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ABSTRACT 

 

 Multiframe super-resolution is the problem of reconstructing a single high-resolution 

(HR) image from several low-resolution (LR) versions of it. We assume that the original 

HR image undergoes different linear transforms that can be approximated as a set of 

linear shift-invariant transforms over different subregions of the HR image. The linearly 

transformed HR image is then downsampled, resulting in different LR images. Under the 

assumption of linearity, these LR images can form a basis that spans the set of the 

polyphase components (PPCs) of the HR image. We propose sampling diversity, where a 

reference PPC, of different sampling, is used to make known portions (subpolyphase 

components) of the PPCs of the HR image. To estimate the reference PPC, LR images 

are acquired using two imaging sensors with different sensor densities. This setup allows 

for blind reconstruction of the polyphase components of the HR image by solving a few 

small linear systems of equations where the number of unknowns is equal to the number 

of available LR images. The parameters we estimate are the expansion coefficients of the 

PPCs in terms of the LR basis, using the subpolyphase components. Both synthetic and 

real data sets are used to test the algorithm. The major features of our approach are: (1) it 

is blind, so that unknown motion and blurs can both be incorporated; (2) it is fast, in that 
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only small linear systems of equations need to be solved; and (3) it is robust, in that it 

avoids the problem of system model errors by treating the LR images as basis for 

reconstructing the polyphase components of the HR image. 
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CHAPTER I 

Introduction 

 Image resolution is determined by two main factors. Blurring, due to optical limits and 

various other processes (like the effect of the atmosphere and motion blur, for example), 

results in soft images, while low-sensor density of the imaging device causes aliasing. 

Signal processing based super-resolution (SR) methods are typically concerned with 

overcoming the resolution limitation resulting in aliasing (although such techniques do 

take blur into consideration). In this context, ‘resolution’ refers to the sampling interval, 

or pixel size. Coarse sampling (pixels of relatively large size) results in ‘low resolution’ 

images, while ‘high resolution’ images correspond to fine sampling (pixels of relatively 

small size)1. This is in contrast to optical super-resolution where the aim is to beat the 

diffraction limit2 [40]. Optical SR methods are expensive and are usually developed to 

enhance the resolution of an already expensive imaging system [41] that is capable of 

producing very high resolution images (up to the diffraction limit). Henceforth, the term 

‘super-resolution’ shall be used exclusively to refer to the process of overcoming the 

sensor density limitation using signal processing methods3.  

 Multiframe super-resolution is a technique that provides a cheap alternative to 

increasing the sensor density of an imaging chip, by combining multiple low-resolution 

(LR) images into a high-resolution (HR) image [1]. In particular, for more pixels, one 

_____________________________ 
1 For example, an image of an actual width of 0.5 meter, and height of 0.5 meter, can be sampled at 

1000 samples per meter, in each direction, to obtain an image of 500x500 pixels. At a lower sampling rate 
of 200 samples per meter, we obtain a lower resolution image of 100x100 pixels. 

2 Diffraction of light results in blurring. It defines the maximum limit on resolution (acutance) of the 
optical system.    

3 A diffraction-limited imaging system can still benefit from signal processing-based super-resolution 
techniques when imaging a larger field of view (zooming out). See §5.1 for details. 
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could either use a larger imaging chip, and consequently a larger lens will be needed, or 

decrease the pixel size which requires very high quality photo sensors that can perform 

well under deprived light conditions. Both options result in a substantial increase in cost. 

A third, much cheaper option, is to use super-resolution techniques. 

 Beyond cost reduction considerations, there are optimal physical limits on pixel 

density (and chip/lens size). For example, particularly large pixel spacing is required in 

some applications (in infrared imaging, for example [73]). Therefore, super-resolution is 

the only option when the optimal physical limits of sensor manufacturing (or the imaging 

system) are met. 

 The classical solution of the multiframe super-resolution problem is based on the 

following premise: given relative scene motions, we get different LR frames that can be 

combined into a HR image. In order for the scene motion to be useful in conventional 

multiframe SR techniques it must be different from frame to frame and modeled as a 

linear transformation. For example, the motion could be global (pure translations), local 

(general linear warping) or due to rotation. For many motion-based SR methods, the 

estimation of motion information (registration) is needed as a preliminary step. Typically, 

these methods assume available motion information or implement one of the available 

registration techniques [18, 19]. The extra computational load, required by the 

registration process, can be significant for cases more complex than the global motion 

model.  

 In order to reduce the effect of registration error on the super-resolved image, some 

methods, e.g. [43, 44], jointly estimate the motion parameters and the HR resolution 

image [1].  

 Also, these classical methods incorporate in their models the presence of both blur and 

noise as unwanted terms. Most of these techniques either assume that the blurring 

kernel(s) is known or could be identified via one of the blind blur identification methods 

[20]. Also, additive white Gaussian noise is usually assumed. 

1.1    Overview of Super-resolution Methods 

 As our proposed method adopts a novel and completely different approach, in this 

thesis, we provide a very brief review of SR methods. 
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 Super-resolution reconstruction started as a frequency-domain technique. The original 

idea of dealiasing in the frequency domain dates to [3] and was improved by others, for 

example [4-6].  These methods are theoretically simple and computationally efficient. 

However, their use is restricted to the case of pure translational motion and more 

importantly they are sensitive to errors [1, 14].  

 A more robust approach is solving the problem in the spatial domain. In fact, all 

modern techniques adopt the spatial (pixel) domain approach where the solution of a very 

large scale, ill-posed system of linear equations is sought. Different spatial domain 

methods use different assumptions and different approaches to the solution of the same 

matrix formulation and they are, in general, computationally expensive. This is especially 

true for projection type methods [16, 17]. Refer to [1, 2] for a comprehensive review of 

these and other techniques.  

 Elad and Hel-Or [7] provide a spatial domain solution to the special case of pure 

translation problem treated in [3-6]. They take advantage of this special case to develop a 

fast algorithm and optimality of their solution is shown to be in the maximum likelihood 

(ML) sense.  

 In [12] the authors adopt a completely deterministic approach to the solution of the 

large system of equations. Blurring is assumed to be known and the same for all acquired 

LR images and as is the case with typical motion-based SR techniques, the authors 

assume that the registration information is either available or estimated using one of the 

available image registration methods. They implement Tikhonov regularization to 

stabilize the solution with the regularization parameter automatically determined using 

the generalized cross-validation method (GCV). They provide a proof for the GCV 

formula for underdetermined systems and conjugate gradient (CG) algorithm is then used 

to iteratively solve the large system of linear equations. To accelerate convergence they 

derive and implement preconditioners. Later in [13] the authors improve on their 

previous work by developing a parametric estimation of the blur.  

 Other researchers, for example [8, 9, 15], have considered implementing stochastic 

regularization where a priori knowledge of the distribution of the HR image is used to 

constrain or stabilize the solution. In [8] the authors show that using a maximum a 

posteriori (MAP) estimator reduces the problem to solving the same huge system of 
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equations with the regularization term being stochastically determined. Stochastic 

regularization can have the advantage of edge-preserving reconstruction when the image 

prior’s distribution model is accurate [1].  

For its edge-preserving properties, the authors in [14] advocate using bilateral total 

variation method rather than Tikhonov regularization. Inspired by [42], the authors in 

[14] use the L1-norm for the data-fitting term, which gives solutions that are robust to 

outliers and registration errors. Their algorithm is relatively fast and when specialized to 

the case of pure translations it becomes even faster.  

Unlike the conventional motion-based SR techniques, multiframe motionless SR does 

not require relative motion to estimate the HR image. This class of multiframe SR 

methods seeks HR image reconstruction using different blurs, zoom or photometric cues, 

and whole publications are devoted to this special class of SR techniques, for example 

[34, 9-11]. In fact, it was first shown in [8] that motionless SR is possible from 

differently blurred images. In contrast to motion-based SR, which treats the blurring 

process as a nuisance, in motionless SR the blurs are taken advantage of to produce a HR 

image. Blur-based motionless SR techniques usually assume that the blurs are known, but 

there are some attempts (for example [34]) at blindly de-mixing the polyphase 

components of the HR resolution image by treating the problem as a multiple input 

multiple output (MIMO) system with the input being the polyphase components. The 

authors in [34], however, reported that their blind method is very sensitive to error. 

A recently active area in the field is single-frame super-resolution, where a HR image 

is obtained from a single LR frame using a training set of images of similar statistical 

nature [37]. The performance is dependent on the size and choice of the set of example 

images. Such learning-based methods are expected to perform well when specialized to 

super-resolving images with specific structure like face images [35, 36]. 

1.2    Contribution 

 The characteristics of our work can be summarized in the following points. 

 Motion or blur, both are useful: The original, high-resolution image is assumed 

to undergo different unknown linear transforms and thus different undersampled 

versions of it are available. These different linear transformations of the original 
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image could be different distortion (e.g. blurring) processes or due to motion 

(global or local). Therefore, our work is different in the sense that we can make 

use of either motion or blur. This is different from motion-based methods in that 

they only make use of motion and incorporate blur in their model as a nuisance 

term. It is also different from the blur-based motionless algorithms, as these do 

not incorporate motion at all in their model. 

 LR images as basis: Instead of reconstructing the HR image directly, we solve 

for the expansion coefficients of its polyphase components (PPCs) in terms of the 

available LR images under the assumption that the LR images can form a basis to 

reconstruct the polyphase components.  

 Blind reconstruction via sampling diversity: Since we solve for the expansion 

coefficients of the PPCs in terms of the LR images, our proposed method is blind 

in the sense that, unlike other multiframe SR algorithms, our method requires no 

registration or blur estimation. These coefficients are estimated using only a tiny 

portion (a subpolyphase component) of each PPC. These subpolyphase 

components are determined via the property of sampling diversity (chapter II) by 

using a single PPC, corresponding to a different downsampling factor, as a 

reference. This reference PPC can be estimated using two sets of LR images, 

captured with two different imaging chips with different sensor densities (chapter 

IV). 

 Speed: Our method involves the solution of a few small linear systems of 

equations where the number of unknowns is equal to the number of available LR 

images. This implies that the implementation of the method is inherently fast.  

1.3    Applications  

 We list here a few examples of practical cases on which our algorithm could be used:  

 Just like every motion-based SR technique, our method can handle the classical 

problem of achieving SR using (approximately) pure translational sub-pixel shifts. 

However, unlike previous work, our fast blind reconstruction method does not 

require registration as a preliminary step.  
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 Because of the random nature of the motion blur associated with vibrating 

imaging systems, conventional registration methods perform poorly, and as a 

result, the performance of conventional motion-based SR methods suffers. In our 

case, the randomness of the motion blur is actually a desired quality and no 

estimation of the motion blur or image registration is needed, and images are 

super-resolved fast, and all for the simple hardware requirement of adding another 

(secondary) lower resolution CCD sensor. 

 When the imaging medium is the turbulent atmosphere, the effect can be modeled 

as a time-variant, shift-variant point spread function (PSF). In §5.1 we discuss the 

applicability of our method in this scenario.   

1.4    Thesis Outline 

 This thesis is organized as follows. In chapter II, we introduce a novel approach to the 

problem of multiframe super-resolution where the set of LR images is viewed as a basis, 

in terms of which, the PPCs of the HR image can be represented. In addition, we 

introduce the property of sampling diversity which reveals a tiny portion (a subpolyphase 

component) of each one of the PPCs, using a reference PPC of different sampling. In 

chapter III, we investigate different classical methods to solve for the expansion 

coefficients of the PPCs in terms of the LR basis, using the subpolyphase components. In 

chapter IV, we address the problem of estimating the reference PPC, which can only be 

achieved using two sets of LR images captured by two different imaging sensors with 

different sensor densities. Applications and experimental results are discussed in chapter 

V, and the thesis is concluded in chapter VI. 
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CHAPTER II 

A Novel Approach to Multiframe Super-resolution 

2.1    Introduction 

 The general setup for the motion-based multiframe super-resolution problem is as 

follows [14]. Assuming that the original scene remains constant during the acquisition of 

K low-resolution images, each measured LR image is the result of different relative scene 

motion, blurring effects, and usually with a common downsampling factor that is the 

same in the horizontal and vertical directions, and additive noise corruption. In matrix 

formulation this translates to  

(2.1)   for   1, ..., ,cam atm
k k k k ky H F H u k K     

where ky is the lexicographical column-vector representation of the k-th 1 2m m  LR 

image, ky , u  is the lexicographical representation of the 1 2M M  HR image, u, kF  is the 

motion matrix of size 1 2 1 2M M M M , atm
kH is the 1 2 1 2M M M M  matrix representation of 

the k-th atmospheric blurring effect, cam
kH  is the 1 2 1 2M M M M  matrix representation of 

the k-th camera blur,   is of size 1 2 1 2m m M M and represents the decimation operation, 

and k  is the noise vector. The term ‘atmospheric blur’ shall refer to blurring due to 

atmospheric, and other types of blur (e.g. motion blur), that are not the direct result of the 

limitations of the imaging system. The camera’s optical blur and CCD integrating effect 

are represented by cam
kH . Because atm

kH and kF  can be represented with block circulant 

matrices, they commute [14] and (2.1) can be re-written as 
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(2.2)        for   1,..., ,

cam atm
k k k k k

k k k

y H H F u

H F u k K





 

  




  

where cam atm
k k kH H H  merges the blur effect in one matrix representation. See Figure 

2.1 (b), for a graphical depiction of (2.2). 

 As mentioned in chapter I, typical classical SR reconstruction techniques assume kF  to 

be known and usually assume the blurring process to be known and it is viewed as an 

unwanted term. On the other hand, blur-based motionless SR takes advantage of the 

known blurring process if it is different for each measured image, and it assumes kF to be 

the identity matrix [8]. The additive noise is usually assumed to be white Gaussian noise. 

Combining the equations in (2.2), we get 

 

 

 

(2.3) 

1 1 1 1 1

 .

K K K K K

y H F S

u u

y H F S

Y Su





       
                 
             
  

    






  

Note that the system of equations (2.3) is overdetermined if 2 ,K I where I is the 

downsampling factor in the vertical and horizontal directions.  

 The size of the system matrix S in (2.3) is 1 2 1 2Km m M M , which is so huge that 

storing it (let alone trying to directly compute its inverse) is impractical. For example, if 

the size of the HR image is 500x500, then an (over)determined system matrix will have 

(at least) 250,000x250,000 = 62,500,000,000 elements. In addition, the ill-posedness1 of 

the problem (the system matrix is near singular [1, 14]) means that solving this problem 

without regularization will magnify the noise effect.  

 Conventional spatial domain SR methods are different from each other mainly in 

terms of how to deal with this huge size, ill-posed, inverse problem2. They mainly differ 

in defining a regularization term that stabilizes the solution and subsequently deriving a 

_____________________________ 
1 A problem is said to be well-posed when a solution exists, is unique and stable [25]. 
2 Estimating the system parameters from the data is the first step of solving an inverse problem. 

Assuming the system matrix is known, an inverse problem entails reversing the process that produced the 
observed data (e.g. by inverting the system matrix). The majority of spatial SR methods are formulated as 
an inverse problem with the assumption that the system parameters are known.  
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numerical algorithm to solve the problem efficiently. However, the speed of even the 

fastest of these algorithms is limited by the fact that the number of the unknowns in (2.3) 

is equal to the number of pixels in the HR image itself (e.g., 250,000 unknowns, for a HR 

image of size 500x500). 

 

 
 
 
Figure 2.1: The observation model. (a) the actual physical process of image acquisition. (b) equivalent 
discrete observation model. 
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2.2    Low-Resolution Images as Basis Signals 

 A polyphase component (PPC) of a HR image is a shifted and downsampled version 

of it. Given that the downsampling factor, I, is the same in the vertical and horizontal 

direction, a HR image can be decomposed into 2I  PPCs. The first PPC is obtained by 

starting with the first pixel in the first row of the HR image, and downsampling by 

I I  . Downsampling, starting with the second pixel in the first row, we get the second 

PPC. The I-th PPC corresponds to downsampling beginning with the I-th pixel in the first 

row of the HR image. For the (I+1)-th PPC, we move to the second row and downsample 

beginning with the first pixel in that row. The 2I -th PPC is obtained by downsampling 

starting with the I-th pixel in the I-th row.  

 Since a low-resolution (LR) image has the same number of pixels of a PPC of the HR 

image, it is rather intuitive to expect that, under some conditions, a PPC can be written as 

a linear combination of the LR images. One extreme case where this is always guaranteed 

is obviously when the number of (linearly independent) LR images (or any other signals 

with the same dimensions) is equal to the number of pixels in a PPC. On the other hand, 

if only one LR image is available, the reconstructed PPCs, in terms of this single LR 

image, will be merely scaled versions of it. In order for this idea to be useful, a 

reasonable number of LR images should be enough to build a basis for representing the 

PPCs. But why should we be interested in any of this when the PPCs (of the HR image) 

are not known and our goal is to estimate them? The answer to this question shall be 

revealed in §2.3, chapter III and chapter IV. 

2.2.1    LSI Transforms 

 The conventional matrix formulation (2.3) used for spatial domain SR methods can be 

replaced with a much more efficient formulation if each LR image is a decimated version 

of the HR image after going through a finite support linear shift invariant (LSI) transform 

(e.g., a finite impulse response (FIR) filter or a point spread function (PSF) ) 

 

(2.4) 

   
1 21 1,1 , 1 1

,

K L L K Ky y u u h h

Y UH

        
  

   


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where kh  is the lexicographical unwrapping of the k-th FIR filter coefficients of size 

1 2L L  and if I is the downsampling factor, then 1 2 and L I L I   must be satisfied. The 

vector 
1 2,u   is also the unwrapping (by column) of the ( 1 , 2 )-th submatrix of the 

original image u, defined below 

 

(2.5) 

   
1 2, 1 2 1 2 1 2 1 2

1 2 2 1

, 1 ,  1     

for   1,..., ,     1,..., .

u k k u k I L k I L

L L

     

 
    

 
  

 If 1 2 and L I L I  , then all these submatrices  
1 2,u    are the polyphase components 

of the HR image u. If, however, 1 2 and L I L I   then only 2I of these are the polyphase 

components. Let c be the column index of the image matrix, U.  Then cU  (c-th column in 

U) is one of the 2I  unwrapped polyphase components if 

(2.6)  
1

1 1 1
0

1,  2,  ,   .
I

q

c qL qL qL I




      

 Equation (2.4) is therefore a convenient reformulation of multiple 2-D convolution 

operations followed by decimation. In addition, each LR image, ky  is assumed to be 

obtained by cropping the convolved (transformed) HR image and then decimation, so 

there are no convolution terms in which the shifted kernel overflows the image support. 

This is known as the more practical “partial data” case [21]. 

