 2D for STW and 3D for Landmine
l Matrix Implementation of Wavenumber Migration
l Development of a Forward Operator by “Reverse 

Engineering” the Adjoint Operator

Imaging

2ετ



l SRI Sidelooking Radar

l Monostatic SAR
l Fully Polarimetric:  HH, VV, HV

l Frequencies
l 800-2400 MHz
l 301 Frequency Steps

l Antenna Height 7.5m

SRI International Building 409
Menlo Park, CA

See-Through-Wall Radar Imaging



SRI International Building 409
Menlo Park, CA

l SRI Sidelooking Radar

l Monostatic SAR
l Fully Polarimetric:  HH, VV, HV

l Frequencies
l 800-2400 MHz
l 301 Frequency Steps

l Antenna Height 7.5m
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See-Through-Wall Radar Imaging
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Electric Field Energy Mapping
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Sensor IlluminationElements of the I.R.I.S. Strategy

Iterative Redeployment of Illumination and Sensing



ISAR Image
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Total Aperture: 12*1m = 12m

l IRIS Simulation for Proof of Concept
l Bandwidth:                    4-5GHz
l Number Frequencies:    512
l Aperture per side:         10m
l Full Synthetic Array:    512 elements
l Subaperture Array:         50 elements

Full ISAR Image Adaptive IRIS Image

IRIS Simulation



IRIS “Modules”
l Uncertainty Map – Inside Building

l The Ting Method
l The Yuan&Lin (inspired) Method

l Sensor Information Map – Outside Building
l KL Divergence Metric (Max Info Gain)
l Energy Method (Max SNR)

l Virtual Transmitter
l Currently using “Enhanced Geometrical Optics”

l A high frequency approximation.
l Mathematically simple and fast
l Valid (and possibly only choice) at higher frequencies
l Not valid at corners

l Other Methods – Numerically Intense
l All require 10 samples per (shortest) wavelength
l MoM, FEM, FDTD

l The Observations
l Simulated – Currently using Enhanced Geometrical Optics
l Real Data – Always best.

l Imaging
l Sparse Reconstruction Based on Wavenumber Migration
l Other’s can be substituted based on performance characteristics.

Both Used in automated IRIS

Both Used
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IEEE International Conference on Image Processing, Atlanta, GA,  Oct. 
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Uncertainty Map

l Uncertainty Map shows pixels 
that are likely to be “empty”.

l Regions of the image that 
have not been viewed by the 
sensor are accounted for
by the second Uncertainty 
Map.  This second map is
inspired by Yuan&Lin 
(JASA 2005).

l Note:  Pixels are Directional
Meaning that radar images
are composed of directional
scatterers.

Most 
Uncertain 

Region

First Iteration Map #1

Fifth Iteration   
Map #2
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Backpropagation SAR Imaging

Scene Grid

1 2

N

3 4 5 6 7 8

9 10 11 12 . . .

y

x

- Observation Vector

- Scene Vector

l Collected by the sensor
l Monostatic or Bistatic
l Multiple locations and frequencies
l Can be uniformly or non-uniformly spaced,

but locations must be known.

l Vectorized version of the scene.
l Goal is to reconstruct this vector

from the observations.
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Imaging



l Looping (Desktop PC -2.2GHz, 2.0GBytes, 1-64bit - processor)
l MATLAB                                                                  11 min 16 sec
l ANSI C:                                                                       1 min   1 sec

l Small Image (100 x 100 pixels) for discussion

l MATLAB (Matrix Multiplication – 1 processor)
l Desktop PC (2.2GHz, 2.0GBytes, 1-64bit - processor) :    OUT OF MEMORY
l Lab PC (3.5GHz, 3.5GBytes, 1 processors):                       OUT OF MEMORY
l Lab PC Linux (3.5GHz, 4GBytes, 1 processor):                 1.7 sec 
l HPC (Linux Networx Evolocity II – 1 node):                     2.7 sec

l MATLAB ( Matrix Multiplication Multithreading – 2 processors)
l MAC (2GHz, 2GBytes, 2 processors)                                 1.05 sec
l Linux (3.5GHz, 4GBytes, 2 processors)                              0.95 sec

100 pix

100 pix

l MATLAB ( FFT Acceleration)

l Wavenumber Migration (Multithreading - 2 processors) 0.09 sec

35x

1.8x

10x

Imaging



Wavenumber Migration
An Efficient Form of Backpropagation

Scene Grid

1 2

N

3 4 5 6 7 8

9 10 11 12 . . .

y - Observation Vector
l Observation points are now made along a 

regular spaced array.
l This allows, with some modification to

the observations, for the use of an FFT  
when forming the image.

