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 Introduction
o Motivation.
o Previous work.
o Contribution.
o Applications.

 A Novel Approach
o LR images as basis signals
o Sampling diversity

 The Expansion Coeff. of the Polyphase Comps (Overview)
 The Reference Polyphase Comp.  (Overview)

 Results

 Summary
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 Solving for the Expansion Coeff. of the Polyphase Comps.

o LS
o TLS
o PCA pre-denoising.

 Estimation of The Reference Polyphase Comp.

o Minimizing the distance in the pixel domain.
o Minimizing the distance in a decorrelated subspace.
o An alternative to estimating the reference PPC.

 Future Work 





BLUR ALIASING

o Diffraction limit.

o Loss of detail: soft 
images.

o Solution: optical super-
resolution (beat the 
diffraction limit).

o Low –sensor density.

o Loss of detail: few 
pixels Þ blocky images.

o Solution: signal 
processing-based super-
resolution.  
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COST 
REDUCTION

BEYOND COST
REDUCTION

Need more pixels? 

Þ use larger imaging chip (large 
increase in cost).

OR: use smaller pixel size.

Þ fewer photons/pixel 

Þ use very high quality photo 
sensors that can perform well 
under deprived light conditions.

Þ Again, substantial increase in cost. 

OR : use SR techniques.

Sensor is already diffraction limited?

Þ zoom out to cover larger FOV 
(very important feature for many 
applications).

Þ Higher density sensor is still 
required.

However, there is an optimal physical 
limit on pixel density (and chip/lens 
size). Also, particularly large pixel 
spacing is required in some applications 
(for thermal isolation in infrared 
imaging, for example).

Þ SR is the only option when the 
optimal physical limits of sensor 
manufacturing are met.
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Multiframe SR methods generally assume:

o The original scene is static.

o Same downsampling in the horizontal and vertical 
directions.

o Additive noise corruption. 

o Each measured LR image is the result of different relative
scene motion (and blur).

o The motion vectors are usually assumed either known or 
reliably estimated using image registration methods. Some 
SR methods jointly estimate the HR image and motion 
parameters.
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 Matrix formulation

 Ill-posed, huge size problem

o Example: if the size of the HR image is 500x500, then an (over)determined 
system matrix will have (at least) 250,000x250,000 = 62,500,000,000 
elements.

o Iterative, robust and stable solution is needed. 
o Farsiu et al. proposed an L1-norm data fitting term for robustness and an 

edge-preserving BTV for regularization. 
o Using their SR software, we implemented their method “Iterative L1” for 

the purpose of comparison.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe 
super resolution,” IEEE Trans. IP, 2004.
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Our proposed multiframe super-resolution 
method has the following characteristics:

o It can make use of (global/local) motion 
and/or blur to super-resolve images.

o Blind reconstruction: it requires no knowledge 
or estimation of the degradation process.

o Very fast.
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TYPICAL  SR  METHODS PROPOSED METHOD
o Reliable image registration is 

required.

o Given the global motion 
vectors, and depending on 
the SR method,  
reconstruction can be 
relatively fast.

o No need for 
registration.

o Very fast.
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o Classical SR problem.

o Example: a camera recording a sequence of a static scene while 
moving with slight translations.



TYPICAL  SR  METHODS PROPOSED METHOD

o Mis-registration due to 
randomness of blur 
from frame to frame.

o Poor SR performance.

o No need for registration 
or blur estimation.

o Can make use of both 
motion and random 
blur.
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EXAMPLES
Airborne/ground reconnaissance and machine vision systems.

o Vibrations are inevitable during imaging.
o Despite the best mechanical stabilization systems, images are still 

distorted by random motion blur. 



 Ground-based astronomical imaging and satellite imaging of the Earth 

 Time-variant, shift-variant PSF.  

 Severity of distortions increases with time of exposure and far-field 
imaging. 

 Stacking (aim: deblurring)
o High rate of frames per second Þ decreases the severity of distortions 

but decreases the SNR too. 
o Process hundreds of frames to combine some of them without 

increasing the blur while increasing the SNR ratio.
o Without distortions, stacking is needless while super-resolution is 

impossible.

 Satellite surveillance Þ much less severe distortions.
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Q:   Can the polyphase components* (PPCs) of a HR image be written 
as a linear combination of LR images?

A1: Obviously, if the number of (lin. indept.) LR images equals to the 
number of pixels in a PPC, then this is always true.

