
 

 

 

 

Electromagnetic Design Optimization:  

Application to a Patch Antenna Reflection Loss on a 

Textured Material (“Metamaterial”) Substrate 

 
 
 

by 
 
 
 

Brian E. Fischer 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Electrical Engineering: Systems) 

in The University of Michigan 
2005 

 
 
 

 

Doctoral Committee: 

 
Professor Andrew E. Yagle, Co-Chair 
Professor John L. Volakis, Co-Chair 
Professor Alfred O. Hero III 
Professor Kamal Sarabandi 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Brian E. Fischer
All Rights Reserved

 2005 

 



ii 

 

 

DEDICATION 

 

 

This dissertation is dedicated to my family.  This undertaking has been fraught with 

difficulties I could not have imagined or prepared them for at the outset – yet they have 

supported me completely to the end.  I will always love you. 



iii 

 

 

ACKNOWLEDGMENTS 

 

 

First and foremost, this dissertation would not have been possible without the valuable 

support of my co-advisors, Prof Andrew E. Yagle and Prof John L. Volakis.  Their 

guidance throughout the course of this work, to include suggestions for related papers, 

has made it what it is.  Thank you for your insights and encouragement.  I am grateful to 

the General Dynamics Advanced Information Systems Company (formerly Veridian, 

ERIM International, and the Environmental Research Institute of Michigan) for 

supporting my pursuits of related Government work and underwriting the entire effort.  I 

am indeed grateful to my co-workers at General Dynamics who have supported many 

hours of stimulating discussion and ideas for “non-linear” pursuits. 



iv 

 

 

PREFACE 

 

 

The signal processing and electromagnetic disciplines share much in common and often 

work together.  Joint applications include antenna array technologies such as direction 

finding, space-time adaptive processing, synthetic aperture radar processing, and a host of 

others.  Fundamental staples of signal processing such as detection and estimation often 

find their best applications in the exploitation of electromagnetic phenomenology.  

Detection of phenomenological effects generally involves the quest for a signal subspace 

in which some observable most clearly manifests.  Electromagnetic prediction work, by 

contrast, is not typically a subject of concern for signal processors.  In some cases, 

“indirect” methods for solving electromagnetic systems have found application (e.g. 

Generalized Minimum Residual), speeding the solution of the system, but exploitation of 

the subspace associated with the solution of the electromagnetic system itself has seen 

little attention.  Optimization of materials is a current topic of high interest in the 

electromagnetic community, and may turn out to be one of the chief benefits of such 

subspace exploitation… it should pique the interest of signal processors as well. 
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ABSTRACT 

 

As electromagnetic analysis and prediction codes have improved dramatically over the 

past decade, design using these tools becomes an obvious next step to improve antenna or 

other RF device performance.  Both shape and material can be varied to improve antenna 

characteristics, such as reflection loss and gain.  Typical implementations involve a 

choice of applicable electromagnetic prediction codes (e.g., moment method, finite 

element method, etc.) nested within a nonlinear optimization construct.  Currently, a 

popular approach to electromagnetic optimization entails use of non-linear and multi-

modal optimization methods such as genetic algorithms and simulated annealing.  These 

are known to require thousands of points to achieve a globally optimal solution, even for 

design spaces that are parametrically small.  Generality of design is lost because one is 

often forced to seek from amongst an endless array of parametric models for shape and 

material to converge to a solution in a reasonable time. 

This work demonstrates that a non-parametric solution to a difficult electromagnetic 

optimization problem is possible by analyzing the eigendecomposition of a unique form 

of a Finite Element Boundary Integral (FE-BI) system solution.  This new expansion of 

the FE-BI matrix system provides a broadband approximant that is orders of magnitude 

faster than the baseline FE-BI prediction code.  More importantly, the identified 



xv 

functional form of the eigenvalues allows for the optimal adjustment of the 

electromagnetic system. 

The design goal of this work is to increase the effective bandwidth of a patch antenna by 

texturing (via contrasting materials) the supporting substrate.  The aforementioned 

eigenvalue adjustments are used to derive the required substrate material texture.  This 

forms a “metamaterial” antenna design approach, as discussed in numerous publications.  

This new approach is a dramatic leap forward from traditional metamaterial design 

approaches in that no parametric assumptions or engineering judgments for texturing are 

required to perform an optimization.  Optimized designs with only a few iterative updates 

are therefore possible.  This work demonstrates that antenna reflection loss can be 

optimized over a wide bandwidth using straightforward engineering principles. 
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CHAPTER 1 INTRODUCTION 

For over three decades, electromagnetic (EM) prediction codes have been developed and 

perfected to solve difficult problems; ones where geometry and material treatments are 

sufficiently complex that analytical solutions to Maxwell’s equations can not be 

accomplished in closed form.  Of interest typically are problems involving radiation (e.g., 

antennas) and scattering (e.g., radar cross section (RCS)). 

There are seemingly countless applications of electromagnetic prediction needs today.  As 

society demands faster and more miniaturized communications devices (e.g., cell phones, 

laptops), the need to understand increasingly complex designs with electromagnetic 

consequence grows.  More is being asked from antennas to accommodate needs such as 

cell phone and GPS frequency bands.  Antennas for such applications must have 

optimally tuned performance for specific needs and must be very small in size as shown 

in Figure 1-1.  The left-most figure contains a recent example of a cell-phone antenna for 

watches based on high-dielectric (ceramic) composites.  Many techniques exist for the 

design of such antennas today.  
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Figure 1-1. Application Examples of Improved Antenna Technologies 

Defense needs push this envelope even further by requiring smaller and lighter-weight 

multi-function sensor packages with (often) extraordinary specifications as highlighted on 

the right-most figure.  Many varied electromagnetic prediction approaches have been 

developed over the past decade to meet these needs; some have met with remarkable 

success. 

In many cases today, prediction techniques are being relied on to formulate entire aircraft 

and aperture design concepts before ever “bending metal”.  Having achieved this level of 

sophistication, a logical extension (and ultimate goal) is the optimization of designs based 

on electromagnetic predictions.  While a great deal of time and effort has been spent 

optimizing the performance (speed and core memory requirements) and accuracy of the 

codes themselves, the optimization of designs based on the codes is relatively new. 

Electromagnetic optimization typically requires the interrogation of an enormous solution 

space, since radiation or RCS are fundamentally functions of aspect angle (azimuth and 

elevation), electromagnetic frequency, polarization and geometry.  Geometry can be 

decomposed into shape (or configuration) and material treatment, the combinations of 

which are infinite.  Not only are these solution spaces infinite, but in the most interesting 
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cases they are also highly sensitive to parametric adjustment.  It would seem that our 

situation is dire indeed, but such things always depend on your point of view.  It is best to 

be an optimist in this field of pursuit! 

A typical characteristic of solutions in a given parametric space is that they are multi-

modal, having a large number of local extrema.  While unimodal objective functions lend 

themselves to a variety of useful solutions such as conjugate gradient, multi-modal 

objective functions have a more limited set of solution approaches if a global solution is 

sought.  Two widely held approaches for finding global solutions to multi-modal 

objective functions are Genetic Algorithms (GA) and Simulated Annealing (SA).  Both 

approaches are statistical, and both approaches are capable of reaching the global solution 

in the limit.  Most researchers agree, however, that a solution that meets design 

requirements is sufficient, even if it is not the global optimum.  For this reason, a GA or 

SA solution may be monitored and stopped prematurely if the design requirements are 

met. 

In 1999, Rahmat-Samii and Michielssen published an entire book devoted to the 

optimization of electromagnetic problems using GA [35].  David Goldberg (a leader in 

GA research) begins the treatise by prudently asking, “whether GA’s [sic], like so many 

other methods that have come and gone in the past, will become a permanent part of the 

toolkit or will they fade like some computational hoola hoop du jour.”  Goldberg 

concludes that GA will be here for some time based on a variety of applications to 

include artificial systems and economics.  This author agrees.  But while GA and many 

other optimization approaches will long be of need in a variety of complex applications, it 
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is troublesome to think that we can do no better for electromagnetic problems.  Such 

general purpose optimization approaches may not afford insight into the particular 

reasons why a design works.  Often, at the point an optimizer terminates, the user is left 

to question why a particular parametric combination was deemed the “best”; more 

troubling still is the fact that the question remains as to whether there might be a better 

combination given different parametric functionality, a better starting point, etc. even 

under the same time constraints.  While there can be no “one size fits all” solution given 

the infinite possible electromagnetic design geometries and approaches, this work shows 

that for one interesting optimization problem a more thorough coupling between 

electromagnetic prediction and optimization can yield impressive insights into the nature 

of the optimum solution.  Future efforts can endeavor to apply a similar approach to other 

electromagnetic problems of interest.  In the meantime, pursuit of optimized designs 

using GA, SA, and the like will continue to be an essential element of enhancing our 

understanding of ever more complex electromagnetic design trades. 

1.1 Problem Overview 

A fundamental limitation of many of the current electromagnetic optimization approaches 

is that they do not leverage all of the information available in the electromagnetic 

predictions themselves.  Instead, the prediction code is often treated as an “engine” or 

module and the optimization technique is treated as a “wrapper” along the lines of the 

diagram shown in Figure 1-2. 
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Figure 1-2. Commonly-Used Electromagnetic Optimization Approach 

In theory, this optimization paradigm can reach the global minimum, provided enough 

time is allowed for the optimization.  Time required depends on a variety of factors, but 

primarily on a) speed of the prediction, b) number of prediction points (e.g., frequencies) 

required to complete the objective, and c) required number of optimization iterations.  

The latter is generally proportional to the degrees of freedom afforded to the design by an 

appropriate parameter vector. 

The anticipated process is illustrated by Figure 1-3, where the iteration process is not 

completely obviated, but rather the total number of iterations is greatly reduced by 

utilizing the information found in the prediction code electric (or magnetic) field or 

equivalent current.  A good prediction code is required in any event to produce an 

optimized result that is reliable. 
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Figure 1-3. Proposed Optimization Paradigm 

To begin to understand the tradespace associated with this problem, it was first necessary 

to become familiar with a reliable electromagnetic prediction code upon which remaining 

research could build.  Closely associated with this was the determination of the specific 

application and geometry.  A tremendous body of past work was available to aid this 

decision process.  A challenge existed relative to the existing body of work regarding the 

manner in which parametric and local optimum solutions were sought. 

1.2 Previous Work 

This dissertation leverages a significant amount of past work in the areas of 

electromagnetics and optimization, most notably the work led by Prof John Volakis at the 

University of Michigan Radiation Lab, and later the Ohio State University ElectroScience 

Labs.  That work demonstrated that textured substrates for patch antennas can be 

designed, predicted and tested accurately to produce wideband input reflection loss 

solutions [17, 18, 19, 20, 21, 22, 23, 24].  A typical geometry for such an antenna is 

depicted in Figure 1-4. 
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Figure 1-4. Basic Textured Substrate Patch Antenna Geometry 

The geometry is constructed with regularly spaced substrate bricks of (possibly) varying 

permittivity and a perfect electric conductor (PEC) patch or similar radiative structure.  

All sides but the top are terminated in PEC, and the surface (at z=0) is embedded in an 

infinite ground plane.  The substrate is modeled within a cavity.  An offset probe feed 

(offset from the center of the patch) attaches to the surface patch, and is assumed to be 

fed by a coaxial transmission line from behind the cavity with a given characteristic 

impedance.  The patch itself need not be rectangular.  The scope of this work is limited to 

any metallic conductive shape that can be modeled by rectangular surface elements.  Note 

that the rectangular modeling requirement is really driven by the particular prediction 

code implementation chosen for this work.  Other implementations utilize more complex 

shapes (e.g., prism, tetrahedral), allowing for more general surface patch (and substrate) 

shape designs. 

In developing this topic, two general categories of past work are noteworthy: 1) 

advancements in the speed with which Finite Element Boundary Integral (FE-BI) 
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predictions could be performed for a material substrate embedded in a cavity, and 2) 

advancements in the use of FE-BI prediction codes to optimize antenna performance via a 

textured substrate.  The former was accomplished by Jin and Volakis [25, 26, 27] starting 

in 1991.  The later work on optimization was pursued more recently by Kiziltas and 

Volakis, and Psychoudakis and Volakis [17, 18, 19, 20, 20, 21, 23, 24] starting in 2002 

and continuing to the point of this writing.  This work has clearly demonstrated that 

textured substrates can be effectively used to modify the reflection loss behavior of an 

antenna.  Both probe-fed and gap-fed concepts have been designed, constructed and 

validated through extensive testing.  This past work establishes two important concepts:  

1) the FE-BI codes effectively predict the measurement performance of antennas with 

complex textured substrates including high-contrast textures, and 2) local optimization 

schemes are available. 

A prime example of such an optimization is shown in Figure 1-5, courtesy of the Volakis-

led team at the University of Michigan and the Ohio State University [18].  In this case, a 

local optimization scheme, Sequential Linear Programming (SLP) was utilized along with 

an FE-BI prediction code to find the solution.  Notable is the fact that the frequency 

behavior predicted is indeed captured in the measurement, albeit with a small shift.  As 

will be demonstrated later, such shifting can be due to lack of perfect knowledge of the 

substrate properties or known issues with the prediction itself.  Errors in magnitude can 

also be attributed to imperfect construction and measurement error.  Solution spaces for 

reflection loss prediction and measurement are tremendously sensitive to a variety of 
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factors, so agreement such as below is remarkable and provides confidence in the 

viability of textured substrates to be well-modeled and produce the expected results.  

 

Figure 1-5. Example of a High-Contrast Textured Material Optimization (results in [18, 20]) 

The SLP approach makes use of the E-field unknown values in order to determine likely 

candidates for material modification.  The basic method involves the linearization of an 

objective (J) [18, 34] according to 

 ( )( ) ( )( )
( )
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k k

i
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+
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( ) ( )1k k+∆ = −α α α , subject to the linearized volume constraint 
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 ( )( )
( )

( )( )
( )

( ) ( ) ( ) ( )
min max

1 k

mN
k km m m m

i
i i

VV V V Vα
α=

 ∂
− ≤ ∆ ≤ − ∂ 

∑
α

α α  (2) 

(V is a volumetric density related to the available materials), other general (g) constraints 

 ( )( )
( )

min

1 k

N
k

j j i
i i

gg g α
α=

 ∂
− ≤ ∆  ∂ 

∑
α

α , (3) 

and the parametric limits 

 max miniα α α∆ ≤ ∆ ≤ ∆ . (4) 

From an initial condition ( ( )0α ), and an initial ∆α  deviation, the objective and its update 

may be computed.  From that point forward, the updates are guided by the relative 

success of subsequent deviations toward the objective goals.  Constraints are used to 

ensure that a given update does not “overshoot” the local optimum.  Additional 

constraints regarding the relative density of the material values are also imposed.  The 

general conclusions regarding the approach were to be cautious in allowing large 

deviations to take place.  Large deviations from state to state lead to inconsistent (and 

non-convergent) results. 

Numerous examples of electromagnetic optimization using genetic algorithms can be 

found in the literature.  Haupt may have first popularized the idea by introducing such 

examples and demonstrating the relative ease with which an optimization could be 

constructed [30].  In that paper, he even offered a small GA code fragment (binary) in 

Matlab that could be tested in an afternoon by any interested researcher.  A thorough 
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treatment of wire antenna design, linear and planar array optimization, wideband array 

optimization, and electromagnetic filter design via GA is provided in [35].  It is a fair 

statement that a consistent theme of all treatments of electromagnetic designs with a GA 

optimization involves a great deal of focus on the parameters of the optimizer and a high-

level parameterization of the electromagnetic problem.  If the number of independent 

parameters becomes large, the GA may not find the solution in a reasonable amount of 

time. 

1.3 Contributions of this Dissertation 

This dissertation demonstrates for the first time that a specific decomposition of a 

computational electromagnetic formulation can be used to provide a rapid solution and 

non-parametric optimization of a complex electromagnetic problem.  Specifically, via an 

eigendecomposition and derived functional form for the eigenvalues, this work shows 

that it is possible to work within such a subspace to optimize the wideband performance 

of an electrically small antenna.  The general flow of key accomplishments under this 

work can be viewed according to Figure 1-6, where the first block represents the starting 

point and block 2 and 3 represent the new developments leading to example case 

demonstrations. 



12 

 

Figure 1-6. Flow of Key Contributions Developed Under this Dissertation 

The wideband optimum return loss sought is realized by texturing the substrate beneath 

the antenna.  One key ingredient for successful application of the approach discussed 

herein is to linearize the explicit frequency dependence of the electromagnetic system.  If 

this is accomplished, a fundamental insight into the nature of the behavior of the system 

can be found.  This insight enables the movement of resonant terms within the 

eigenvalue-structure, allowing for near-ideal wideband objective performance. 

The development of a specific electromagnetic system (Finite Element Boundary Integral 

[FE-BI]) is included to thoroughly explain the frequency dependence and set up a useful 

eigendecomposition.  Mathematically, it is shown that a Taylor approximant to the 

appropriate Green’s function results in a quadratic functional form for the system versus 
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frequency.  This leads to a new approach for extremely rapid wideband solutions.  In 

Chapter 3, the insights and uses of eigendecomposition are first introduced, starting with 

this wideband example.  The full power of the approach is shown in Chapter 5, where a 

complete wideband formulation for eigenvalue functionality is highlighted.  This allows 

for very fast wideband solutions for a given system [3], and further provides for the 

organized movement of eigenvalue terms toward an optimized system. 

A library of Matlab tools was developed to facilitate the demonstration of mathematical 

results contained in this dissertation; these are described in Appendix C.  This effort 

culminates in the demonstration of two basic optimization cases using generalized 

numerical optimization schemes. 

1.4 Organization of this Dissertation 

The remainder of this dissertation is organized into six main chapters.  Chapter 2, 

Problem Statement, describes the problem by examining the tradespace associated with 

electromagnetic optimization and describing the goal of this work.  This chapter contains 

a description of the chosen electromagnetic prediction code for this work (FEMA-

BRICK) and introduces the generalized optimization problem.  Chapter 3, Linear System 

Optimization Approach, goes into appropriate detail of the Finite Element Boundary 

Integral (FE-BI) electromagnetic system to establish the baseline for a thorough eigen-

space analysis.  Parameters necessary to ensure the appropriate conditioning of an FE-BI 

system are highlighted and an early attempt to optimize the system based on the Total 

Least Squares (TLS) approach is visited.  Chapter 4, Narrowband System Optimization, 

introduces the exploitation of the eigendecomposition for optimization; showing that 
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eigenvalues can be modified to provide a useful textured material update at a single 

frequency.  Chapter 5, Wideband System Optimization, then develops the complete 

wideband functional form for eigenvalues in a particular eigendecomposition of the FE-

BI system; demonstrating how the eigenvalue functional form provides mathematical 

insight into electromagnetic system behavior that can lead to optimization.  Chapter 6, 

Wideband System Optimization Results, then puts the mathematical development of the 

previous chapter to work and illustrates two key examples of design optimization.  Each 

of these two cases is based on different patch radiator geometries.  Finally, 6.2.1 

summarizes the development and results of the work and provides recommendations for 

future work. 
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CHAPTER 2 PROBLEM STATEMENT 

It has long been known that obtaining reliable low losses at the feed of patch antennas 

over a wide bandwidth is a tricky business.  By their very nature, patch antennas are 

capacitively-coupled to a ground plane with a dielectric substrate that is sandwiched 

between the ground plane and the patch.  A poor design will be sensitive to even small 

substrate material uncertainties.  Like many things in engineering, a tradespace emerges.  