1 2 3 4 M

Radar

Observation Points in Regular Array

– Modification to the observations

l Since the observations are not quite the
Fourier transform of the scene, a 
correction must be made to the data.

l The proper modifications are performed
by the function f(.).

( )[ ]yfFFT 1x̂ −=

)(yf

Imaging
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Imaging



Scene Grid

1 2

N

3 4 5 6 7 8

9 10 11 12 . . .

1 2 3 4 M

Radar

Observation Points in Regular Array

– Modification to the observations

l Φ is a Sparse Matrix – This allows for 
even faster computation.

[ ]( )[ ]yFFTfFFT 1x̂ −=

)(yf

Matrix Implementation of Wavenumber Migration

Imaging

l Standard Wavenumber Migration
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Sparsity
Model

• Radar imagery often has a significant number of zero pixels.

• We want to make use of this fact to produce better reconstructions.

• A Sparsity Model for an image is proposed as an exponential 
distribution of pixel amplitudes combined with a discrete probability 
of zero.      

Sparse Reconstruction

Image Pixel Amplitude

• This sparsity constraint cannot be implemented like the standard
Lagrange Multipliers.  

0
aexxfX ωδω +−= )()1()( || xa−

Imaging



De-convolution and
De-noising Formulation

NHXY +=

2

1

NXZ
NHZY

+=
+=

)ˆ(ˆˆ )()()( nTnn XHYHXZ −+= α

Original Signal Model:

E step: Landweber Iterations

Making use of Sparsity
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2
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2)(

)1( Xp
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X
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σ
M step: p(x) – A Penalty Term

Imaging



Pixel-wise 
Soft Threshold

M Step

)(
2

ˆ
maxargˆ

2
2

2)(

)1( Xp
XZ

X
n

n +
−

=+

σ
M step:

Implementing a Sparsity Constraint

Soft Thresholding Implementation*

*M. Figueiredo and R. Novak, “An EM Algorithm for
Wavelet-based Image Restoration,” IEEE Trans. Image
Processing, vol. 12, pp. 906-916, 2003. 

)()1(        ˆ nn ZX =+ ^

(Applied to Amplitude)

XXp λ=)(
l1 penalty function

l0 penalty function
Number of Non-zero
pixels

Sparse Prior Information
Average Number of Zero Pixels
Statistical Distribution of Non-zero Pixels

M step:

Imaging



Forward Wavenumber Migration

Reverse Wavenumber Migration
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(Imaging)

Efficient Landweber Iterations

(Un-imaging)
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Sparse Reconstruction
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3D Landmine Imaging

GPR Radar System
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Imaging

Raw GPR Data



Imaging

Wavenumber Migration



Imaging

Sparse Reconstruction



Imaging
Contributions

l Marble,J.A., Hero,A.O., ``Iterative Redeployment of Illuminatiion and
Sensing (IRIS): Application to STW-SAR Imaging,'' in Proc. of the 25th    
Army Science Conference, Orlando, FL, Nov. 2006.

l Marble,J.A., Hero,A.O., ``Phase Distortion Correction for See-Through-
The-Wall Imaging Radar,'' ICIP:  International Conference on Image Processing  
2006, Atlanta, GA, Oct. 2006.

l Marble,J., Hero,A, ``See Through The Wall Detection and Classification of
Scattering Primitives,'' SPIE: Detection and Remediation Technologies for
Mines and Minelike Targets XI,  March 2006, Orlando, FL.



l Landmine Detection/Classification  
l SNR enhancement of both GPR and EMI signals.
l Sensor Scheduling of Confirmation Sensors

l I.R.I.S. Numerical Simulation
l Iterative Redeployment of Imaging and Sensing
l Adaptively build a large scene out of small aperture

radar measurements.
l Use sensor scheduling to redeploy small aperture radar. 

l Fast Imaging of Large Scenes
l 2D for STW and 3D for Landmine
l Matrix Implementation of Wavenumber Migration
l Fast Adjoint Operator based on “Reverse 

Wavenumber Migration”

Conclusions
Major Contributions of this Thesis
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