 If all the kernels (PSFs or FIR filters) are known and are linearly independent, and if 

the number of available LR images, 1 2K L L , then U could be estimated using least 

squares (since the noise is assumed zero-mean white Gaussian) with a trivial 

computational cost,   1ˆ T TU YH HH


 . Note that THH has the small size of 1 2 1 2L L L L , 

and thus the computational cost depends mainly on the size of the kernels. 

 Of course, the kernels are not always known and using any algorithm to estimate them 

means substantial additional computations and according to simulations, even when the 

system matrix H is known and well-conditioned, adding small perturbations to it can 

result in large errors. This means that solving (2.4) is sensitive to estimation errors of the 

system matrix, H.  
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 The idea that a LR image can be written as a linear combination of the PPCs is not 

new (although, the matrix formulation (2.4) is novel). In fact, in [34], the authors 

developed a motionless blur-based SR algorithm with computational complexity that is 

mainly dependent on the size of the blurs rather than the size of the HR image (unlike in 

[8] where the formulation (2.3) was still used, with the motion matrix set to identity).  

Their contribution was to blindly estimate restoration filters to recover the PPCs, but 

their algorithm is very sensitive to error. Similarly, solving (2.4) is sensitive to errors in 

the system matrix, and therefore there is little motivation to try to estimate the kernels. 

Moreover, even if we somehow could estimate the kernels quite accurately, the 

assumption that the different kernels must be of the same finite size is quite restrictive.  

 Nevertheless, equations (2.4-2.6) are useful in answering the question as to when the 

LR images can span a subspace for the PPCs. Specifically, these equations tell us that, for 

the case of the same size LSI kernels, the LR images are linear mixtures of the PPCs 

‘and’ other image sub-matrices (rearrangements of elements of the PPCs). Therefore, 

when the LR images are mixtures of K ’submatrices (including 2I  PPCs) then we need K ’ 

mixtures (LR images) in order to be able to write the PPCs as linear combinations of LR 

images.  

 Now suppose we have available the PPCs and we calculate their expansion 

coefficients in terms of a set of different LR images that do not satisfy the assumptions 

exactly (LSI, same finite support kernels and sufficient number of LR images) and then 

using these expansion coefficients we reconstruct the PPCs. In another scenario, where 

we have exact knowledge of the transform kernels, suppose we ‘approximate’ them (the 

kernels) to fit our model (2.4) and then solve the problem. Which one of the two 

scenarios is expected to give better results? Noting that in the first case there is no wrong 

solution but rather a possibly incomplete one, we can easily expect the reconstructed 

PPCs of the first scenario to be much better.  

 Essentially, equations (2.4-2.6) give insight (under the LSI assumption) as to how 

many LR images might be  enough to fully represent the PPCs but this does not mean that 

the PPCs cannot be represented, at least partially, by any number of available LR images. 

While formulations like (2.3, 2.4) are inverse problems, and as such are sensitive to 

model errors, finding the expansion coefficients of the PPCs is simply a change of basis.  
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2.2.2    LSV Transforms 

 When the HR image undergoes a linear shift-variant (LSV) transformation that can be 

approximated as a set of local LSI transforms3 (over different subregions of the HR 

image) then the previous discussion can be readily extended to the case of LSV 

transforms.  

 To be more precise, suppose the LSV transform can be approximated as r LSI kernels 

over r different subregions of the HR image. One option is to treat these subregions as r 

different HR images where we can reconstruct the PPCs of each one of them separately4. 

Alternatively, we can reconstruct the PPCs of the whole HR image but with r times more 

LR images5. This is because in the case of a LSV transform, a LR image can be viewed 

as a linear local mixing of subregions of the PPCs and therefore to reconstruct each PPC 

as a whole, we need r times more LR images than it is required in the LSI case.  

 For example, suppose a square HR image undergoes a LSV transform that can be 

approximated as 4 LSI kernels over the 4 quadrants of the HR image, each with 

approximately equal finite support of size 3 3 . The linearly transformed HR image is 

then downsampled by 3 3 to produce the LR images as shown below. 

 

 
 
 
 

Figure 2.2: LR images obtained from a HR image via LSV transformation and downsampling. 
   
 

In light of (2.4-2.6), we know that the -th  quadrant of the k-th LR image can be written 

as a linear combination of the -th  quadrants of the 9 PPCs of the HR. This means that 

the whole of the k-th LR image can be written as 

(2.7)  
2

1 1

,
r I

k n n
n

y U Z
 

  


   

_____________________________ 
3 Rotation of an image is an example of a linear transform that cannot be approximated as a set of local 

LSI transforms. 
4 Reconstruction of subregions of the HR image separately has a downside as will be discussed in §2.3. 
5 Although the LSV case does require more LR images, according to simulations, good results can be 

achieved with a smaller number than recommended.   

HR image 
(u) 

k-th LSV 
transform 3 3  k-th LR image 



 

  14 

where  denotes the element-wise multiplication operator, nU is the n-th PPC of the HR 

image, Z   is an all-zero matrix except for the elements corresponding to the  -th 

quadrant, which are all equal to 1, and  
2

1

I

n
n




  is the  -th set of linear combination 

coefficients. These are the elements of the  -th LSI kernel. See Figure 2.3 for an 

illustration of equation (2.7). Naturally, since a LR image is composed of 2 4 9 36rI      

separate parts of the PPCs, then in order to be able to write the PPCs as linear 

combinations of the LR images, in the LSV case, we will need 2K rI  LR images. Note 

that if the size of an LSI kernel is 1 2L L , 1L I and 2L I , then we need 1 2,K rL L  for a 

complete basis. 
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Figure 2.3: In the LSV case, a LR image is a linear combination of separate parts of the PPCs of the HR 
image (a LR image can be viewed as a linear local mixing of subregions of the PPCs). 
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2.3    Sampling Diversity 

 In the previous section we explained that, under the assumption of linearity of the 

transformations, the 2I polyphase components (PPCs) of the HR image can be written as 

linear combinations of the LR images, i.e. 

(2.8)    
2

1
,

I
n n

U R Y    

where  R Y  denotes the range (column space) of Y. Throughout the discussion in this 

section, we make the assumption that we have available only one of the 2J PPCs of the 

HR image (corresponding to J J  ), where I and J are two relatively prime integers. In 

other words, we assume that we know the m-th PPC, mU  for some m between 1 and 2.J

Henceforth, we refer to this known PPC (of different sampling) as the reference PPC. 

 When I and J are relatively prime, the following property holds: any two PPCs 

corresponding to I I   and J J   respectively, share exactly6  

(2.9) 1 2
2 2

M M

I J
  

pixels between them. These are the elements of a PPC corresponding to IJ IJ  . Said in 

a different way, if nU is one of the 2I  PPCs corresponding to I I   and mU  is one of 

the 2J PPCs corresponding to J J   and  I and J are relatively prime, then qU , one of 

the 2 2I J PPCs of the HR image corresponding to IJ IJ  , is a subpolyphase component, 

,n jU , of nU  corresponding to downsampling nU  by J J , as well as a subpolyphase 

component, ,m iU , of mU corresponding to downsampling mU  by I I , for  ,q T m n , 

 nj T m , and
  mi T n , where T, nT , and mT , are 1-1 mappings between  ,m n , m, n 

and q, j, i, respectively. We refer to this property as the sampling diversity property. See 

Table 2.1 for a more concise definition of this property.  

_____________________________ 
6 The number of common elements is exactly  2 2

1 2M M I J when the dimensions of the HR image are 

integer multiples of IJ. 
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 Therefore, if we know one of the 2J PPCs of the HR image, then we already know 

 2 2
1 2M M I J  pixels in each one of the 2I  PPCs of the HR image7. In other words, 

knowing a single J J   PPC of the HR image, means that we know a single 

subpolyphase component of each one of the 2I  PPCs. This property enables us to solve 

for the expansion coefficients of the polyphase components (chapter III), in terms of the 

LR images, without any knowledge of the distortion model that produced the LR images. 

We only make the assumption that (2.8) is valid and that a single J J   PPC (the 

reference PPC) is known. In chapter IV we discuss how to estimate the reference PPC. 

 

 

 HR image 

 I I   IJ IJ   J J   

polyphase 
components  

 
2

1

I
n n

U    
2 2

1

I J

q q
U


  

2

1

J
m m

U   

 J J    I I   

subpolyphase 
components 

 
2

, 1

J
n j j

U


   
2

, 1

I
m i i

U


 

 
Table 2.1: Sampling diversity: when I and J are relatively prime, there exist 1-1 mappings T, nT , and mT , 

such that , ,q n j m iU U U   for  ,q T m n ,  nj T m , and
 

 mi T n . 

 

2.3.1    An Illustration of the Property of Sampling Diversity 

 Suppose we have a HR image of size 1 2 24M M   and from it we obtained its 3rd 

2 2  PPC. Suppose also that we downsampled the HR image by 3 3   to obtain the 

9th 3 3   PPC.  The sampling diversity property says that any two PPCs corresponding 

_____________________________ 
7 In §2.2.2 we discussed that one option to deal with the LSV case is to super-resolve subregions of the 

HR image separately. The disadvantage of this approach is that the number of shared elements will be 
smaller since 1M and 2M in (2.9) will become smaller (the dimensions of subregions of the HR image).  
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to relatively prime downsampling factors must share exactly a subpolyphase component. 

So in this example the question is: which one of the sub PPCs of the 3rd 2 2   PPC (

3nU  ) is equal to which one of the sub PPCs of the 9th 3 3   PPC ( 9mU  )? By 

examining Figure 2.5, it is easy to see that the answer is the 8th and the 3rd, respectively 

(i.e.   8nj T m  , and   3mi T n  ). 

2.3.2    The Mapping Functions nT  and mT  

 By examining many configurations, such as the one shown in Figure 2.5, for different8 

1J I  , m and n, we derived the mapping functions nT  and mT . Unfortunately, these do 

not seem to have a simple analytical form. We provide a description of these functions, 

below. 

Function  nT m : 

 
 

 
   

2 2 2

1

1
1

1 1 1

T1 1

2

1 2

1 2 2

1 2

1

 

  circshift ,  [ ,  ]   

:  

1 .

J

n

n
n

n n n

J J n n

n J

n n

J

J J J
A

J J J J J

n
T n

I

T
r

J

c J r J T

B A r c

T B

T m T J m

 
   
 
 

     
     

 
  
 

  

  



  




    



 

_____________________________ 
8 Instead of the more general case of I and J being relatively prime, we restrict our discussion to the 

case of I and J being two consecutive integers (larger than 1) since this gives the largest possible number of 
common elements between any two PPCs corresponding to I I  and J J  . 
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Function  mT n : 

 
 

 
 

 
    

2 2 2

1

1
1

1 1 1

T
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1 2 2

1 2

1 1 2 1
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if    0

      1

end
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



 
  
 

  

      




    





 
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T B
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



 

 

Note:  circshift ,  [ ,  ]A r c is a function that circularly shifts down the rows in matrix A by 

r, and it circularly shifts its columns to the right by c. If r is negative the rows are shifted 

upwards. If c is negative, the columns are shifted to the left. 

2.3.3    The Hardware Requirements  

 In the previous sections we explained how the property of sampling diversity gives us 

a small part (a subpolyphase component) of each one of the I I   PPCs, when we know 

a single J J   PPC, and I and J are relatively prime. In chapter III we investigate how 
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to use these subpolyphase components to find the expansion coefficients (in terms of the 

available LR images) of all the 2I  PPCs of the HR image. In chapter IV, we address the 

problem of estimating a single J J   PPC, which we refer to as the reference PPC. 

 As we will see in chapter IV, the estimation of the reference PPC is possible if we 

have two imaging sensors (e.g. two CCD arrays) with different sensor densities 

corresponding to I I  and J J  , respectively. We shall refer to the CCD array with 

the higher sensor density, as the primary CCD sensor; the secondary CCD sensor is the 

one with the lower density9.  

 These sensors must therefore be designed to satisfy the requirement of relatively 

prime downsampling. In particular, if we want to reconstruct HR images of size 1 2,M M  

where 1 2 and M M  are integer multiples of IJ, and J I , then the primary CCD array 

must have 

 
1 2

1 2
M M

m m
I I

    
 

  

pixels and the secondary CCD array, must have 

 
1 2 1 2
S S I I

m m m m
J J

    
 

  

pixels. For example, if we want to get super-resolved images of size 3000x3000, 

corresponding to 4x4  resolution enhancement, then we should use a primary CCD array 

of size 750x750  and a secondary CCD array of size 600x600. 

 Working with two CCD arrays, means that we could either use two cameras, or install 

both sensors in the same camera. Aside from the extra cost associated with the first 

option, two cameras cannot capture the same scene except when imaging at a long range. 

For close-up images, we should take into account the framing errors due to parallax10.  

 The other option of using two sensors in one camera is a lot cheaper and much simpler 

without the need to correct for framing errors. For example, we could use a beam splitter 

_____________________________ 
9 The idea of using a secondary CCD to help with solving an entirely different problem was suggested 

in [51], where phase diversity is achieved by placing the secondary sensor intentionally out of focus. This 
helps to jointly estimate the image and aberrations.  

10 Parallax is the apparent displacement of an object viewed along two different lines of sight. 
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which is an optical device (a half-silvered mirror or a cube prism) that splits a beam of 

light in two, where half of the light is transmitted through (to the primary CCD array) 

while the other half is reflected, at a right angle (towards the secondary CCD array). The 

only disadvantage of using a beam splitter is that the signal-to-noise ratio (SNR) will 

decrease by 6 dB since only half the amount of light reaches the sensors. Using a larger 

aperture allows more light in, at the expense of loss of depth of field11. Another solution 

is using a non-stationary 100% reflective mirror that moves in the optical path, for only 

half of the imaging time, reflecting all the light towards the secondary sensor. 

 

 

 
 

Figure 2.4: A two-CCD sensor camera configuration, using a beam splitter. 
 

 

 

 

 

_____________________________ 
11 Depth of field is the portion of an image that appears sharp due to focusing at only one distance. The 

loss of sharpness as we move away from the focus point is gradual and is proportional to the aperture size.  
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Figure 2.5: An illustration of the property of sampling diversity. For I = 2, J = 3, n = 3 (the 3rd out of 4 

2 2   PPCs) and m = 9 (the last of the 9 3 3   PPCs), the polyphase components nU  and mU , have 

subpolyphase components  9
, 1n j j

U


and  4
, 1m i i

U


, respectively and , ,n j m iU U  for j = 8 and i = 3. 
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CHAPTER III 

Solving for the Expansion Coefficients of the Polyphase Components  

3.1    Introduction 

 In chapter II, we explained how the property of sampling diversity can be used to find 

portions (sub PPCs) of all the I I   PPCs of the HR image, with the help of a reference 

PPC of different sampling. In addition, we noted that under the assumption of the 

linearity of the transforms, the LR images can be viewed as a basis spanning a subspace 

where the PPCs exist.  

 Our goal, in this chapter, is to find the expansion coefficients of the PPCs in terms of 

the LR basis, using their sub PPCs. The diagram in Figure 3.1 gives a pictorial summary 

of how the PPCs are reconstructed. 

3.1.1    The LS Solution 

 Suppose we have a perturbed version of one of the ↓ J x J PPCs, mU  , for some m 

between 1 and 2J , and using it as our reference PPC, we obtain a sub PPC of each one of 

the ↓ I x I PPCs,  
2

1

I
n n

U  . In other words, using the reference PPC, we obtain the 2I sub 

PPCs, 
2

, 1

I
n j n

U


, for  .nj T m  Because the reference PPC contains error, all the sub PPCs 

will be noisy as well. Namely, the j-th sub PPC, ,n jU  is related to the n-th PPC, nU via  

(3.1) , ,n j j nU D U e    
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where jD
 
is a ↓ J x J matrix (performing shifting and decimation) that gives us the j-th 

sub PPC from the n-th PPC, and e  is assumed to be zero-mean, white Gaussian noise, 

i.e. 

  ~ 0, ,e R   

 with 2
e pR I , where pI  is the identity matrix of size p p and 2 2

1 2p M M I J is the 

number of pixels in a sub PPC. 

 Now assume that the available LR images are noiseless and can span the PPCs, i.e.  

(3.2) 2 for   1,..., ,n nU Yx n I    

where nx  are the expansion coefficients of nU in terms of the LR basis, Y. Substituting 

(3.2) in (3.1) we see that a sub PPC, ,n jU  is Gaussian distributed, 

  
 

2
, ,2 22

1 1
; exp .

22
n j n n j j np

ee

p U x U D Yx


 
    

 
  

The maximum likelihood (ML) estimator of the expansion coefficients is therefore given 

by solving the minimization 

 
2

,min .
n

n j j n
x

U D Yx   

To simplify notation, let 

 

 

(3.3) 

,

.

j

n j

n

A D Y

b U

x x






  

That is, we need to solve 

(3.4) 
2

min ,
x

Ax b   
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which has the LS solution 

(3.5)   1
ˆ .T Tx A A A b


   

 
 

Figure 3.1: Reconstruction of the PPCs using the LR images as a basis. 
 

 

Note that 

   12ˆ ~ , ,T
ex x A A

 
 
 

   

and since it attains the Cramer-Rao lower bound (CRLB), then it is the minimum 

variance unbiased estimator (MVUE). Another way to prove this classical result is via the 

use of Gauss-Markov theorem which states that when the error model is linear (3.1) and 

the noise is zero-mean, uncorrelated and with the same variance, then the LS solution is 

the best (minimum variance) unbiased estimator (BLUE).  If the noise is also assumed to 

a reference PPC of 
different sampling 

sub PPCs 
LR basis 

expansion 
coefficients 

PPCs 

property of 
sampling diversity 

LR basis 
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be Gaussian then the BLUE is the MVUE because a linear estimator requires only first 

and second order statistics and these are sufficient statistics in the Gaussian case [30]. 

 Any ML estimator is asymptotically Gaussian1, asymptotically unbiased, and 

asymptotically efficient, i.e. it attains the CRLB with more samples (larger LR images, 

see below). And with the assumptions made at the beginning of this section, the LS 

solution is the ML estimator and it is unbiased and efficient with Gaussian distribution 

(since it is a linear function of ,n jb U ), and it is unique when A has full column rank. 

Therefore, p, the size of the vector, b must satisfy  

(3.6) 2 2
1 2 ,p M M I J K    

where K is the number of LR images. In other words, in order for the problem to be 

overdetermined, p, which is the number of the pixels in a sub PPC (which is the same 

number of pixels in sub LR images reordered as columns in the sub data matrix A), must 

be larger than the number of LR images. This means that the systems of equations we 

solve become more overdetermined by super-resolving larger LR images which can lead 

to an even lower CRLB bound to be asymptotically (or exactly, with our assumptions) 

attained by the ML estimator. For example, obtaining a HR image that is 4x4  times 

larger than LR images of size 200x200 can give a lower variance estimate, than does 

super-resolving (by the same factor of 4x4) smaller LR images of size 100x100. In short, 

it is preferable to super-resolve the HR image in its entirety rather than working on 

subregions of it. Of course, if the LR images are too large then we might need to super-

resolve subregions of the HR image to lower memory requirements (and the 

computational cost). 