One can choose to employ lossy substrates that encourage more stable bandwidth 

behavior, but also obviously ensure a fair amount of loss across the band (reduced gain).  

With higher material losses, one increasingly loses the ability to correlate reflection loss 

to antenna radiation.  Low reflection losses are important primarily because lower input 

losses should translate to improved radiation by the patch antenna element. 

In the previous chapter, the nature and setup of the problem was provided.  In this 

chapter, the mathematical setup of the problem is given.  The problem of optimizing the 

reflection loss for a probe-fed patch antenna on a textured low-loss material substrate 

over a wide bandwidth is highlighted.  Included is the overall mathematical context of the 

optimization, the specific choice of electromagnetic prediction (approach and actual 

computer program with modifications), and introduction to the optimization problem. 
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2.1 Background 

Prediction codes are based on a variety of basic scattering theories or principles and 

combinations thereof – all solve Maxwell’s equations in one form or another.  Today, 

these basic theories are often combined to form hybrid codes – typically a self-consistent 

formulation hinging on some matching condition (e.g., at a surface).  Scattering theories 

are usually identified as having predominantly low or high frequency regions of 

applicability; involving a trade-off between speed, memory and accuracy.  Codes based 

on the Method of Moments (MoM) and Finite Elements (FE) are often considered to be 

most applicable to low frequency problems.  These solutions are integral-based and have 

the characteristic of high accuracy at the expense of the computation and inversion of an 

impedance matrix that must be recomputed for each individual frequency (and angle and 

polarization in the case of monostatic scattering).  Asymptotic codes based on geometric 

or physical optics (GO or PO) and improved versions that consider the effects of 

diffraction (GTD – geometric theory of diffraction, PTD – physical theory of diffraction), 

are often considered to be most applicable to high frequency problems, since their code 

complexity is low (resulting in high speed) and accuracy improves with increasing 

frequency.  These comprise only a few examples; there are many other types of prediction 

code theoretic foundations and variants.  Designs at lower frequencies can be more 

challenging due to the need to consider the entire geometry; separating the geometry into 

smaller components is problematic due to increased interaction terms at lower 

frequencies. 

In addition to low and high frequency characteristics, predictions can be formulated in 

two or three dimensions.  Two-dimensional (2-D) codes are an attractive way to analyze 
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long (cylindrical) geometries, since they can be computed more easily than their three-

dimensional (3-D) counterparts.  The assumption made is that the 2-D geometry extends 

to infinity in the third dimension (an infinite cylinder).  Scattering for 2-D is often 

reported as echo width in units of dBKE (decibels relative to a knife edge [flat strip]), 

whereas scatter in 3-D is typically reported as RCS in units of dBsm (decibels relative to 

a square meter).  Body of revolution (BOR) codes also exist, which can efficiently predict 

RCS in dBsm if revolving a contour about an axis can generate the 3-D body. 

In order for predictions to be formulated on a computer, the problem must be discretized.  

A numerical interpretation of an object geometry is the result.  There are in principle an 

infinite number of ways to do this.  As an example, one could assume the entire world 

consists of non-interacting spherical metal objects.  Since a theoretic infinite series (Mie 

series) exists to predict spheres, this provides a good underpinning for a code.  All that is 

needed is a way to describe to the code the location and size of all the spheres.  A 

coherent sum that accounts for these discrete values then results in a prediction.  The 

trouble is, most things in the world can not be modeled this way. 

Ultimately, all computer-based prediction codes involve the formulation of a discrete 

system of equations that must be solved.  A great deal of community effort has been 

applied to the problem of solving these systems (which only grow in size and complexity) 

in a reasonable amount of time.  For instance, given a matrix system =AX B , it is a 

simple matter to solve for 1−=A X B ; simple, that is, until the matrix sizes approach 

100,000 unknowns!  Many approaches exist to solve =AX B  for A  that do not require 

matrix inversion (i.e., indirect approaches such as biconjugate gradient [BiCG] or 
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generalized minimum residual [GMRES]).  In some cases, they are able to leverage 

matrix structure (e.g., sparsity or symmetry) to speed a solution. 

The solution is a function of a geometry that the user provides, and must be cast in a 

particular context.  There are no “one-size-fits-all” electromagnetic prediction solutions.  

The FEMA-BRICK program, discussed next, is no exception to this rule.  This prediction 

code was built around a particular hybrid finite element (FE) and method of moments 

(MoM) concept for the geometry associated with a cavity embedded in an infinite ground 

plane. 

2.2 The FEMA-BRICK Program 

A large variety of electromagnetic codes exist which are applicable to the general 

optimization problem of interest.  That said, any given code requires significant effort in 

order to “retrofit” a new optimization paradigm, so only one could be chosen for detailed 

analysis.  To help ensure accuracy, an integral-based code was chosen as appropriate to 

the application.  An integral-based code comes at the expense of processing speed, but 

accuracy was deemed to be paramount when investigating key optimization parameters.  

This section begins with a brief review of the general FE-BI formulation followed by the 

specific treatment for the case of a cavity embedded in an infinite metallic plane.  This is 

relevant since the FEMA-BRICK prediction code (upon which all of the examples for this 

work are based) involves the specific FE-BI solution relevant to a cavity structure meshed 

in rectangular brick regions. 
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FEMA-BRICK, which is a brick-based Finite Element Method Analysis (FEMA) code 

[typically referred to as a finite element boundary integral (FE-BI) code] is a hybrid 

between Method of Moments (MoM) and Finite Elements (FE) solutions. 

2.2.1 General Three-Dimensional FE-BI System Development 

The general formulation begins with an arbitrary geometry comprised of a closed contour 

which contains some dielectric material region(s) and conductive material according to 

Figure 2-1.  As shown, internal fields are spatially dependent on the local material values.  

This forms the basis of the textured material (metamaterial) design concept discussed in 

this work. 

 

Figure 2-1. General 3-D FE-BI Geometry 

The geometry above may be characterized by the weak form of the vector wave equation 

given by [28] 
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For FE-BI to be successful, three conditions must be met (three separate equations) which 

ensure mesh closure on the boundary of the finite element mesh and that the tangential 

electric and magnetic fields are properly related.  These are delineated as the interior, 

exterior, and coupling equations.  The interior equation is given by equation (5).  The 

exterior equation is given by 
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where 
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The coupling equation is given by 

 ( )[ ] 0ˆ extint =−×⋅∫S i dSEEnQ , (9) 

completing a particular form of the most general FE-BI equations.  Solving for these 

equations requires that a mesh be established for some canonical geometry which lends 

itself to efficient solution.  Solving these equations for general (arbitrary) geometries can 

be very computationally intensive. 

2.2.2 Three-Dimensional FE-BI for a Cavity in an Infinite Ground Plane 

One of the most successful applications of the FE-BI approach involves a geometry 

composed of a cavity embedded in an infinite ground plane.  The cavity may be 

completely or partially filled with a dielectric as depicted in Figure 2-2, where the 

relevant Green’s function may now be associated with radiation from the infinite plane, 

thus obviating large BI computations.  In essence, the BI computation need only be 

concerned with the non-zero (non-metallic) edges in the aperture itself. 
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Figure 2-2. 3-D FE-BI Recessed Cavity Geometry 

An additional efficiency is realized by recognizing that the magnetic fields in the aperture 

can be completely represented by the electric field unknowns.  Also the volume (internal) 

expansion function bases can be reduced as equal to the surface (external) expansion 

function bases in the aperture, ensuring enforcement of electric field boundary conditions 

at the aperture.  This allows the established equations which are normally written as two 

“separate, but coupled” equations to be written as a single equation according to 
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2.2.3 FEMA-BRICK Prediction Code 

The FEMA-BRICK electromagnetic prediction code is based on the development of a 

cavity solution by imposing a regular mesh in a rectangular (brick) structure as depicted 

by example in Figure 2-3.  Note in the figure that the infinite ground plane is assumed at 

the z = 0 surface, and extends beyond the aperture in all directions. 

 

Figure 2-3. 3-D FEMA-BRICK Geometry 

By constructing the geometry this way, efficiency is gained: specifically, the BI matrix 

structure becomes symmetric block Toeplitz allowing for computation of vector 



24 

contributions via Fast Fourier Transform (FFT) [28, 29].  Within FEMA-BRICK, there is 

no need to maintain the entire matrix structure in core memory.  The system is solved 

using the biconjugate gradient approach (BiCG) and the contributions to the solution 

vector (field vector) are summed explicitly at each iterative update.  Since the FE matrix 

portion is sparse, and the BI matrix contribution can now be computed quickly, this 

produces a very efficient prediction scheme.  However, the optimization work for this 

purpose requires the explicit elements from the matrix system.  These matrices were 

extracted from the executable FEMA-BRICK code into the Matlab environment for 

subsequent processing.  Details of the code modifications are discussed in Appendix C. 

FEMA-BRICK is nearly an ideal code for this type of application.  The primary exception 

(as will be seen later) is that the substrate model is limited to consist only of bricks, and 

the patch antenna geometry must be constructed from square facets.  Use of round (or 

spiral) patch geometries is not possible. 

An example of a FEMA-BRICK prediction as compared to measured data is contained in 

the FEMA-BRICK user’s guide [36] and is reproduced below in Figure 2-4.  The figure 

highlights the improved accuracy afforded by FEMA-BRICK for measurement 

comparison, relative to a prior (calculated) approach. 
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Figure 2-4. FEMA-BRICK Performance Versus Measured Data for Geometry at 

2.17 0.0033r jε = −  [36] 

This measurement and prediction was accomplished for the geometry shown in Figure 

2-5.  It is a non-ideal case to compare reflection loss to radiation, given the resistive load.  

Nevertheless, this made for an interesting starting point and verified that the code itself 

was working as expected. 

 

 
Figure 2-5. Patch Antenna Configuration Utilized for Initial FEMA-BRICK Comparison Work 

Of interest is the behavior encountered by such a geometry with various solid substrates.  

As stated earlier, the optimization problem space is one characterized by a high degree of 

sensitivity.  Sensitivity increases in proportion to dielectric material density.  As 
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permittivity increases, wavelength in the substrate decreases (as rε ) and the pattern 

scintillations grow more rapid; effectively there is a compression effect as material 

becomes increasingly dense.  Results of predicted input impedance (real and imaginary) 

and the corresponding reflection loss (in dB; assuming a 50Ω input) are shown for the 

case of air (Figure 2-6), as well as  2.17 0.0033r jε = −  (Figure 2-7).  Observe that the 

spike near 2.9 GHz moves to approximately 2 GHz in proportion to 2.17  as expected.  

Increased field sensitivity as a function of increased dielectric is a desirable quality for 

optimization, as long as it is controlled. 

 
Figure 2-6. FEMA-BRICK Results for Prescribed Geometry at 1rε = ; Real (left) and Imaginary 

(right) Predicted Input Impedance 
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Figure 2-7. FEMA-BRICK Results for Prescribed Geometry at 2.17 0.0033r jε = − ; Real (left) and 

Imaginary (right) Predicted Input Impedance [Note Comparison to Figure 2-4] 

Probe input impedance is calculated by determining the unknown electric field at the 

probe location and dividing by the input (source) current, which is defined by the user 

(typically set to unity).  Mathematically, input impedance is given by 

 ηη
η

η

WE
J

WE

J

,
,

int

1

int

==
=

LZ . (12) 

For a given input probe current, input impedance is dictated by the predicted electric field 

at the feed element location (denoted by η in the relation above).  For a given geometry, 

this simply serves to illustrate that the E-field unknown at the probe location and the 

physical input impedance are directly proportional.  For much of this work, optimizations 

are associated with the actual system unknowns (Z-directed E-field).  The input 

impedance reflection loss or other more physical quantities are not highlighted directly 

until the completion of the optimization. 
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2.2.4 FEMA-BRICK FE-BI System 

The FE-BI system can be described by the matrix system given by [28] 

  [ ] [ ] [ ]
[ ] [ ]

bi ext

fe int
j i

j i

      
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G 0 E f
A

0 0 E f



, (13) 

where the finite element (FE) contribution is given by [ ]A  and the boundary integral (BI) 

Green’s function contribution is given by [ ]G .  The unknowns are X-, Y-, and Z-directed 

E-field components associated with the edges of the individual physical mesh elements.  

Each brick edge in Figure 2-3 above is described by a unique unknown.  Edge elements 

that are strictly internal to the cavity have only a FE contribution and no BI contribution 

(hence the block form above). 

Sufficient detail for computation of all elements of the above system is provided in [28], 

with solutions based on a linear edge-based expansion function. 

The individual FE and BI matrix components can be further decomposed according to  

 [ ] ( ) ( )(1) (2)µ ε= +A A A  (14) 

and 
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Explicitly, 
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recognizing that the BI can be further decomposed by breaking the Green’s function into 

its two explicit sub-components [see Equation (11)]. 

Additionally, for the FEMA-BRICK code used for this study, the X, Y, and Z interaction 

terms are explicitly called out according to 
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and 
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Note that the aperture of the cavity is explicitly in the x-y plane (z = 0), obviating any 

need for a z term in the BI matrices.  The FE matrices are typically very sparse as shown 

in Figure 2-8, while the BI matrices are in general dense (see Figure 2-9). 

 

  

Figure 2-8. Typical Structure of Sparse Finite Element (FE) Matrices 

  

Figure 2-9. Typical Structure of Dense Boundary Integral (BI) Matrices 
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2.3 Optimization Problem Introduction 

Electromagnetic optimization typically requires the interrogation of an enormous solution 

space, since radiation or RCS are fundamentally functions of aspect angle (azimuth and 

elevation), electromagnetic frequency, polarization and geometry.  Geometry can be 

further decomposed into shape (or configuration) and material treatment, the 

combinations of which are infinite.  In this context, the radiation or RCS can be described 

by 

 [ , , , ( )]f p g=S Sθ α , (21) 

for the independent variables 
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where the parameter vector is of arbitrary dimension, dependent on the particular shape 

(configuration) and material treatment under investigation.  The result, S , may be taken 

to represent scatter, radiation, field unknowns, insertion/reflection loss or any of a number 

of electromagnetic “products” and itself may be highly sensitive to changes in certain 

parameters.  In fact, a certain degree of sensitivity is desired in order to perform an 

effective optimization as alluded to in Section 2.2. 

The objective function is typically taken to be more than a single S  result.  For instance, 

optimization could be wide-band in frequency: one could seek the optimal geometry as a 
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function of multiple frequencies, Nfff ,, 21 .  In that case, the objective (i.e., cost 

function) is chosen according to 

 ( ) ( ) obj f
J

∞
= −α S α S , (22) 

for [ ]TN gfSgfSgfS ))(,(,)),(,()),(,()( 21 ααααS = , some objective value objS , and ∞•
f

 

the infinity-norm over the frequency span, with remaining independent variables assumed 

fixed.  The infinity-norm is chosen so that the optimization over the band consistently 

forces S  to the objective; any excursion (at any point) about the objective penalizes the 

solution.  As is typical, the optimum parametric vector is sought such that 

 [ ])(argmin αα
α

Jopt = . (23) 

The field of signal processing is rich with the history of parametric estimation and 

optimization of systems associated with on- and off-line signal estimation.  Much of that 

is predicated on the idea that a signal is present in noise or clutter to some degree and a 

model is available for fitting the signal to, or a covariance matrix can be used to enhance 

the estimate of the signal.  Many nonparametric approaches utilize an 

eigendecomposition or singular value decomposition in order to understand the true 

nature of the signal or system, and the sensitivity to certain changes in the system (e.g., 

condition).  These are powerful tools available to aid the understanding of complex signal 

environments so that researchers can better estimate features of interest.  

In contrast, the environment in which this work takes place is entirely deterministic with 

respect to the prediction tool itself.  However, it is just as true for the systems in 

electromagnetic predictions as it is for the systems in signal processing, that 
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nonparametric decompositions of the system can provide significant insights into the 

nature of system behavior.  In the sense that an optimization which modifies that behavior 

according to some objective is sought, information present in the decomposition may be 

used to guide an optimization. 

To this point, a reasonable existing (and validated) prediction code has been determined 

upon which to base the remainder of the work.  The composition and structure of the 

associated matrix system has been discussed in Section 2.2.  The work will continually 

refer back to the basic FEMA-BRICK system viz. Equation (13) as the heart of the 

optimization discussion proceeds.  A wideband representation of this system that allows 

for modification of associated eigenvalues toward a particular objective will be given. 

Contained in Appendix A is a description of some early work based on standard “global” 

(or gradient-free, statistical) optimization approaches.  The two approaches evaluated 

under this effort were Genetic Algorithms (GA) and Simulated Annealing (SA).  This 

small study showed that while these approaches are reasonable for cases involving a 

small number of parameters, they quickly become unreasonable when the number of 

parameters passes a certain point.  The particular problem chosen for this dissertation 

topic is one such case.  This was not an exhaustive test of options available via these two 

approaches.  There are always potential ways to squeeze more out of the basic algorithm 

(GA or SA).  However, it was shown that for this particular problem cast as-is, neither 

approach is readily applicable, further highlighting the need for an improved approach 

discussed next. 
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CHAPTER 3 LINEAR SYSTEM OPTIMIZATION 
APPROACH 

While the general optimization techniques comprising this dissertation (and this chapter) 

are applicable to any electromagnetic system in principle, specific applications will 

always require an intimate knowledge of the physical geometry and material 

decomposition as it relates to the system.  The previous chapters have served to set up the 

construct for the use of the FEMA-BRICK code “engine” to solve this particular 

application of a patch antenna over a textured substrate.  The reader is asked to keep in 

mind that the techniques discussed in this chapter are applicable to other types of systems. 

Broad applicability is non-trivial, however, as will be shown.  This is primarily true 

because of the very specific nature of electromagnetic systems. 

3.1 Matrix Structure and Exploitation 

As is typical of electromagnetic systems, the FE-BI system matrix utilized within FEMA-

BRICK is complex symmetric (block Toeplitz).  The total FE-BI system matrix for a 

given frequency, geometry, and material profile goes according to 

 (1) (2) (1) (2)= + + +R A A G G . (24) 

Defining 
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, (25) 

it is clear that 1−=e R f  solves the system for a given frequency, geometry, and material 

profile.  This is effectively what the FEMA-BRICK code accomplishes, but without 

explicitly forming the system matrix in core memory (the system is solved via the 

biconjugate gradient technique). 

There are two fundamental aspects to the optimization problem under consideration: 1) 

control of the optimization is accomplished by adjusting the dielectric permittivity only 

( ( )(2) (2)=A Aε ), and 2) a wideband optimum solution is needed.  The matrix structure 

associated with each of these issues is discussed in the next two sections. 

3.1.1 Matrix Structure Dependence on Permittivity 

The focus of this section is on ( )(2)Aε .  No other matrix components noted are affected 

by changes in the structure of material permittivity within the FE-BI context.  As such, 

this component represents the only noted “control mechanism” to provide the optimum 

solution.  Since this is the centerpiece of this research activity, it is necessary to clearly 

understand the development of the elements within this control matrix in order to provide 

a usable decomposition; this is covered in the sections that follow. 

As previously mentioned, specific computation of individual brick contributions involves 

a volume integral about the brick itself according to 

 [ ]( ) [ ](2) 2
0ij r r i jn nV

k dVε ε = − ⋅ ∫A W W , (26) 
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highlighting the fact that the FE contributions are taken over a textured material substrate 

structure: each brick within the 3-D lattice must be indexed by n ( [ ]r n
ε=ε ) to describe 

the total geometry. 