A2: However, it can be shown that if each LR image corresponds to 
downsampling a differently distorted (warped/blurred) HR image,  
then the set of LR images can form a complete basis if:

1- Each distortion process can be modeled as a LSV transform, 
with a transform kernel that can be approx. as a set of r LSI kernels 
of the same finite size, acting on r different areas of the HR image.

2- And:
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1 2K rL L≥

K: # LR images.
: the size of an LSI kernel (assumed to be equal to or larger than the 

downsampling factor, which is assumed to be the same in the vertical/horizontal direction).
1 2L L×
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HR image
k-th LR 
image

k-th LSV 
transform

↓3x3

Example:

If each distortion is a different LSV PSF that can be approximated as a 
set of  2  4x4  LSI PSFs Þ we need 32 LR images to form a LR basis that 
can represent the 9 PPCs of the HR image. 

Note:

o if each distortion is represented by a single 4x4 LSI kernel, then 
we only need 16 LR images for a complete basis.

o if  the distortions are LSV, but the number of available LR images 
is too small then we can super-resolve subregions of the HR image.





Define:

o The primary PPCs of the HR image are the I2 PPCs corresponding to ↓IxI.
o The secondary PPCs are the J2 PPCs corresponding to ↓JxJ.

If:

I and J are relatively prime (e.g. J = I+1)

Then:

ANY primary PPC shares a sub PPC with ANY secondary PPC.

Usefulness?

If we know ONLY ONE of the secondary PPCs, then we already know a portion 
(a sub PPC) of EVERY primary PPC. We refer to this single known secondary 
PPC as the reference PPC. 
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a reference PPC
(one of the 

secondary PPCs)

sub PPCsprimary LR basis

expansion 
coefficients

primary PPCs

property of sampling 
diversity

primary LR basis
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Primary 
CCD 
Array

Beam Splitter. (or a moving mirror).

Camera 
Lens

Secondary* CCD Array 
(lower-resolution)

* A similar 
hardware 
setup is used 
for phase 
diversity 
(which is very 
different from 
sampling 
diversity).

480 640×

384 512×

For a HR image of size 1920 2560.×





Solve small equations of the form:

Ax=b (1)

b is a sub PPC (a portion) of a primary PPC.

A is the data submatrix (a submatrix of the LR 
basis matrix). # of columns = # of LR images.

x are the expansion coefficients.
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Limitations?

o The LR basis is noisy? Þ biased solution.
- Use PCA to pre-denoise the data.  

o The LR basis is incomplete? Þ biased solution. (the 
PPCs are partially reconstructed).

o The best we can estimate is a HR image blurred 
(biased) by the CCD PSF.

o The estimated reference PPC is noisy and biased? Þ
error in the RHS Þ noisy and biased solution.
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o Estimate the expansion coefficients of the green
primary PPCs, using the green primary LR 
images as a basis set and an estimated green
reference PPC.

o These are the same expansion coefficients of 
the red and blue PPCs in terms of the red and 
blue LR images, respectively.   

o This means we only need green secondary LR 
images.
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 TV denoising
o Edge preserving.
o Accounts for leftover noise.

 UM deblurring
o Very simple/generic.
o The best we can estimate is a HR image blurred by the CCD 

PSF.
o Blur due to biased estimation of the reference PPC.
o Blur due to noisy, incomplete LR basis.

 MD filtering
o Impulsive noise after deblurring.
o We estimate the HR image by estimating its PPCs separately 

and then interlacing, which might cause some subtle 
irregularities in pixel intensity levels that become more 
pronounced after sharpening.
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a reference PPC
(ONLY ONE of the 
secondary PPCs is 

needed)

property of sampling 
diversity

primary LR basis
secondary LR 

basis



Solve ONLY ONE equation of the form:

(2)

are the expansion coefficients of the reference PPC in terms of the 
secondary LR Basis.

is a secondary data submatrix (a submatrix of the secondary LR 
basis matrix).

o We can solve Eq. (2) by minimizing the Euclidean distance in the 
pixel domain → very noisy/biased estimate.

o Minimize the Euclidean distance in decorrelated subspace → 
stable/less biased solution.

OR: Choose the “best” secondary PPC as a reference PPC.
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1 1 2 2A x A x=

2A

2x
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Primary LR sequence 
(16 frames @ 5 frames/sec.)

Secondary LR sequence 
(green color-band only)

(16 frames @ 5 frames/sec.)