 Finally, we note that by the invariance property of the MLE, 

 ˆ ˆnU Yx   

is also the ML estimator of the n-th PPC, nU . It is also unbiased and efficient with 

Gaussian distribution 

_____________________________ 
1 Knowledge of the (asymptotic) distribution of an estimator is useful for purposes of statistical 

inference.  
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   12ˆ ~ , .T T
n n eU U Y A A Y

 
 
 

   

3.1.2    Regularized LS Solution  

 Given the fact that the columns of the data matrix, Y, are assumed to be ‘noise-free’ 

LR images, we would expect the data submatrix, A to be ill-conditioned. This is due to 

the fact that the LR images are highly correlated and thus columns of Y are hardly 

linearly independent. Also, if Y has singular values 1 K    and A has singular 

values 1 K    then by the interlacing theorem for singular values [26] we have 

  for  1,..., ,k k k K     

and therefore if Y is ill-conditioned, then so is A. If that is the case, the solution (3.5) is 

numerically unstable. In order to see this, let   1
, ,

K
k k k k

w v 
 denote the singular triplets 

(left singular vectors, singular values and right singular vectors) of A, then equation (3.5) 

can be re-written as 

 
1

ˆ
K T

k
k

kk

w b
x v



 
   

 
 .  

Therefore, when the last few singular values are very small (A is ill-conditioned), the LS 

solution will be unstable, resulting in noise magnification as 1 k  for the small 

singular values and the components of noisy b in the direction of kw  represent the most 

significant component of the solution in the direction of kv .    

 In other words, if A is (numerically) rank-deficient with rank r K  then there exist 

an infinite number of solutions that minimize (3.4), for if x is a minimizer and x

null(A) then x x  is also a minimizer. Of all these solutions, a minimal norm solution is 

usually preferred to control noise magnification which is synonymous with the non-

uniqueness of the solution (the problem is said to be ill-posed). The minimal norm LS 

solution that avoids this problem is known as the truncated singular value decomposition 

(TSVD) and is given by [23] 
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1

ˆ
r K T

k
TSVD k

kk

w b
x v







 
   

 
 .  

 A most commonly used alternative to TSVD is the Tikhonov regularized LS solution 

which smoothly filters out the solution components corresponding to the smallest singular 

values [25] 

   12
2 2

1

ˆ ,
K

T T Tk
Tik k k

kk

x A A I A b w b v


 





 
      

   

where   is the regularization parameter. This is the solution to the minimization problem 

 
2 22min

x
Ax b x  .  

 In Bayesian terms, the Tikhonov regularized LS solution is the maximum a posteriori 

(MAP) estimator of the expansion coefficients, x, under the assumption that the 

expansion coefficients are uncorrelated with zero-mean and the same variance, 

2 2 2 ,x e    and are Gaussian distributed. In other words, it is the solution to the 

problem:  

 

   
   

2 2

2 2 2 22 2

2
2 2

2 2

1 1 1 1
max | exp . exp

2 22 2

1 1
                             exp .

2

p Kx
e xe x

e

e x

p b x p x b Ax x

b Ax x
c

  


 

   
         

   

            

 

In addition, if we further assume that the expansion coefficients and the noise are 

independent, and thus x and b are jointly Gaussian (  ,p b x  is Gaussian), then the 

Tikhonov regularized LS solution (with 2 2 2
e x   ) is the minimum mean square error 

(MMSE) estimator (posterior mean) as well as the minimum absolute error (MAE) 

estimator (posterior median) [30]. 

 Tikhonov regularized LS solution can also be viewed as a penalized likelihood 

estimator with a regularization term that penalizes the energy of the expansion 
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coefficients. Unlike Bayesian methods, penalized likelihood does not assume prior 

knowledge of the distribution of the parameters (expansion coefficients). 

3.2    The TLS Solution 

 In the previous section, we made the assumption that the data matrix, Y, and thus the 

data submatrix A (3.3), are noiseless which is rarely ever the case. This means that the LS 

solution is not the ML estimator. Nevertheless, if we ignore the fact that A is noisy and 

apply the LS solution then we do not need any regularization as A is already well-

conditioned (the smallest singular values will never be zero due to presence of noise). 

However, by opting to ignore the fact that A contains error then we will have a biased 

solution corresponding to the projection of b on the wrong space (columns of A are 

noisy). 

 The total least squares (TLS) generalizes the original least squares solution by 

accounting for presence of noise in A. Specifically, the LS solution, which minimizes 

2
  ,Ax b is equivalent to solving the problem 

 
2

ˆ,

ˆmin   
b x

b b subject to ˆAx b .  

That is, b̂  is the smallest possible perturbation of b which lies in the range of A. In other 

words, we perturb b just enough to ensure that the perturbed equation has a solution, and 

then solve this system of equations. Now, if A is also subject to noise, then why not 

perturb A as well as b? That is, seek Â and b̂  such that2  
2

ˆˆ  
F

A b A b    is as small 

as possible subject to  ˆ ˆb R A . Then ˆÂx b  has a solution, and any such solution is 

the TLS solution to the problem Ax b  [23]. 

 Now, let the two equations below denote the reduced3 singular value decomposition 

(SVD) of A and the augmented matrix A b , respectively  

_____________________________ 
2 The notation

2

F
denotes the squared Frobenius norm of a matrix, which is the sum of the square of 

all its elements.  
3 For a matrix p KA   with p K , it is sufficient (and more economical) to compute the left singular 

vectors corresponding to the non-zero singular values only.  
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(3.7) 
1

,
K

T T
k k k

k

A W V w v


     

(3.8)  
1

1

 .
K

T T
k k k

k

A b W V w v




         

 As discussed above, we seek to find a solution to the constrained minimization 

problem 

(3.9)  
2

ˆˆ , ,

ˆˆmin    
FA b x

A b A b       subject to   ˆÂx b .  

The TLS problem (3.9) is non-convex. Nevertheless, an analytical solution does exist. 

We start by rewriting Ax b  as  

   , 1 0.
TTA b x      

If  A b  has full rank K+1 ( 1 0K   ) then the best rank-K approximation ˆÂ b 
  of 

 A b  in the Frobenius norm sense is given by  

(3.10) 
1

ˆˆ ,
K

T
k k k

k

A b w v


          

and (3.9) is solved by solving  

(3.11) ˆˆ ˆ , 1 0.
TTA b x         

Therefore 

 
 

     

1
-1

ˆ , 1   
1, 1

-1
ˆ  1, 1 , 1 ,

1, 1

TT
K

T

x v
V K K

x V K V K K
V K K

     

      



 

  

where V is the right singular matrix of the augmented matrix (3.8). 
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Statistical Properties of the TLS Solution 

 When the errors in the observations  A b  are zero-mean, independent and 

identically distributed (i.i.d), the TLS is a strongly consistent, asymptotically unbiased 

and asymptotically Gaussian distributed estimator. If, in addition, the distribution of 

errors is Gaussian, then the TLS is the ML estimator (and thus it is asymptotically 

efficient, as well). In fact, regardless of distribution of errors, the TLS is at least weakly 

consistent, if the errors are zero mean, uncorrelated and with the same variance. On the 

other hand, the LS is asymptotically biased (and thus inconsistent). Nonetheless, the total 

variance of TLS is larger than that of LS. For more details on the statistical properties of 

the LS and TLS solutions refer to [23, 33]. 

 Essentially, the advantage of the TLS solution over the LS solution is that as we 

increase the overdeterminedness of the systems of equations we solve, its bias becomes 

much lower compared to that of the LS solution. This is especially manifest at high levels 

of noise. In our case, this means that as we super-resolve larger LR images4, the TLS 

solution would be noticeably less biased than the LS solution, when working at relatively 

low signal-to-noise ratio (SNR). 

Numerical Instability of the TLS Solution  

 A potential problem with the TLS solution, in our case, is due to the fact that the LR 

images are highly correlated causing the gaps between the last few singular values of

 A b  to be very narrow5. This means the solution of the TLS problem (3.11) is not 

unique. This is because when  

  1 1 ,K K             

_____________________________ 
4 While, in terms of bias, the LS solution does not benefit much, especially at higher levels of noise, 

from increasing the overdeterminedness of the systems of equations (super-resolving larger LR images), its 
bias is significantly reduced by increasing the number of LR images. Indeed, adding noise to a complete 
basis renders it incomplete, and this is precisely why the solution becomes more biased with higher noise 
levels in the data matrix. In other words, adding noise to the available LR images makes their number 
effectively lower. See the beginning of §2.2 and also the end of §2.2.1 regarding using LR images as a 
basis set.      

5 The smallest singular values correspond mostly to noise, and in the case of same variance, 
uncorrelated noise, they tend to be equal in size.  
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then any linear combination of 1Kv  , Kv , … , 1v   solves the TLS problem provided it 

results in a vector of the form ˆ , 1
TTx   [23, section 3.3.1].  

 Another problem is that noise magnification is associated with the non-uniqueness of 

the TLS solution. In fact, it can be easily proven [23] that the TLS solution has the 

closed-form 

(3.12)   12
 1ˆ .T T

Kx A A I A b


     

We review the simple proof here for convenience. First note that 

     2
1ˆ ˆ, 1 , 1 ,

T TT T T
KA b A b x x            

also,   

     ˆ ˆ, 1 , 1 .
T T

T TT T T

T T

A A A b
A b A b x x

b A b b

 
           

  

Equating the top row of the right-hand-side of the last two equations we get  

 2
1ˆ ˆ,T T

KA Ax A b x      

which gives (3.12). Now, the interlacing theorem [26] implies that  

 1 1 1,K K K              

and realizing that the matrix 2
1

T
KA A I    has singular values  2 2

1
1

K

k K
k

   
  , we notice 

that the TLS solution can be numerically unstable when the smallest singular values of 

 A b  are close to each other.  In fact, TLS can be seen as an attempt to reverse the 

process that made A and b noisy, and compared to LS, it can be viewed as a de-

regularization procedure [33]. 

3.2.1    Tikhonov Regularized TLS  

 The simplest solution to control noise magnification, due to non-uniqueness, is 

regularization by truncated total least squares (TTLS) [24].  Another alternative is to pick 
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the solution with the minimum norm, i.e. Tikhonov regularize the TLS solution (TRTLS). 

First note that problem (3.9) is equivalent to6 

(3.13)  
2

ˆ ,

ˆ ˆmin    .
FA x

A b A Ax      

The TRTLS problem is  

(3.14)  
2 22

ˆ ,

ˆ ˆmin    .
FA x

A b A Ax x      

Using Lagrange multiplier formulation [31], the authors in [27] proved that (3.14) has the 

solution 

(3.15)    1
2 2

 1ˆ .T T
TRTLS Kx A A I A b 



      

Note that for 2 2
1K    , we get the LS solution. In our case, A is rarely ill-conditioned 

because it is a submatrix of the data matrix Y which is always contaminated with noise. 

This precludes the need for increasing the regularization parameter beyond 2
1K  .  In fact, 

the notion that a certain amount of error in the coefficient matrix might actually be 

beneficial is discussed, even within the context of super-resolution, in [28]. Therefore our 

choice of the regularization parameter should lie within 

 2 2
10 ,K       

where the lower limit achieves the TLS solution while the upper limit gives us the LS 

solution. 

3.2.2    L1-Regularized TLS  

 The idea of using the L1-norm to penalize the least squares solution was first 

presented in the context of Linear Regression [29] under the name Least Absolute 

Selection and Shrinkage Operator (LASSO).  The use of the L1-norm was motivated by 

the desire to get rid of irrelevant features for easier interpretability. An L1-norm penalty 

function has the property of concentrating on minimizing small residuals as opposed to 

large ones. Therefore, when the residuals are the elements of x, this gives us a sparse set 

_____________________________ 
6 One way to prove the result (3.12) is using Lagrange multipliers for (3.13). See [27]. 
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of expansion coefficients. This is in contrast to the L2-norm penalty (Tikhonov) which 

forces the coefficients to be rather more similar to each other.  

 Typically, L1-norm minimization is used for robustness against outliers. In addition to 

noise, outliers represent an important source of error. For our problem, outliers are 

irrelevant LR images7 reordered as columns in the data matrix. Ideally, the expansion 

coefficient corresponding to an outlier LR image should be zero. Fortunately, as our 

problem is typically highly overdetermined (3.6), outliers, if present, should not affect the 

solution. Now, x being the expansion coefficients in terms of the set of LR images, 

adding an L1 penalty nonlinearly denoises the solution, partly by shrinking it and partly 

by discarding the least significant components. These small components likely 

correspond to noise so discarding them is desirable. 

 Adding an L1 regularization term to the data fitting term (3.13) we get 

(3.16)  
2

1ˆ ,

ˆ ˆmin    .
FA x

A b A Ax x      

Like (3.13, 3.14), problem (3.16) is non-convex. Unlike (3.13, 3.14), however, problem 

(3.16) does not happen to have an analytical solution. Consequently, we replace (3.16) 

with a convex surrogate problem. First note that (3.13) is equivalent to 

 
2ˆˆmin ,

x
Ax b   

where Â and b̂  are as defined in (3.10). Now, consider the (convex) cost function 

(3.17) 
2

1
ˆˆmin ,

x
Ax b x    

and note that for 0  , we get the unregularized TLS solution while for 0  , we get 

what we refer to as the L1-norm regularized TLS solution. Of course, (3.17) is not 

equivalent to (3.16), and we do not know how well it approximates it. Nevertheless, 

according to all our simulations, for the same data fitting error, solving (3.17) gives better 

denoising performance compared to the TRTLS (3.14).  
_____________________________ 

7 In our case, an outlier image is one that is either too distorted, too noisy or simply does not belong to 
the LR basis.    
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 Problem (3.17) can be reformulated as 

(3.18) 
1

min x   subject to   
2 2ˆˆ ,Ax b     

where 
22 ˆˆ ˆTRTLSAx b   . This, of course, requires evaluating (3.15) which takes only a 

fraction of the time needed to solve (3.18). By solving (3.18) we find the L1-regularized 

TLS solution, to within the same error (data misfit) corresponding to the TRTLS solution. 

This is the easiest way to highlight the denoising performance of the L1-norm compared 

to the linear filtering effect of the L2-norm (Tikhonov) penalty. 

A Note on Convex Optimization 

 Generally, for mathematical optimization problems, an analytical solution exists only 

when the optimization problem is unconstrained (or with affine equality constraints) with 

a quadratic objective function. These conditions are of course extremely limiting and one 

should try instead to formulate problems that are convex and seek a numerical solution. 

In particular, if the problem can be recast as a linear programming (LP), quadratic 

programming (QP), second order cone programming (SOCP) or semidefinite 

programming (SDP), then it is considered essentially solved. Efficient solvers are freely 

and commercially available for these types of problems. Problem (3.18) can be recast as 

SOCP using epigraph form8 [31] 

 
2 2

,

ˆˆmin     1     subject to     ,   .T

t x
t Ax b t x t       

Trimmed TLS 

 The closed-form TLS solution is given by (3.12) and it is equivalent to   

 2 2
11

ˆ .
K

Tk
k k

k Kk

x w b v


  

 
    
 

  

_____________________________ 
8 We used the solver SDPT3 [60, 61], along with the interface CVX [58, 59], to obtain an exact solution to 
(3.18) reformulated in the SOCP form. Of course, for larger problems, iterative methods become essential. 
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Obviously, the last few components of the solution are responsible for the numerical 

instability and noise magnification associated with the TLS solution. It is therefore rather 

intuitive to simply discard the highest order components of the solution. This is not to be 

confused with truncated TLS (TTLS) where regularization is reached by finding the 

optimal linear combination of the last few right singular vectors of the augmented matrix, 

 A b  [24]. This is also different from Tikhonov regularized TLS (TRTLS) in that, 

unlike TRTLS, the weights of the lower order components of the solution are not 

changed. 

 To the best of our knowledge, there is no reference in the literature to this type of 

regularization of the TLS solution. Also, it appears there is no easy way to assess the 

optimality of this method as the cost function it minimizes is unknown. The simulations, 

however, point to the superiority of trimmed TLS (better bias-variance tradeoff) 

compared to Tikhonov regularized TLS. 

 
A Different Regularization Term?  

 Tikhonov regularized TLS solution should be appreciated at least for its simplicity and 

providing numerical stability. However, in Bayesian terms, using a minimum energy 

penalty entails the assumption that the expansion coefficients we solve for are a zero-

mean, uncorrelated, with the same variance and jointly Gaussian distributed. On the other 

hand, using an L1-norm minimization corresponds to the assumption of a Laplacian 

distribution. Naturally, since the LR basis is highly correlated, the assumption that the 

expansion coefficients are uncorrelated is unrealistic. In addition, the assumption that the 

joint distribution of the expansion coefficients is Gaussian (or Laplacian) cannot be 

accurate but it is somewhat more acceptable compared to some other methods where a 

minimum energy penalty is used to stabilize the solution for the pixels of the HR image 

itself [12, 13].  

 Two popular regularization methods are based on the assumption that natural signals 

are smooth. These are the Markov random field (MRF) prior [52] and the total variation 

(TV) norm minimization. TV is commonly used as a regularizer for denoising/deblurring 

of images [53, 54]. It penalizes the total amount of change in the image as measured by 

the L1-norm of the magnitude of the gradient. In our case, however, what we solve for 
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are the expansion coefficients, hence using MRF or TV to regularize the solution is 

inappropriate. In addition, even if we reformulate the regularization to be a function of 

the PPC, for example,    

 
   

2

ˆ ,

ˆ ˆmin     ,
FA x

A b A Ax Yx      
 

where  Yx  is the regularization term, and even if we could solve this non-convex 

problem exactly, it is counter-intuitive to try to penalize the roughness of a non-smooth 

signal.  In particular, polyphase components are expected to be rough, since they contain 

large high frequency components due to aliasing. Moreover, in §3.3, it becomes evident 

that a part of the variance of error of an estimated PPC is independent of the bias-

variance tradeoff provided by any penalty term, and therefore formulating the penalty 

term as a function of the PPC should be avoided.    

 In §3.4, we propose using principle component analysis (PCA) to optimally9 pre-

denoise the data, which is an essential pre-processing step when the noise is relatively 

high as shall be seen in §3.3. This pre-processing of the data also reduces the bias, and 

renders the TLS solution, and the search for an optimal regularization thereof, 

superfluous. 

3.3    Mean and Covariance of an Estimated PPC 

 In this section we show that an estimated PPC will always be noisier than the LR 

images, even if the estimated expansion coefficients have zero variance.  