Computations within the FEMA-BRICK code begin with the linear edge-based expansion 

functions given by 
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for the brick geometry element ( e ) as shown in Figure 3-1.  With this construction, the 

field is represented within the brick by the 12 edge element unknowns according to 

 
12

1

e e e
k k

k
E

=

= ∑E W . (27) 
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Figure 3-1. Brick Geometry within FEMA-BRICK 

The entire geometry is constructed from these fundamental elements, such that a given 

edge-based unknown is derived from a combination of those brick material values 

surrounding it.  Computation of entries within ( )(2)Aε  involves the superposition of all 

brick elements, where each brick element contribution is augmented according to 

 [ ]( ) [ ]( ) [ ](2) (2) 2
0

e e e
ij r ij r r x y zn n n

i j

k h h hε ε ε

′ ′

 
 → −  
  

L 0 0
A A 0 L 0

0 0 L
, (28) 

where the , ,  and ,i j i j′ ′  terms associate the element system position with the global 

matrix structure (to be superimposed), and the symmetric matrix 

 

1 9 1 18 1 18 1 36
1 18 1 9 1 36 1 18
1 18 1 36 1 9 1 18
1 36 1 18 1 18 1 9

 
 
 =
 
 
 

L . 
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The values within the matrix are evident by noting that 

 

( ) ( )

( )( )( )

( )( )( )( )
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∫ ∫

∫ ∫

∫ ∫



 

, (29) 

and observing the manner in which the linear edge-based element expansion functions are 

arranged. 

Computing the contribution within ( )(2)Aε  to a given edge-based unknown therefore 

involves the sum of the contributions of the surrounding material bricks.  The resultant 

matrix is clearly symmetric in structure and is extremely sparse.  Typically, less than 1% 

of the terms in ( )(2)Aε  will be non-zero. 

This symmetric matrix can be decomposed according to 

 ( )(2) T=Aε LDL , (30) 

(as can any symmetric matrix) where L  is a lower triangular matrix with unity diagonal, 

and D  is a diagonal matrix.  The algorithm which accomplishes this decomposition is 

3( )O N  [29].  As described above, a given edge element unknown is affected by at most 4 

bricks.  It is straightforward to construct a geometric mapping between the physical 

material bricks and the locations within the global matrix structure (unknowns), thus 

weighting the element contributions appropriately.  As will be shown, the geometric 

mapping is most strongly represented in L , while the material value contributions are 
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most strongly represented in D , such that ( ) ( )diag id= ≈D Dε .  To observe this, note 

that for a particular realization of ( )(2) T=Aε LDL , a constant material adjustment and 

subsequent TLDL  decomposition will result in no change to L , and a similar constant 

adjustment to D  regardless of the initial ε  profile.  This approximation loses validity as 

the structure of the material profile increasingly deviates from the baseline, or if material 

transitions are not smooth.   

Assuming that ( ) ( )diag id= ≈D Dε , a transformation matrix can be determined that 

gives the material profile weight update from a corresponding diagonal element 

[ ]1 2, , , T
Nd d d=d   update according to 

 d dε ε ε ε
+= ⇔ =w T w w T w , (31) 

where εw  is a vector of weights applied to permittivity values in the cavity structure 

taken row by row in the material profile 2-D structure, dw  is the corresponding 

weighting applied to d  (via Hadamard product), and ( ) 1T T
ε ε ε ε

−+ =T T T T  is simply the 

Moore-Penrose pseudo-inverse. 

As a final remark, the Cholesky decomposition is given by 

 ( )(2) T=Aε GG , (32) 

for 1 2=G LD , but note that the TLDL  form is preferred for aforementioned reasons of 

electromagnetic mechanism (geometry and material) separability. 
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3.1.2 Wideband Matrix Structure 

Since the goal is to produce a wideband optimization for (a) particular component(s) of 

the e  vector, it is prudent to examine the frequency dependence of the system matrix 

components. 

Based on Equation (16), note the frequency dependencies for the FE matrices can be 

given by 

 
( ) ( )
( ) ( )

(1) (1)
0

(2) 2 (2)
0

k k

k k k

=

=

A A

A A

, (33) 

for the normalized frequency variable 0k k k= , where 0k  is a reference frequency point 

within the band of interest (e.g., center frequency).  Further, to first order, the frequency 

dependencies for the BI matrices can be approximated according to 

 
( ) ( )
( ) ( )

(1) 2 (1)
0

(2) (2)
0

k k k

k k

≈

≈

G G

G G



. (34) 

To see why this approximation is reasonable, consider the Taylor series expansion about 

the center frequency for the complex exponential term within the integrand for these two 

matrices.  This is given by 

 ( ) ( )
0 2 2

0 0
11
2

jk RjkRe e j k k R k k R
R R

−−  ≈ − − − − + 
 

 . (35) 

There are two things that lend validity to the first-order approximation of Equation (34).  

First, the values which dominate the resultant BI matrices are those for which 0R → .  
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This is evidenced in Figure 3-2, where the self- and close-impedance terms (small R ) are 

highlighted.  Note that the values are shown in dB ( 1020log − ) to highlight the 

differences in the coefficients associated with larger R . 

 

Figure 3-2. Typical Values within  BI Matrices over a Wide Band (2-4 GHz) 

Obviously, the second factor weighing favorably is that for 0R → , the first term in the 

Taylor series is highly dominant, allowing for Equation (34).  This provides a convenient 

linear relationship between the overall FE-BI system matrix versus frequency. 

Support for this idea is available in the literature.  The asymptotic waveform evaluation 

(AWE) technique was introduced as a means to speed-up solutions of matrix systems at 

frequencies (k) away from a particular reference frequency (k0

37

), by approximating the 

unknown surface current solutions via some numerical expansion.  AWE was initially 

introduced using a Taylor series expansion, and was later improved upon via a Padé ex-

pansion [ , 38, 39, 40].  The latest work demonstrates that accurate approximations over 

very large fractional bandwidths [ > 1.6 for L=6, M=6, see below for variable 

descriptions] are possible.  The fact that Padé expansions provide enhanced accuracy is 
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readily seen by observing that poles and zeros are each well-modeled according to the 

representation 

  ( ) ( )
( )

00

01
1

L ll
nl

n M mm
nm

a k k
P L M

b k k
=

=

−
=

+ −
∑
∑

. (36) 

Since the basic electromagnetic problem consists of (perhaps, several) resonances at pole 

locations, such an expansion leads to a suitable broadband approximation from a 

knowledge of the solution (fields, radar scattering, radiation pattern, impedance, etc.) at a 

few frequency points.  As an example, Erdemli, et. al. [37], determined the coefficients in 

the Padé expansion via Taylor and then directly computed the surface current using the 

expansion 

  ( ){ } ( ){ }1 1n nN N
I k P L M

× ×
= . (37) 

In general, solutions are examined for increasing orders of expansion.  For illustration 

purposes, it is possible to keep only the first term and formulate the solution via 

eigendecomposition.  The reasonableness of the approximation for this case follows. 

As before, for any given frequency, 

 ( ) ( ) ( ) ( ){ } ( ) ( )(1) (2) (1) (2)k k k k k k+ + + =A A G G e f . (38) 

Utilizing the approximation of Equations (33) and (34), rewrite (38) as 

 ( ) ( ) ( ) ( ){ } ( ) ( )(1) 2 (2) 2 (1) (2)
0 0 0 0k k k k k k k k+ + + ≈A A G G e f  , (39) 
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or equivalently 

 ( ) ( ) 2
0 0k kµ ε+ ≈CΕ C ΕK F , (40) 

where 
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, 

where F  is the total number of frequency points.  Define µC  as the constituent matrix 

whose properties are primarily affected by substrate permeability (henceforth assumed to 

be unity as in free space), and εC  as the constituent matrix whose properties are primarily 

affected by substrate permittivity (which will be adjusted).  The optimization approach is 

developed as generally as possible, despite the assumption of free space permeability. 

To test the approximation, FEMA-BRICK is exercised to compute all matrix elements 

above, plotting the residual, using the example geometry shown in Figure 3-3.  The error 

relative to the associated field (frequency-by-frequency) is predominantly on the order of 

1-2% as shown in Figure 3-4. 
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Figure 3-3. Example Patch Antenna Geometry – Solid Material Substrate with 30rε =  

 

 

Figure 3-4. Approximation Error about the Center Frequency of 3.5 GHz 
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The relative error is expected to depend on the choice of reference frequency.  Two such 

examples are shown in Figure 3-5, where clearly the error is minimized in the region of 

the reference point.  Note that focusing on the particular regions of large error (e.g., 

0 3 GHzk = ) tends to reduce the average error over the entire band. 

 

Figure 3-5. Approximation Error about 3 GHz (left) and 4.5 GHz (right) 

 

3.2 System Condition Issues 

The FE-BI system as defined above is well-conditioned provided adequate attention is 

given to the construction of the geometry.  Consider the example of three identical 

geometries that have been constructed differently by a factor.  The geometries are shown 

in Figure 3-6, where one has been subdivided into 10 segments per edge, the next has 

been subdivided into 20 segments per edge, and the third has been subdivided into 30 

segments per edge.  The substrate is of size 4.0 cm × 4.0 cm × 0.1 cm and has a value of 

100 0.15r jε = − .  The Z-directed E-field at the probe location is investigated from 1-2 

GHz. 
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Figure 3-6. Identical Geometry Constructed using 10x10 Bricks (left), 20x20 Bricks (middle), and 
30x30 Bricks (right) 

The respective field calculated at the probe location for each case is shown in Figure 3-7.  

The high-density geometry is the most accurate.  Observe that lower-density solutions are 

converging towards the high-density solution, as expected. 

 

Figure 3-7. Probe Location E-field Unkown (real part) for 10x10 Bricks (blue), 20x20 Bricks (red), 
and 30x30 Bricks (green) Shows Convergence of Solution for 100 0.15r jε = −  
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If for these identical geometries the value of the solid substrate permittivity is increased to 

200 0.3r jε = − , then 500 0.75r jε = − , the results shown in Figure 3-8 are obtained.  

There is an increased tendancy in these examples for the low-density mesh solution to 

show divergence from the high-density mesh solution. 

 

Figure 3-8. Probe Location E-field Unkown (real part) for Various Brick Meshes and Increasing 
Permittivity [ 200 0.3r jε = −  (left) and 500 0.75r jε = −  (right)] 

The differences in these predictions help to illustrate the sensitivity of the solution space 

to geometric meshing and material perturbation.  In the context of the electromagnetic 

system, the following table is obtained by examining the computed condition of the 

matrix ( ) ( ) ( ) ( )(1) (2) (1) (2)
0 0 0 0k k k k= + + +R A A G G  in all cases. 

Table 3-1. System Matrix Condition versus Material Permittivity and Mesh 

Permittivity / Mesh 10 × 10 20 × 20 30 × 30 

100 – j 0.15 101 168 285 

200 – j 0.2 113 119 174 

500 – j 0.75 2125 173 3418 
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The first two cases are reasonable condition numbers for the solution of the FE-BI 

system.  The last case is beginning to approach erratic and problematic condition 

numbers.  The purpose in highlighting these cases is to show that attention must be given 

to the maximum allowable material permittivity in a textured material solution.  A 

standard rule of thumb for discretization of a geometry is that the segments (cells) should 

be on the order of 10gλ , for the guide wavelength given by g rλ λ ε= .  As material 

permittivity increases, physical cell size must decrease.  This is a key solution space 

limitation. 

3.3 Total Least Squares Optimization of the Electromagnetic System 

An early attempt at optimization of the matrix system centered on the use of a constrained 

Total Least Squares (TLS) approach.  This particular optimization attempted to make use 

of the frequency dependence of the finite element matrices only, such that the system was 

given by 

 ( ) ( ) ( ){ } ( ) ( )(1) 2 (2)
0 0k k k k k k+ + =A A G e f , (41) 

without approximation.  Control for optimization is given exclusively by ( )(2)
0 ;kAε  and 

a simplified means to update via a diagonal weight matrix, W , is assumed.  Defining the 

update according to 

 ( ) ( )(2) (2)
0 1 0; ;t tk k+ =Aε WA ε , (42) 

and constraining the field unknowns associated with the feed, 
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is found.  If the l.h.s. to the objective is constrained at n, where n defines the locations in 

the unknown vector associated with the feed, then 
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where 
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and the [ ]n
 terms are associated with the constraint, while the [ ]u

 terms are 

unconstrained.  The precise form of the update weight matrix is functionally dependent 

on the geometry of the FE-BI solution, since the feed location must be assigned within the 

matrix, ( )(2)
0 ;kAε .  Once the proper relationship is established between the system and 

the physical structure, a Total Least Squares (TLS) solution may be found. 

Generally, the TLS approach is attractive in cases where “error” may exist in both the 

operator (FE-BI) and solution (excitation) matrices.  The technique fundamentally works 

by finding the minimum common solution space between the “data” ( ( )(2)
0 ; t u

k  Aε ) and 
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the “measurement” ( ( )kg ).  Each solution space is allowed to perturb to find the 

minimum error between both.  It is an exact solution to the system when the error (or 

deviation) matrices are included.  It can be proven that under certain (enforceable) 

conditions, the TLS solution exists and is unique, and this is very well explained in Golub 

and Van Loan [29].  An explanation of the constrained solution approach utilized for this 

work is given in Appendix B.  In this case, however, the problem of encouraging a 

solution with diminishing error (convergence toward a solution) is confronted, and one 

must question whether this is possible.  One limitation at the outset is that a value on the 

r.h.s. must be assumed in order to form an update.  The solution proceeds by solving for 

 ( ) ( ){ } ( ) ( ){ } ( ) ( )(2) (2)
0 0; ;t t u uu u

k k k k k k   + ∆ + ∆ = + ∆   Aε A ε e e g g , (45) 

via the TLS approach.  The weight update is then solved for by equating 

 ( ) ( ) ( )(2) (2) (2)
0 0 0; ; ;u t t tu u u

k k k     = + ∆     W Aε A ε A ε . (46) 

 The TLS approach determines the deviation matrices by minimizing 

 ( ) ( )(2)
0 ; ,r t cu F

k k  ∆ ∆  M Aε g M , (47) 

where 
F
  is the Frobenius norm, and the M matrices are diagonal and represent row-

wise and column-wise solution space norm matrices, respectively.  Finding this minimum 

norm solution is accomplished via Singular Value Decomposition (SVD).  It was only 

necessary to compute a few of the smallest singular values, so solution times were not 

prohibitive.  Generally, both solution space norm matrices were chosen such that 
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det(M)=1 and the constrained matrix elements, n, were weighted more heavily than the 

remaining elements, thus encouraging convergence toward the constraint. 

Narrowband optimizations were performed with only modest success using this approach.  

Again, for the case of the original patch antenna geometry, repeated for convenience 

below in Figure 3-9, a narrowband optimization was performed. 

 

 
Figure 3-9. Patch Antenna Configuration Utilized for TLS Optimization Tests 

 A typical optimization run is shown in Figure 3-10, where a sharp truncation of material 

(to air) in the material profile to the left is observed, and a somewhat inconsistent 

approach toward the objective in the iteration on the right is shown.  Indeed, the typical 

TLS optimization run did not actually achieve the objective, though it did approach it. 
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Figure 3-10. Patch Antenna TLS Optimization Result; Material Profile (left), Iteration (right) 

A significant issue associated with TLS optimization as it was implemented here was that 

the structure associated with the deviation “data matrix” in question ( ( )(2)
0 ; t u

k ∆  Aε ), 

for which the update weight was extracted, differed in form from the original data matrix 

( ( )(2)
0 ; t u

k  Aε ).  This is not surprising, since the deviation matrix is formed from a 

single outer product of eigenvectors (based on the most insignificant eigenvalue), and the 

form of the original data matrix is sparse and largely diagonal (see Figure 2-8 on page 

30).  This caused the update weighting to be very slow in converging. 
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CHAPTER 4 NARROWBAND SYSTEM OPTIMIZATION 

The constrained TLS approach served to highlight a number of useful qualities associated 

with the eigendecomposition of electromagnetic systems such as FE-BI; most 

significantly, the manner in which update weights should be applied.  It led to the 

observed need to consider all terms in the eigendecomposition.  An approach that could 

effectively capture updates across the spectrum of weights available by material texturing 

held much more promise than one based on only one singular value. 

This chapter introduces the manner in which the eigendecomposition of an 

electromagnetic system may be used to guide an optimization process.  This was first 

pursued as a narrowband optimization only, and offered some particular interesting 

insights into system behavior, allowing for a basic iterative optimization. 

4.1 Narrowband System Matrix Eigendecomposition 

As presented in Section 3.1, the FE-BI system matrix may be given by 

 (1) (2) (1) (2)= + + +R A A G G , (48) 

where ( )(2) (2)=A Aε  is the “control” sub-matrix: the only matrix adjusted via textured 

material for optimization.  The eigendecomposition may be written as 
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 1−=R XΛX , (49) 

where ( )diag iλ=Λ  is the eigenvalue matrix, and X  contains the associated 

eigenvectors.  As such, the system solution is given as 

 1 1− −=e XΛ X f , (50) 

where e  is the narrowband edge-based E-field unknown vector and f  is the excitation.  

A particular objective value is determined based on one or more element(s) of 

[ ]1 2, , , T
Ne e e=e  .  If the nth

,n obje element is chosen to have as its objective the value , 

the constraint equation 

 1
,

T
n obj ne −= xΛ β , (51) 

is found where [ ]1 2, , , T
N=X x x x  and 1−=β X f .  This particular constraint equation 

can be further simplified by noting that 

 ( )1
,

T T
n n n obje− −= =xΛ β λ x β , (52) 

where   is the point-wise (Hadamard) product and 1 1 1
1 2, , ,T

Nλ λ λ− − − − =  λ  .  Since the 

excitation vector ( f ) and the eigendecomposition is uniquely defined for a given system, 

this form defines one constraint for the optimum solution given by optλ .  It may be treated 

as approximate if it is difficult to achieve the desired objective due to other constraints. 

Generally, it is possible that a metric could be established based on more than one 

element of e .  Through a simple extension of Equation (52), 



55 

 ( )1 2 1 2, , ,, , , , , ,
N N

T
n obj n obj n obj n n ne e e −   =   λ x β x β x β    , (53) 

is given.  Note that the single eigenvalue vector controls all objective values.  In order to 

drive a particular optimization, the individual objective values may be combined to form 

a single-valued metric (e.g., minimum L2

4.2 Solution for Constant Material Adjustment Only 

 norm). 

From Equations (30) and (31) in Section 3.1, note that if a constant material change is 

introduced (all element permittivity values similarly changed) according to some scale 

factor, then a relationship between the eigenvalue vector ( λ ) and the material update 

vector (d ) is immediately provided.  Such a constant material update factor serves as an 

example to illustrate the main points of the optimization development to follow. 

