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2-D Fourier Transform

 Images are 2-D functions of intensity.

 Fourier Transform analyzes image in frequency domain.

Low Frequency 
(Smoothness)

High Frequency 
(Detail)

Low Intensity
(Clear)

High Intensity
(Dense)

Head: www.lumen.luc.edu/lumen
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 Given continuous image 

with 2-D Fourier Transform with wavenumbers k1,k2 *

 Assume image is spatially bandlimited to wavenumber 

 Sampled image  

with 2-D Discrete-Time Fourier Transform (DTFT) **

is now 2-D periodic in wavenumber.

Sampling Continuous-Space Images
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* Also known as the Continuous-Space Fourier Transform (CSFT).  ** Also known as the Discrete-Space Fourier Transform (DSFT).
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 Given some N values of the 2-D Discrete-Time Fourier 
Transform 

reconstruct its M M image

 Why not use inverse 2-D Discrete Fourier Transform (DFT)?

• Only some 2-D DTFT values are known on 2-D rectangular grid.

Problem Statement
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 Ground area is imaged from radar signals at many angles.

 2-D DTFT is known on arcs.

Spotlight-Mode Synthetic Aperture Radar (SAR)

SAR Side View: www.ccrs.nrcan.gc.ca, SAR Image: www.sandia.gov/radar
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 Microscope transmits electrons through cells on slides.

 2-D DTFT is known on only some slices.

Limited-Angle Tomography (LAT)

Microscope: www.electronmicroscopy.nl, Slide: Sandberg, J Struct Bio, 144 (2003) 61-72, Pneumonia Cell: www-db.embl.de/jss/EmblGroupsOrg/g_247.html
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 Filter is designed with a prescribed frequency response.

 2-D DTFT is known on passband and stopband contours.

2-D Filter Design
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 Body is imaged from induced oscillating magnetic fields.

 2-D DTFT is known on spiral trajectory.

Spiral Scan Magnetic Resonance Imaging (MRI)

Machine: www.e-radiography.net, Coils: www.med.yale.edu/intmed/cardio/imaging,  Image: www.lumen.luc.edu/lumen
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 Body is imaged from rotating fan-beam x-ray projections. 

 After rebinning, 2-D DTFT is known on slices over 360.

Computed Tomography (CT)

Machine: www.e-radiography.net, XRay: www.imaginis.com,  Image: www.lumen.luc.edu/lumen
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 Filtered back-projection only approximates (but still good).

Filtered Back-Projection (FBP)
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 Interpolate frequency values over whole grid from slices, 
then take inverse 2-D Fourier transform.

 But once again this is still an approximation.  Is there an 
exact solution?

• Yes

Direct Fourier Inversion (Gridding)

Projection Slice 
Theorem

Interpolation Inverse Fourier 
Transform

Head: www.lumen.luc.edu/lumen
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 Why not solve as large system of linear equations?

• This is an exact solution, but uniqueness (how many sufficient 
frequencies), conditioning (stability), determined by frequency 
locations and algorithm choice, are unclear in 2-D.

System of Linear Equations
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 How many 1-D DTFT values are sufficient to ensure that a 
1-D signal is uniquely determined?

• Just M (support size).

 How many 2-D DTFT values

are sufficient to ensure that the M ×M image

is uniquely determined?

• In some cases, more than M 2.

Uniqueness
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 On what set of projection angles should data be collected?

• One that leads to the least amount of noise in the solution.

Conditioning

Head: www.lumen.luc.edu/lumen

Projection Slice 
Theorem

Solve by System of 
Linear Equations

?
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 Sensitivity of the solution to perturbations in the data.

• Noise in the frequency data is amplified in reconstructed image.

• Condition number of system matrix determines noise amplification.

• Conditioning depends on frequency locations in system matrix.

Conditioning

Noise
δ

  bxA )(

Freq. Data
b

Freq. Config.
“A-1”

Amp. Noise
ε

Solution
x

Noisy Sol‟n
x+ε

Head: www.lumen.luc.edu/lumen
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1. Cost Function: “What are we solving?”

• Minimize: Cost function = Data-fit term + Regularization term *

• How many data samples? (uniqueness)

 Square or “just-determined” system

 Over-determined system

• How is noise handled? (conditioning)

 Regularization

 Well-conditioned frequency selection

2. Optimization Algorithm: “How do we solve it?”

• Closed-form formula

• Iterative method

• Non-iterative method

• Divide-and-conquer method

Reconstruction Method

Introduction
Problem Statement
Previous Work
My Contributions
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* Examples shown are linear least squares estimation solutions.
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 To develop a simple procedure for evaluating the relative 
conditioning of various configurations of given 2-D DTFT 
samples without having to compute the condition number 
of the system matrix.