 First, we assume that the data matrix is corrupted with additive noise,        

 o ,Y Y    

where oY
 
is the noise-free data matrix (the signal component of the data) and  is a noise 

matrix with entries that are uncorrelated, zero-mean and with the same variance 2
v .  

 Let w  
and wR  denote the mean and covariance, respectively, of the error, w, in the 

estimated expansion coefficients, x̂ x w  , where x  is the error-free expansion 

coefficients. For tractability, we further assume that   and w are independent.  
_____________________________ 

9 As a denoiser, PCA is optimal when the noise’s covariance matrix is a scaled identity matrix and the 
covariance matrix of the data is known.  
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 The corresponding estimated n-th PPC component is thus, 

 
o o

ˆ ˆ

ˆ    .
nU Yx

Y x Y w x


   �

  

Therefore, 

 
 
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ˆ

ˆ ˆ ˆ ,
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U U Y w x





    
     

Ε

Ε  �
  

where   . Ε denotes the expectation operator. 

 The covariance matrix of error is  

 

   
  
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ˆ ˆ ˆ                       2 .
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 

           
         

Ε Ε Ε

Ε Ε  

  

It can be easily verified that   

 
 

  
2
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                     Tr 2 ,

T T
v d

T
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x R x I



  

      

   

Ε Ε 
  

and 

     o ˆ 0 ,
T

wY w x   Ε    

where Tr( . ) denotes the trace of a matrix, dI  is the identity matrix of size d d and 

2
1 2d M M I  is the number of pixels in a PPC. The covariance matrix of error is thus 

(3.19) 

 
  

2
o o

222
o o

ˆ ˆ ˆCov

               Tr 2 ,

T T
n w v d

T T
w v w w w d

U Y R Y x x I

Y R Y x R x I



  

    

    

Ε
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and the mean square error (MSE) of ˆ
nU  is given by 

 
 
(3.20) 

     
    

2

2 222
o o o

ˆ ˆ ˆMSE Total variance Bias

                 Tr Tr 2

n n n

T T
w v w w w w

U U U

Y R Y d x R x Y   

 

     
 

 Equation (3.19) tells us that even if we knew the error-free expansion coefficients, x, 

in terms of the noiseless version of the data matrix, oY , then a reconstructed PPC will be 

noisier than a LR image by a factor of 2
.x  In other words, if we could somehow obtain 

a perfect estimate of the expansion coefficients, the covariance of error will be  

(3.21)   2 2ˆCov .n v dU x I   

Consequently, it is obvious that even in the absence of error in estimating the expansion 

coefficients, pre-denoising of the data matrix (§3.4) or post-denoising of the 

reconstructed HR image (§3.6), or both, is a necessity when the noise in the data matrix is 

moderately high. Also, equation (3.21) reveals that ˆ
nU  is inconsistent, regardless of the 

estimation of the expansion coefficients, and therefore, given that the expansion 

coefficients are known, the only way to benefit from an increased overdeterminedness of 

the problem (super-resolving larger LR images) is if the pre-denoiser of the data does 

benefit from super-resolving large LR images. As will be explained in the next section, 

PCA denoising, which denoises by maximizing the SNR of the low order principal 

components and discarding the ones with small SNR, performs better, at least 

theoretically, when dealing with larger LR images.      

 The MSE formula (3.20) contains three error parameters: 

 2
v  which is, as defined previously, the variance of noise in LR images. 

 wR , the covariance matrix of the estimated expansion coefficients, is dependent on 

the amount of noise in the estimated reference PPC and the bias-variance tradeoff, if 

any, of the estimation (regularization). 

 Assuming the noiseless version of the LR images (the signal part of the data matrix) 

spans the PPCs, the bias of the estimated expansion coefficients, w , is dependent 

on the noise level in the sub data matrix A (i.e. 2
v ), the bias caused by 
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regularization (if any), and the bias of the estimated reference PPC. According to 

experiments, at moderate values of 2
v (e.g. at 30dB SNR), the bias due to noisy A is 

normally marginal, even using the LS estimator.  

Although, it might not be easily discernible from examining equation (3.20), according to 

our experiments, the bias of ˆ
nU  can overshadow its variance (the reconstructed HR 

image appears much less noisy when it is blurred or aliased). As mentioned above, this 

can only be partly owing to the bias-variance tradeoff associated with estimating the 

expansion coefficients (regularization). In other words, a blurred reference PPC has the 

advantage of submerging the noisy appearance of the reconstructed HR image. However, 

the best way to control the enhanced noise manifestation (3.21) is to directly control the 

effect of the parameter 2
v  (3.19 - 3.21) by pre-denoising the data matrix. This, 

incidentally, also strips the TLS of its advantage of low bias compared to the LS solution, 

even at relatively low SNRs. 

3.4    Pre-Denoising the LR Images using PCA 

 In light of the last two sections, the goal of pre-denoising the LR images is clear: 

reducing the noise enhancement effect associated with multiplying the LR images with 

the expansion coefficients and obtaining less biased estimates of the expansion 

coefficients. 

 Using first and second order statistics of a data set, principal component analysis 

(PCA) provides an orthonormal optimal basis (in the mean squared error (MSE) sense) 

for a reduced representation of the data [32], where the first few principal axes can 

capture, on average, a significant portion of a data point’s energy while the last few 

principle axes correspond mainly to insignificant features. In other words, it is the 

optimal linear minimum MSE (MMSE) compressor of the data, regardless of the 

distribution10. This property of the PCA makes it also the optimal linear denoiser when 

the data is contaminated with additive zero-mean, same variance, uncorrelated noise. 

Specifically, if we assume that the noisy LR images are realizations of a random vector 

_____________________________ 
10 If the mean and covariance matrix are known, the distribution of the data is irrelevant to the 

performance of PCA as a linear MMSE compressor. 
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 o ,y y v    

where v  is a zero-mean noise vector with covariance matrix, 2
v dI , and is statistically 

independent of oy , which is the underlying random vector generating the noiseless part 

of the LR images (the signal part) with mean,  , and covariance matrix, C, with eigen-

decomposition 

 ,TC E E    

where the columns of E are the orthonormal eigenvectors of C, and the diagonal matrix,  

, contains eigenvalues 1 2 d     , then the covariance matrix of the random 

vector y , is 

 
2

   ,

y v d

T

C C I

E E

 

 
  

where  

 2 .v dI   

The PCA basis vectors (the principal axes) are the columns of E, and the transformation  

 T
k kz E y   

where ky
 

is the k-th centered LR image, decorrelates the centered LR image and 

maximizes the variance of the lower order principal components (expansion coefficients 

in terms of the PCA basis) of the k-th centered LR image: 

               

             .

T T T
k k k k

T
y

z z E y y E

E C E

      



 

Ε Ε


  

Noting that the principal components (PCs), i.e. the elements of the feature vector, kz , 

have variances  

(3.22) 2   for   1,..., ,v d      
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it becomes evident that the PCA also maximizes the SNR along the low order principal 

axes. Consequently, if we replace the q highest order PCs (the last q elements of kz ) with 

zeros, resulting in the vector, k̂z ,  the (reconstruction) MSE,  

      2

1

ˆ ˆ ,
d

T
k k k k v

d q

z z z z  
  

      Ε 


  

would correspond mostly to noise. Therefore, we can denoise the LR images by centering 

them, PCA transforming them and then discarding the high order PCs, or we could 

simply retain only the low order principal axes (corresponding to the largest eigenvalues) 

and use them for denoising: 

  ˆ ,T
k r r ky E E y       

where rE  is the reduced PCA basis, and ˆky is the denoised k-th LR image. 

3.4.1   The Sample Mean and the Sample Covariance Matrix 

 Since we have no knowledge of the true mean and true covariance matrix, we can only 

empirically estimate them from the data. The most commonly used estimators are the 

sample mean and the sample covariance matrix, which are unbiased under the assumption 

that the observations are i.i.d. If the data is also Gaussian distributed, the sample mean 

and (a slightly differently scaled) sample covariance matrix are also the ML estimates of 

the true mean and the true covariance matrix, respectively. The assumption of 

independence of observations is unrealistic. Moreover, the distribution of the data is 

hardly Gaussian and thus taking the eigenvectors of the sample covariance matrix as our 

PCA basis is not optimal (the empirically derived PCA basis is not the linear MMSE 

compressor, and thus it cannot be the optimal linear denoiser). For the scope of this 

thesis, however, the sample mean and sample covariance shall suffice.    

 In our problem, the number of observations (LR images) is far smaller than their 

dimensionality11. Under such circumstances, the sample covariance matrix provides a 

poor estimate. A better strategy is to denoise sub LR images. This, not only reduces the 

_____________________________ 
11 Typically, the number of LR images is less than 1% of the number of variables (pixels within a LR 

image). 
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number of parameters to be estimated (smaller covariance matrix), but it also provides 

more samples (observations), allowing for a larger denoising space, where it is possible 

to discard a lot more high order PCs12. In particular, we use both the primary and 

secondary LR images13 (corresponding to the primary and secondary sensors, 

respectively) and downsample them by J J  and ,I I  respectively, obtaining 

2 2SKJ K I  highly correlated sub LR images of the same size, where SK  is the number 

of secondary LR images. From these sub LR images we compute the sample mean and 

sample covariance, and then PCA denoise them using the eigenvectors of the empirically 

estimated covariance matrix. The sample mean of the sub LR images is given by  

 

2 2

2 2
1

1
ˆ ,

SKJ K I
sub
kS
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y
KJ K I






 
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where sub
ky

 
is the k-th sub LR image, reordered as a column vector. The sample 

covariance is defined as 
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Now, let D denote the matrix of the orthonormal eigenvectors of ˆ
yC , corresponding to 

the largest or  eigenvalues14. D is, therefore, the reduced PCA matrix which we use to 

denoise the sub LR images as follows  

(3.23)  ˆ ˆ ˆ ,sub T sub
k ky DD y       

where ˆsub
ky is the denoised k-th sub LR image.  

 Now we list the reasons for our choice of the sub LR images to be obtained by 

downsampling the primary and secondary LR sets by J J  and ,I I  respectively: 

_____________________________ 
12 The more computationally expensive Kernel PCA (nonlinear PCA), is known in the literature to be a 

much more superior denoiser than the empirically derived linear PCA when the number of samples far 
exceeds their dimensionality [55]. However, this is not applicable in our case.  

13 The primary LR images are normalized to have the same L2-norm, and the secondary LR images are 
normalized to have the L2-norm of a primary LR image scaled by I/J. This step is useful to ensure that no 
single LR image can dominate the analysis. 

14 According to synthetic and real data experiments, at or  = 0.3 p, there is virtually no loss of detail 

associated with denoising. In fact, even at or  = 0.1 p there is slightly noticeable loss of detail. The default 

value we use for or  is 0.2 p. 
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1. By denoising the sub LR images as described above, we also directly denoise the 

sub data matrices used for estimating the expansion coefficients.  

2. The reason for choosing sub LR images to be downsampled versions of the LR 

images, rather than subregions of them, is that subregions across the LR images are 

not as highly correlated and thus more PCs would need to be retained to avoid 

significant loss of detail, which translates to less denoising capability.  

3. Of course, to lower the computational15 cost of finding the eigen-decomposition (or 

SVD) of the sample covariance matrix, we could use even smaller sub LR images 

by downsampling further. This also makes the corresponding sample covariance 

matrix a better estimate since even more samples will be used to compute it. But on 

the other hand, the denoising space will get smaller (a smaller covariance matrix 

means a smaller number of eigenvectors, hence fewer can be discarded). Moreover, 

this will result in smaller SNR along the lower order axes since, theoretically, the 

noise level is constant along all axes (3.22) and of course it does not get lower 

when dealing with smaller sub LR images, while the signal’s variance is 

maximized along the low order axes and is proportional to its total energy. Hence, 

working with smaller sub LR images results in smaller denoising space and lower 

SNR in the retained PCs. We digress slightly here to note that PCA denoising, at 

least theoretically16, can circumvent the inconsistency of the PPC estimator (3.21), 

since working with larger LR images translates to a larger denoising space and 

higher SNR in the retained PCs. Practically, however, and given that the number of 

LR images is fixed, working with larger LR images means that the sample 

covariance matrix estimate of the true covariance matrix of the sub LR images 

becomes poorer, not to mention the higher computational cost of finding the eigen-

decomposition of the increased size sample covariance matrix (although when the 

number of samples is smaller than their dimensionality, the computational cost is 

primarily determined by the number of samples where the reduced SVD of the 

matrix of samples, rather than the covariance matrix itself, is computed [32], which 

_____________________________ 
15 For faster computation of the first or singular vectors of the covariance matrix, we use the Matlab 

code prepared by Mark Tygert, which is an implementation of the algorithm described in [62]. 
16 Assuming the true covariance matrix is known. 
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is expected to be the case if the problem involves super-resolving larger LR 

images, given that the number of LR images is fixed).      

4. Finally, as will be explained in chapter IV, the same reduced PCA matrix D (3.23) 

will be also used in estimating the reference PPC, saving us the trouble of 

calculating the eigen-decomposition of another covariance matrix.  

3.4.2   Outlier LR Images and their Effect on Denoising 

 Outlier LR images are those images irrelevant to the reconstruction of the PPCs. Since 

we use the LR images as basis signals, given that the estimated reference PPC does not 

have any components corresponding to outliers, the expansion coefficients in terms of the 

outlier images should be exactly zero, and thus outliers should be of no concern to us. 

However, since we pre-denoise the LR images using PCA, which is dependent on the 

sample covariance matrix, the presence of outliers in the samples will make high order 

PCs more representative of the signal’s energy [32] and thus we will have to retain more 

PCs or risk significant loss of detail. Of course, more PCs to be retained means more 

noise too and therefore getting rid of outlier LR images becomes essential for better 

denoising. 

 Depending on the application, there is more than one suitable method for detection 

and removal of outliers in the data. For example, trimming the data involves finding the 

Mahalanobis distance of each LR image from the mean, and iteratively calculating a new 

covariance matrix (and mean) [56]. Of course, the Mahalanobis distance involves finding 

the inverse of the sample covariance matrix of the LR images, which is decidedly 

singular since number of LR images is far much lower than their dimensionality. 

Alternatively, and since our goal is to find a robust estimation of the covariance matrix of 

the sub LR images, we could implement the minimum covariance determinant (MCD) 

method. It works by finding the subset of samples whose covariance matrix has the 

lowest determinant [57]. However, and regardless of the computational cost, this method 

requires that the number of samples be much higher than their dimensionality which is 

hardly the case in our problem, even when the samples are sub LR images.  

 Fortunately, while our problem is short on samples (relative to their dimensionality), it 

is advantaged by the fact that the LR images are highly correlated. Therefore, outliers can 
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be defined as those images that are farthest from the mean. In order to identify outliers in 

the secondary LR set, the mean of the primary LR set is lowered in size (via nearest 

neighbor interpolation) to the same size of a secondary LR image, and outlier secondary 

LR images are thus those that are farthest from the resized mean. There are two reasons 

we did not use the mean of the secondary LR set to identify outliers within this set: 

 The (same size) sub LR images, from both sets, are assumed to have the same mean 

and same covariance matrix and therefore, using two means to identify the outliers 

to the computation of the sample mean and sample covariance is meaningless.  

 Ultimately, the secondary set of LR images is there only so we can estimate the 

reference PPC in order to compute the expansion coefficients of the primary PPCs 

in terms of the primary LR images. As a result, the relevance of an estimated 

reference PPC, and by extension the secondary LR images used to construct it, is 

determined by the available primary LR set. Namely, the ‘outlyingness’ of a 

secondary LR image can only be measured in terms of the ensemble of the primary 

LR set.  

 Clearly, this simple method of rejecting outlier images assumes that the number of 

outliers in the primary and secondary sets of LR images is already known. In chapter IV, 

where the estimation of a reference PPC is highly affected by the presence of outliers, we 

describe a simple intuitive way to obtain an approximate estimate of the number of 

outliers.      

3.5    Color Images  

 The typical approach to processing color images is to simply super-resolve each of the 

three color-band images separately (thus tripling the computational cost) while ignoring 

the color artifacts present in the demosaiced17 LR images [46, 47]. Although none of the 

authors of [35-37], who addressed the problem of single-frame super-resolution using 

subspace learning methods, explained how they dealt with the case of color, we believe 

they too ignored the color artifacts and assumed that the LR images are captured by a 3-

_____________________________ 
17 Single CCD color cameras use the Bayer (color) filter to obtain all 3 color band images using one 

CCD sensor, where each pixel senses only one of the 3 colors, according to the Bayer pattern, and then the 
three raw color band images are demosaiced to interpolate the missing pixels. This results in color artifacts 
that are normally negligible at high resolutions but easily noticeable in LR images.  
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CCD18  camera (one sensor per color-band), where there would be no color artifacts at 

all. On the other hand, Farsiu et al. [48] considered joint demosaicing and super-

resolution of color images to reduce the color artifacts associated with single CCD color 

cameras. 

 In our case, we also assume that the primary set of LR images is obtained by 3 

primary CCD sensors. For the secondary set of lower resolution LR images, only one 

sensor for the green (luminance) band19 is required since we need to estimate the set of 

expansion coefficients only once. Recall that a LR image is assumed to be a linear mixing 

of the PPCs, and since each one of the three HR color-band images, undergoes the same 

transform resulting in the corresponding LR color-band image within the same LR frame, 

the same set of expansion coefficients can be used to un-mix the PPCs of each HR color-

band image. In other words, if we let X denote the matrix containing all the expansion 

coefficients computed using only the green primary and green secondary LR images, then 

 ,

R R

G G

B B

U Y X

U Y X

U Y X







  

where RY , GY and BY are the red, green and blue data matrices, containing the 

unwrapped by column K red, K green and K blue LR images, respectively, and RU , GU

and BU are the red, green and blue image matrices containing the 2I  red, 2I green and 2I  

blue PPCs, respectively.  

  Although we are using only the green primary and secondary LR images to estimate 

the expansion coefficients, we might still want to pre-denoise the primary red and blue 

LR images since multiplying noisy LR images with the expansion coefficients enhances 

the noise (3.21) as we explained in §3.3. Of course, in this case, the sample covariance 

matrix will be derived from the primary red and blue LR sets only, as there are no 

secondary sets of red and blue LR images (we require only one lower resolution green 

sensor for the secondary set of LR images). 

_____________________________ 
18 A beam splitter is used to split the image into its red, green and blue components to be separately 

detected on 3 CCD sensors. 
19 The green (luminance) band of a color image is approximately equivalent to its grayscale version.  
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3.6    Post-Processing the SR Image 

TV Denoising  

 Post-denoising the super-resolved image is an option to reduce the noise further when 

the PCA pre-denoising, on its own, is not sufficient.  