The system to be solved is constructed in such a way as to guide the nature of the 

anticipated matrix deviations.  Under the simple constant material change criterion, 

observe that 

 ( ) ( )1
0diag diag Ta−   + ∆ = +   Xλ λ X L d L R , (54) 

making 

 
( ) ( )

( )

1
0

(2)
0

diag diag Ta

a

−   ∆ =   
=

Xλ X L d L

Aε
, (55) 

where 0a  is a constant and ∆λ  represents a deviation to the eigenvalue vector 

commensurate with a constant material adjustment factor, 0 1a + .  For practical material 
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updates, enforce { }0 0; 1a a∈ > − , since the overall material adjustment factor can not be 

negative and a low-loss optimization result is desired.  The diagonal form of the 

eigenvector deviation may thus be given by 

 0 0a∆ ≈ ∆λ λ , (56) 

defining 

 ( )( )1 (2)
0 diag −∆ =λ X A ε X . (57) 

Equation (56) is approximate in the sense that the result of the matrix product  

( )1 (2)−X Aε X  is diagonally dominant, but not perfectly diagonal.  An example of this 

behavior is shown in Figure 4-1 below. 

  

Figure 4-1. Typical Structure of Diagonally Dominant ( )1 (2)−X Aε X  (left) and Relative Diagonal 
Energy (right) 

This is reasonable behavior to expect since the matrix 1−X RX  is strictly diagonal and 

( )(2)Aε  is one component of R .  As an aside, it is worthwhile to note that although R  is 
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symmetric, it is not normal (i.e., H H≠RR R R ).  For the above example, the departure 

from normality [29] is approximately 42 10−×  as given by 

 ( ) 2 22
iF

i
λ∆ = − ∑R R . (58) 

Normality speaks to the degree with which a matrix is orthogonal.  Orthogonality 

encourages changes in one eigenvalue to be independent from changes in the others. 

The eigenvalue update equation for a constant material adjustment then goes according to 

 ( ) ( ) ( ) 111 1 1
0 0 0 0 01a a a

−−− − −≈ + ∆ = + ∆λ λ λ λ λ λ  , (59) 

where ( )1 10− −=λ λ .  Returning to (50), 

 

( ) ( )( )
( )

( )

11 1 1
0 0 0

2
1 10 0

1
0 0

2
10 0

1
0 0

diag 1

diag diag
1

0 diag
1

a a

a
a

a
a

−− − −

−
− −

−

−
−

−

 ≈ + ∆  
  ∆

= −  + ∆   
  ∆

= −   + ∆   

e Xλ λ λ X f

λ λXλ X f
λ λ

λ λe X X f
λ λ

 









 (60) 

is found, such that the deviation between the objective and the current state of the E-field 

may be given by 

 ( )
2

10 0
0 1

0 0

diag
1

aa
a

−
−

−

  ∆
∆ ≈   + ∆   

λ λe X X f
λ λ




. (61) 

Additionally the derivative relative to the scale constant may be easily found as 
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 ( ) ( )( )2 1
0 0 0 0

0

diaga a
a

− −∂  ≈ −∆ + ∆  ∂
E Xλ λ λ X f . (62) 

The viability of this approach for solving constrained solutions is next examined by 

revisiting the objective Equation (52) under the condition of the update.  This is 

accomplished by minimizing the objective function 

 

( ) ( ) ( )

( ) ( ){ } { }( )
( ) ( ){ } { }( )

2

0 0 0 ,

2

0 0 ,

2

0 0 ,

Re Re

Im Im

T
n n obj

T
n n obj

T
n n obj

J a a e

a e

a e

−

−

−

= + ∆ −

= + ∆ −

+ + ∆ −

λ λ x b

λ λ x b

λ λ x b







. (63) 

The derivative may be given by 

 
( ) ( ) ( ){ } { }( ) ( )

( )

( ) ( ){ } { }( ) ( )
( )

0
0 0 0 , 2

0 0 0

0
0 0 , 2

0 0

2 Re Re Re

2 Im Im Im

T

T
n n obj n

T

T
n n obj n

J a a e
a a

a e
a

−

−

  ∆∂  = − + ∆ −   ∂ + ∆    
  ∆ − + ∆ −   

+ ∆    

λλ λ x b x b
λ λ

λλ λ x b x b
λ λ

 

 

.(64) 

Note that the derivative is zero when the objective itself is zero as should be expected for 

a function that approaches a minimum at zero gracefully.  All conditions where 

 
( )

( )0
2

0 0

0
T

n
a

 ∆
= 

+ ∆  

λ x b
λ λ



, (65) 

are potential solution candidates in that they represent a local minima for the objective 

function.  In fact, it is unlikely that a zero derivative will be realized by a perfectly 

matching objective.  The higher likelihood is that solutions to Equation (65) will coincide 
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with the optimal solution.  Observe in Figure 4-2 that the zero crossings of derivative 

terms correspond to rapidly deviating real and imaginary objective position E-field 

solutions.  For this reason, the candidates for optimal values of 0a  may be found via a 

root-finding procedure in the derivative, as shown in Figure 4-2. 

   

Figure 4-2. Example Real (left) and Imaginary (right) Eigenvector Deviation Search Space 

Commensurate with experience, these optimum solutions are highly sensitive to choice of 

material parameterization, even for the case of a simple constant material adjustment.  

Once the eigendecomposition is completed, these potential solutions are generated rapidly 

as opposed to the tedious approach of continually exercising the prediction code and 

performing a search optimization.  To compare the estimate with the true calculation, 

multiple calculations were performed and compared.  The plot of results is shown in 

Figure 4-3, where the true value is in blue and the estimate is in red (dashed). 
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Figure 4-3. Comparison Between Estimated and True Pointwise Solutions (varying a0

As the plot above is generated from constant spacing of a

) 

0, it is clear that the points 

desired (zero imaginary component and prescribed negative real component; e.g., a 50Ω 

input impedance for this geometry corresponds to a Z-directed E-field value of -200 

V/cm) are highly sensitive.  The accuracy will increase as a0

( )1 10− −=λ λ

 approaches zero 

( ), however, so a few iterations may be required.  In Figure 4-3, observe that 

the error between plots (error in a0

In the plots above, the true result was generated in approximately 8 hours versus 1.25 

seconds on the same machine for the estimate (after eigendecomposition).  The 

interesting (and encouraging) point to make in the plots above is that that the magnitude 

of the estimate in the regions of extrema is reasonably accurate.  This bodes well for a 

global optimization solution. 

) does indeed decrease with proximity to zero. 

4.3 Solution for Simple Textured Material 

The constant material adjustment example may now be thought of as the first term in a 

basis designed to construct an optimal material solution to the objective.  Indeed, an 
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overall eigenvalue deviation vector can be defined according to an arbitrary surface basis 

set.  To generalize, assume a total eigenvalue deviation vector described by 

 

1

0

L

a
−

=

∆

∆ = ∆

=

∑
λ

λ λ

L a

l l
l , (66) 

for [ ]0 1 1, , , L∆ −= ∆ ∆ ∆λLλ λ λ , [ ]0 1 1, , , T
La a a −=a  , and some total number of deviation 

bases, L .  Again returning to (50), the generalized form can be given by 

 
( ) ( )( )

( )( )

1 1

1 1

diag

diag

− −

− −
∆

 ≈ + ∆  
 = +  λ

e a Xλ λ X f

Xλ L a X f
. (67) 

As before, the objective function 

 

( ) ( )

( ){ } { }( )
( ){ } { }( )

2

,

2

,

2

,

Re Re

Im Im

T
n n obj

T
n n obj

T
n n obj

J e

e

e

−
∆

−
∆

−
∆

= + −

= + −

+ + −

λ

λ

λ

aλ L a β

λ L a β

λ L a β

, (68) 

is minimized, where n n=β x b , and ,n obje , nx , b  are defined precisely as in Equation 

(52).  The gradient of the objective is given by 

 
( ) ( ){ } { }( )

( ){ } { }( )

1

,
0

1

,
0

ˆ2 Re Re Re

ˆ2 Im Im Im

L
T T

n n obj n

L
T T

n n obj n

J e

e

−
−

∆
=

−
−

∆
=

 ′∇ = − + − ∆ 
 

 ′− + − ∆ 
 

∑

∑

aλ

λ

aλ L a β a λ β

λ L a β a λ β

l l
l

l l
l

, (69) 
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where âl  is the thl  unit vector and ′∆λ l  is the partial derivative given by 

 
( )

( )

1

2

a
−

∆

−
∆

∂′∆ = +
∂

= ∆ +

λ

λ

λ λ L a

λ λ L a

l
l

l

. (70) 

Note that ( ) 0J∇ =a a  when [ ]0,1, , 1 , 0T
nL ′∀ ∈ − ∆ =λ β ll . 

As an example, a second (non-orthogonal) basis was added in order to view the 

comparison in two dimensions.  The basis set consisted of a constant ( 0a ) and a 

sinusoidal “rooftop” basis ( 1a ) over the span of the material solid itself.   Plots showing 

the relative agreement between FEMA-BRICK computed results and those estimated via 

the scaling of two eigenvalue bases are shown in Figure 4-4.  Just as in the case of scaling 

only, there is some divergence from the true result away from the origin.  It is reasonable 

to expect that divergence will be a function of the distance from the origin for reasons 

mentioned earlier.  There may be a limit to the number of parameters with which to 

model material changes, however, since the parametric limits must be bounded more 

tightly with the addition of each successive parameter. 
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Figure 4-4. Comparison Between Estimated (left) and True (right) Pointwise Solutions (varying a0 
and a1

The concern over the limits in a parametric construct was not pursued in detail as part of 

this work, due to the findings contained in 

) for the Real (top) and Imaginary (bottom) Components 

Chapter 5.  It is nevertheless interesting that 

such a construct could be developed and solved in a manner amendable to genetic 

algorithms and the like.  The narrowband results in the next section were obtained via an 

exhaustive search, considering only two parameters and a simple iteration.  The iteration 

simply involved searching the two-parameter space for the next best solution, adjusting 

the substrate accordingly, and searching again. 

4.4 Results for a Narrowband Exhaustive Search 

Optimizations were performed using this small basis set as a proof of concept.  Example 

results are shown below for the same original geometry shown in Figure 3-9 on page 51.  

In each case, the left-most figure shows the choice of optimum material profile and the 

right-most figure displays the resulting reflection loss.  The first two examples were 

generated with relative ease and were representative of approximately 80% of the test 

runs performed.  The third example illustrates an issue that could arise if the material 

bounds are allowed to exceed an upper limit. 
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Figure 4-5. Test Narrowband Optimization (optimized at 2 GHz) for a Two-component Basis 

 

 

Figure 4-6. Test Narrowband Optimization (optimized at 2.1 GHz) for a Two-component Basis 
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Figure 4-7. Test Narrowband Optimization (optimized at 1.55 GHz) for a Two-component Basis 

While this last example did produce a reasonable minimum at the planned 1.55 GHz, it 

was clearly an inferior optimum when compared to the previous two cases.  It is 

anticipated that this example highlights a failure in the choice of solid material model 

basis (2 component), and that an alternate basis may perform better.  In this case, material 

values approaching { }Re 300rε =  were considered to achieve the objective, and this 

quickly leads to a poorly conditioned FE-BI system. 
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CHAPTER 5 WIDEBAND SYSTEM OPTIMIZATION 

This chapter extends the treatment of Chapter 4 to include how solutions covering a range 

of frequencies can be determined, allowing for fast wideband optimizations.  It begins 

with the wideband system formulation of Section 3.1.2, and then discusses an appropriate 

eigendecomposition from which optimization can be performed. 

5.1 Wideband System Matrix Eigendecomposition 

The solution to the wideband approximate system takes the form 

 ( ) ( ) ( ) ( ) ( )2
0 0; tk k k k k kµ ε+ ≈C e Cε e f , (71) 

where 0k k k=  is the normalized frequency.  From the eigendecomposition 

 ( ) ( )1 1
0 0; ;t tk kε µ

− −=Cε C ε XΛX , (72) 

where t  is the current textured material state, ( )diag iλ=Λ  is the eigenvalue matrix, and 

X  is the matrix of associated eigenvectors, we can find 

 ( ) ( ) ( ) ( )1 2 1
0; tk k k k kε

− −+ ≈XΛX e e C ε f . (73) 

To solve this system, note that for each frequency, the relation 
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 ( ) ( ) ( ) ( )1 2 1
0; tk k k kε

− −+ ≈XΛX I e C ε f , (74) 

arises, which becomes 

 
( ) ( ) ( ) ( )

( ) ( )

11 2 1 1
0

1 1 1
0

;

;

t

k t

k k k k

k k

ε

ε

−− − −

− − −

≈ +

=

e XΛX XX C ε f

XΛ X C ε f



, (75) 

where ( )2diagk i kλ= +Λ  .  For the case of reflection loss at a probe feed, ( ) ( )0k k k=f f , 

so the final probe location solution is given by 

 ( ) ( ) ( )1 1 1
0 0;k tk k kε

− − −
′≈e XΛ X C ε f , (76) 

for 
2

diag i
k

k
k

λ
′

 +
=  

 
Λ





.  Several key insights emerge from examining this functional 

form of the eigendecomposition. 

Extrema for ( )ke  occur near the frequencies for which 

 
1 2

22 2
diag diag 0

i i
i

k i

ik k k k i
k k

d kd k
dk dk k k

λ
λ λ

−
′

= =
=

   − = = =   +     +  

Λ
 

 

 



  



. (77) 

The imaginary component of (77) is zero when ( ) ( )22 2
i ik kλ λ ∠ − = ∠ + 
  .  To solve for 

the frequency location at the extrema, begin by setting 

 { }
{ }

{ }( ) { }( ) { }
{ } { }( )

2 2 4 22

2

Re Im 2ReRe
Im 2Im Re

i i i i ii i

i i i i

k kk
k

λ λ λλ
λ λ λ

− + +−
=

+

 





. (78) 
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This establishes the quadratic equation 

 { } 24 23 2Rei i i ik kλ λ+ =  , (79) 

 which becomes 

 { } { }2 2
2 Re Re

3 9 3
i i i

ik
λ λ λ

= − + + . (80) 

Each imaginary component extreme of 1
k
−

′Λ  locates a real resonance for the system, as 

will be shown later.  Eigenvalues for this symmetric, but non-Hermitian, system are 

complex, and generally track the loss tangent of the material in  -space, such that the 

imaginary eigenvalue components are small for low-loss materials.  An example is shown 

in Figure 5-1 for two different cases of material loss tangent.  The geometry is an offset 

probe-fed patch placed over a solid material substrate (5 cm x 5 cm x 0.25 cm equal-sized 

bricks). 

 

Figure 5-1. Example Geometry (left) and Associated Eigenvalues at 2.5 GHz (right) for Small 
( 100 0.15r jε = − ) and Zero  ( 100rε = ) Loss Tangents 
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For this reason, 1
k
−

′Λ  is not singular for physically meaningful materials.  When losses are 

small, { }Rei iλ λ≈ − , and substituting this into (80) yields 

 { }Rei i ik λ λ≈ ≈ − . (81) 

The approximation as a function of the loss-tangent trend is shown in Figure 5-1.  

Assuming { } { }tan Im Rei iδ λ λ≈ , such that { } 2Re 1 tani iλ λ δ= − + , the error in the 

approximation as a function of loss tangent is obtained according to 

 

2

2

2

1 tan

1 1 3 3
% 100

1 1 3
a

a a

a
δ= +

+ + −
∆ = ×

+ +
. (82) 

The error does not approach 1% until the loss tangent exceeds 0.29.  Since low-loss 

textured material designs are sought, the approximation of Equation (81) is used from 

here forward. 

Adding loss to materials is a common practice for wideband antenna design.  It is well-

known that one way to increase bandwidth for a particular design is to add loss to 

materials associated with the antenna in a controlled way, in order to optimize the 

engineering trade between good bandwidth and good overall performance (efficiency and 

gain).  An increased material loss tangent causes the frequency performance of 

eigenvalues at resonance to be dampened in magnitude.  The appropriate amount of 

dampening not only causes the resonance to better approach the objective value, it also 

lessens the sensitivity of the magnitude in the vicinity of the resonance (it becomes less 
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“peaky”).  This is easy to see by examining the pole behavior of ( )2
ik kλ +   for 

normalized frequencies near 1k = , and 1 tani jλ δ= − − .  A plot is shown in Figure 5-2, 

where the magnitude is simply [ ] 1tanδ −  for a small set of various loss tangents.  Note the 

improved behavior in the resonant response at the pole location that accompanies the 

introduction of additional loss. 

 

Figure 5-2. Illustration of How Loss Tangent Affects Eigenvalue Pole Behavior 

Also noteworthy is the fact that these resonances may lie well outside the band of interest.  

As such, they do not contribute significantly to the overall reflection loss response 

function.  A general rule for retaining eigenvalues in the approximation of Equation (76) 

is given by 

 min maxik kλ≤ ≤  , (83) 

where the frequency range is given by min max,k k k ∈  
   .  One may, however, choose to 

keep a few more eigenvalues near the boundary such that this rule should be regarded as 

approximate. 
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As in the narrowband case, the new system seeks to achieve particular objective values in 

one row of [ ]1 2, , , T
N=E e e e .  If the nth

( ) ( ) ( ), , 1 , 2 ,, , ,
T

n obj n obj n obj n obj Fe k e k e k =  e 

  vector is chosen to have as its objective the 

value(s)  (a vector containing objectives for 

each frequency), the constraint equation 

 ( ) ( )1
, 0 ;T

n obj n k te k k−
′= xΛ β ε , (84) 

is given where 

 ( ) ( ) ( )1 1
0 0 0; ;t tk k kε

− −=β ε X C ε f , (85) 

for each [ ]1 2, , , Fk k k k∈  , and [ ]1 2, , , T
N=X x x x .  This particular constraint equation 

can be simplified even further (to an N-point inner product) by noting that 

 ( ) ( ), 0 ;T
n obj k n te k k−

′= λ γ ε , (86) 

for 

 ( ) ( )0 0; ;n t n tk k=γ ε x β ε , (87) 

where   is the point-wise (Hadamard) product, and 

( ) ( ) ( )1 1 11 1 1
1 2, , ,T

k Nk k k k k kλ λ λ
− − −− − − −

′
 = + + +  

λ      

 . 

5.2 Validation of Eigendecomposition Approximation 

The basic approximation is tested by examining the electric field unknown at the probe 

location of the electrically small patch antenna example of Figure 5-1, based on a 
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constant permittivity substrate having 100 0.15r jε = − .  The center frequency of 2.5 GHz 

is selected and the wideband behavior from 1 to 4 GHz is used, so that the normalized 

frequency range is from 0.4 to 1.6.  From Equation (83), the applicable eigenvalues for 

this frequency range should satisfy [ ]0.16,2.56iλ ∈ , comprising only 68 of the available 

901 eigenvalues.  These are shown as asterisks in the dotted bounding box in Figure 5-3. 

 

Figure 5-3. Eigenvalues associated with the geometry of Figure 5-1 at 2.5 GHz; dotted bounding box 
shows the eigenvalues with fall within the range [ ]0.16,2.56iλ ∈  

Retaining these 68 eigenvalues, Equation (76) is invoked to plot the real and imaginary 

parts of the E-field unknown value at the probe location as a function of frequency.  

These data are compared to those obtained from the full wave direct FE-BI predictions.  

For this example, the field at 300,000 frequency points was computed in 15 seconds (after 

eigen-decomposition).  In contrast, the direct FEMA-BRICK prediction required over 200 

seconds on the same CPU to produce about 60 points (insufficiently sampled).  Asterisks 
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in the plots show a more finely sampled sub-segment via direct FEMA-BRICK 

prediction. 