Distorted HR sequence 
(16 frames @ 5 frames/sec)

5 5↓ ×4 4↓ ×

+ noise @ SNR = 30dB+ noise @ SNR = 30dB
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Bicubic interp. 2.89 s.
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Blind SR + (TV+UM+MD). 14.5 s.
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Primary LR sequence 
(100 frames @ 5 frames/sec.)

Secondary LR sequence 
(green color-band only)

(100 frames @ 5 frames/sec.)

Distorted HR sequence 
(100 frames @ 5 frames/sec)

5 5↓ ×4 4↓ ×

+ noise @ SNR = 30dB+ noise @ SNR = 30dB



Blind Super-Resolution from Multiple 
Undersampled Images using Sampling Diversity 36

Bicubic interp. 2.83 s.



Blind Super-Resolution from Multiple 
Undersampled Images using Sampling Diversity 37

Blind SR + (TV+UM+MD). 28.1 
s.
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Primary LR sequence 
(54 frames @ 5 frames/sec.) 

2nd part of the HR sequence 
(54 frames @ 5 frames/sec.)

4 4↓ ×

1st part of the HR sequence 
(54 frames @ 5 frames/sec)

Choose the 35 frames closest to 
the mean.

Choose the best secondary PPC
as the reference PPC.

5 5↓ ×

Secondary LR sequence 
(54 frames @ 5 frames/sec.) 
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Bicubic interp. 1.03 s. Iterative L1. ~ 4 mins.
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Blind SR (w/best sec. LR)+ (UM+MD). 10.88 s.Bicubic interp. 1.03 s. 
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Bicubic interp. Iterative L1.

Detail
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Bicubic interp. Blind SR.

Detail
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Bicubic 
interp.

Blind SR 

Detail

Iterative
L1.
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Primary LR sequence 
(100 frames @ 5 frames/sec.) 

HR sequence 
(100 frames @ 30 frames/sec.)

5 5↓ ×

4 4↓ ×

Discard every other frame.

Choose the 30 frames closest to 
the mean.

First HR frame (green color-
band only).
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Bicubic interp. 3 s. 
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Iterative L1
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Blind SR (w/a single sec. LR)+ (TV+UM+MD). 21.3s.
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Primary LR sequence 
(35 frames @ 5 frames/sec.) 

Secondary LR sequence 
(35 frames @ 5 frames/sec.)

HR sequence 
(35 frames @ 5 frames/sec)

10 10↓ ×8 8↓ ×
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Bicubic interp.  0.83 s. Iterative L1 + UM.
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Blind SR + (TV+UM+MD). 6.9 s.Blind SR(w/best sec. LR)  + (TV+UM+MD).
7.22 s.
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Primary LR sequence 
(70 frames @ 5 frames/sec.)

HR sequence 
(70 frames @ 30 frames/sec)

5 5↓ ×

4 4↓ ×

Choose the best secondary LR 
frame as the reference PPC.

Secondary LR sequence
(green color-band only) 

(70 frames @ 5 frames/sec.)
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Bicubic interp. + UM.  2.65 s. Iterative L1 + UM. ~15+ min.



Blind Super-Resolution from Multiple 
Undersampled Images using Sampling Diversity 53

Blind SR (w/best sec. LR)+ (TV+UM). 
13.57 s.

Bicubic interp. + UM.  2.65 s.
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Bicubic interp. Iterative L1 Blind SR
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The original HR sequence is courtesy of Dr. Joseph Zawodny of NASA Langley Center.
1.7 pixels/Airy radius. Angular resolution = 0.34 arcseconds/pixel. 

Primary LR sequence 
(100 frames @ 5 frames/sec.) 

Secondary LR sequence 
(100 frames @ 5 frames/sec.)

HR sequence (1300 frames @ 
30 frames/sec)

8 8↓ × 10 10↓ ×
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Bicubic interp. +UM. 0.83 s. 
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Iterative L1 + UM.
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Blind SR (w/best sec. LR) + (UM+MD). 9.31 s.
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Blind SR + (UM+MD). 10.9 s.





o Reformulate the problem as a change of basis.

o The completeness of the LR basis is dependent on 
the type (LSI vs. LSV) and extent (severity) of the 
distortion processes. 

o Estimate the expansion coefficients of the PPCs in 
terms of the LR basis, using portions (sub PPCs) of 
the PPCs. These sub PPCs are estimated using the 
property of sampling diversity with a hardware 
requirement of adding an additional (lower 
resolution) sensor.
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o Our proposed method veers away from the major 
limitations associated with typical model-based solution 
of the SR problem. It is fast, does not require any 
estimation of the degradation process and is robust in 
the sense that we use no model . (no model Þ no room 
for model errors).

o Besides  requiring an additional lower resolution sensor, 
completeness of the LR basis is the only key assumption 
we make; the invalidity of which has only one 
consequence: the PPCs will be partially reconstructed.

o In certain applications where typical multiframe SR 
performs poorly (e.g. in the case of random vibrations), 
our method not only provides a much faster solution, it 
actually benefits from the random nature of distortions.
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For ease of illustration, suppose the primary and the secondary 
downsampling factors, I and J are equal to 4 and 5, respectively.