 Total variation (TV) is a well-known edge-preserving denoising method. The denoiser 

solves the minimization [53] 

(3.24) 
2

1
min

2d
d d

u
u u u


     

where du  is the denoised version of the original image, u, and is the parameter that 

controls the fidelity to data (the original noisy image). We use the code written by Pascal 

Getreuer which is an implementation of the algorithm described in [63] for iteratively 

solving the minimization problem (3.24). The code also handles color images by jointly 

denoising using the vectorial generalization of the TV, implementing the algorithm in 

[64] which is a generalization of the algorithm in [63].  

Unsharp Masking 

 The super-resolved image can be blurred, mainly because the estimation of the 

reference PPC is biased to some degree (chapter IV). Also, as we shall explain in chapter 

V, the CCD sensor causes additional blur as well. Unsharp masking (UM) is a generic 

and a very simple sharpening technique [72]. In UM, a blurred version of the original 

image is subtracted from it and the result is scaled and then added to the original image. 

We use MATLAB’s unsharp masking with default settings.     

The Median Filter 

 After deblurring using the unsharp masking, the processed image usually contains 

what looks like impulsive noise around the edges. This could probably be due to the fact 

that we estimate the HR image by estimating its PPCs separately and then interlacing, 

which might cause some subtle irregularities in pixel intensity levels, especially around 
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the edges, that become more pronounced after sharpening. This problem is easily dealt 

with by using a simple 2x2 median filter.  

3.7    Summary  

 In this chapter we examined the applicability of classical solutions to the problem of 

finding the expansion coefficients of the PPCs in terms of the LR basis, using knowledge 

of their sub PPCs. Specifically, under the assumption that the sub PPCs are contaminated 

with zero-mean, white Gaussian noise, the LS solution gives us a stable but biased 

solution because the LR images are normally noisy. The TLS solution takes into account 

the noise in the LR basis, but it is very unstable due to the high correlation between LR 

images. Penalizing the TLS solution using Tikhonov regularization, numerically 

stabilizes the solution, but it roughly translates to the unrealistic a priori assumption that 

the expansion coefficients are uncorrelated. Using a (surrogate) L1-norm regularization 

of the TLS solution, we obtained better results but with slower performance and without 

correcting for the unrealistic assumption of no correlation between the expansion 

coefficients. We also explained why popular regularization techniques such as MRF and 

TV cannot be applicable in our case. Moreover, in §3.3, it became evident that part of the 

error in a reconstructed PPC is independent of any penalty term that might be used to 

regularize the TLS.   

 Using PCA to pre-denoise the LR images, lowers the bias by reducing the noise in the 

sub data matrices and thus it revokes the TLS solution’s advantage over the LS solution. 

Also, independently of any expansion coefficients’ estimation error, multiplying the 

expansion coefficients with the data matrix, to estimate the PPCs, augments the noise. 

Therefore, PCA pre-denoising provides a remedy to this problem, as well.  

 The presence of outlier LR images can diminish PCA’s denoising capability as it is 

based on the sample covariance matrix which is sensitive to outliers. Luckily, since the 

LR images are highly correlated, the outliers are easily identifiable as those images 

farthest from the mean. 

 For color images, other than pre-denoising each set of color-band LR images 

separately, our SR method estimates the color HR image at virtually no additional 

computational cost. 
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 In practice, the estimated reference PPC is usually blurred, and it is therefore the main 

source of bias in the super-resolved image. Also, some additional edge-preserving 

denoising might be desired. For these reasons, we use TV denoising, followed by unsharp 

masking and median filtering.   

3.8    Future Work 

Different Types of Noise  

 The following list shows some of the errors, images captured by digital cameras are 

usually corrupted with.  

 Camera sensor readout noise (zero-mean, white Gaussian, independent of signal). 

Cause: electronics. 

 Shot noise (Poisson distribution, signal dependent). Cause: fluctuation of photon 

counts. It becomes negligible and more Gaussian-like distributed with more photons 

(good light conditions, and larger pixels). 

 Impulsive noise (Laplacian or heavy-tailed distribution). Cause: long exposure time, 

A/D errors, and transmission errors (rare). 

 Compression artifacts. This depends on the user defined compression level.  

 Throughout this chapter, we assumed the errors are uncorrelated and Gaussian 

distributed, which is generally a reasonable assumption. Depending on the application, 

however, other types of noise might dominate and must be addressed accordingly. In 

particular, since we use PCA as a pre-denoiser of the LR images, it is essential for us to 

consider other forms of PCA in accordance with the application at hand. In addition, we 

might need to consider data-fitting terms other than the L2-norm (LS solution). For 

example, we could use weighted LS if the reference PPC contains colored noise or an L1-

norm data-fitting term for impulsive noise.  

Variants of PCA 

 Assuming that the error and the signal parts of the data are independent, if the 

covariance matrix of error, vR , is known and the data’s covariance matrix, yC , is known 
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as well, then the PCA basis,   1

d
e   , that maximizes the SNR of the PCs, subject to their 

being uncorrelated20 with respect to the error’s covariance matrix, is given by [32]. 

(3.25) max    subject to   0   for   1 ,    1,
T

y T
q vTe

v

e C e
e R e q

e R e
   



 


 
    

which is equivalent to 

 

max    subject to   

1

0   for   1 ,    1.

T
y

e

T
v

T
q v

e C e

e R e

e R e q



   


 

 

  

  

 Clearly, if 2
v v dR I , then   1

d
e    are the eigenvectors of yC , which is the 

conventional PCA basis. Otherwise, the non-convex problem (3.25) can be solved by 

solving the eigen problem 

 y vC e R e     

subject to the constraints 0,    1 ,    1.T
q ve R e q       

 In practice, the data covariance matrix is unknown and an estimate of it becomes 

necessary. The sample covariance matrix can be used in the above system of equations to 

find the PCA basis that maximizes the SNR. However, when the errors are correlated 

and/or are not Gaussian21 distributed, using the sample covariance matrix might give 

unsatisfactory denoising results. For example, for heavy-tailed distributed errors, a robust 

form of PCA is preferred [69]. And for errors that are Gaussian distributed but 

correlated, Wentzell et al. [70] advocate ML-PCA, which is a PCA estimator that is 

optimal in the ML sense and is tightly related to extended-weighted TLS22 [71, 33].  

 In the future, we would like to investigate variants of PCA to better denoise the LR 

images when contaminated with errors that hardly follow the i.i.d Gaussian model. 
_____________________________ 

20 Imposing the condition that the PCs must be uncorrelated simplifies the expression for the 
(reconstruction) MSE, which simplifies deriving the optimization problem that defines the PCA basis. 

21 Note that the theoretical PCA performance as an optimum linear denoiser is independent of the 
distribution of either the signal or the noise as it depends on first and second order statistics only. The 
quality of the estimation of the covariance matrix, however, is dependent on the distribution of the data. 

22 Extended-weighted TLS also addresses the problem of parameter estimation when the Gaussian noise 
is correlated. 
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Other Post-Processing Options 

 The post processing techniques mentioned in §3.6 are admittedly very generic and 

therefore we might want to consider more sophisticated options. For example, if the 

leftover noise is a bit significant, using TV with a low enough data fidelity parameter 

would smooth out textured areas of the image and hence using an adaptive TV method 

[65] would be a better option. Also, we might get better results by jointly deblurring and 

denoising [66]. In addition, there are other alternatives for the data fitting term in the 

minimization problem (3.24), for handling non-Gaussian error, like the impulsive noise 

[67] or poisson noise [68]. Of course, the literature on denoising and deblurring is huge, 

but these examples are particularly attractive since they involve edge-preserving 

processing.  
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CHAPTER IV  

Estimation of the Reference Polyphase Component  

4.1    Introduction 

 At the end of chapter II, we mentioned that in order to be able to estimate the 

reference PPC, two sets of LR images must be obtained from two image sensors with 

different sensor densities. We refer to the set of the LR images acquired by the primary 

sensor (Figure 2.4) as the primary LR set (corresponding to the primary downsampling 

factor, I). The LR images acquired by the secondary sensor are referred to as the 

secondary LR set (corresponding to the secondary downsampling factor, J). The I I   

PPCs,  
2

1

I
n n

U  , and the J J   PPCs,  
2

1

J
m m

U   are referred to as the primary and 

secondary PPCs, respectively. We assume that J = I + 1 for the maximum possible 

overdeterminedness of the systems of equations we solve (3.6). The reference PPC we 

need to estimate is one of the secondary PPCs, i.e. we need to estimate mU for some m 

between 1 and 2J .  

 As explained in chapter II, under the assumption of linearity, a set of LR images can 

span PPCs of the same resolution level (corresponding to the same downsampling factor). 

Therefore we assume that 

 
 
(4.1) 

   

   

2

2

1

1
,

I
n n

J S
m m

U R Y

U R Y








  

where Y and SY contain the primary and secondary LR images, respectively. According 

to the property of sampling diversity we have  
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(4.2) 

 
 
, ,

n

m

n j m i

j T m

i T n

U U





 

  

for any n and m. Recall that ,n jU
 
and ,m iU  are the j-th and i-th sub PPCs of nU  and mU , 

respectively, and they are equal for  nj T m  and  mi T n . Refer to §2.3 for details. 

 Since ,n j j nU D U  and ,m i i mU D U , where jD  and iD  are the J J  and I I 

downsampling matrices corresponding to the  j-th and i-th sub PPCs, respectively, and in 

light of (4.1), equation (4.2) can be re-written as  

(4.3) ,S
j n i mD Yx DY x   

where nx  and mx  are the expansion coefficients of nU  and mU  in terms of Y and ,SY  

respectively. Equation (4.3) enables us to estimate the (m-th) reference PPC1, by solving 

for its expansion coefficients in terms of the secondary set of LR images. To simplify 

notation, let 

 
 
 
 
(4.4) 

1

2

1

2 ,

j

S
i

n

m

A D Y

A D Y

x x

x x







  

and therefore (4.3) is rewritten as 

(4.5) 1 1 2 2.A x A x   

4.2   Minimizing the Euclidean Distance in the Pixel Domain 

 First, we start by reformulating (4.5) as a homogeneous system of equations 

(4.6) 0,Ax    

where  

 

 1 2

1 2,  .
TT T

A A A

x x x

 

   
  

_____________________________ 
1 In §4.4 we explain that equation (4.3) is not unique for any arbitrary choice of m and n and we 

describe how this fact should be dealt with. 
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An obvious approach to solving equation (4.6) is to minimize the L2-norm of Ax, subject 

to avoiding the trivial zero solution,   

(4.7) 
2 2

min =     subject to    1.T T

x
Ax x A Ax x    

Problem (4.7) is non-convex (because of the quadratic equality constraint) but it has a 

well-known analytical solution. First, let 

(4.8) 
1

 
N

T T
k k k

k

A W V w v


     

denote the (reduced) SVD of A, where .SN K K   The solution of (4.7) is 

(4.9) ˆ ,Nx v   

which is the last right singular vector2 of A. 

 Note that problem (4.7) is equivalent to 

(4.10) 
1, 2

2 2 2
1 1 2 2 1 2min     subject to    1,

x x
A x A x x x     

which simply finds the two vectors in    1 2 and R A R A , with the minimum Euclidean 

distance between them.  

4.2.1   Incomplete, Noisy Basis 

 Solving (4.5) by solving (4.10) is based on the assumption that the two vectors in

   1 2 and R A R A , that best approximate ,n jU  and ,m iU , respectively, have the minimum 

Euclidean distance between them. But how accurate is this assumption? Note that (4.3), 

and thus (4.5), implicitly assume noise-free and complete primary and secondary LR 

basis, in which case the minimum Euclidean distance (4.10) is equal to zero and thus 

solving (4.10) solves (4.5) exactly. Of course, the LR images are always noisy and they 

do not exactly fully represent the PPCs, and therefore solving (4.10) is not necessarily the 

_____________________________ 
2 This result can be easily derived using Lagrange multipliers [22]. Note that 2 2

1 2 1p M M I J N    

is a necessary condition for a unique solution. This supersedes (3.6).  
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best option. In fact, the Euclidean distance, as a dissimilarity measure, is known to be 

sensitive to errors (noise, outlier LR images and the incompleteness of the LR basis, in 

our case). The (squared) Euclidean distance is simply the sum of the square of differences 

between pixels, and since the pixels are highly correlated, errors will greatly bias the 

decision as to which two vectors in    1 2 and R A R A  
are closest to each other. In §4.3, 

we suggest a better alternative to solving (4.5). Moreover, besides bias, the problem setup 

of (4.10) can be numerically unstable as we shall see next. 

4.2.2   Noise Magnification 

 Small gaps between the last few of the N singular values of matrix A in problem (4.7), 

which is exactly equivalent to (4.10), result in a similar numerical instability as that of the 

TLS solution we discussed in chapter III. Since the columns of A are sub LR images 

(unwrapped by column) obtained from the primary and secondary LR sets, these columns 

can be highly correlated causing the gaps between the last few of the N singular values to 

be small3. Specifically, if we partition the matrix A as follows 

 
 ,NA Z z   

where Z is a submatrix of A containing all the columns of A except the last column which 

we denote Nz , then in light of §3.2, the solution (4.9) can be rewritten as 

(4.11) 
  12

ˆ

  ,

N

TT
T T

N N

x v

c Z Z I Z z c




      
   

  

where c is the last element in Nv , and N  is the smallest singular value of A (4.8). 

Therefore, if the last singular values of A are close to each other, then, by the interlacing 

theorem, its submatrix Z will have its last singular values close to each other and to N  

as well.  

_____________________________ 
3 Recall that the last few of the N singular values cannot be zero due to presence of (white) noise. 
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Denoising 

 Equation (4.11) reveals that the components of the solution x̂  can be large. In order to 

regularize, one might consider adding a regularization constraint to the non-convex 

problem (4.7). For example, we could limit the L1-norm of the solution to a certain 

threshold, but in this case, an analytical solution to the new non-convex problem does not 

exist and we would have to solve it approximately (using the convex-concave procedure, 

for example). 

 A simple and effective method to denoise 2̂x , which contains the last SK elements of 

x̂ , is inspired by the TSVD discussed in §3.1. First, let 2B  denote the matrix containing 

the left singular vectors of 2A  corresponding to the SK  (non-zero) singular values, then 

 
 2 2 2ˆ .A x R B   

Equation (4.11) suggests that the highest order components of ˆAx and thus, 2 2ˆA x , could 

be very noisy. Therefore, we could represent 2 2ˆA x  in terms of a reduced basis matrix, 2B


, 

which excludes the left singular vectors corresponding to the smallest q singular values. 

This is equivalent to removing the highest order components of 2 2ˆA x . We then perform a 

change of coordinates to get back a denoised version of 2̂x , which we denote 2ˆ
dx   

(4.12)   1

2 2 2 2 2 2 2 2ˆ ˆ .d T T Tx A A A B B A x



 

  

The estimated4 reference PPC component is thus 

(4.13) 2
ˆ ˆ .S d

mU Y x   

However, as previously explained in §4.2.1, the reason we seek a different approach to 

solving (4.5) is the decision bias caused by the sensitivity of the Euclidean distance, as a 

dissimilarity measure, to errors (such as noise and incompleteness of the LR basis).  

 Finally, we would like to mention that PCA pre-denoising the primary and secondary 

LR images, as described in §3.4, greatly reduces both the noise magnification5 and 

_____________________________ 
4  The reference PPC is estimated up to a scale factor. Nevertheless, since we assume the reference PPC 

has the energy of a secondary LR image, we scale it accordingly.  
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decision bias. Nevertheless, we still get better results by solving the problem as described 

next.    

4.3   Minimizing the Euclidean Distance in a Decorrelated Subspace  

  Our goal is to find the two vectors    1 2 and  f R A g R A   
with minimal 

dissimilarities. However, columns of 1A  are highly correlated and therefore a vector, 

written as a linear combination of these columns, is highly correlated with these columns, 

and thus the correlation among the vector’s elements (pixels) is high.  The same can be 

said regarding vectors in  2 .R A  This means that the choice of the pair of vectors with 

minimal Euclidian distance can be greatly biased by any kind of perturbations. Therefore, 

removing the dependencies among pixels in and pixels in  f g , before deciding which 

 and  f g
 
are with minimal dissimilarity, gives a less biased decision. Therefore, we could 

minimize the Euclidean distance in a lower-dimensional decorrelated subspace, using 

PCA since it decorrelates by removing first and second order dependencies between the 

variables (pixels). It gives us a basis, in terms of which, the expansion coefficients (PCs) 

of (centered)    1 2 and  f R A g R A   
are uncorrelated, and with the lowest order PCs 

having the highest variances, which gives them the greatest weight in the choice of the 

pair  and  f g
 
with minimal dissimilarity. The underlying assumption here is that the PCs 

with high variance represent significant features. Moreover, the fact that the SNR of the 

low order PCs is maximized means smaller decision bias (although maximizing the SNR 

does not address error due to incompleteness of the basis). Hence, (4.10) is replaced with 

 
 

1, 2

2 2 2
1 1 2 2 1 2min     subject to    1,T

x x
D A x A x x x     

which is equivalent to 

(4.14) 
2 2

min =     subject to    1,T T T T

x
D Ax x A DD Ax x    

where  

______________________________________________________________________ 
5 Smaller amount of (white) noise means larger gaps between the last singular values and less noise to 

be magnified. 
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 1 2

1 2,  ,
TT T

A A A

x x x

 

   
  

1A  and 2A are obtained from the PCA pre-denoised data, and D is the reduced PCA 

matrix used to denoise the data as described in §3.4.1. Hence, the same matrix D used to 

denoise the LR images (by denoising sub LR images) is also used to decorrelate 

   1 2 and  f R A g R A  . The solution of problem (4.14) is the last right singular 

vector of TD A .   