 

Figure 5-4. Eigenvalue approximation and FEMA-BRICK prediction (with the real part of E-field 
unknown at probe location) using 68 eigenvalues 

 

Figure 5-5. Eigenvalue approximation and FEMA-BRICK prediction (with the imaginary part of E-
field unknown at probe location) using 68 eigenvalues 

Note a slight bias in the imaginary terms of the approximation.  This is easily remedied 

by using all 901 eigenvalues in the approximation because all contributing residues are 

now considered.  Figure 5-6 shows exact agreement between the eigenvalue approach and 

the FEMA-BRICK result.  In general, however, the real components of the E-field 
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unknowns are most critical.  From a standpoint of speed for this computation, the 

difference between using 901 eigenvalues and 68 eigenvalues is approximately 90 

seconds versus 15 seconds on the same CPU for 300,000 frequency points. 

 

Figure 5-6. Eigenvalue approximation and FEMA-BRICK prediction (with the E-field unknown at 
probe location – real and imaginary) using all 901 eigenvalues 

Over a large fractional bandwidth, the solution can be computed using an effective 

perturbation to the eigenvalues (i.e., the frequency-dependence of eigenvalues).  In this 

section, the eigenvalues themselves were treated as constant so that the poles were 

located by the normalized frequency itself.  In the next section, through material 

optimization, these eigenvalues are adjusted to produce a desired characteristic over a 

band. 

5.3 Material Update Characteristics 

As in the narrowband case, the permittivity-based finite element matrix can be 

decomposed as 

 ( )(2)
0 ; T

tk =Aε LDL . (88) 
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Provided the material characteristics are largely captured in diag( )=D d , a material 

deviation matrix diag( )∆ = ∆D d  is sought such that 

 
( ) ( ) ( ) ( )

( ) ( )[ ]( ){ } ( )

1

1
(1)

0 0

diag +diag

diag( )+diag( ) ;T
tk kµ

−

−

 + ∆ ∆ + ∆ = 

+ + ∆ ∆ + ∆

X Xλ λ X X

G L L d d L L Cε ,
 (89) 

where any update to the system will correspondingly affect the decomposition of the 

system by an appropriate ∆ .  If the lower triangular matrix in the LDL decomposition 

maintains consistency in the update [ ( )+ ∆ →L L L ], then 

 

( ) ( ) ( ) ( )

( ) [ ]{ } ( )

( ) [ ]{ } ( )

1

1(1)
0 0

1

0 0

diag +diag

diag( ) ;

; diag( ) ;

T
t

T
t t

k k

k k

µ

ε µ

−

−

−

 + ∆ ∆ + ∆ 

≈ + + ∆

= + ∆

X Xλ λ X X

G L d d L Cε

Cε L d L C ε ,

 (90) 

such that 

 
( ) ( )

( ) ( ) [ ]{ } ( )( )
11

0 0

diag +diag

; diag( ) ;T
t tk kε µ

−−

 ∆ 

≈ + ∆ + ∆ + ∆

λ λ

X X Cε L d L C ε X X .
 (91) 

This approximation is tested by comparing the two sides of the above relation, revisiting 

the geometry of Figure 5-1.  The initial geometry is again a constant substrate value of 

100 0.15r jε = − , and the “delta” geometry is a small random perturbation to each block 

of the substrate.  The first comparison is given in Figure 5-7 for the case of a uniform 

random weighting of [ ]0.95,1.05  applied to all substrate bricks.  The second comparison 

of Figure 5-8 is for the case of a uniform random weighting of [ ]0.5,1.5  applied to all 



76 

substrate bricks.  In each case, an LDL decomposition was used to determine the diagonal 

values and compute ∆d .  The solution on the right was strongly diagonal in all cases, so 

only the quantitative diagonal is shown in the next two examples. 

  

Figure 5-7. Approximation on left side of Equation (91) (left), and the Error of the Approximation 
for Random Weighting of [ ]0.95,1.05  

  

Figure 5-8. Approximation on left side of Equation (91) (left), and the Error of the Approximation 
for Random Weighting of [ ]0.5,1.5  

The approximation appears to deteriorate in a reasonable fashion with increased material 

deviation and tends to lend credence to the idea that ( )+ ∆ →L L L  is a fair assumption.  

This confirms that the lower triangular matrix in the LDL decomposition is largely 
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dependent on geometry as opposed to material.  While the right side of Equation (91) is 

strongly diagonal, the random perturbations appear to affect the entire error matrix, and 

are correlated with the strength of the diagonal elements themselves (hence, a consistent 

percentage error). 

Finally, in order to solve for material changes given a desired eigenvalue-deviation, small 

updates are encouraged such that + ∆ →X X X .  In order to discuss the update of 

eigenvalues and material vectors as weighted updates, the derivation changes slightly at 

this point.  This begins by defining 

 
( )( )( )

( ){ } ( )

1

1

0;

X X

T
D tkµ

−
Λ

−
≈

XWΛW XW

L W D L Cε
, (92) 

such that 

 ( ) ( )( ) ( )( )0;T
D X t XkµΛ ≈L W D L XWΛW C ε XW , (93) 

where D  and Λ  are as defined before, and ( )diagD d=W w  and ( )diag λΛ =W w  are the 

corresponding update weight matrices.  The matrix XW  is of a non-specific structure and 

describes the update of the eigenvector matrix.  The assumption that + ∆ →X X X  

portends X →W I .  The original (unweighted) relation is given by 

 ( )0;T
tkµ≈LDL XΛ C ε X , (94) 

such that 
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 ( )1
0;T

tkµ
−≈DL XΛ L C ε X . (95) 

Similarly, for the weight update case, 

 ( ) ( )( ) ( )( )1
0;T

D X t Xkµ
−

Λ ≈W D L XWΛW L C ε XW . (96) 

Manipulating terms slightly, 

 ( ) ( ) ( )( )1 1 1
0 0; ;D t X t Xk kµ µ

− − −
Λ ≈W L Cε XΛ W ΛW L C ε XW , (97) 

such that 

 1 1 1
D X X

− − −
Λ≈W M MW WΛ W Λ , (98) 

for ( )1
0; tkµ

−=M L Cε X .  The small update assumption, X →W I , then makes this 

become simply 

 1
D

−
Λ≈W M MW . (99) 

This takes on the form of a similarity transformation and, as such, will not allow both 

DW  and ΛW  to be perfectly diagonal simultaneously (except for the trivial =M I  case). 

In general, M  is poorly conditioned, but is close to column-wise orthogonal.  Further, the 

columns of M  which induce most of the conditioning issues typically align with 

elements of Λ  which are near zero.  As such, weighting elements (of ΛW ) have no effect 

in these regions such that direct solutions are not possible.  To solve for DW , find Q  and 

R  such that 
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 H Hfor= =M Q R Q Q I , (100) 

using an orthogonalization routine (e.g., Gram-Schmidt), and then cast equation (99) as 

 

1

,

H
D

H
d i i i

i
w

−
Λ ≈

 
=  

 
∑

RW QW Q R

q q R
. (101) 

The best estimate of update weights is found according to 

 
( )

( ) ( )

1

,

HH H
i i

D i HH H
i i

w
−
Λ≈

q RW q R

q R q R
. (102) 

There are notable inefficiencies associated with making use of these update weights, 

starting with the initial approximation of equation (99).  Typical runs involving the above 

update equation produce relatively little response in ,1 ,2 ,, , ,d d d d Nw w w =  w   for a 

given choice of ,1 ,2 ,, , , Nw w wλ λ λ λ =  w  .  Proportionally, the weights induce the 

desired effect, but amplification is required to avoid an inordinately large number of 

iterations.  Trials have found that a reasonable update weight can be found for a suitable 

choice of α  such that 

 ( )
,1 ,2 ,, , ,d d d d Nw w wα α α α =  w  , (103) 

implying the application of the same weights α  times.  Large eigenvalue-deviations tend 

to invalidate the assumptions leading to the equation above, so care must be exercised to 

perform reasonable corrections during material updates.  It is, however, important to 
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consider that a constant material adjustment can be performed virtually without penalty, 

since X =W I .  Assigning ( )01 aΛ = +W I , for a constant 0a , the material weighting 

becomes the simple inverse, ( ) 1
01D a −= +W I .  As in the previous narrowband 

development, begin by examining a constant material adjustment only and enforce 

{ }0 0; 1a a∈ > − .  For this, an approximate material multiplication factor is given by the 

material weight vector ( ) 1
01d a −= +w .  Returning to Equation (76), the material change is 

introduced to obtain 

 [ ] 2
01

diag i
k

a k
k

λ
′

 + +
=   

 
Λ





. (104) 

For this example, the estimated performance at the feed over a wide bandwidth and range 

of constant material adjustments can be quickly obtained, as shown in Figure 4-3.  These 

response functions are entirely expected since the effect of increased material density 

(increased 0a ) is to compress the response. 
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Figure 5-9. Real (left) and Imaginary (right) Wideband Field Estimates at Probe Location (varying 
k and 0a ) 

Since updates are provided via the material weighting vector, εw , the relation 

 d dε ε ε ε
+= ⇔ =w T w w T w , (105) 

is used to complete the development. 

5.4 Manipulation of Eigenvalues for Optimization 

The next goal is to modify the eigenvalues directly in order to achieve some desired 

result.  From the above [and Equation (86)] the relation 

 ( ) ( ), 0 ;T
n obj k n te k k−

′= λ γ ε , (106) 

is given for ( ) ( ) ( )1 1 11 1 1
1 ,1 2 ,2 ,, , ,T

k N Nw k k w k k w k kλ λ λλ λ λ
− − −− − − −

′
 = + + +  

λ      

 .  The 

analysis begins by allowing for total freedom in the adjustment of the λw  components.  

In essence, the eigenvalue inverse variables are adjusted as given by (106) above to a 

form which produces a more favorable result.  Expanding this relation, 
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( ) ( )

( )
, 0

0

1
1 ,

, ;

;

T
n obj k n t

N n t

e k k

k

w k k

λ

η

η η λ ηλ

−
′

−
=

=

  
=

+∑

wλ γ ε

γ ε



 

. (107) 

In order to prescribe a wideband solution, recognize the following: the design will consist 

of multiple independent and coincident poles.  The location of the pole(s) is a slight 

adjustment to (81) and is given by 

 { },Rek wη η λ ηλ≈ − , (108) 

such that 
1 2 2 1, ,k k w wη η λ η λ η=  .  The resonance shifts with the square root of the 

eigenvalue weighting applied.  Decreasing eigenvalue weighting shifts the resonance 

upward in frequency, while an increasing weight shifts the resonant location lower in 

frequency. 

The magnitude of the resonance due to a particular eigenvalue at its pole location is 

recognized by observing that 

 

( ) ( )

( ) { }
{ } { } { }
( ) { }

{ }

0 0

1 2
, ,

0 ,

, , ,

0 ,

,
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Re Im Re
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Im
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n t

n t

k k k

w k k w k

k w

w j w w

k w

j w

η

ηη η

η λ η η λ η η

η λ ηη

η λ η η λ η η λ η

η λ ηη

η λ η

λ λ

λ

λ λ λ

λ

λ

−

=

      
=

+ +

  − 
=

+ −

  − 
=

γ ε γ ε

γ ε

γ ε

 



  

, (109) 

At the location(s) of these pole(s), the magnitude is given by 
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 ( )
( ) { }

{ }
0 ,

, ,
,

; Re
,

ImW W

W

n t p pp
n obj P P

p P p p

k w
e k w

j w
λ

λ
λ

λ

λ∈

  − 
≈ ∑

γ ε
 , (110) 

where Wp P∈   is the set of all coincident poles after weighting.  Coincident poles refer to 

eigenvalue terms having identical frequency locations.  Clearly, there is a balanced 

relationship between resonant location and magnitude.  Adjusting eigenvalue weights 

shifts the resonance location, but it also affects the magnitude.  If two or more frequency 

locations are the same, the sum can grow dramatically at that location.  These resonant 

spaces are very sensitive, so a slight shift apart can make the magnitude manageable. 

The eigenvalue weighting is the only quantity which may be adjusted, since ( )0;n tkγ ε  

and λ  are established at the outset.  If the normalized bandwidth is specified, such that 

1 2,k k k ∈  
   , then the poles of interest must lie in this range.  Further note that 

  

( ) { }
{ }

( ){ } { }
{ }

0 ,

,
,

0 ,

,

; Re
Re

Im

Im ; Re

Im

n t p pp
n obj

p p

n t p pp

p p

k w
e

j w

k w

w

λ

λ

λ

λ

λ

λ

λ

λ

   −  ≤  
  

  − 
=

γ ε

γ ε
 (111) 

is required for all p , since the sum of these components must achieve the objective (a 

value below the objective can not achieve the objective in the sum unless losses are 

introduced) – refer to Figure 5-4 to note that the standard objective is real and negative.  

In practice, this inequality may be relaxed depending on the accuracy of the wideband 

solution sought.  Maintaining the inequality for now, 
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( ){ } { }

{ }, 0

,

Re
Im ;

Im
p

n p n t p
p

p n obj

B k

k e

λ

λ
 =  

≤ −

γ ε



 (112) 

is found as a required inequality for the choice of candidate eigenvalues if it is not the 

intention to induce loss (i.e., only allow real weighting).  This is an important result, 

because it allows for the quick elimination of eigenvalues within the system from any 

further consideration in the optimization.  The best solution is formulated by adjusting 

only those eigenvalues which remain.  From a practical standpoint, it is also not necessary 

(and is sometimes problematic) to retain eigenvalue candidates if ,n pB  is too small – it 

will take a large number of small-valued candidates to approach the objective.  A 

reasonable rule of thumb is to require ,n pB  to be greater than some user-specified 

tolerance, such that the final candidate eigenvalues satisfy 

 tol , max ,n p n objB k eδ ≤ ≤ −  . (113) 

This permits one to ignore impractically small eigenvalue contributions.  Associated 

eigenvalues can be weighted if necessary, since they do not affect the outcome.  

Eigenvalues smaller than tol , 3n objeδ ≈ −  are not typically practical to use for 

optimization. 

Should one decide to use loss as a way to encourage optimization, they could (in 

principle) achieve the objective perfectly at the pole location(s) via 
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, (114) 

assuming separation of poles in frequency, such that 
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The approximation assumes only small losses will be introduced and maintained.  From 

this, the desired lossy component of the eigenvalue weighting as is solved via 

 { }
( ){ } { }

{ }
{ } { }

{ }
0 , ,

,
,

Im ; Re Im Re
Im

Re Re

n t p p pp
p

n obj p p

k w w
w

e
λ λ

λ

λ

λ λ

  
≈ −

−

γ ε
. (116) 

Since this magnitude is highly sensitive to loss, it can be expected that the solution to the 

lossy weight component will remain small. 

5.5 Integration of the Eigendecomposition Function 

The wideband system according to Equation (107) can be examined in the average 

(versus frequency), by integrating the sum given by 

 ( )
( )0

, 1
1 ,

;
,

N n t

n obj

k
e k

w k k
η

λ
η η λ ηλ −

=

  
=

+∑
γ ε

w
 

, (117) 

over the band 1 2,k k k ∈  
   .  This becomes 
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such that 
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As long as the system contains some losses, the above result is well-conditioned.  As 

before, a truly lossless system will contain infinite resonances, and as such will cause the 

integral to diverge. 

One can choose the limits 1 2,k k k ∈  
    arbitrarily and in combination, allowing the 

consideration of several realizations for a given eigendecomposition and associated 

eigenvalue deviation sequence.  For instance, for the normalized frequency vector given 

by 1 2, , , Nk k k k ∈  
   

 , a particular objective field over the entire band can be forced to 

satisfy a condition such as 
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, (120) 
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for any combination of boundaries within the band.  This is a useful tool for algorithm 

development when constructing a wideband approximant. 

5.6 Wideband Optimization Algorithm Development 

With mathematical preliminaries accomplished, users are now in a position to establish 

an objective function in frequency, determine the eigendecomposition of the system, 

choose eigenvalues to formulate the optimum, and relate that optimum back to the 

physical material substrate as a weighted update.  The algorithm that must be developed 

to determine this optimum will be iterative; the eigendecomposition and the physical 

textured material must be self-consistent (one arises from the other).  This will begin with 

a step-by-step example. 

From the previous sections, through the eigendecomposition of the FE-BI system, and an 

appropriate understanding of the functional form of these associated eigenvalues, 

decisions can be made regarding which eigenvalues to keep, discard, or ignore altogether.  

Virtually without penalty, material values can be weighted by a constant to move all 

eigenvalues within the optimization space in a “wholesale” fashion.  From there 

individual poles can be located (via weighting) as needed to form the wideband result.  

Further, since the characteristics associated with loss in the eigenvalues are well-

understood, loss may be used to dampen the magnitude of contributions if absolutely 

necessary.  The desire is to avoid introducing losses. 

To illustrate, first consider the wideband solution for the geometry of Figure 5-10, with 

100 0.15r jε = −  over the bandwidth 1.0 GHz to 2.0 GHz ( 0 1.5 GHzf =  such that 
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[ ]0.67,1.33k = ), and its assoicated eigenvalues.  A subset of total eigenvalues is shown 

in the figure.  Note that they are labeled as to whether they aid the optimization (“Keep”), 

hurt the optimization (“Discard”), or can be ignored (this analysis uses tol , 3n objeδ = − ).  

The category they fall in is determined from the inequality in Equation (113), where the 

“Discards” are those eigenvalues that produce contributions that exceed the objective. 

 

Figure 5-10. Example 4.0 cm × 4.0 cm × 0.1 cm 400 Cell Geometry (left) and Zoom View of 
Associated Eigenvalues (right) 

The field at the probe location that results from this geometry directly is shown in Figure 

5-11, along with the correspondence to eigenvalues that induce resonances.  The 

eigenvalues labeled “Discard” are clearly associated with fields that exceed the objective 

(in this case, a 50 Ω input resistance corresponds to a field at -500 V/cm). 
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Figure 5-11. Example Geometry Probe Location Frequency Response (left) and Zoom View of 
Associated Eigenvalues (right) with Correspondences Shown 

Next, shift the first “Keep” eigenvalue (located at 1.1659nk = ) to a normalized frequency 

of 0.98.  The required eigenvalue weighting is given by 

 

2
2

,
0.98 0.7065

1.1659
n new

n
n old

k
w

kλ

      ≈ = =       





, (121) 

for this case, and the result is shown in Figure 5-12. 

 

Figure 5-12. Example Geometry Probe Location Frequency Response (left) and Shifted Frequency 
Response after Constant Material Scaling of 1/.7065 = 1.4154 (right) 
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Recall from the previous section that the actual material scaling is the inverse of the 

eigenvalue weighting.  From Equation (112), the new field values at their associated 

resonance locations are similarly scaled according to 

 , , , ,0.8405n p n n p n pnew old old
B w B Bλ     ≈ =      . (122) 

That frequency response shifts in this fashion via constant material adjustment is very 

well-understood, but it is interesting to note that the eigenvalues themselves dictate both 

the shift and the amplitude property changes.  Continuing the illustration, two eigenvalues 

within the band of interest are adjusted next.  There are two identical eigenvalues (607 

and 608) in Figure 5-11 associated with the resonance now at 1.0204nk =  (previously at 

1.2136nk = ).  These are separated by applying a weight of 4.1744 to point 607 and a 

weight of 0.1044 to point 608 (remaining eigenvalues weighted by 1.0436).  These 

weights are chosen to bifurcate the target resonance while maintaining a consistent 

location relative to the center frequency. 