Þ There are 16 primary PPCs. Each one of these has 25 sub 
PPCs.

Þ There are 25 secondary PPCs. Each one of these has 16 sub 
PPCs.

Assume we know, say, the 13th secondary PPC. 

Þ This is our reference PPC, and any sub PPC out of the 16 sub 
PPCs of this ref. PPC is also a sub PPC (a portion) of one of 
the 16 primary PPCs. 

Þ Example: the 10th (out of 16) sub PPC of the ref. PPC is the 
17th (out of 25) sub PPC of the 4th primary PPC. 
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10 10 10

10 10 10

Each sub PPC of 
the reference PPC
is a sub PPC (a portion) of 
a primary PPC. 

Example:

The 10th sub PPC of the 
13th secondary PPC 
is the 17th sub PPC of the
4th primary PPC.



Assume:
1 – The LR basis is both complete and noiseless 

2 - We got a corrupted version of the ref PPC (13th secondary PPC) Þ All 16 
sub PPCs are corrupted. The error is zero-mean white Gaussian noise.

Q: Given a noisy version of its 17th sub PPC, how can we estimate the 4th

primary PPC?

Ans: Solve for its expansion coefficients   

This is the ML estimate of the expansion coeffs of the 4th PPC.

Note: Y contains the (primary) LR images (unwrapped by column). We refer to it as the 
data matrix or the LR basis matrix. 
- The matrix, A, is therefore a data submatrix (a submatrix of the LR basis matrix).
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,10 4,17 17 4refU U D U e= = +

4 4U Yx⇒ =

4

2 2
4,17 17 4min min

x x
U D Yx b Ax− ≡ −



The system of linear equations:

is overdetermined when

Þ Processing large LR images increases the 
overdeterminedness. In practice, this means we should 
super-resolve the largest possible subregions of the HR 
image (to within memory limitations). 

Þ For a given size of the LR images, we must have

J = I+1, 

for the maximum possible overdeterminedness. 
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Ax b=

1 2
2 2

1 M Mp K
J I

= ≥



o LR images are always noisy Þ LS is 
(asymptotically) biased (and thus inconsistent).

o So the bias does not decrease much with 
overdeterminedness (larger LR images), but it 
DOES decrease a lot with more LR images (noise, 
effectively, renders a complete basis incomplete). 

o To benefit more of the overdeterminedness of the 
systems of linear equations, we need a consistent 
estimator.
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o TLS takes into account the noise in the data submatrix, A. 

o If A and b are both corrupted with zero mean i.i.d 
(Gaussian) noise, TLS is asymptotically unbiased (ML) 
estimator. (It’s at least weakly consistent, if error is zero 
mean, same variance and uncorrelated)

where           is the last singular value of the augmented 
matrix   

o Since LR images are highly correlated Þ has last 
few singular values that are close to each other Þ TLS can 
be very unstable since                      can have vanishing last 
singular values (interlacing theorem).
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( )TLS

12
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Kx A A I A bσ
−

+= − 

1Kσ +

[ ].A b

2
1

T
KA A Iσ +− 

[ ]A b



o Tikhonov regularized TLS:

o LS is simply a Tikhonov regularized TLS at

o Tikhonov regularization roughly translates to 
the a priori assumption that the expansion 
coefficients are zero-mean, equal variance, 
uncorrelated, and Gaussian distributed. 
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Why not write the regularization term as a function 
of the PPC?

- non-convex.

- no analytical solution. 

- roughness penalties are meaningless, in our case.

[ ] ( )
2

ˆ ,
ˆ ˆmin     

FA x
A b A Ax Yxλ − + Γ 



o Let 

o Assume the noise in the data matrix is zero mean, same variance 
and uncorrelated. 

o For tractability, assume that                                       then:    

o Part of the variance of error in an estimated PPC is independent of 
the bias-variance tradeoff associated with any estimator of its 
expansion coefficients. 