4.4   Which Reference PPC to Estimate? 

 In chapter II, and at the beginning of this chapter, we explained that any secondary 

PPC shares a sub PPC with any primary PPC (4.2). In chapter III, we have seen how this 

fact is used to estimate the expansion coefficients of the primary PPCs given their sub 

PPCs which are derived from a reference (secondary) PPC. In this chapter, we also use 

the property of sampling diversity to estimate the expansion coefficients of the reference 

PPC as demonstrated by (4.3). However, equation (4.3) is not unique for any arbitrary 

choice of m and n. For example, suppose the primary downsampling factor, I = 4, and the 

secondary downsampling factor, J = 5, and we want to estimate the 13-th (out of 25) 

secondary PPC, 13mU  , as our reference PPC, using its sub PPC shared with the first (out 

of 16) primary PPC, 1nU  . According to the sampling diversity property (see §2.3.2) 

 
 
 

 
 

1

13

1, 19 13, 11

13 19

1 11

.

n

m

n j m i

j T

i T

U U





   

 

 

 

  

In other words, the 19-th (out of 25) sub PPC of the first primary PPC is equal to the 11-

th (out of 16) sub PPC of the 13-th secondary PPC. However, the 19-th sub PPC of the 

second primary PPC is equal to the 11-th sub PPC of the 14-th secondary PPC. Also, the 

19-th sub PPC of the 11-th primary PPC is equal to the 11-th sub PPC of the 25-th 

secondary PPC. In fact, we have 
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1, 19 13, 11

2, 19 14, 11

3, 19 15, 11

5, 19 18, 11

6, 19 19, 11

7, 19 20, 11

9, 19 23, 11

10, 19 24, 11

11, 19 25, 11.

n j m i

n j m i

n j m i

n j m i

n j m i

n j m i

n j m i

n j m i

n j m i

U U

U U

U U

U U

U U

U U

U U

U U

U U

   

   

   

   

   

   

   

   

   



















  

This has one consequence: equation (4.3) is not unique. Because, for example, while the 

11-th sub PPC component of the 13-th secondary PPC is not equal to the 11-th sub PPC 

of the 20-th secondary PPC, any 11-th sub PPC is spanned by the same set of sub LR 

images (of the secondary set). Similarly, while the 19-th sub PPC component of the first 

primary PPC is not equal to the 19-th sub PPC of the 7-th primary PPC, any 19-th sub 

PPC is spanned by the same set of sub LR images (of the primary set). Namely, we have 

to solve the same equation 

(4.15) 19 11 ,S
n mD Yx D Y x   

regardless of whether our goal is to estimate the 13-th,  14-th,  15-th,  18-th,  19-th,  20-

th,  23-th,  24-th, or the 25-th secondary PPC, as our reference PPC. In other words, 

solving (4.15) will give us the expansion coefficients, mx , of a reference PPC, without 

knowing which one (which m) it is from among the list above. In fact, (4.3) is unique 

only for the following choices of n and m 

 (4.16)           2 2 2 2, 1, , , 1 , 1, , ,1 .n m J I J J I I J I       

For example, for I = 4, and J = 5, only the 7-th sub PPC of the first (n = 1) primary PPC 

is equal to the first sub PPC of the 25-th (m = 25) secondary PPC. 

 So which secondary PPC component (out of 2J ) should we estimate as our reference 

PPC? And using which sub PPC (out of 2I )? Should we only limit ourselves to the four 

possible choices (4.16) for which equation (4.3) is unique? The fact is these four choices 
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do not necessarily give the best estimation of a reference PPC. The procedure for 

estimating the reference PPC, and determining which secondary PPC it is, is as follows. 

  Pick m = m*, which is the middle value between 1 and 2J . For example, initially 

assume that we are estimating the 13-th (m* =13) secondary PPC out of 25 (J = 5). 

 Find 2I different estimates of the reference PPC (the m*-th secondary PPC) based 

on all 2I  possible sub PPCs ( 21,...,n I ). In other words, solve (4.3) 2I times for a 

fixed m*. 

 Since a PPC is expected to have large high frequency components, due to aliasing, 

we pick n = n*, for which the estimated reference PPC has significant energy 

content in the high frequency band, relative to its total energy, thus discarding 

smooth estimates of the reference PPC. Namely, 

 

2 2

2 2

ˆ ˆ  
* max    subject to    ,

ˆ ˆ

m mn nF F

n
m mn nF F

U U
n ub

U U

   
    

where ub is the upper bound6 (~1%) on the energy of the high frequency 

components of the reference PPC, relative to its the total energy, ** denotes the 2-D 

convolution, and   

(4.17) 

1 2 1
1

2 4 2
16

1 2 1

  
    
   

  

is a unity-gain differentiator (or a high pass filter).   

 Now that we have an estimated reference PPC, we find the set of values of m (and 

n) for which    *n nT m T m   and, at the same time,    *m mT n T n  , i.e.  

(4.18)                 2 2
* *, , 1,..., 1,...,  :   and  .q n mn m q I J T T m T q T n         

This gives the set of candidate values of m, from which we find the most suitable 

one to be assigned to the estimated reference PPC as described below.   

_____________________________ 
6 Recall that we solve (4.3) by solving (4.14) where the decision, as to which pair of vectors in the 

feature subspace are closest to each other, is mainly determined by the low order PCs, and that the decision 
is independent of the mean. Therefore, depending on the sub data matrices, these low order PCs can bias 
the decision towards a solution with greatly emphasized high frequency contents. 
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 Using the estimated reference PPC, we estimate the HR image (by estimating its 2I  

primary PPCs) for each value of m from the set defined in (4.18). Since 

misassignment of the estimated reference PPC (assigning the wrong value of m to 

the estimated reference PPC) results in a rough HR image, we pick the value of m 

from the set (4.18) for which the reconstructed HR image has the smallest high 

frequency components  

 

2
ˆmin  ,

m Fm
u     

where ˆ
m

u  is the estimated HR image using the estimated reference PPC as being 

the m-th secondary PPC, and  is the differentiator defined in (4.17).  

 Because the same sub PPCs share the same sub LR basis, resulting in the non-

uniqueness of equation (4.3), except for choosing (n, m) according to (4.16), choosing m* 

to be in the middle, and then estimating the reference PPC 2I  times, covers 

approximately half of all the possible 2 2I J choices of the pair (n, m). For example, for I = 

4, J = 5, and m* = 13, estimating the reference PPC 16 times (for n = 1,...,16), covers 196 

(out of 400 possible) choices of the pair (n, m). See Figure 4.1 for a visualization of the 

area covered by choosing m* = 13 and estimating the reference PPC 16 times. 

 
Figure 4.1: For I = 4, J = 5, m* = 13 and n = 1,...,16, the highlighted (white) blocks represent all the pairs 
(n, m) that give the same pairs of sub data matrices given by  (n, m*). For example, the green dotted blocks 
represent the pairs (n, m) that share the same equation (4.3) corresponding to (n = 1, m* = 13). 
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4.5   An Intuitive Alternative to Estimating the Reference PPC 

 Instead of estimating the expansion coefficients of a reference PPC, in terms of the 

secondary LR basis, by solving an equation of the form, 1 1 2 2 ,A x A x we describe below 

how to choose a single secondary LR image as our reference PPC. In other words, since 

the LR images and the PPCs are highly correlated, then why not pretend that one of the 

available secondary LR images can pass for one of the secondary PPCs? There is one 

limitation to this idea: except for the case of perfectly pure translational motion, a LR 

image is normally a mixture of PPCs7. However, loosely speaking, a LR image can be 

viewed as a blurred version of one of the PPCs. Thus the super-resolved image will be (at 

least) as biased (blurred) as the secondary LR image, we pick as our reference PPC. We 

describe below a simple two-step procedure for choosing a reference PPC from among 

the secondary LR set, and for determining which secondary PPC it is. 

 Since a PPC is expected to have large high frequency components, after normalizing 

the LR images to have the same energy, we pick the secondary LR image that has 

the largest high frequency components. In addition, since secondary LR images that 

are farthest from the (downsized) mean of the primary LR set, ,P
d are the least 

relevant to the reconstruction of the primary PPCs of the HR image (refer to §3.4.2), 

we make sure that we do not pick an ‘outlier’ secondary LR image. For choosing the 

‘best’ secondary LR image as our reference PPC, we use  

(4.19) 

2
 

max ,

S
k F

S Pk
k d

y

y 

 


  

where   is the differentiator defined in (4.17), and S
ky  is the k-th secondary LR 

image. 

 Using the chosen secondary LR image (4.19), we determine which of the secondary 

PPCs it best represents (determine the most suitable m) by estimating the HR image 

for 21,..., .m J  Then we assign, to the chosen LR image, the value of m, for which 

the reconstructed HR image is the smoothest, i.e.  

_____________________________ 
7 In fact, even for the case of pure translational motions, a LR image is blurred because of the CCD 

averaging effect as shall be explained in chapter V. 
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2
ˆmin  ,

m Fm
u     

where ˆ
m

u  is the estimated HR image using the chosen secondary LR image as 

being the m-th secondary PPC. 

This simple method is expected to outperform estimating the reference PPC if there is at 

least one secondary LR frame that is sharper than an estimated reference PPC. This is 

almost always guaranteed for the case of pure translational motion.  

The Effect of Outliers 

 When there are outlier images, estimating the reference PPC is greatly affected as it 

involves solving an equation of the form, 1 1 2 2 ,A x A x and thus outlier elements can be 

on both sides of the equation. In §3.4.2 we described a simple method to get rid of 

outliers from both the secondary and the primary sets of LR images, for better PCA pre-

denoising. The same method can be used for a better estimation of the reference PPC in 

presence of outliers. Of course, if we choose a secondary LR image as our reference PPC, 

as described above, outliers will have no effect as their corresponding expansion 

coefficients should be zero, since the chosen secondary LR cannot be an outlier. This fact 

can be used to estimate the number of outlier primary LR images. Specifically, using a 

secondary LR image as a reference PPC, if we average the squared expansion coefficients 

of all primary PPCs in terms of the primary LR set, we can estimate the number of 

irrelevant (outlier) primary LR images by counting the number of averaged squared 

coefficients that are close to zero. The number of outlier secondary LR images will be 

also the same if the primary and secondary sensors see the same scene at the same time, 

by using a beam splitter. Otherwise, the number of outlier secondary LR images has to be 

guessed.  

 Finally, we would like to reiterate that removing outlier LR images should be 

considered only for better PCA pre-denoising performance and if we are going to 

estimate the reference PPC (rather than simply choosing the best secondary LR image as 

our reference PPC). 
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CHAPTER V 

Applications and Experimental Results 

5.1    Applications 

5.1.1    Introduction 

 Although the primary goal of multiframe super-resolution (SR) is to provide a cheap 

alternative to building expensive high density imaging sensors, even the priciest 

diffraction-limited systems can still benefit from SR techniques when imaging larger 

areas. On one hand, to capture wider field-of-view (FOV) images (with the same 

resolution level) we need higher pixel density. On the other hand, larger FOV requires 

zooming out (decreasing the focal length). This results in a smaller Airy radius1 and the 

imaging system is thus no longer diffraction-limited. The empirical formula below 

explains the parameters affecting the Airy radius,  

 
1.22 ,

f

a
    

where  is the wavelength of light, f is the focal length, and a is the diameter of the 

aperture. This means that any imaging system can benefit from the resolution 

enhancement2 via (signal processing) SR methods, at least when imaging wide areas. 

 In the following sections, we discuss some of the applications where our proposed SR 

method can be implemented. 

_____________________________ 
1 The Airy radius is the smallest resolvable distance between two point objects. The larger the 

diffraction of light, the larger the radius.   
2 When the sensor has a pixel density of 2 pixels per Airy radius, the sensor is said to be diffraction-

limited which means that higher pixel densities cannot enhance the resolution.  
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5.1.2    The Case of Approximately Pure Translations 

 In some applications, the relative scene motion can be modeled as pure translations. 

For example, a video camera recording a video sequence of a static scene while moving 

with slight translations, or a scanner scanning the same document several times with 

slightly different initial points [7]. Several papers were completely devoted to treat this 

classical SR problem, for example [3-7]. Unlike previous work, our fast blind 

reconstruction method does not require registration.  

5.1.3    Super-resolution from Vibrations 

 In applications such as airborne and ground reconnaissance, robotics and machine 

vision systems, vibrations are inevitable during imaging, and despite the best mechanical 

stabilization systems, images still come out distorted by motion blur [38, 39]. Because of 

the random nature of the blur associated with vibrations, conventional motion-based SR 

methods, which are dependent on the accuracy of motion estimation, might not be a 

viable option. In particular, conventional image registration methods perform poorly 

when the blur is random (different from frame to frame). In order to mitigate the effect of 

the randomness of the motion blurs, the authors in [38] adopt the particularly 

computationally expensive method of projection onto convex sets (POCS) for image 

registration, blur estimation and SR reconstruction. Other work [45] proposes avoiding 

motion blur altogether by building a specialized jitter camera. This is done by shifting the 

video detector instantaneously and timing the shifts to occur between pixel integration 

periods. In the case of our method, the randomness of the motion blur is actually a 

desired quality and no estimation of the blur or image registration is needed, and images 

are super-resolved fast, and all for the simple hardware requirement of adding a lower 

resolution (secondary) CCD sensor. 

5.1.4    Atmospheric Turbulence  

 Ground-based astronomical imaging and satellite imaging of the Earth are two 

applications that require imaging through the atmosphere. Unfortunately, the turbulent 

nature of the imaging medium (the atmosphere), distorts the images. The distortion can 
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be modeled as convolving the image with a speckle3 PSF. The size, shape and location of 

the PSF are time-variant (different from frame to frame). In addition, in the case of wide-

area-imaging, the distortion is space-variant as well, which means that different regions, 

within the same frame, are distorted differently. This is known as anisoplanatic distortion, 

as opposed to isoplanatic distortion which is associated with a space-invariant PSF. 

Typically, all imaging through the atmosphere is subject to the anisoplanatic type of 

distortion unless the FOV is very narrow [50].  

 In short, imaging through the atmosphere can be modeled as a linear shift-variant 

(LSV) transform that is different from frame to frame. This means that our method can 

benefit from these randomly transformed frames to achieve super-resolution. However, it 

is well known that atmospheric distortion can be severe for long-exposure imaging (few 

frames per second). In addition, far-field imaging increases the severity of distortions. In 

our case, a certain amount of (time-variant) distortions is useful or in fact, necessary to 

achieve SR but according to the discussion in §2.2, large size PSFs (corresponding to 

severe blurring) require too many LR frames, and we cannot use too many LR images, 

even if we had a lot of them, since we need to keep our systems of equations 

overdetermined. Namely, only a moderate amount of atmospheric distortion can be useful 

for our method to give reasonable results. This means that the method is best suited for 

near-field, short-exposure imaging under reasonable atmospheric conditions. There are 

two applications that fit these requirements: 

- Lunar imaging4. 

- Satellite imaging of the earth.   

 In the case of lunar (and planetary) imaging at high rates of frames per second, while 

it reduces the severity of the distortions, it also lowers the SNR which makes it difficult 

to deblur these images as deblurring magnifies the noise. Stacking is a method aimed at 

preparing the images in such a way that they can be added together without increasing the 

blur while enhancing the SNR. The stacked image is then deblurred using one of the 

sharpening tools. Typically, hundreds of frames are used for stacking and the process is a 

lengthy one. While the purpose of stacking is deblurring, our goal is primarily removing 

_____________________________ 
3 Speckle PSFs have very irregular shapes. 
4 Obviously, the moon is a lot closer to Earth than any planet or star (near-field imaging) and it is a lot 

brighter which allows for much shorter exposure without the images getting too dim.   
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aliasing by increasing the pixel density. It is rather interesting to note that in the absence 

of atmospheric distortions, stacking is needless while in our case, SR is impossible.    

 When it comes to satellite imaging of objects on Earth, the distortions due to 

atmospheric turbulence are much smaller because the Earth’s surface is in contact with 

the turbulent imaging medium (the atmosphere). This is similar to when an object behind 

a diffuse glass is observed. When the object is very close to the diffuse glass it appears 

much clearer than when it is far from it. Therefore, even when the conditions of the 

atmosphere are somewhat bad, satellite imaging of objects on Earth is still expected to be 

reasonably distorted, which makes our SR method particularly well-suited and potentially 

useful for this type of application5.  

 To the best of our knowledge, no one tried to super-resolve images distorted by the 

atmosphere6. This could probably be due to the fact that the atmospheric distortion 

contains both warps and blurring elements. Blur-based methods7 are not designed to work 

with warps and motion-based techniques might fail due to the fact that the prior step of 

image registration is sensitive to the randomness of the blur from frame to frame. And 

while there are attempts to handle the case of random motion blur [38-39, 45], the case of 

super-resolution of atmospherically distorted images is not addressed before.    

5.2    Experimental Results 

 In this section we present the results we obtained from working with both synthetic 

and real data. Before we proceed, we would like to discuss the integrating effect of the 

CCD sensor. In particular, the LR images are related to the transformed 

(warped/distorted) HR images via downsampling by integration of pixels of the HR 

image. This can be modeled as an averaging PSF convolved with the transformed HR 

images followed by decimation.  

 Except for two of our experiments, we used primary LR images corresponding to 

↓4x4
 
and secondary LR images corresponding to ↓5x5. For ↓4x4, the CCD PSF was 

_____________________________ 
5 Although satellite surveillance usually uses high resolution imaging systems, for this type of 

application, being able to zoom out to cover larger areas, without aliasing, is an extremely useful feature 
that can be delivered using super-resolution.     

6 By super-resolve, we primarily mean removal of aliasing.  
7 Blur-based SR is very sensitive to model errors (for example, due to inaccurate estimates of the PSFs, 

when not known).     
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assumed to be a 4x4
 
Gaussian with variance equal to one [7, 12-14] and we used a 5x5

  
Gaussian PSF with the same variance for ↓5x5. This is reasonable since only a portion of 

the LR CCD pixel is active which means that the HR pixels (within a LR pixel) should 

not have the same integration weights. See Figure 5.1 and 5.2 for an illustration of the 

integration effect of the LR CCD arrays for ↓4x4
 
and ↓5x5, respectively. 

 For the remaining two experiments (Experiment 5 and 7), to obtain easily appreciable 

aliasing effect, the primary and secondary LR images correspond to downsampling by 

↓8x8 and ↓10x10, respectively. For ↓8x8 and ↓10x10, downsampling, the CCD PSFs we 

used were (scaled) and resized versions of the 4x4 and 5x5 Gaussian PSFs mentioned 

above, respectively. 

 Note that the CCD PSF introduces the same additional distortion to all the frames, and 

thus its effect cannot be alleviated with more LR images. Specifically, if the HR image is 

distorted by different PSFs and then by the same averaging blur, the overall effect is that 

what we solve for is a blurred version of the HR image. This is another reason why post-

processing (via unsharp masking, for example) is necessary since our method is non-

parametric and the solution cannot account for the common CCD averaging effect. In 

short, the CCD PSF is an additional source of bias, over which we have no control and 

cannot address except via post-processing.  

Bias Due the Incompleteness of the LR Basis 

 In chapter III, we discussed the bias of the super-resolved image under the assumption 

that (the noiseless version of) the LR images form a complete basis. However, the 

incompleteness of the (noiseless version) of the LR basis adds more bias to the solution. 

According to our experiments, this additional bias takes the form of both aliasing and 

blur when 

(5.1) 2,K rI   

where r is the number of LSI kernels that approximate the LSV transform, undergone by 

the HR. (r = 1 in the LSI case. Refer to §2.2.2). However, if  

(5.2) 2
1 2,rI K rL L    
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where 1 2L L  is the size of an LSI kernel and 1L I and 2L I (§2.2.1), then the bias due 

to the incompleteness of (the noiseless version of) the LR images takes the form of blur 

only.  