Section 5.3 demonstrated that a specific relationship exists between the perturbation of 

eigenvalues and the perturbation of the textured material.  By utilizing Equation (99) and 

inserting this into Equation (105), 

 ( )diag Dε ε
+=w T W . (123) 

When the weighting derived here is applied to the material profile obtained from the 

previous constant weighting, the textured material profile shown in Figure 5-13 is 

ultimately determined. 
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Figure 5-13. Example Derived Textured Material Permittivity Profile (real part)  

This textured material results in the wideband result shown in Figure 5-14, where one can 

clearly observe the desired effect along with the associated eigenvalue resonances. 

 

Figure 5-14. Example Bifurcated Resonance in the Frequency Response before (left) and after 
(right)Textured Material Weighting  

We might reason that if resonances can be moved around at will, we can design any 

response function we choose.  There is more to consider, however. 

Section 3.2 showed that the stability of the solution was dependent on having an adequate 

mesh sample-space.  Specifically, the general rule of thumb that the cell size should be 
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some fraction of g rλ λ ε=  was highlighted.  Bearing this in mind, another key 

limitation involved in “moving eigenvalues around at will” is that performing this 

function may involve increasing permittivity.  [Note in the examples above that very few 

candidate (“Keep”) eigenvalues exist that are 1> − .]  For the example above, the cell 

sizes of 0.2 cm × 0.2 cm × 0.005 cm for the base permittivity of 100 0.15r jε = −  result in 

a cell size in wavelengths of 0.1 gλ  × 0.1 gλ  × 0.0025 gλ  at the center frequency of 1.5 

GHz.  If the textured material is allowed to increase in value on the order of 5 times the 

starting point, this reduces to a cell size of 0.22 gλ  × 0.22 gλ  × 0.0056 gλ , which begins to 

encroach on cell-size based accuracy limitations.  For these reasons, there are not as many 

eigenvalues available for optimization as may first seem to be the case.  If the material 

scale factor was limited to 3 (keep only eigenvalue terms 3> − ), for example, only two 

eligible eigenvalue terms remain, so optimization performance would be limited. 

An option not yet discussed is the selection of alternative antenna geometries.  The 

FEMA-BRICK code is capable of modeling a variety of metal structures on the surface of 

the substrate so long as the metal can be modeled by rectangular patches.  A popular type 

of antenna is the spiral.  The eigenvalue spectra associated with both the rectangular patch 

antenna and the 2-arm square spiral are quite different, as shown in Figure 5-15. 
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Figure 5-15. Comparison of Geometry and Corresponding Eigenvalues for the Patch Antenna (left) 
and Square Two-Arm Spiral (right) 

Of particular interest is the nature of the eigenvalues approaching zero.  For the patch 

antenna, there are a large number of zero eigenvalues.  For the spiral, the eigenvalues 

approach zero much more gracefully.  This is a highly desirable property for optimization, 

since more potential “Keep” eigen-terms are available. 

The algorithm required is thus straightforward, but “human-in-the-loop” intensive.  The 

range of eigenvalue terms that may be used is limited, and the terms that aid optimization 

are easily identified.  In principle, the algorithm only requires a direct solution.  In 

practice, however, iterations are required in order to arrive at the optimum, and choices 
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must be made along the way.  The general algorithm can be described by the block 

diagram of Figure 5-16. 

 

Figure 5-16. Optimization Algorithm Block Diagram  

Note that this algorithm should only require a minimal number of iterations provided the 

eigenvalue weighting applied correctly corresponds to the effect induced by the textured 

material update.  The choice of eigenvalue weights is one for which the user must choose 

between a number of eligible candidate eigenvalues (possibly requiring complex 

weighting; introduction of loss), or stringent material requirements.  The user can decide 

upon a wide range of overall optimization choices. 
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CHAPTER 6 WIDEBAND SYSTEM OPTIMIZATION 
RESULTS 

This chapter explores some of the choices available to designers via this new approach 

using specific examples.  From the previous section, a textured material can be designed 

to target (a) specific eigenvalue(s) to arrange them in accordance with an objective.  This 

leads to the ability to construct a wideband response.  This chapter will walk through two 

representative examples that help to illustrate both how this is done as well as the 

limitations associated with it. 

6.1 Wideband Optimization Case I – Simple Patch 

The first example is one based on the dominant example geometry of the previous 

chapters: a square patch over a single-layer textured dielectric.  This example geometry 

has a relatively small number of eigenvalues that fall within the range of usage.  The 

example targets only four eigenvalues and attempts to adjust them near each other to form 

a wideband solution.  The geometry and initial material substrate (constant 

100 0.15r jε = − ) is shown in Figure 6-1. 



96 

 

Figure 6-1. Simple Patch Antenna 

The eigenvalues corresponding to this geometric design are shown in Figure 6-2.  The 

particular eigenvalues near -1 (those closest to the center frequency) are not large in 

number and may be characterized by reasonably large jumps coupled with some 

eigenvalues that are identical (no jump). 

 

Figure 6-2. Eigenvalues Associated with Simple Patch Antenna 

Identical eigenvalue situations are particularly interesting, since they are relatively easy to 

separate.  One need only move one eigenvalue, while the other remains unweighted to 
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derive the material texture of interest.  The response below on the right was obtained in 

this fashion directly (without iteration) by weighting eigenvalue number 610 and leaving 

its eigenvalue repeat (611) alone. 

 

Figure 6-3. Patch Antenna Response Before (left) and After (right) Eigen-mode Separation 

The material texturing that produced the desired effect above is shown in Figure 6-4, 

noting that relatively little contrast in material is required to obtain this as long as the 

texture is maximally effective.  It is interesting to observe in the textured result that some 

apparent “channeling” or “striping” is occurring in the texture in order to obtain this 

desired effect.  This example serves to illustrate one important quality of this new 

approach: that a “global” solution must necessarily be defined by the amount of material 

contrast required to obtain it.  Since this work has shown that there are an infinite number 

of ways to get an identical wideband result, the best solution will be the one that produces 

an effective answer with the minimum required amount of material change.  This 

approach affords the user the opportunity to evaluate a number of different regions in 
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which to operate via eigen-space, and make intelligent decisions with respect to 

weighting based on material limitations, fabrication processes, etc. 

 

Figure 6-4. Material Texturing Leading to Eigenvalue Separation 

The example next sought a material texture that would draw two resonant features 

together.  Two resonances were chosen as shown in Figure 6-5, and a constant weighting 

was applied in order to shift these resonances about the center frequency.  Texturing was 

incorporated to draw the two resonances toward the center frequency.  The result in the 

image on the right was achieved after three iterations.  The material texturing that resulted 

in each example return is shown in Figure 6-6. 
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Figure 6-5. Example Showing the Closing of Two Resonances for a Simple Patch 

 

Figure 6-6. Material Texturing (Real Permittivity) Leading to the Resonance Closing Example for 
the Simple Patch; Intermediate State (left) and Final State (right) 

This example demonstrates that even with limited availability of eigenvalue terms, some 

optimization can be easily achieved.  The next example seeks to examine the subspace 

associated with the square spiral; already shown to provide improved eigenvalue 

diversity. 
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6.1.1 System Condition for the Simple Patch 

Because texturing is accomplished by weighting all available substrate bricks, it is 

necessary to test the robustness of the FEMA-BRICK solution itself.  For the case of the 

eigen-mode separation example (Figure 6-3 and Figure 6-4), this can be accomplished by 

discretizing the determined texture more finely for an alternate FEMA-BRICK solution.  

The example shown in Figure 6-7 compares the solution for the 20x20 brick geometry to 

the alternate FEMA-BRICK solution for a 40x40 brick discretization.  The solution shifts 

in frequency as a function of discretization as is typical, but of importance is the fact that 

the optimized result remains intact; the eigen-modes remain separated. 

 

Figure 6-7. Initial (left) and Optimized (right) Simple Patch Solution using 20x20 Bricks (solid lines), 
and 40x40 Bricks (discrete squares) 

The high-density geometry is considered the most accurate.  It is important to note that 

small disagreements between FEMA-BRICK predictions and measurements (or other 

prediction techniques) may remain due to the tendency for resonances to shift as a 

function of discretization. 



101 

6.2 Wideband Optimization Case II – Two-arm Square Spiral 

The second example is one based on a geometry previously shown to have more 

eigenvalue diversity in the following sense:  since the eigenvalues decay away from the 

maximum (zero) more gradually than the simple patch, the opportunity to make use of 

more eigenvalues in the optimization may arise.  The two-arm design is shown in Figure 

6-8, with the feed at the center. 

 

Figure 6-8. Two-arm Spiral Patch Antenna 

The eigenvalues corresponding to this geometric design are shown in Figure 6-9.   
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Figure 6-9. Eigenvalues Associated with the Two-arm Spiral Patch Antenna 

Note the gradual fall-off of eigenvalues away from zero in this case versus the previous 

case.  Because of the more regular spacing of eigenvalues, responses at regular intervals 

in the field unknown are observed at the probe location shown below in Figure 6-10. 

 

Figure 6-10. Initial Field Unknown Response Associated with Two-arm Spiral Patch Antenna 

As shown in the right-side figure, resonances are moved to the right via a constant 

material adjustment.  Next, the eigen-modes are moved closer together to form a broad-

band response.  This is accomplished in 12 iterations as shown in Figure 6-11 and the 

material texturing leading to these examples is as shown in Figure 6-12. 
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Figure 6-11. Example Showing the Closing of Two Resonances for a Square Spiral 

 

Figure 6-12. Material Texturing (Real Permittivity) Leading to the Resonance Closing Example for 
the Square Spiral; Intermediate State (left) and Final State (right) 

The next step to demonstrate is the introduction of loss in order to better approach a 

particular objective.  For this case, a 50 Ω input resistance corresponds to a field at -500 

V/cm.  A small loss is introduced by multiplying the existing substrate by the weighting 

1 0.008j−  to obtain the result shown in Figure 6-13. 
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Figure 6-13. Introduction of Material Loss to Obtain Values Near the Objective (left) and Resulting 
Reflection Loss (right) 

Clearly, to obtain an increasingly wideband response, more individual resonances must be 

employed and lined up in sequence.  It is interesting to note in Figure 6-11 above that 

while the two target resonances above are squeezed together as intended, other 

resonances are also affected.  In particular, the resonance that begins near 0.9nk ≈  

actually shifts lower in frequency, while its neighbor is moved upward toward the center 

frequency.  In the next example, this resonance is targeted as well to move three 

resonances toward the center frequency as illustrated in Figure 6-14. 

 

Figure 6-14. Example Showing the Closing of Three Resonances for a Square Spiral 
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The example shows the initial iteration on the left and iteration 12 on the right.  The 

interesting thing about this case, however, is that the goal frequency for the lower 

resonance was 0.995nk ≈ , and the goal for the upper frequency was 1.005nk ≈ ; not yet 

achieved in the example shown.  Beyond iteration 12, difficulties are encountered in 

“squeezing” these resonances further.  Increasingly large values of permittivity are called 

for, such that the condition of the system may be called into question.  The E-field 

unknown at the probe location is next given below in Figure 6-15, starting with iteration 

13 and ending with iteration 30. 

 

Figure 6-15. Example Showing Additional Attempts to Achieve a Difficult Objective 

The E-field unknown is beginning to appear more spurious at iteration 13 (left) and is 

quite spurious by iteration 30 (right).  The reason for this is evident by observing that the 

desired texturing for iteration 12 (the last “reasonable” iteration) and iteration 30 in 

Figure 6-16. 
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Figure 6-16. Material Texturing (Real Permittivity) Leading to the Errant Resonance Closing 
Example for the Square Spiral; Intermediate State (left) and Final (Errant) State (right) 

Clearly there is a limit to the amount of subspace optimization that can reasonably be 

obtained due to the need for increasingly large material values.  When such large values 

are introduced, the system becomes poorly conditioned. 

It is anticipated that a design tool could be developed based on the work in this 

dissertation, but consideration of “human-in-the-loop” decision-making is likely to play a 

large role.  Desired objectives can quickly lead to untenable textured substrate situations, 

and the human is required to intervene when this occurs.  An easy-to-understand 

graphical user interface (GUI) would have to be developed to enable this process.  The 

examples shown in this chapter have attempted to illustrate some of the considerations 

that a GUI designer would need to employ. 

6.2.1 System Condition for the Two-arm Square Spiral 

Because of the nature of the metal surface for the square spiral and the chosen mesh 

discretization, it was prudent to examine the system for different geometries and code 

formulations to ensure the robustness of the solution.  Consider the example of two 
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identical geometries that have been constructed differently by a factor.  The geometries 

are shown in Figure 6-17, where one has been subdivided into 20 segments per edge and 

the other has been subdivided into 40.  The substrate is of size 4.0 cm × 4.0 cm × 0.1 cm 

and has value 100 0.15r jε = − , and the probe location E-field unknown from 1-2 GHz is 

investigated. 

 

Figure 6-17. Identical Geometry Constructed using 20x20 Bricks (left), and 40x40 Bricks (right) 

The respective input impedance (proportional to the Z-directed E-field calculated at the 

probe location) for each case is shown in Figure 3-7 and is compared to a generalized 

Surface Integral Equation (SIE) using the Poggio, Miller, Chang, Harrington, Wu, and 

Tsai (PMCHWT) formulation.  The high-density geometry is the most accurate.  Observe 

that higher-density solution is converging toward the SIE solution, as expected. 
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Figure 6-18. Input Impedance for 20x20 Bricks (dashed thin), 40x40 Bricks (solid thin), and SIE 
Formulation (thick) Shows Convergence of Solution for 100 0.15r jε = −  

Results show a slightly lower Q (less “peaky” resonance) for the SIE formulation versus 

the FEMA-BRICK solutions, owing to the fact that the SIE formulation is not performed 

in the presence of an infinite ground plane. 
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CHAPTER 7 CONCLUSIONS 

This work has demonstrated that electromagnetic optimization is improved by utilizing 

information inherent to a specific subspace of the electromagnetic system.  Specifically, a 

solution to the optimization of an FE-BI system has been found via eigendecomposition 

and eigen-mode adjustment.  The FE-BI system is among the most general of 

electromagnetic systems since it combines both finite element and method of moments 

approaches, making it an ideal choice for this type of work. 

This new optimization method is a dramatic advance relative to existing approaches 

which typically fall into two categories: a) gradient-based approaches such as steepest 

descent or conjugate gradient that are predominantly local solutions, and b) gradient-free 

statistical approaches such as the genetic algorithm and simulated annealing that are 

potentially global solutions, but can be extremely time-consuming.  This new approach 

locates eigen-modes in a specified manner to produce an optimal solution that minimally 

impacts the existing substrate.  This solution may be thought of as global in the sense that 

it is the best solution obtainable with minimal material deviation. 

At present, gradient-free statistical optimization approaches (e.g., GA and SA) garner a 

large amount of research attention owing to their very general applicability.  Utilizing 

intrinsic electromagnetic system information requires a very specific focus and is not as 
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easily extensible, but the benefits are worth the extra effort, as demonstrated.  The 

following sections briefly highlight the findings and results and provide some suggestions 

for future research topics. 

7.1 Summary of Findings and Results 

This work has demonstrated, for the first time, that non-parametric optimization of a 

textured metamaterial substrate is feasible.  A number of important contributions to the 

field of electromagnetic optimization have been involved in achieving this goal: 

 an operable electromagnetic (eigen-mode) subspace was determined for FE-BI 

  a (near) instantaneous wideband system solution was demonstrated 

 modification of eigenvalues in the system subspace was shown to lead to textured 
material solutions 

 functionality of eigenvalues to include combined frequency-dependence and material-
dependence was demonstrated 

An early key aspect of this work was in determining a subspace in which to enable an 

iteration mechanism that was maximally effective in finding a textured material update.  

Since a wideband objective is the goal, it was critical to determine a wideband functional 

form that could be critically analyzed.  In the past, with complete dependence on the 

electromagnetic engine itself, obtaining properly sampled wideband responses was 

extremely time-consuming.  By carefully analyzing the Green’s function associated with 

boundary integral terms in close proximity, a quadratic representation of the FE-BI 

system was determined.  This led to an eigendecomposition with a convenient functional 

form: one highly amenable to the type of optimization sought. 

This work demonstrated that the frequency-based functional form of the eigenvalues 

matched extremely well with the actual FEMA-BRICK prediction engine results and 
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facilitated the computation of results in orders of magnitude less time (~ 50,000 times 

faster).  This was a fortuitous result, but the insight associated with the eigenvalue 

behavior was the key which ultimately led to an improved optimization paradigm; the 

intent of this dissertation. 

Following a complete mathematical development of the result, example results were 

shown for the case of a simple patch antenna and a two-arm square-spiral patch.  One 

interesting development was that the eigenvalue behavior was markedly different between 

these two different cases.  This alone helped to explain the popularity of spiral antennas 

for wideband applications. 

7.2 Evaluation of Findings and Results 

It was expected that certain elements of the optimization tradespace would prove 

problematic.  Consistent with past related work, achieving wideband solutions involving 

more than two resonances is difficult, particularly when a local optimum is sought.  As a 

case in point, past work in the area (discussed in Section 1.2) did succeed in designing, 

constructing, and testing a local solution involve two resonances (see Figure 1-5).  This 

work showed that an arbitrary number of resonances could be led toward achieving a 

particular wideband objective, but user involvement (or sophisticated programming) 

would be required to ensure that a particular solution did not iterate toward material 

values that lead to a poorly conditioned system.  Such findings were not generally 

unexpected, but with the insight afforded by this new approach, a user could easily begin 

to seek more amenable geometries (with infinite possibilities) and/or regions in eigen-

space in which to best operate. 
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Returning again to the result highlighted during the introduction (Figure 7-1 below), one 

can understand this result in the context of the results in this dissertation as the “drawing 

together” or “pushing apart” of two eigenvalue resonances.  It may be possible that a 

simpler design can achieve the same end-goal, but it must be constructed (as this was) via 

realizable materials.  

 

Figure 7-1. Example of a High-Contrast Textured Material Optimization (results in [18, 20]) 

 

7.3 Suggestions for Future Research 

This work has made available and demonstrated a fundamental insight with respect to the 

nature of FE-BI–related eigenvalues.  The functional form of the eigenvalues themselves 

can (and will) change as a function of both geometry and material texturing.  For 

demonstration purposes, only optimizations based on material texturing were pursued, as 
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that was the intent of this dissertation, but many more possibilities remain.  By way of a 

listing, the following topics rise to the top for future research pursuits: 

 Optimization of Geometry 

 Constrained Optimization of Material 

 Design of Exotic Materials 

 Management of Large Systems 

 Revisit the Total Least Squares Analogy in Eigendecomposition  

 Application of Equivalent Techniques to other Electromagnetic Problems 

Clearly, changes in the geometry of the patch itself can drastically affect the placement 

and magnitude of the individual eigenvalues.  One could investigate limited parametric 

cases to develop eigen-mode subspace insight for various patch geometries and feed 

placements.  It may also be possible to find a direct means to encourage optimal surface 

patch design in much the same way as the textured substrate was derived for this work. 

Advances in material geometry now provide a vast assortment of choices with which to 

design textured substrates.  For higher permittivity values, typically ceramics or ceramic 

composites are the only applicable materials.  Specific ceramics are advertised as offering 

values over a wide range (examples can be found on the Ferro website, for the range 

[ ]10,18000rε ∈  [42]), and particular expertise is required to ensure compatibility 

amongst material choices.  Ceramics can be of a Class I, II, or III dielectric category and 

can be low- or high-temperature fired, making compatibility a large concern.  Two of the 

future tasks mentioned above work hand-in-hand in this respect.  The design of exotic 

materials is a research topic for materials science experts.  These experts must work 

together with electromagnetic optimization experts to constrain the optimization updates 
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to be within the limits of available materials.  This work did not consider the constraints 

associated with realizable materials. 