Þ penalizing the TLS solution for the expansion coefficients using 
a penalty term that is a function of the PPC is NOT useful.
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( ) ( ) ( )( )2 222
o o o
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ˆMSE Tr Tr 2

                   if   0.
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n w v w w w w

v

U Y R Y d x R x Y

d x w

σ µ µ µ

σ

= + + + + +

= =

o ˆ   and    Y Y x x w= + = +

 is independent of w 



o LS → biased.

o TLS → asymptotically unbiased but numerically unstable.

o TRTLS → inaccurate assumptions on the expansion coefficients.

o Cannot use a roughness penalty term as a function of the PPC.

o Noise augmentation, in the estimated PPC, results from multiplying the 
expansion coefficients with the data matrix.

o Noise augmentation is partly independent of the bias-variance tradeoff of 
any estimator of its expansion coefficients.

o CONCLUSION?   Pre-denoise the data!

 This reduces bias, and removes the advantage of TLS over LS.

 It reduces the noise augmentation (which exists even with zero-error in 
the estimation of the expansion coefficients).
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o When the noise is uncorrelated with the same variance, PCA maximizes 
the SNR along the first few axes.

o By dropping the last few PCs, the (reconstruction) MSE corresponds 
mostly to noise.  

o Estimate the covariance matrix of the sub LR images obtained by 
downsampling the primary and secondary sets of LR images, by ↓JxJ and
↓IxI, respectively, thus obtaining 

samples to compute the sample covariance matrix.

o The sub LR images are then denoised via

where D is the PCA matrix containing the eigenvectors corresponding to 
the largest eigenvalues of the sample covariance matrix (corresponding to 
low order PCs). 
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2 2SKJ K I+

( )ˆ ˆ ˆsub T sub
k ky DD y µ µ= − +





o In order to estimate the ref. PPC (ONLY ONE of the 25 secondary 
PPCs, e.g. the 13th), we need an additional (secondary) set of lower 
resolution images acquired by an additional (secondary) imaging 
sensor (of lower pixel density).

o Assume that the primary and secondary LR sets are two complete 
basis for representing the 16 primary PPCs and the 25 secondary 
PPCs, respectively.

o A sub PPC of the ref. PPC (the 13th secondary PPC) is equal to a 
sub PPC of a primary PPC. 

Þ pick any primary PPC, say, the 5th one. 
Þ the 15th (out of 16) sub PPC of the ref. PPC is the 24th (out of 25) 
sub PPC of the 5th primary PPC. 

.
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5

24 5 15 13

ref

S

U U

D Yx D Y x=
Secondary LR
basis matrix

Primary LR
basis matrix



The previous equation is rewritten as:
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1 1 2 2A x A x=
submatrix of the
primary LR
basis matrix.

submatrix of the 
secondary LR
basis matrix

the expansion 
coeff. of the ref.
PPC. 

the expansion
coeff. of the 5th

primary PPC.

o Solve this (for     )  only once.

o Min the Euclidean dist. in the 
pixel domain.

o Min the Euclidean dist. in a 
decorrelated subspace.

o OR: Don’t solve it!

2x



- Since we expect that the pair of vectors, f Î R(A1) and g Î R(A2) 
that best approximate the common sub PPC, have the shortest 
distance between them, we solve

which is equivalent to

where  

- Non-convex, but has the well known analytical solution: x = 
last right singular vector of A. 
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1, 2

2 2 2
1 1 2 2 1 2min     subject to    1

x x
A x A x x x− + =

2 2min =     subject to    1T T
x

Ax x A Ax x =

[ ]1 2

1 2,  
TT T

A A A

x x x

= −

 =  



 The solution of the previous minimization problem can be 
numerically unstable, although we can denoise the solution.

 As a dissimilarity measure, the Euclidean distance is very 
sensitive to error when the variables (pixels) are highly 
correlated.

 Removing dependencies among pixels in f Î R(A1) and g Î
R(A2) before deciding which f and g are with minimal 
dissimilarity, gives a less biased decision. 

 PCA gives us a basis, in terms of which, the expansion 
coefficients (PCs) of (centered) f and g are uncorrelated.

 The highest variance PCs have the greatest weight in the 
choice of the pair  of vectors with minimal dissimilarity.  
(these are assumed to represent significant features). 
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- Find the shortest distance between decorrelated vectors:

which is equivalent to

where  

and D is the same PCA matrix used for pre-denoising.