 In short, if the (noiseless version of) the LR set is incomplete only with respect to the 

extent of the distortions, then this will add bias in the form of blur only, which is far more 

tolerable than aliasing. The same can be said regarding estimating the reference PPC, 

which is more sensitive to the incompleteness of the basis (and errors, in general) since it 

involves solving an equation of the form, 1 1 2 2.A x A x  
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Figure 5.1: An illustration of the integration effect of the primary LR CCD array corresponding to 4 4  . 
The gray shaded areas represent the active portions of the LR pixels. The small blue squares represent the 
active portions of the pixels of the HR CCD array. 
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Figure 5.2: An illustration of the integration effect of the secondary LR CCD array corresponding to

5 5  . The gray shaded areas represent the active portions of the LR pixels. The small blue squares 
represent the active portions of the pixels of the HR CCD array. 

Miscellaneous  

  In all (but one of) these experiments, we PCA pre-denoised the data matrices, using a 

PCA matrix containing 10-30% of the eigenvectors8 of the sample covariance matrix of 

the sub LR images (§3.4). As mentioned previously, our method involves the solution of 

a few systems of linear equations where the number of unknowns is equal to the number 

of LR images. However, the PCA pre-denoising step considerably slows down9 the 

overall solution as it involves finding the eigenvectors of the sample covariance matrix. 

_____________________________ 
8 Larger number of eigenvectors must be retained when using a lot of LR images, since the number of 

retained eigenvectors must exceed the total number of LR images or else (4.14) will not have a unique 
solution.  

9 All computations were performed using MATLAB running on a 1.5 GHz Intel Core Duo CPU with 
2GB RAM. 
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We compare some of our results to those obtained by the “iterative L1” solution, 

which is an implementation of equation (22) in [14], using the software in [49]. To be 

more specific, the authors in [14] propose solving equation (2.3) with an L1-norm data-

fitting term and bilateral total variation for regularization. The two main advantages of 

their method are robustness to error (e.g. registration errors) and relative speed.  

In the following experiments, our method proved to be at most ~10 times slower than 

bicubic interpolation and at least ~20 times faster than the iterative L1 algorithm. 

Moreover, our method works without motion/blur/distortion estimation and therefore it 

has an advantage over any model-based solution.  

5.2.1    Synthetic Data Experiments 

Experiment 1: LSI PSF 

 In this experiment we used the HR image ‘Building’ and obtained a synthetic 

sequence of differently blurred HR images, of size 460x620, as follows. 16 random 5x5 

PSFs were generated using MATLAB’s rand function. These were used to distort the 

same original image resulting in 16 blurred HR images. These images were downsampled 

by ↓4x4
 
and ↓5x5 to obtain the primary and secondary sets of LR images, respectively, 

which simulates the case where the primary and secondary sensors are placed in the same 

camera and a beam splitter is used so that both sensors see the same image at the same 

time (refer to §2.3.3 for details). Zero-mean white Gaussian noise was added at 30 dB 

SNR. 

 Recall that for this size of PSFs, in order for the primary (and secondary) LR basis to 

be complete, more than 25 frames are needed10 . However, only 16 were available, which 

adds bias (blur) to the estimation of the reference PPC and the primary PPCs (5.2). 

 Figure 5.3 (a) shows the first primary LR image, resized (↑4x4) using bicubic 

interpolation. Figure 5.3 (b) shows the super-resolved image (using an estimated 

reference PPC) after post-processing using TV, unsharp masking (UM) and median 

filtering (MD).   

_____________________________ 
10 Since we downsample by averaging according to the CCD PSF, even having more than 25 LR 

images cannot get rid of the blur due to the sensor’s integrating effect and thus post-deblurring is always 
required. 
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 The overall computation time (including pre-denoising the red and blue LR images) 

was 14.5 seconds (of which 4.66 seconds was for post-processing). Bicubic interpolation 

took 2.89 seconds.  

Experiment 2: LSV PSF 

 In order to simulate a LSV PSF, we divided the HR ‘Building’ image into 8 

subregions, and applied a randomly generated LSI PSF of size 4 4 in each one of these 

subregions. We repeated this process 100 times, to obtain 100 HR images, each distorted 

with a randomly generated LSV PSF. These images were downsampled by ↓4x4
 
and 

↓5x5 to obtain the primary and secondary sets of LR images, respectively, and noise was 

added at SNR of 30 dB. 

 Since each LSV PSF is a set of 8 LSI PSFs, in order for the LR basis to be complete, 

we need at least11 8  16  = 128 LR images, of which we only have 100.  

 The first primary LR image was resized (↑4x4) using bicubic interpolation and is 

shown in Figure 5.4 (a). Figure 5.4 (b) shows the super-resolved image, after post-

processing (TV+UM+MD), which was computed in 28.1 seconds. Note that the 

computation time is greater in this case because the number of LR images (and the thus 

the number of expansion coefficients we solve for) has increased from 16, in the previous 

example, to 100. More importantly, pre-denoising so many LR images (including the red 

and blue images), adds significantly to the computational load. 

 When we used smaller number of LR images (e.g. 50), the reconstructed image (not 

shown) had some regions that were super-resolved, while other regions were blocky 

(aliased). This, again, emphasizes the chief strength of our method in that it is not model-

based and therefore despite violating the assumption of completeness of the LR basis, the 

HR image was, nevertheless, partially reconstructed.  

_____________________________ 
11 Again, since we downsample by averaging according to the CCD PSF, the super-resolved image will 

always be blurred and post-processing is needed at least to address the CCD blurring effect. 
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(a) Bicubic interpolation. Comp. time = 2.89 sec. 

(b) Blind SR + post-processed (TV+UM+MD). Comp. time = 14.5 sec. 

Figure 5.3: LSI PSF. (# of LRs = 16).  
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(a) Bicubic interpolation. Comp. time = 2.83 sec. 

(b) Blind SR + post-processed (TV+UM+MD). Comp. time = 28.1 sec. 

Figure 5.4: LSV PSF. (# of LRs = 100). 
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5.2.2    Real Data Experiments  

 Since we do not have cameras with two different12 density sensors, we used real-world 

distorted HR image sequences and then downsampled them (by integrating the HR 

pixels) to get the two sets of primary and secondary LR images. In other words, in these 

experiments, the only simulated part of the degradation process is the downsampling. 

 For Experiments 3, 4, and 6, all the images were captured using the same camera, 

SONY Cyber-shot DSC-L1. For Experiment 5, Canon EOS DIGITAL REBEL XT was 

used.  

Experiment 3: Approximately Pure Translations  

 The HR test sequence of images used for this experiment was obtained using a hand-

held camera taking multiple monochromatic shots, of size 480 640, of the same scene13, 

“Outdoors”. However, the camera moved slightly every time a picture was taken, thus 

approximating the pure translations case. A total of 108 shots were taken. The first half of 

these images were downsampled by↓5x5 and the other half was downsampled by↓4x4, 

producing the secondary and primary sets of LR images, respectively. This simulates the 

case where the two sensors are either placed in two different cameras or in the same 

camera, using a fully reflective mirror positioned in the optical path for half of the 

imaging time (refer to the discussion in §2.3.3).  

 We used only 35 primary LR images that are closest to the mean. Similarly, only 35 

secondary LR images that are closest to the (resized) mean of the primary set were kept 

(§3.4.2). Then we pre-denoised these images using PCA. The HR image was 

reconstructed using the 35 primary LR set as a basis for its primary PPCs, and for a 

reference PPC, we used a single secondary LR image, chosen according to the procedure 

described in §4.5.  

 As noted in chapter IV, choosing a single secondary LR image for our reference PPC 

is expected to give better results, in the case of approximately pure translations, than 

estimating the reference PPC. This is because the translational motion does not cause any 

_____________________________ 
12 The different densities should correspond to downsampling factors that are relatively prime (or more 

usefully, consecutive integers.) 
13 This was a page from the AAA Living magazine, May/June 2005 issue. 
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blur. We used UM for post-processing mainly to reduce the blur due to CCD averaging 

effect.     

 Figure 5.5 (a) shows the main portion of the first primary LR image, resized (↑4x4) 

using bicubic interpolation. Figure 5.5 (b) shows the main portion of the super-resolved 

image after post-processing (UM+MD). It took 1.03 seconds to perform the bicubic 

interpolation while the super-resolved image was computed in only 10.88 seconds14. 

 Figure 5.6 (a), (c) and Figure 5.7 (a), (c) show two different detail areas of the images 

shown in Figure 5.5.  

 Finally, for comparison, we reconstructed the HR image using the iterative L1 method 

[14, 49]. This took about 4 minutes (using 40 iterations, 0.001 regularization factor, and 

the shift & add image for the initial guess). The same two detail areas (of the dog’s face 

and text) are shown in Figure 5.6 (b) and Figure 5.7 (b), respectively. Comparing Figure 

5.6 (b) to Figure 5.6 (c), we notice that our method outperforms the iterative L1 method. 

However, by examining Figure 5.7 (b) and Figure 5.7 (c), we observe that the iterative 

L1’s result is better. In other words, the two methods have an overall comparable 

performance when it comes to this experiment (although the blind SR method is much 

faster). 

 

 

 

_____________________________ 
14 We note here that there was virtually no need for pre-denoising, but we pre-denoised to learn how 

much time this would cost for this experiment.   
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(a) Bicubic interpolation. Comp. time = 1.03 sec. 

 
(b) Blind SR + post-processed (UM+MD). Comp. time = 10.88 sec. 

Figure 5.5: Approximately pure translations. (# of LRs = 35).  
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(a) Bicubic interpolation. (b) Iterative L1. 

 

(c) Blind SR + post-processed (UM+MD). 

Figure 5.6: Approximately pure translations. Details: dog’s face. (# of LRs = 35). 
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(a) Bicubic interpolation. 

 

 

(b) Iterative L1. 

 

(c) Blind SR + post-processed (UM+MD). 

Figure 5.7: Approximately pure translations. Details: text. (# of LRs = 35). 

Experiment 4: Approximately Pure Translations—Video  

 In this experiment we used a video of a HR static scene, “Watch”, of size 480 640, 

displayed on a laptop screen. The video’s temporal resolution was 30 frames/second. The 

video contained periodic streaks which normally result from very close-range shooting of 

an LCD screen. The camera was slightly moving while recording. This approximately 

corresponds to the pure translational motion case. 

 We downsampled the first frame by ↓5x5 and used it as our reference PPC. Then, we 

downsampled every other frame in the next 100 frames by ↓4x4, of which we kept only 

30 frames that are closest to the mean. In other words, we used only 30 frames, which we 

pre-denoised using PCA and then used as our primary LR basis set. The super-resolved 

image was then post-processed using TV, UM and MD.  

 Figure 5.8 shows the main portion of the super-resolved image compared to the 

corresponding area of the bicubic interpolated (↑4x4) first primary LR frame. The 

iterative L1 result is shown in Figure 5.9, for comparison (number of iterations was 20, 

the regularization factor was 0.001 and the shift & add image was used as an initial 

guess). 
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(a) Bicubic interpolation. Comp. time = 3 sec. 

(b) Blind SR + post-processed (TV+UM+MD). Comp. time = 21.3 sec. 

Figure 5.8: Approximately pure translations—video. (# of LRs = 30). 
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Figure 5.9: Approximately pure translations—video: Iterative L1. (# of LRs = 30). 

 

Experiment 5: Random Vibrations 

 A digital camera was mounted on a tripod and placed on a vibrating table. The 

captured images, of the black and white “Michigan Seal”, were thus randomly motion-

blurred15. We used only the first 35 images. These motion-blurred images were of very 

high resolution (large number of pixels). We cropped16 them to size  960x960 and then 

downsampled them by ↓8x8  and ↓10x10  to obtain the primary and secondary sets of LR 

images of easily noticeable aliasing, respectively. Then we super-resolved to size17 

480x480.   

 Figure 5.10 (a) shows the first primary LR image, resized (↑4x4) using bicubic 

interpolation. The reference PPC was first estimated in the pixel domain, by solving 

problem (4.7) without pre-denoising. Also, we ignored denoising the expansion 

_____________________________ 
15 The vibrations were produced by continuously pounding on the table in different random locations 

while the camera was taking separate shots with a lowered shutter’s speed (exposure time = 1 second). 
16 We cropped the blank ‘wall’ space in the images. 
17 Note that given the dimensions of the primary and secondary LR images we can only super-resolve 

with a resolution gain of 4 4,   since the ratio of their dimensions is 5/4. Refer to §2.3.3. 
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coefficients as per (4.12). Due to noise magnification associated with estimating the 

expansion coefficients of the reference PPC, in the pixel domain (§4.2.2), the estimated 

reference PPC was extremely noisy which resulted in the noisy super-resolved image 

shown in Figure 5.10 (b).  

 The LR images were pre-denoised using PCA and then one of the secondary LR 

images was chosen as the reference PPC, according to the procedure in §4.5. The 

corresponding super-resolved image is shown in Figure 5.11 (a). Note that since the 

frames are motion blurred, even the best secondary LR image (that is closest to the mean) 

is slightly blurred and thus the corresponding super-resolved image is blurred as well. 

 Figure 5.11 (b) shows the super-resolved image based on an estimation of the 

reference PPC in the feature space (4.14) as described in §4.4. The result is clearly 

sharper than the super-resolved image based on a chosen secondary LR image.    

 In this experiment, there is some translational motion but most of the distortion is 

random blur. Moreover, motion estimation, because of the randomness of the blur, is 

inaccurate and thus the iterative L1 solution18 performed poorly as shown in Figure 5.12. 

This experiment serves to prove the advantage of our non-parametric approach to the 

solution of the problem of SR. 

Experiment 6: Rhythmic Vibrations 

 We obtained a color video sequence of size 480 640 70 (with temporal resolution of 

30 frames/second) of the image “Life” (a page from National Geographic magazine, 

featuring life’s diversity and DNA, May 2010 issue). The camera was placed at 

approximately 1.5 feet from the page and the zoom-in function was used so as to avoid 

empty wall space. Vibrations were produced mechanically by attaching a vibrating device 

to the table on which we placed the camera. The vibrations were rhythmic in nature 

resulting in both global motion and motion blur.  

 The 70 frames were downsampled by ↓4x4  and ↓5x5 to produce the primary and 

secondary sets of LR images, respectively. These LR images were not pre-denoised19 and 

the reference PPC was taken to be one of the secondary LR images.  

_____________________________ 
18 Number of iterations was 20, regularization factor was 0.001, and the initial guess was the shift & 

add image.  
19 The TV post-processing could take care of the noise augmentation on its own.  
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(a) Bicubic interpolation. Comp. time = 0.83 sec. 

 
(b) Blind SR + post-processed (TV+UM+MD). Ref. PPC was estimated in the pixel domain. 

Figure 5.10: Random vibrations: estimating the ref. PPC in the pixel domain. No denoising. (# LRs = 35). 
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(a) Blind SR + post-processed (TV+UM+MD). A single sec. LR image was used as a ref. PPC. Comp. time 

= 7.22 sec. 

 
(b) Blind SR + post-processed (TV+UM+MD). Ref. PPC was estimated (in the feature subspace). 

Comp. time = 6.9 sec. 

Figure 5.11: Random vibrations: using a single sec. LR image vs. estimating the ref. PPC. (# LRs = 35). 
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Figure 5.12: Random vibrations: Iterative L1 + sharpened (UM). (# LRs = 35). 
 

 The super-resolved image was then post-processed using TV and UM20. The total 

processing time was 13.57 seconds (of which 8.6 seconds were for TV post-processing!). 

 The reason we needed more images for this experiment, despite its being 

representative of the LSI case, is the fact that the rhythmic distortions did not allow for 

much change in the captured images within a small time frame. In fact, because the 

associated blur was not very random and that there was more global motion shifts, 

compared to the previous experiment, the iterative L1 method did relatively well, 

although there were still noticeable artifacts around the edges due to registration errors 

caused by the presence of (less random) motion blur.       

 Figures 5.13-5.15 show portions of the bicubic interpolated (and sharpened) first 

primary LR image and the corresponding portions of the (sharpened) iterative L1 SR 

image21 along with the matching parts of the SR image according to our method.  

_____________________________ 
20 For this experiment we used Photoshop’s unsharp masking, as MATLAB does not provide much 

freedom with its unsharp masking tool.    
21 Number of iterations was 50, regularization factor was 0.0015, and the initial guess was the shift & 

add image.  
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Figure 5.13: Rhythmic vibrations. Details part I.  (# of LRs = 70). 
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(a) Bicubic interpolation + 
sharpened (UM). 

(b) Iterative L1 + sharpened (UM).
 

(c) Blind SR + post-processed 
(TV+UM). 

 
Figure 5.14: Rhythmic vibrations. Details part II.  (# of LRs = 70). 
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(a) Bicubic interpolation + 
sharpened (UM). 

(b) Iterative L1 + sharpened (UM).
 

(c) Blind SR + post-processed 
(TV+UM). 

 
Figure 5.15: Rhythmic vibrations. Details part III.  (# of LRs = 70). 
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  Experiment 7: Atmospheric Turbulence 

 The original high resolution AVI sequence of the Moon, used for this experiment, is 

courtesy of Dr. Joseph M. Zawodny, NASA Langley Center. It was shot in coastal22 

Virginia at angular (spatial) sampling of 0.34 arcsecond/pixel. The resolution (in terms of 

pixel density) almost met the diffraction limit at 1.7 pixels/Airy radius. The temporal 

resolution was 30 frames/second. 

 The sequence contains 1300 frames of size 768x1024, of which, we only used 100 

frames23. To obtain easily noticeable aliasing we downsampled them by ↓8x8  and 

↓10x10  to obtain the primary and secondary sets of LR images, respectively. These were 

pre-denoised using PCA.   

 The first LR image from the primary set was resized (↑4x4) using bicubic 

interpolation and then sharpened as shown in Figure 5.16 (a). Figure 5.16 (b) shows the 

sharpened24 and median filtered super-resolved image corresponding to choosing one of 

the secondary LR images as a reference PPC, which is slightly better than the super-

resolved image corresponding to estimating the reference PPC, shown in Figure 5.17 (b). 

This suggests that we should always obtain two estimates of the HR image corresponding 

to estimating the reference PPC and choosing a secondary LR image as reference PPC as 

well. Of course, the PCA pre-denoising step need not be repeated.  

 Finally, Figure 5.17 (a) shows the reconstructed HR image using the iterative L1 

method25, after sharpening. The aliasing and other artifacts are due to the fact that the 

warping effect is LSV and the motion estimation methods included in the software [49] 

can only handle the global motion case, not to mention that the randomness of the blur 

negatively affects the performance of motion estimation. 