To make this technique practical for ever-increasing problem sizes, some means for 

determining the eigendecomposition in an efficient fashion should be formulated.  This 

could happen in two ways: 1) making efficient use of well-known eigendecomposition 

update schemes, thus avoiding a complete eigendecomposition with each update, and 2) 

direct generation of the eigendecomposition.  The first approach is relatively 

straightforward.  The second is by far the most interesting.  It has been suggested that it 

may be possible to directly generate the eigendecomposition in the same basic amount of 

time required to generate the FE-BI system.  This would be the superior choice if it were 

possible.   

There are a number of advantages to the use of Total Least Squares (TLS) in optimization 

problems where uncertainty may exist in the electromagnetic system, the materials 

themselves, or the measurement approach.  It has been suggested that the TLS analogy in 

eigendecomposition would be to formulate the variational problem as a minimax solution.  

This would require paying careful attention to the resultant structure of the variation, 

since the structured update must lead directly to a material update.  

Finally, techniques such as those developed for this work should be applied to 

fundamentally different electromagnetic systems.  The choice of the FE-BI system for this 

work was thought to be a great starting point, due to the broad applicability and increased 

acceptance of FE-BI for solving difficult electromagnetic problems.  Similar 

decompositions for other systems should be found; at the same time determining the 
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general applicability of the quadratic frequency system approximation for other systems 

would be of great interest. 
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Appendix A: Standard Global Optimizer Approaches and Results 

This appendix examines the use of Genetic Algorithms (GA) and Simulated Annealing 

(SA) for optimization of the chosen application.  Before beginning electromagnetic 

optimization, however, it was first necessary to understand the capabilities and limitations 

of the search algorithms themselves.  Several examples exist in the published literature 

where GA and SA are compared for the purpose of choosing an appropriate optimization 

scheme, but few comparisons carefully examine the dependence on several parameters.  

Since the search space in question for this work has (potentially) a large number of 

parameters, it was necessary to study the effects of increasing the total number of 

parameters in a systematic way.  To accomplish this, an objective function was selected 

that is similar in form to the objective function of interest (non-linear, multi-modal), but 

is computed very quickly and for which the optimum solution is known.  Initially, each 

algorithm was examined using a simple objective function 
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where [ ]Nααα ,,, 21 =α  is the parameter set.  A plot of the objective function for N = 1 

is shown in Figure A-. 



118 

 
Figure A-1. Objective Function used for Optimization Algorithm Evaluations 

This parametric function is similar in form to the objective function of interest and is 

quickly evaluated.  It is clearly multi-modal, having a minimum value of unity at 5=iα  

for Ni ,,1= .  The bounds established for the search scheme for both GA and SA are 

[ ]10,0∈iα .  By conducting a test for statistical performance in this way, a reasonable 

number of parameters for general cases may be established given the timeline required for 

each objective function evaluation. 

The SA and GA approaches share several common traits.  They are both based on 

fundamentally physical processes.  They are both referred to as “gradient free” in that the 

search is not based on the local gradient of the objective function at a given location or 

realization.  [Indeed, from Figure A- above it is clear that a gradient-based approach 

would fail.]  They are both statistical in nature.  Other approaches exist that match this 

criteria.  An example is an increasingly popular (in the electromagnetic community) 

optimization scheme known as Ant Colony Optimization (ACO) [11], also based on 

physical processes that are gradient free, and statistical. 
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Finally, note that comparison of these techniques and others over a common framework is 

generally difficult.  A termination criterion is a subjective matter in either case, but since 

GA optimization may be characterized by long periods of stagnation followed by rapid 

improvements (discussed later), a reasonable criterion for termination is particularly 

difficult.  In this study, a maximum number of GA iterations was often established.  To 

determine performance, the algorithm was terminated when the total cost function 

approached the theoretical minimum cost to within a specified tolerance.  The SA 

algorithm uses a termination approach that qualifies the solution based on a specified 

number of sequential temperature reductions that have not realized a more optimal cost to 

within a specified tolerance.  This criterion was more stringent than that used for GA 

(even though the tolerance was the same), so the comparison was somewhat skewed in 

favor of GA.  These results are summarized in the following sections. 

A.1 Introduction to Genetic Algorithms 

Genetic algorithm (GA) optimization hinges on the notion of “survival of the fittest” and 

works by considering for “mating” only those parameter sets that are of certain strength in 

the space of the objective function. Objective function cost for a given parameter set is 

inversely proportional to the strength of the set.  Objective function parameters are 

typically coded in a binary sequence (“gene”) that can be combined with other binary 

sequences to form an overall set of binary sequences (“chromosome”) that contains all 

parameters under observation.  The mating process is simply a matter of splitting two 

strong chromosomes (“parents”), and forming two new chromosomes (children) with 

paired sets of the original parents.  Periodic perturbations (“mutations”) are induced to 
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randomly explore the strength of other sequence sets.  Not surprisingly, GA optimization 

settles for significant amounts of iteration time on the same parameter set, where a great 

deal of “inbreeding” occurs between the strongest chromosomes only.  It is the mutations 

that ultimately make the set stronger (a fact which can be used to enhance GA 

performance).  When a significant mutation occurs, other strong parametric combinations 

are quickly found.  For this reason, GA may be characterized by long periods of 

stagnation and rapid improvements.  The positive outcome for this case (expensive 

objective functions) is that there is no need to recalculate objective functions during 

periods of stagnation.  For this reason alone, GA quickly emerges as an optimization 

approach of choice that has been afforded significant attention in the electromagnetic 

community.  An excellent introduction to GA applications in electromagnetic is found in 

[30]; this is the approach utilized for this work. 

A GA block diagram is shown in Figure A-2.  Note that many options exist for GA 

conditioning: number of encoded bits, number of chromosomes, number of sorting 

iterations, and strength criteria, among others.  For this work, parameters were encoded 

over their bounds based on a 32 bit encoding scheme.  Ranking and mating was 

accomplished after 32 objective function evaluations.  Parents selected for breeding were 

the top 50% in strength.  Mutation was performed by randomly selecting a bit in a 

random chromosome for reversal during each rank ordering and mating sequence.  The 

figure below shows the initial selection of a vector of chromosomes ( ( )kα  for k = 0), and 

the manner in which objective functions are ranked and selected for breeding.  The exit 

criterion is not well defined in the case of GA.  This work adopted the notion of waiting 
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for a specified period of stagnation before terminating.  Results below show the number 

of sorting iterations (each sorting iteration represents 32 objective function operations in 

this case) required for a successful solution of the objective function of Equation (124) 

above. 
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Figure A-2. Block Diagram of Genetic Algorithm Implementation 

The objective function of Equation (124) was used to evaluate GA optimization for N=1 

up to N=10 parameters.  The optimization was terminated, and resulting number of 

objective function calculations recorded, when the true global minimum was achieved to 

within the specified tolerance factor (contained in the legend).  These tolerance factors do 

not represent an acceptance of minima other than the global minimum for this particular 

objective function (see Figure A-), which explains why the variation in estimates among 

tolerance factors is relatively low. 
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Figure A-3. Performance of Genetic Algorithms versus Number of Parameters to Optimize; Required 
Sorting Iterations Mean (left) and Standard Deviation (right) 

A plot of a typical GA convergence is shown in Figure A-4.  These periods of stagnation 

occur while the algorithm “waits” for a strong mutation to form. 

 
Figure A-4. Genetic Algorithm Performance as a Function of Sorting Iteration 

A.2 Introduction to Simulated Annealing 

Simulated Annealing (SA) is based on a physical process of cooling metal to an 

appropriate “ground state” after it has been melted.  A proper annealing process allows 

metal molecules to move about randomly for a longer period, thereby encouraging more 

optimal crystal lattice formation in the metal solid.  A fast cooling process discourages 

stagnation 
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optimal crystal lattice formation.  This is sometimes desired.  The process of quickly 

cooling metal is called tempering.   Tempering of metal results in a harder metal, but one 

that has a brittle condition, more subject to breakage.  Proper annealing involves 

establishing a reasonable schedule so that metal hardens in a less brittle state.  One can 

always choose a very slow annealing schedule that ensures proper annealing, but does not 

make the best use of time.  In mass-production, one seeks to optimize the trade between 

good annealing and a reasonable amount of time.  The same principle applies here. 

Unlike GA, SA does not discourage the pursuit of less promising paths for parametric 

optimization.  The underlying principle of SA is to accept all parametric sets that realize a 

cost function improvement, and also accept parametric sets that do not realize an 

improvement with a probability given by the Metropolis criterion, [ ]T/exp ∆− , for ∆  the 

change in cost function value (degree to which no improvement was realized), and T  the 

current system temperature.  As the temperature decreases, the probability of accepting 

parametric sets that do not show improvement also decreases. 

The SA scheme is essentially a Markov process and it may be shown that the transition 

probability matrix associated with the Metropolis criterion ensures that the optimization 

converges to the global minimum with probability one.  A similar proof is not available 

for GA, although one may conjecture that if an infinite number of GA iterations are taken, 

the global minimum will also be found with probability one. 

The process adopted is taken from [7] (with the modification of the optimal annealing 

schedule taken from [33]) and is outlined in Figure A-5.  Variables in the figure are given 

above or are self-explanatory, with the exception of the randomization parameter 
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( [ ]1,1−∈r ), and the adjustable parametric step vector ( αμ ).  The index variables are k and 

n, and are incremented with objective function and temperature update respectively. 
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Figure A-5. Block Diagram of Simulated Annealing Implementation 

The optimal annealing schedule update formula utilized for this work was (large t, n), 

 
)2log()log(

~)( 0

n
TT

t
DtT n +

=⇒ , (125) 

where D is the energy separating barrier discussed in [33] and guarantees convergence to 

the ground state with probability one [7, 8].  The exit criteria is established such that 

when either the optimization condition has not changed (to within a specified tolerance) 

for a given temperature update, or the improvement is below a sufficient tolerance for a 

series of temperature updates, the algorithm terminates.  Initial values chosen for this 

work were based on examining early trials and following recommendations in [7], given 

as 

 ( ) 1,50,201, 00 ==== αμTS NNT , 
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where the initial parametric set is chosen randomly.  These choices of parameters 

produced reasonable results, but whether they are optimal is a question.  It has been 

suggested that one could “optimize the optimizers” by performing repeated SA 

optimizations using an inner loop encompassed by an SA optimization outer loop that 

optimizes these parameters choices. 

Figure A-6 shows results of SA simulations based on the objective function of Equation 

(124).  A tolerance of 0.01 was chosen, and the results did not vary significantly from the 

results obtained for a tolerance of 0.1 (similar to Figure A-3).  Noteworthy is the actual 

number of required calculations as opposed to Figure A-3.  Similar comparisons have 

found that SA requires more objective function calls than GA, but as a function of the 

number of parameters, there appears to be an exponential trend for SA, as opposed to GA, 

which appears to be more linear. 

 

 

Figure A-6. Performance of Simulated Annealing versus Number of Parameters to Optimize; 
Required Sorting Iterations Mean (left) and Standard Deviation (right) 
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A.3 Example GA/SA Comparison with a “Tuned” Objective 

To examine further, note that GA may suffer in the case of complex integral equation 

optima due to the very nature of the solution space.  In solving the electromagnetic 

problem posed in the following, the solution space is expected to be highly tuned to a 

particular set of parameters.  An example objective function was developed as shown in 

Figure A-7 below. 

 
Figure A-7. Example “Tuned” 1-Parameter Objective Function 

The optimization for a function of this form is particularly challenging due to the nature 

of the minima.  The function offers several local minima have a well-width inversely 

proportioned to its depth, with a very slight increase in depth away from the global 

optimum.  It is tempting for an algorithm to choose away from the global optimum.  This 

problem is compounded when multiple parameters are involved, forming a higher 

dimensional space. 

Tests of this function under various algorithm optimization conditions are tabulated 

below based on each of a variety of GA runs [12] as well as SA. 
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Table A-1. Tuned Objective Function Example Trials 

Algorithm Description Correct / Total Trials 

GA; arithmetic crossover, non-uniform mutation, 250 generations 20 / 100 

GA; cyclic crossover, non-uniform mutation, 250 generations 12 / 100 

GA; simple crossover, non-uniform mutation, 250 generations 12 / 100 

GA; arithmetic crossover, uniform mutation, 250 generations 17 / 100 

GA; cyclic crossover, uniform mutation, 250 generations 11 / 100 

GA; simple crossover, uniform mutation, 250 generations 19 / 100 

SA; test for 4 temperature reductions, terminate when within 1% of 
previous objective 53 / 100 

 

From the above results, the arithmetic crossover, non-uniform mutation GA was chosen 

to extend to the required optimization for this study.  In general, GA had fundamental 

difficulty in determining the global minimum for a highly tuned point, for even a single-

parameter function, however.  Given the number of parameters for this problem, it is 

difficult to say whether any success can be anticipated.  The results of SA for the same 

example above were clearly superior, but also did not find the global solution 100% of 

the time, and required significantly more cost function evaluations. 

In most cases where the global optimum was not located via GA, it was due to the fact 

that the algorithm chose the second-best solution.  Repeating the earlier statement, if one 

can argue that a reasonable electromagnetic goal is attained to within a required 

specification, the GA has successfully done its job. 
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A.4 Search Algorithm Conclusions 

While the theoretic condition that SA may approach the global optimum with probability 

one is attractive, the apparent robustness of GA (ability to consistently find the global 

solution) and relatively low number of cost function evaluations required, makes GA the 

best choice for the majority of electromagnetic optimization work. 

This work chose to proceed to determine an optimal configuration trade-space via GA for 

the purpose of further development.  As the next section will show, the optimization 

condition used for observation required approximately two months of high-speed 

computation to determine.  It is expected that a similar SA comparison would require 

approximately four months to complete.  This was not pursued, for reasons that will 

become clear. 

A.5 Initial Investigation of Electromagnetic Optimization using Genetic 
Algorithms 

The optimization objective is based on the reflection loss at the excitation probe input.  It 

is generally accepted that low reflection loss on the input translates to reasonably high 

gain for electrically small antennas since such antennas are not highly directive as long as 

the antenna consists entirely of low-loss materials.  The relevant equations begin with the 

objective function 

 [ ])(argmin αα
α

Jopt = , (126) 

for 

 ∞=
f

J )()( 11 αsα , (127) 
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and [ ]TN gfsgfsgfs ))(,(,,))(,(,))(,()( 1121111111 ααααs = .  The reflection loss itself is 

given by 

 
L
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−

=
0

0
11 , (128) 

for 0Z  the characteristic impedance of the probe feed, and ))(,( αgfZZ nLL =  the 

calculated input impedance of the antenna feed probe.  The input for the antenna is 

considered to be matched when LZZ =0 , resulting in a low reflection loss.  The reflection 

loss is optimized over a reasonably wide bandwidth by adjusting the material parameters 

associated with the substrate “bricks”.  It is essential to next understand the manner in 

which the chosen code obtains the relevant impedance calculation. 

For the purpose of this work, it is not the desire to use a GA-style optimizer to develop an 

end-product but, through the optimization process, to understand the natural optimization 

trend as it relates to the problem to help draw conclusions about what additional 

information in the FE-BI construct may be utilized. 

The specific geometry for analysis is shown in Figure A-8 and utilizes a substrate size of 

7.5cm x 5.1cm x 0.08779cm thick, and patch size (centered) of 5.0cm x 3.4cm.  This 

geometry was chosen to coincide with a test case conducted during the evaluation of the 

FEMA-BRICK code implementation; it was a test case chosen by the FEMA-BRICK 

developer for measurement validation [36].  It is a non-ideal case to compare reflection 

loss to radiation, given the resistive load.  Nevertheless, this made for a reasonable 

starting point. 
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Figure A-8. Patch Antenna Configuration Utilized for Initial Optimization 

Optimization parameters are 900 brick contained within the substrate and their values are 

allowed to vary over four possible values, chosen from those contained in Table A-2:  

[ ]04503001010003301721 .-j,.-j,.-j.,=ε .  This enabled a GA code optimization based on 

two bits per cell, for a chromosome of length 1800. 

 

Table A-2. Materials Considers for Textured Material Substrate Design 

Material Name Permittivity Composition (Hardened) 

Air / Vacuum 1 + j 0  

See FEMA-BRICK Manual 2.17 – j 0.0033  

Stycast 3.3 – j 0.004 Epoxy Resin 

Ferro ULF100 10 – j 0.01  CaMgSi2O

Ferro ULF280 

6 

30 – j 0.045 BaTiO

Ferro ULF101 

3 

100 – j 0.15 Bi – Ba – Nd – Titanate 

 

Clearly, this optimization requires a daunting number of iterations for “brute force” 

global optimization.  To exhaustively test by predicting for all possible combinations 
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would require 4900 trials.  Typical wideband runs took on the order of 2 minutes, meaning 

that an exhaustive search would require more than 10536

The optimization sought was the “best” combination of the individual bricks in order to 

optimize reflection loss over a band, chosen according to the frequency vector 

 years!  While the global 

optimum can not be found in a reasonable amount of time this way, observing the 

progress of a global optimizer may help determine what is of relative importance:  

making use of the global optimizer in order to gain some insight into the problem, as 

Goldberg predicted.  It was found that while some optimization was accomplished, this 

particular problem was a case-in-point for a poorly chosen parametric function, such that 

no real insight into the solution was offered. 

[ ] [ ]75.2:01.0:65.2,,, 21 == Nfff f  GHz.  Arithmetic cross-over with non-uniform 

mutations were utilized.  The optimization was run for a period of approximately two 

months.  The end result was the reflection loss given in Figure A-9 (plotted against the 

initial reflection loss with constant substrate; 10 0.01r jε = − ), where a modest reduction 

over the band of interest is observed.  For truly optimized results, performance is 

generally much better than this, but the number of parameters to optimize is clearly 

problematic for the GA (or any statistical) routine. 
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Figure A-9. Genetic Algorithm Probe Feed Reflection Loss Optimization (Optimization Band Shown 

Shaded In) 

As given in Equation (12), the reflection loss curves above are direct results of the 

computed Z-directed E-field ( ,Z probeE ) at the probe location.  It is particularly instructive 

to investigate the electric fields that correspond to regions where the reflection loss is low 

and high and take note of the fact that there are (theoretically) an infinite number of ways 

to arrive at a particular refection loss value at any particular point.  In fact, one means of 

performing optimization could involve reorienting the location of the probe itself.  The 

geometry and the possible choices of material parameters are the contraints.  The GA 

permittivity material solution as a function of brick location is shown in Figure A-10. 