- Non-convex, but has the well known analytical solution: x
= last right singular vector of    
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( )
1, 2

2 2 2
1 1 2 2 1 2min     subject to    1

x x
D A x A x x x− + =

2 2min =     subject to    1T T T T
x

D Ax x A DD Ax x =

[ ]1 2

1 2,  
TT T

A A A

x x x

= −

 =  

.TD A



 Solving A1x1=A2x2 is a case where the blind are leading the blind.

 Problems of this type are thus more sensitive to errors (compared to 
Ax=b).

 Avoid solving it by picking one of the secondary LR images as our 
reference PPC.

Intuition: 

Suppose we have secondary LR images corresponding to perfect global 
motions. 

Þ Each secondary LR image is a secondary PPC.
Þ For more complex cases, secondary LR images are mixtures of secondary 

PPCs.
Þ Pick the sharpest (non-outlier) secondary LR image.
Þ Which sec. PPC, the chosen sec. LR image approximates best?
Þ Solve for the I2 primary PPCs, J2 times. Pick the smoothest HR image.
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PROPOSAL PROMISES WHAT HAS BEEN DONE

o Denoise (preprocess) 
data matrices using 
PCA (or kernel PCA?).

o Get rid of outlier images 
(trimming? MCD?)

o Better decorrelation, for 
a better estimate of the 
reference PPC? 

o Lower bias AND noise 
augmentation by PCA 
predenoising the data.

o LR images are highly correlated 
→ outliers are the furthest from 
the mean.

o Use a decorrelating PCA matrix 
derived from all sub LR images 
(use the denoising matrix).

o Choose the best secondary LR 
frame, instead of estimating the 
reference PPC.

o Straightforward: Color 
images/post-processing.
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Shrinkage.

ICA, NMF.

Min angle, L1, Chebychev (all using CCP)
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o As a denoiser, theoretical PCA performs best if the 
errors are uncorrelated with the same variance 
(regardless of distribution). Otherwise, solve:

This non-convex problem can be reduced to 
solving a system of non-linear equations.

o Empirical PCA (using the sample covariance 
matrix) performs well, if the noise is also Gaussian 
(sensor readout  noise is white Gaussian).
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Other types of noise

o Shot noise (poisson) is due to fluctuation of photon 
counts, but it becomes more Gaussian-like 
distributed with more photons (due to larger 
pixels in LR images).

o For impulsive noise, robust PCA performs better.

o Small scale problem.
- # of columns of data submatrices = # of LR images.
- # of rows is M1M2/I2J2 for data submatrices (this is an 

important factor if we choose to PCA pre-denoise the 
data or estimate the reference PPC).
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o The literature on denoising/deblurring is vast.

o Limit the search to edge-preserving methods.

o Adaptive TV denoising for textured HR 
images.

o Joint deblurring and TV denoising.

o TV denoising for other types of noise (e.g. 
impulsive or poisson noise).
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A PPC is a shifted 
and downsampled 
version of the HR 
image. 

Shown: 4 out of 16 
PPCs corresponding 
to ↓4x4.
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The light shaded 
areas represent the 
active portions of 
the primary LR 
pixels. The small 
blue squares 
represent the active 
portions of the 
pixels of the HR 
CCD array.

The weighting 
kernel (CCD PSF) is 
represented by a 4x4 
Gaussian kernel 
with variance 1.
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The light shaded 
areas represent the 
active portions of 
the secondary LR 
pixels. The small 
blue squares 
represent the active 
portions of the 
pixels of the HR 
CCD array.

The weighting 
kernel (CCD PSF) is 
represented by a 5x5 
Gaussian kernel 
with variance 1.



o Iteratively estimate the reference PPC based on a best secondary LR 
image (but how?).

o Build a prototype camera.

o Concentrate on satellite imaging of the Earth.

o Investigate whether single-frame SR might benefit from the property 
of sampling diversity, where the single (distortion-free) LR frame 
plays the role of the reference PPC. In particular, it might be easier to 
train a basis to reconstruct low resolution signals (PPCs) and as such, 
the sampling diversity idea could be extended to single frame SR and 
without the additional requirement of a secondary sensor.

o dynamic SR? we could use each secondary frame as a reference PPC, 
thus obtaining a sequence of SR images that are, in essence, HR 
versions of the secondary LR images. This, however, would probably 
require a temporal resolution high enough for a valid assumption of 
the rigidity of the scene within reasonably short time windows. 
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SR image. Comp. time = 0.25 s.
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SR image.
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SR image. Comp. time = 0.65 s.
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