 

 

 

_____________________________ 
22 The effect of the atmospheric turbulence is larger at lower altitudes. 
23 We appended zeros to the HR frames to have dimensions of 800x1040, which are integer multiples of 

80. Refer to the discussion related to equation (2.9).  
24 We used Photoshop’s unsharp masking, instead of MATLAB’s, for more deblurring freedom. 
25 Number of iterations was 20, regularization factor was 0.001, and the initial guess was the shift & 

add image.  
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(a) Bicubic interpolation + sharpened. Comp. time = 0.83 sec. 

(a) Blind SR + post-processed (UM+MD). A single sec. LR image was used as a ref. PPC. Comp. time = 
9.31 sec. 

Figure 5.16: Atmospheric turbulence. (# of LRs = 100). 
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(a) Iterative L1 + sharpened (UM). 

(b) Blind SR + post-processed (UM+MD). The ref. PPC was estimated. Comp. time = 10.9 sec. 

 
Figure 5.17: Atmospheric turbulence: Blind SR vs. Iterative L1. (# of LRs = 100). 
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CHAPTER VI 

Summary and Future Work 

6.1    Summary 

 Multiframe super-resolution is normally formulated as a large inverse problem where 

the degradation model parameters are assumed to be either known or reliably estimated. 

Hence, the primary objective of typical SR methods is to develop efficient and stable 

algorithms to tackle the huge size and ill-posedness of the problem. Consequently, 

robustness to model errors is characteristically a major concern and efficiency is always 

limited by the huge number of variables.   

 Instead of trying to parameterize, and then inverse the process that produced the 

degraded LR images, our SR method essentially reformulates the problem as a change of 

basis, where we postulate that the available set of LR images form a basis that can 

represent the polyphase components (PPCs) of the HR image.  

 Given the fact that the LR images and PPCs are both of the same resolution level and 

are both derived from the same signal (the HR image), this idea of the LR images 

forming a ‘LR basis’ for the PPCs seems rather intuitive. The completeness of the LR 

basis is dependent on the type (LSI vs. LSV) and extent (severity) of the distortion 

process.  

 Therefore, instead of solving for the pixels of the HR image, we estimate the 

expansion coefficients of the PPCs in terms of the LR basis, using portions (sub PPCs) of 

the PPCs. These sub PPCs are estimated using the property of sampling diversity with a 

simple hardware requirement of adding a secondary (lower resolution) sensor. 
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 In effect, our proposed method veers away from the major limitations associated with 

typical model-based solution of the SR problem. Specifically, our SR method is fast, does 

not require any estimation of the degradation process and is robust in the sense that the 

only ‘model’ we use is in fact completely accurate: portraying sub PPCs as shifted and 

decimated versions of the PPCs. And besides the trivial hardware requirement, 

completeness of the LR basis is the only key assumption we make; the invalidity of 

which has only one consequence: the PPCs will be partially reconstructed. 

 Finally, in certain applications where typical multiframe SR performs poorly (e.g. in 

the case of random vibrations), our method not only provides a much faster solution, it 

actually benefits from the random nature of distortions.    

6.2    Future Work 

 Throughout this thesis, the noise was assumed to be uncorrelated (Gaussian). 

Although the theoretical PCA performance is independent of the data distribution, 

the empirical PCA is dependent on it. We would like to investigate other forms of 

PCA that can handle cases of correlated error and Laplacian noise. In addition, the 

post-processing step can benefit from more complex techniques, other than the 

simple unsharp masking, for example.   

 In the case of color images, we assumed that the primary LR images are obtained 

using 3 CCD sensors. The Bayer filter is needed when only a single CCD sensor is 

used to capture the primary LR images, causing color artifacts. The effects (of using 

a Bayer filter) on the performance of our blind SR method, are yet to be addressed 

in future research.  

 Using real-world distorted HR sequences of images, we obtained LR images by 

averaging the HR pixels to simulate the CCD integrating effect. Although very 

accurate, we would still like to avoid simulating the downsampling process. In the 

future, we would like to have a prototype camera built with a secondary imaging 

sensor as described in chapter II. Having a successful SR method with results based 

on 100% real data degradation process, including downsampling, can sway the 

industry towards building cameras with an additional (lower resolution) sensor since 

this will be beneficial even beyond the cost reduction resulting from avoiding using 
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larger (or denser) imaging chips, as there are always physical limits that can only be 

beaten using super-resolution techniques. 

 A special application of interest is satellite imaging of the Earth. Driven by the 

success of our experiment involving super-resolving lunar images corrupted with 

random atmospheric distortion, we would like to pay special attention to super-

resolving satellite images, which are also affected (to a lesser degree) by the 

atmosphere.  

 Can we extend our method to handle the case of dynamic SR? We believe the 

answer could be yes, depending on the temporal resolution of the video sequence. 

To be more specific, we could use each secondary frame as a reference PPC, thus 

obtaining a sequence of SR images that are, in essence, HR versions of the 

secondary LR images. This, however, would probably require a temporal resolution 

high enough for a valid assumption of the rigidity of the scene within reasonably 

short time windows.  

 An active field of research is learning-based super-resolution, where SR methods 

are designed to reconstruct a HR image from a single LR frame. The success of the 

reconstruction process is heavily dependent on the training set of images carefully 

chosen to be within the same class of the HR image. The best example of this is face 

hallucination [35, 36], where a HR face image can be reconstructed from its LR 

version, given a database of HR face images. As a future research direction, it is 

interesting to investigate whether such methods might benefit from the idea of 

applying the property of sampling diversity, where the single (distortion-free) LR 

frame plays the role of the reference PPC. In other words, instead of estimating the 

HR image directly from the LR image, estimating the PPCs using the LR image as a 

reference PPC, might be advantageous since signals at lower resolutions have more 

in common. That is to say, it might be easier to train a basis to reconstruct low 

resolution signals (PPCs) and as such, the sampling diversity idea could be extended 

to single frame SR and without the additional requirement of a secondary sensor. 

   

 



 

  95 

BIBLIOGRAPHY 

  



 

  96 

BIBLIOGRAPHY 

 

[1] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: A 
technical overview,” IEEE SP Magazine, pp. 21-36, 2003. 

 
[2] S. Chaudhuri, Ed., Super-Resolution Imaging, Kluwer, Norwell, MA, 2001. 
 
[3] T. S. Huang and R. Y. Tsai, “Multi-frame image restoration and registration,” 

Advances in Computer Vision and Image Process., vol. 1, pp. 317-339, 1984. 
 
[4] S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high 

resolution image from noisy undersampled multiframes,” IEEE Trans. ASSP, vol. 
38 , pp. 1013-1027, 1990. 

 
[5] S. P. Kim and W. Y. Su, “Recursive high-resolution reconstruction of blurred 

multiframe images,” IEEE Trans. IP, vol. 2, pp. 534-539, 1993. 
 
[6] S. H. Rhee and M. G. Kang, “Discrete cosine transform based regularized high-

resolution image reconstruction algorithm,” Opt. Eng., vol. 38, no.8, pp. 1348-1356, 
1999. 

 
[7] M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure 

translational motion and common space-invariant blur,” IEEE Trans. IP, vol. 10, pp. 
1187-1193, 2001. 

 
[8] M. Elad and A. Feuer, “Reconstruction of a single super-resolution image from 

several blurred, noisy, and undersampled measured images,” IEEE Trans. IP, vol. 6, 
pp. 1646-1658, 1997. 

 
[9] D. Rajan and S. Chaudhuri, “Generation of super-resolution images from blurred 

observations using an MRF model,” J. Math. Imaging Vision, vol. 16, pp. 5-15, 
2002. 

 
[10] D. Rajan and S. Chaudhuri, “Simultaneous estimation of super-resolved intensity 

and depth maps from low resolution defocused observations of a scene,” in Proc. 
IEEE Int. Conf. Computer Vision, Vancouver, Canada, 2001, pp. 113-118. 

 



 

  97 

[11] S. Chaudhuri and J. Manjunath, Motion-free super-resolution, Springer-Verlag, 
New York, 2005.  

 
[12] N. Nguyen, P. Milanfar, and G. Golub, “A computationally efficient superresolution 

image reconstruction algorithm,” IEEE Trans. IP, vol. 10, pp. 573-583, 2001. 
 
[13] N. Nguyen, P. Milanfar, and G. Golub, “Efficient generalized cross-validation with 

applications to parametric image restoration and resolution enhancement,” IEEE 
Trans. IP, vol. 10, pp. 1299-1308, 2001. 

 
[14] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe 

super resolution,” IEEE Trans. IP, vol. 13, pp. 1327-1344, 2004. 
 
[15] R. R. Shultz, and R. L. Stevenson, “A Bayesian approach to image expansion for 

improved definition,” IEEE Trans. IP, vol. 3, pp. 233-242, 1994. 
 
[16] H. Stark and P. Oskoui, “High resolution image recovery from image plane arrays, 

using convex projections,” J. Opt. Soc. Amer. A, vol. 6, pp. 1715-1726, 1989. 
 
[17] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: 

Graphical Models and Image Proc., vol 53, pp. 231-239, 1991.  
 
[18] J. L. Barron, D. J. Fleet, and S. Beauchemain, “performance of optical flow 

techniques,” Int. J. Comput. Vision, vol. 12, pp. 43-77, 1994.  
 
[19] L. Brown, “A survey of image registration techniques,” ACM Comput. Surv., vol. 

24, pp. 325-376, 1992.    
 
[20] R. L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, 

Kluwer, New York, NY, 1991.    
 
[21] G. Harikumar, and Y. Bresler, “Perfect blind restoration of images blurred by 

multiple filters: Theory and effecient algorithms,” IEEE Trans. IP, vol. 8, pp. 202-
219, 1999. 

 
[22] G. H. Golub and C. F. Van Loan, Matrix Computations: Third Edition, Johns 

Hopkins University Press, Baltimore, MD, 1996. 
 
[23] S. Van Huffel and J. Vanderwalle, The Total Least Squares Problem—

Computational Aspects and Analysis, SIAM, Philadelphia, PA, 1991.  
 
[24] R. D. Fierro, G. H. Golub, P. C. Hansen and D. P. O’Leary, “Regularization by 

truncated total least squares,” SIAM J. Sci. Comput., vol. 18, pp. 1223-1241, 1997. 
 
[25] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 

PA, 2002. 



 

  98 

[26] R. C. Thompson, “Principal submatrices IX: interlacing inequalities for singular 
values of submatrices,” Linear Algebra Appl., vol. 5, pp. 1-12, 1972. 

 
[27] G. H. Golub, P. C. Hansen and D. P. O’Leary, “Tikhonov regularization and total 

least squares,” SIAM J. Matrix Anal. Appl., vol. 21, pp. 185-194, 1999. 
 

[28] G. H. Costa and J. C. M. Bermudez, “Are registration errors always bad for super-
resolution?” ICASSP, vol.1, pp. 569-572, 2007. 

 
[29] R. Tibshirani, “Regression shrinkage and selection via the LASSO,” Journal of 

Royal Statistical Society, vol. 58, pp. 267-288, 1996. 
 

[30] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, 
Prentice Hall PTR, Upper Saddle River, NJ, 1993. 

 
[31] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 

New York, NY, 2004. 
 

[32] I. T. Jolliffe, Principal Component Analysis, Second Edition, Springer-Verlag, New 
York, NY, 2002. 

 
[33] I. Markovsky and S. Van Huffel, “Overview of total least-squares methods,” Signal 

Processing, vol. 87, pp. 2283-2302, 2007.    
 

[34] P. D. Wirawan and H. Maitre, “Multi-channel high resolution blind image 
restoration,” ICASSP, vol. 6, pp. 3229-3232, 1999. 

 
[35] J. Yang, H. Tang, Y. Ma, and T. Huang, “Face hallucination via sparse coding,” 

ICIP, pp. 1264-1267, 2008. 
 

[36] B. G. V. Kumar and R. Aravind, “A 2D model for face superresolution,” ICPR, pp. 
1-4, 2008. 

 
[37] J. Yang, J. Wright, Y. Ma, and T. Huang, “Image super-resolution as sparse 

representation of raw image patches,” CVPR, pp. 1-8, 2008.      
 

[38] A. Stern, Y. Porat, A. Ben-Dor, and N. S. Kopeika, “Enhanced-resolution image 
restoration from a sequence of low-frequency vibrated images by use of convex 
projections,” Applied Optics, vol. 40, pp. 4706-4715, 2001. 
 

[39] A. Stern, E. Kempner, A. Shukrun, and N. S. Kopeika, “Restoration and resolution 
enhancement of a single image from a vibration-distorted image sequence,” Opt. 
Eng, vol. 39, pp. 2451-2457, 2000. 

 
[40] Z. Zalevsky and D. Mendlovic, Optical Superresolution, Springer-Verlag, New 

York, 2005.  



 

  99 

 
[41] K. A. Parulski, L. J. D’Luna, B. L. Benamati, and P. R. Shelley, “High performance 

digital color video camera,” J. Electron. Imaging, vol. 1, pp. 35–45, 1992. 
 

[42] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super resolution,” CVPR, vol. 1, pp. 
645–650, 2001. 

 
[43] B. C. Tom and A. K. Katsaggelos, “Reconstruction of a high-resolution image by 

simultaneous registration, restoration, and interpolation of low-resolution images,” 
ICIP, vol. 2, pp. 539-542, 1995. 
 

[44] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP registration and high-
resolution image estimation using a sequence of undersampled images,” IEEE 
Trans. IP, vol. 6, pp. 1621-1633, 1997. 
 

[45] M. Ben-Ezra, A. Zomet, and S. Nayar, “Video super-resolution using controlled 
subpixel detector shifts,” IEEE Trans. PAMI, vol. 27, pp. 977–987, 2005. 
 

[46] N. R. Shah and A. Zakhor, “Resolution enhancement of color video sequences,” 
IEEE Trans. IP, vol. 8, pp. 879–885, June 1999. 
 

[47] B. C. Tom and A. Katsaggelos, “Resolution enhancement of monochrome and color 
video using motion compensation,” IEEE Trans. IP, vol. 10, pp. 278–287, 2001. 
 

[48] S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution 
of color images,” IEEE Trans. IP., vol. 15, pp. 141–159, 2006. 
 

[49] S. Farsiu, D. Robinson, and P. Milanfar, Resolution Enhancement Software. 
http://users.soe.ucsc.edu/~milanfar/software/superresolution.html 
 

[50] M. C. Roggemann, and B. Welsh, Imaging Through Turbulence, CRC Press, Boca 
Raton, Florida, 1996. 
 

[51] R. Paxman, T. Schulz, and J. Fienup, “Joint estimation of object and aberrations by 
using phase diversity,” J. Opt. Soc. Amer. A, vol. 9, pp. 1072–1085, 1992. 
 

[52] R. Kindermann and J. L. Snell, Markov Random Fields and Their Applications, 
American Math. Soc., Providence, RI, 1980. 
 

[53] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal 
algorithms,” Physica D, vol. 60, pp. 259–268, 1992. 

 
[54] C. Vogel and M. Oman, “Fast, robust total variation based reconstruction of noisy, 

blurred images,” IEEE Trans. IP, vol. 7, pp. 813–824, 1998. 
 
 



 

  100 

[55] S. Mika, B. Schölkopf, A.J. Smola, K. R. Müller, M. Scholz, and G. Rätsch, “Kernel 
PCA and De-Noising in Feature Spaces,” Advances in Neural Information 
Processing Systems II, M. S. Kearns, S. A. Solla, and D. A. Cohn, eds., pp. 536-542, 
MIT Press, Cambridge, MA, 1999. 
 

[56] N. A. Campbell, “Robust procedure in multivariate analysis 1: Robust covariance 
estimation,” Applied Statistics, vol. 29, pp. 231-237, 1980. 
 

[57] P. Rousseeuw and K. Van Driessen, “A fast algorithm for the Minimum Covariance 
Determinant estimator,” Technometrics, vol. 41, pp. 212–223, 1999. 
 

[58] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming 
(web page and software). http://stanford.edu/~boyd/cvx, June 2009. 
 

[59] M. Grant and S. Boyd,  “Graph implementations for nonsmooth convex programs,” 
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), V. Blondel, 
S. Boyd, and H. Kimura, editors, pp. 95-110, Lecture Notes in Control and 
Information Sciences, Springer, 2008. http://stanford.edu/~boyd/graph_dcp.html. 
 

[60] K. C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3 -- a Matlab software package 
for semidefinite programming,” Optimization Methods and Software, vol. 11, pp. 
545-581, 1999. 
 

[61] R. H. Tutuncu, K. C. Toh, and M.J. Todd, “Solving semidefinite-quadratic-linear 
programs using SDPT3,” Mathematical Programming Ser. B, vol. 95, pp. 189-217, 
2003. 
 

[62] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for principal 
component analysis,” SIAM J. Matrix Anal. Appl., vol. 31, pp. 1100-1124, 2009. 
 

[63] A. Chambolle, “An algorithm for total variation minimization and applications,” J. 
Math. Imaging and Vision, vol. 20, pp. 89-97, 2004. 
 

[64] X. Bresson and T. F. Chan, “Fast minimization of the vectorial total variation norm 
and applications to color image processing,” CAM Report 07-25. 
 

[65] G. Gilboa, N. Sochen, and Y. Y. Zeevi, “Variational denoising of partly textured 
images by spatially varying constraints,” IEEE Trans. IP, vol. 15, pp. 2281-2289, 
2006. 
 

[66] A. Chambolle and P. L. Lions, “Image recovery via total variation-based 
restoration,” SIAM J. Sci. Comput., Vol. 20, pp. 1964-1977, 1999. 
 

[67] T. F. Chan and S. Esedoglu, “Aspects of total variation regularized L1 function 
approximation,” UCLA CAM Report 04-07, 2004. 



 

  101 

[68]  T. Le, R. Chartrand and T. Asaki, “A variational approach to constructing images 
corrupted by poisson noise," J. Math. Imaging and Vision, vol. 27, pp. 257-263, 
2007. 
 

[69] N. Kwak, “Principal component analysis based on L1-norm maximization,” IEEE 
Trans. PAMI, vol. 30, pp. 1672-1680, 2008. 
 

[70] P. D. Wentzell, D. T. Andrews, D. C. Hamilton, K. Faber, and B. R. Kowalski, 
“Maximum likelihood principal component analysis,” J. Chemometrics, vol. 11, pp. 
339–366, 1997. 
 

[71] M. Schuermans, I. Markovsky, P. Wentzell, and S. Van Huffel, “On the equivalence 
between total least squares and maximum likelihood PCA,” Anal. Chim. Acta, vol. 
544, pp. 254–267, 2005. 
 

[72] J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, 
Englewood Cliffs, NJ, 1990. 
 

[73] M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image 
registration and high-resolution reconstruction using multiple translationally shifted 
aliased video frames,” IEEE Trans. IM, vol. 49, pp. 915-923, 2000. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