133 

 

 
Figure A-10. Permittivity Optimized Brick Configuration 

The following figures display the absolute values of ZE  over the single-layer volume at 

various noted frequencies.  The optimized substrate is demonstrated first, starting with 

the reflection loss minima (2.66 GHz; Figure A-11), and then examining a near-maxima 

for the same geometry (2.81 GHz; Figure A-12).  Following, the original solid substrate 

( 10 0.01r jε = − ) Z-directed electric fields are given for corresponding points (2.66 GHz; 

Figure A-13 and 2.81 GHz; Figure A-14).  The fields present in the optimized versus 

initial substrate configurations are in clear contrast. 
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Figure A-11. Optimized Patch Antenna Substrate Z-directed E-field at 2.66 GHz 

 
Figure A-12. Optimized Patch Antenna Substrate Z-directed E-field at 2.81 GHz 
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Figure A-13. Patch Antenna Substrate (ε r = 10-j0.01) Z-directed E-field at 2.66 GHz 

 
Figure A-14. Optimized Patch Antenna (ε r

 

 = 10-j0.01) Substrate Z-directed E-field at 2.81 GHz 
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These two figures show that ZE  (throughout the geometry) has changed markedly and 

that there is clear structure associated with the changes.  Observe that the structural 

changes in the fields for the optimized geometry appear to be correlated with the material 

configuration.  The reader may have to stare at Figure A-10 and associated E-field 

unknown solutions for a while to draw this conclusion, however.  This result clearly 

offers little insight into why the design appears to be working. 

In general, this problem is too parametrically rich for a GA (or SA) to solve.  Even after 

months of operation, an obvious trend was not observed.  More advanced GA approaches 

(e.g., micro-GA) have not been employed in drawing this conclusion, but it is not 

necessary.  From the initial remarks highlighting the number of years required for an 

exhaustive search, one is not left with a sense of optimism.  In order for such an 

optimization to work, some engineering judgment and design must play in. 
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Appendix B: Matrix Decomposition and Solution Detail 

This work utilized two principle decomposition approaches which are further described 

below. 

B.1 Constrained Total Least Squares 

Early work focused on optimization via a constrained Total Least Squares (TLS) 

approach that begins with the clear explanation provided by Golub and Van Loan [29] for 

TLS, with the added complexity of a constraint.  The constraint was required to seek the 

objective, but also caused the system to become overdetermined.  Seeking a solution to a 

basic matrix system ( 1 1, ,N N N N× × ×∈ ∈ ∈A x b   ) given by 

 =Ax b , (129) 

subject to the constraint, n objectivex x= , note that 

 u u n objective cx= − =A x b a b , (130) 

where [ ],u n=A A a , and [ ]1 2 1 1 1, , , , , , , T
u n n N Nx x x x x x− + −=x   .  Since uA  is now 

overdetermined by the objective removal, the TLS solution is given via the singular value 

decomposition 

 ( ) ( )1 2 N, diag , , ,H
r u n objective cx σ σ σ − = = U M A b a M VΣ  , (131) 

where the M matrices are diagonal and are referred to as row-wise and column-wise 

solution space norm matrices, respectively.  The M matrices are non-singular by 
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definition and are used to emphasize certain rows or columns in the solution.  Those 

rows/columns weighted more heavily tend to encourage the TLS solution in their favor. 

If U , V , and Σ  are subsequently partitioned according to 

 [ ] 1111 12
1 2

21 22

00
,

0 0
N

c
cT

N cv mσ
   

= = = =    
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then 

 
1, 12

22

1

N

u TLS c
cv m

= −x M v , (133) 

is the unique solution to ( )u u u c c+ ∆ = + ∆A A x b b .  In this case, the deviations involved 

in the solution directly are needed, which are given by [29] 

 [ ] 1 1
2 12 22, ,T

u c r N cvσ
∗− − ∆ ∆ = −  A b M u v M . (134) 

 

B.2 Sorted Eigendecomposition 

The eigendecomposition required for this work simply made use of the standard Matlab 

library function with a simple sorting operation that re-ordered the eigenvalues according 

to { } { } { }1 2Re Re Re Nλ λ λ< < < .  Once the sorting index was obtained, the 

eigenvector matrix was rearranged via a column pivot operation such that 

 new old=X PX , (135) 

for the appropriate permutation matrix, P  [29]. 
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Appendix C: Matlab Code Module Descriptions 

In order to demonstrate the results associated with this work, a library of Matlab routines 

centered on the exploitation of the FEMA-BRICK Fortran code was developed.  This 

appendix describes the basic modules and their usage.  For a copy of the software, please 

contact the author, Prof Andrew Yagle or Prof John Volakis.  The modules and brief 

description are given below.  Typical variable input/output is managed via structured 

variables, such that all relevant information for a particular system is contained within a 

single structure.  This greatly aids the organization of the optimization from routine to 

routine.  All routines are well-commented and testing scripts are available. 

Fema-Brick_RCard_DPatchnewmat.f90: modified version of the original FEMA-BRICK that 
(when compiled) is called within Matlab via the routine RunFEMABRICK.m.  All inputs to and 
outputs from FEMA-BRICK are managed via temporary data files that are read from and written 
to by the standalone executable.  No user interface is available or required.  The textured material 
is managed via a modification to the basic executable that uses the appropriate dielectric brick 
for the appropriate finite element matrix update. 

RunFEMABRICK.m: calls Fema-Brick_RCard_DPatchnewmat.exe using values for dielectric 
texture, size, number of nodes, patch geometry, etc. that establish an appropriate input data file.  
A working directory is specified as part of the structured input variable where all generated data 
files are kept.  An executable directory is also specified as a pointer to Fema-
Brick_RCard_DPatchnewmat.exe.  The key variable passed to this routine is OutputVars, which 
is a cell array that specifies all of the desired parameters that FEMA-BRICK should pass back.  
Obtaining matrix variables, field unknowns, forcing functions and the like are all obtained this 
way.  By allowing the user to specify only the output variables needed as part of the structure, 
needless waste of memory space is minimized.  Where applicable, matrices are stored in Matlab 
in sparse format, to further save memory space. 

RunWidebandFEMABRICK.m: calls RunFEMABRICK.m repeatedly to generate the wideband 
system response variables desired.  RunFEMABRICK.m can, itself, generate a wideband result in 
FEMA-BRICK directly, but will not receive (for example) each wideband Green’s Function 
matrix update, if that is desired for each frequency. 

FBCase[n].m: initializes the variables needed for a particular case.  Example cases which 
generate the simple patch and the square spiral antenna geometry information are available.  This 
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routine allows for the initialization of different textured material schemes and different frequency 
vectors. 

DisplayField.m and DisplayGeom.m: utilities which produce a graphical representation of the 
electric field unknowns and the geometry itself, respectively. 

GetEigenDecomp.m

nγ

: obtains all variables associated with the eigendecomposition and 
optimization.  This includes the eigendecomposition (eigenvalue and eigenvector matrix [and 
inverse]), the LDL decomposition (L inverse), the material transition matrix (pseudo-inverse), 
the constitutive matrices (with inverses), and .  The probe must be specified and the system 
matrices, field unknowns and forcing function must be established within the structure of the 
input variable. 

GetEigenBasedFrequencyResponse.m nγ: uses the eigenvalues and  output from 
GetEigenDecomp.m in order to produce the fast wideband solution for a specified frequency 
vector and center frequency.  The output is the wideband result and the normalized frequency 
vector. 

get_candidate_eigenvalues.m
5.4

: performs the test necessary to determine whether eigenvalues may 
be used for optimization (based on the discussion of Section ).  Parameters for selection of 
eigenvalues are somewhat subjective, so users may wish to modify the criteria for selection in 
this script. 

place_eig_poles.m: takes as input all eigenvalues and pre-selected eigenvalue locations and 
outputs the appropriate weight at a given point to apply to an eigenvalue to place it at a desired 
frequency location (recognizing that several iterations may be required). 

eigenweights2matweights.m and matwt2epsilonwt.m

 

: the first performs the conversion between 
desired eigenvalue weights (as selected by place_eig_poles.m), and appropriate material (LDL) 
diagonal weights, then the second converts that material weighting to permittivity weighting for 
the textured material update. 



141 

REFERENCES 



142 

 

1. Fischer, B.E.; “Two-Dimensional Echo Width Optimization of a Multi-Layer Ogive”, 
Report in Support of University of Michigan Directed Study and Qualification, Jan 
2002. 

2. Fischer, B.E.; Yagle, A.E.; Volakis, J.L; “Electromagnetic Optimization of a Patch 
Antenna over a Textured Substrate using Total Least Squares”, IEEE 2004 Antennas 
and Propagation Society International Symposium, Vol 4 , 20-25 Jun 2004, pp. 4428 
- 4431. 

3. Fischer, B.E.; Yagle, A.E.; Volakis, J.L; “On the Eigen-decomposition of 
Electromagnetic Systems and the Frequency Dependence of the Associated 
Eigenvalues”, IEEE 2005 Antennas and Propagation Society International 
Symposium, To Be Published, 2005. 

4. Chatterjee A.; Volakis, J.L; Kent, W.J.; “Scattering by a Perfectly Conducting and a 
Coated Thin Wire Using a Physical Basis Model”, IEEE Transactions on Antennas 
and Propagation, Vol 40, No. 7, Jul 1992. 

5. Kempel, L.C.; Volakis, J.L; “TM Scattering by a Metallic Half Plane with a Resistive 
Sheet Extension”, IEEE Transactions on Antennas and Propagation, Vol 41, No. 7, 
Jul 1993. 

6. Kempel, L.C.; Volakis, J.L; Senior, T. B. A.; “Scattering by S-Shaped Surfaces”, 
IEEE Transactions on Antennas and Propagation, Vol 41, No. 6, Jun 1993. 

7. Geman, S.; Geman, D.; IEEE PAMI 6 721, 1984. 

8. Hajek, B.; Int. Conf. On Decision and Control (Piscataway, NJ: IEEE), 1985. 

9. Corana, A.; Marchesi, M.; Martini, C.; Ridella, S.; “Minimizing Multimodal 
Functions of Continuous Variables with the ‘Simulated Annealing’ Algorithm”, ACM 
Transactions on Mathematical Software, Vol. 13, No. 3, pp. 262-280, Sept 1987. 

10. Robini, M. C.; Rastello, T.; Magnin, I. E.; “Simulated Annealing, Acceleration 
Techniques, and Image Restoration”, IEEE Transactions on Image Processing, Vol. 
8, No. 10, Oct 1999. 

11. Dorigo M.; Di Caro, G.; “Ant Colony Optimization: A New Meta-Heuristic”, 
Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99  -
1477 Vol. 2. 

12. Houck, C.R.; Joines, J.A.; Kay, M.G.; Freeware: Binary and Real-Valued Simulation 
Evolution for Matlab, Copyright (C) 1996. 

13. Balanis, C. A.; Advanced Engineering Electromagnetics

14. Skinner, J. P.; “AFIT Notes from Course # EE630 Part II”, Nov 1991. 

, John Wiley & Sons, New 
York, 1989. 

15. McClary, R. L.; “RAM2D 2-D Integral Equation Computer Code”, User’s Manual, 
Feb 1995. 



143 

16. Knott, E. F.; Shaeffer, J. F.; Tuley, M. T.; Radar Cross Section

17. Li, Z.; Kiziltas, G.; Volakis, J.L; Kikuchi N.; “Material Design Optimization for 
Printed Antennas Using the Finite Element-Boundary Integral Method.” 

, Artech House, Inc., 
Norwood MA 02062. 

18. Kiziltas, G.; D. Psychoudakis, Volakis, J.L; Kikuchi N.; “Topology optimization of 
dielectric substrates for bandwidth improvements of patch antennas,” IEEE Trans. 
Antenna and Propagat., Vol. 51, Oct. 2003, pp. 2732-2743. 

19. Kiziltas, G.; Volakis, J.L; Kikuchi N.; “Metamaterial design via the density method,” 
2002 IEEE Antennas and Propagation Symposium, San Antonio, TX, Vol. 1, pp. 748-
751. 

20. Kiziltas, G.; Y. Koh, Volakis, J.L; Kikuchi, N.; Halloran, J.; “Optimum design and 
fabrication of  volumetric graded substrates for a broadband miniature antenna,” 2003 
IEEE Int  Symposium on Antennas and Propagation, Symposium digest, pp. 485-488, 
Vol. 1, Columbus, OH. 

21. Kiziltas, G.; Psychoudakis, D.; Volakis, J.L; Kikuchi, N.; Halloran, J.; “Miniature 
Antenna Designs on Metamaterial Substrates”, 8th Int. Conference on 
Electromagnetics in Advanced Appl. (ICEAA), Conf. Proceedings, pp. 431-434, 
2003, Torino, Italy. 

22. Kiziltas, G.; Volakis, J.L; Kikuchi, N.; Halloran, J.; “Miniature broadband SATCOM 
antenna design using automated material optimization techniques,” 2004 FEM 
workshop, Madrid, Spain. 

23. Kiziltas, G.; Koh, Y.; Volakis, J.L; Kikuchi, N.; Halloran, J.; “Optimum Design and 
Fabrication of Volumetric Graded Substrate for a Broad-band Miniature Antenna”, 
IEEE 2003Antennas and Propagation Society International Symposium, Vol 1 , 22-27 
June 2003, pp. 485-488. 

24. Psychoudakis, D.; Knapp, A.; Kiziltas, G.; Volakis, J.L.; Halloran, J.; “Textured 
LTCC Substrates for Printed Antenna Miniaturization and Bandwidth Improvement”, 
IEEE 2003Antennas and Propagation Society International Symposium, Vol 3 , 22-27 
June 2003, pp. 375 -378. 

25. Jin, J.-M.; Volakis, J.L.; “A Finite-Element-Boundary-Integral Formulation for 
Scattering by Three-Dimensional Cavity-Backed Apertures”, IEEE Transactions on 
Antennas and Propagation, Vol: 39, Issue: 1, Jan. 1991. 

26. Jin, J.-M.; Volakis, J.L.; Collins, J.D.; “A Finite-Element-Boundary-Integral Method 
for Scattering and Radiation by Two- and Three-Dimensional Structures”, IEEE 
Antennas and Propagation Society Magazine, 33(3):22-32, June 1991. 

27. Jin, J.-M.; Volakis, J.L.; “A Hybrid Finite Element Method for Scattering and 
Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity”, IEEE 
Antennas and Propagation Society Magazine, 39(11):1598-1604, November 1991. 



144 

28. Volakis, J.L.; Chatterjee, A.;. Kempel, L.C.; Finite Element Method for 
Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE 
Press, New York NY, 1998. 

29. Golub, G.H.; Van Loan, C.F.; Matrix Computations; Third Edition, The Johns 
Hopkins University Press, Baltimore and London, 1996. 

30. Haupt, R.L.; “An Introduction to Genetic Algorithms for Electromagnetics”, IEEE 
Antennas and Propagation Magazine, Vol 37, No. 2, Apr 1995. 

31. Johnson, J.M.; Rahmat-Samii, Y.; “Genetic Algorithms in Engineering 
Electromagnetics”, IEEE Antennas and Propagation Magazine, Vol 39, No. 4, Apr 
1997. 

32. Scales, J.A.; Smith, M.L.; Fischer, T.L.; “Global Optimization Methods for 
Multimodal Inverse Problems”, Journal for Computational Physics, 103, 1992. 

33. Hoffmann, K.H.; Salamon, P.; “The Optimal Simulated Annealing Schedule for a 
Simple Model”, J. Phys. A: Math. Gen 23 (1990), 3511-3523. 

34. Rao, S. S.; Engineering Optimization: Theory and Practice, 3rd ed. New York, 
Wiley, 1996 

35. Rahmat-Samii, Y.; Michielssen, E.; Electromagnetic Optimization by Genetic 
Algorithms, New York, Wiley, 1999. 

36. Jin, J.-M.; Volakis, J.L.; Alexanian, A.; “Electromagnetic Scattering and Radiation 
from Microstrip Patch Antennas and Arrays Residing in a Cavity”, Project Report and 
User’s Guide for FEMA-BRICK, 1991. 

37. Erdemli, Y.E.; Reddy, C.J.; Volakis, J.L; “AWE Technique in Frequency Domain 
Electromagnetics”, Journal of Electromagnetic Waves and Applications, Vol 13, 
1999, pp. 359-378. 

38. Gong, J.; Volakis, J.L; “AWE Implementation for Electromagnetic FEM Analysis”, 
Electronics Letters, Vol. 32, No. 24, 21 Nov 1996, pp. 2216-2217. 

39. Miller, E.K.; Burke, G.J; “Using Model-based Parameter Estimation to Increase the 
Physical Interpretability and Numerical Efficiency of Computational 
Electromagnetics”, Computer Physics Communications, Vol. 68, No. 1-3, 1991, pp. 
43-75. 

40. Burke, G.J.; Miller, E.K.; Chakrabarthi, S.; Demarest, K.; “Using Model-based 
Parameter Estimation to Increase the Efficiency of Computing Electromagnetic 
Transfer Functions”, IEEE Trans. Magnetics, Vol. 25, No. 4, 1989, pp. 2807-2810. 

41. Coifman, R.; Rokhlin, V.; Wandzura, S.; “The Fast Multipole Method for the Wave 
Equation: A Pedestrian Prescription”, IEEE Antennas and Propagation Magazine, 
Vol. 35, No. 3, 1993, pp. 7-12. 

42. Ferro Performance Materials Company Ceramic Composite Website Address; 
http://www.ferro.com/our+products/electronic/products+and+markets/chip+compone
nt+materials/dielectric+formulations+for+ceramic+capacitors.htm.  

http://www.ferro.com/our+products/electronic/products+and+markets/chip+component+materials/dielectric+formulations+for+ceramic+capacitors.htm�
http://www.ferro.com/our+products/electronic/products+and+markets/chip+component+materials/dielectric+formulations+for+ceramic+capacitors.htm�

	Chapter 1 INTRODUCTION
	1.1 Problem Overview
	1.2 Previous Work
	1.3 Contributions of this Dissertation
	1.4 Organization of this Dissertation

	Chapter 2 PROBLEM STATEMENT
	2.1 Background
	2.2 The FEMA-BRICK Program
	2.2.1 General Three-Dimensional FE-BI System Development
	2.2.2 Three-Dimensional FE-BI for a Cavity in an Infinite Ground Plane
	2.2.3 FEMA-BRICK Prediction Code
	2.2.4 FEMA-BRICK FE-BI System

	2.3 Optimization Problem Introduction

	Chapter 3 LINEAR SYSTEM OPTIMIZATION APPROACH
	3.1 Matrix Structure and Exploitation
	3.1.1 Matrix Structure Dependence on Permittivity
	3.1.2 Wideband Matrix Structure

	3.2 System Condition Issues
	3.3 Total Least Squares Optimization of the Electromagnetic System

	Chapter 4 NARROWBAND SYSTEM OPTIMIZATION
	4.1 Narrowband System Matrix Eigendecomposition
	4.2 Solution for Constant Material Adjustment Only
	4.3 Solution for Simple Textured Material
	4.4 Results for a Narrowband Exhaustive Search

	Chapter 5 WIDEBAND SYSTEM OPTIMIZATION
	5.1 Wideband System Matrix Eigendecomposition
	5.2 Validation of Eigendecomposition Approximation
	5.3 Material Update Characteristics
	5.4 Manipulation of Eigenvalues for Optimization
	5.5 Integration of the Eigendecomposition Function
	5.6 Wideband Optimization Algorithm Development

	Chapter 6 WIDEBAND SYSTEM OPTIMIZATION RESULTS
	6.1 Wideband Optimization Case I – Simple Patch
	6.1.1 System Condition for the Simple Patch

	6.2 Wideband Optimization Case II – Two-arm Square Spiral
	6.2.1 System Condition for the Two-arm Square Spiral


	Chapter 7 CONCLUSIONS
	7.1 Summary of Findings and Results
	7.2 Evaluation of Findings and Results
	7.3 Suggestions for Future Research