 To develop a fast algorithm to reconstruct an image by 
performing iterative computations offline once and then 
reapplying the method in one step to any measurement 
data with the same 2-D DFT configuration.

 To develop a partitioning procedure to break up a large 
reconstruction problem in to many smaller ones to reduce 
computation time or memory usage, or when a partial
reconstruction is sufficient.

Goals

Introduction
Problem Statement
Previous Work
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 Uniqueness

• 2-D DTFT on lines [Zakhor ‟90, Zakhor ‟92]

• Unwrapping to 1-D [Bresler ‟96, Yagle ‟00]

 Reconstruction

• Projection onto Convex Sets [Youla ‟82]

• Solve band-limited lexicographic 2-D system [Strohmer ‟97]

• Non-uniform FFT interpolation [Fessler ‟03]

 Sparsifiable Image Model [Candes „06, Gilbert „06]

• Requires random frequency locations

• Requires linear programming or orthogonal matching pursuit

• Outside scope of problem considered in this thesis

Previous Work

Introduction
Problem Statement
Previous Work
My Contributions
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 Conditioning

1. Computed closed-form expression for condition number and its 
upper bound of a just-determined problem using the Lagrange 
interpolation formula.

2. Developed the variance measure as an accurate and fast 
estimate of conditioning not restricted to the just-determined 
case.

3. Implemented simulated annealing with the variance sensitivity 
measure as the objective function in order to find well-
conditioned frequency configurations.

4. Developed 45° rotated image support Kronecker substitution 
reconstruction method with a unique 2-D to 1-D mapping for 
which the system matrix is smaller to solve.

5. Showed non-rectangular regular 2-D DTFT configuration that is 
perfectly conditioned when unwrapped to 1-D.

My Contributions
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 Algorithms

6. Introduced fast non-iterative DFT-based image reconstruction 
algorithm that deconvolves a precomputed filter from filtered  
data using just three 2-D DFTs.

7. Precomputed the filter using a finite-support constraint but which 
converges faster than POCS based on the dual of band-limited 
image interpolation.

8. Introduced a divide-and-conquer image reconstruction method 
using subband decomposition using Gabor filters.

9. Presented results of varying the amount of regularization or the 
over-determining factor for each subproblem separately with 
decreased error or computation time.

10. Applied presented reconstruction methods to actual CT sinogram 
data, provided by Adam M. Alessio of Univ. of Washington by the 
way of Jeffrey A. Fessler of Univ. of Michigan.

My Contributions
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My Contributions
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 Kronecker substitute 

in 2-D z-transform of 45° rotated support image

 2-D DTFT samples constrained on 2-D periodic line

where they now map to 1-D

 Solved 1-D signal is wrapped back to 2-D with index

Unwrapping from 2-D to 1-D

Rotated Support Image

2-D DTFT Samples on
Parallel Lines

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection 
Results
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 In 1-D, conditioning is easier to determine.

• Condition number: 

O(M3), r=1.0

• Upper bound: 

O(M2), r=0.9

• Variance measure *:

O(M),  r=0.8 **

Variance Sensitivity Measure
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2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection 
Results

* Normalized variance of distances between adjacent frequency locations measures departure from a uniform distribution.

** Sample correlation coefficient (r) between the variance measure and the condition number in the over-determined case.
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 Variance measure relatively determines if a frequency 
configuration leads to a well-conditioned system.

 How do we find such a configuration?

• Simulated annealing uses the variance measure 
as its cost function to find a global minimum, in 
the case of CT, a near-optimal angle configuration.

Frequency Selection

2-D 1-D

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results

2-D DTFT Intersections
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 M=31 band-limited diagonals intersecting with CT slices.

• The baseline uniform-angle configuration has 44 slices intersecting 
at 973 data samples and variance measure of 27.7.

• The near-optimal variable-angle configuration has 68 slices 
intersecting at 969 data samples and variance measure of 11.2.  

Frequency Configuration Example

Uniform-Angle 
Projections

Variable-Angle 
Projections

Low-Variance
DTFT Locations

High-Variance
DTFT Locations

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results
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Simulation Data Frequency Configuration

 Simulation data slices intersect 255 diagonal lines at 64,264 samples.

 Image has size M M =253253 and 1-D solution has support 32,131.

 Given 1-D DTFTs, minimize over-determined non-regularized costs: 

Uniform-Angle Configuration 
(VarMeas = 61.7)

Variable-Angle Configuration 
(VarMeas = 21.8)

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results
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Simulation Data Reconstructed Images

 Each system is solved iteratively using preconditioned conjugate 
gradient (PCG) method with convergence tolerance of 1×10-6.

Variable-Angle Reconstruction 
(RMSE = 1.22)

Uniform-Angle Reconstruction 
(RMSE = 3.91)

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results
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Simulation Data Performance

 Relative residual error versus PCG iteration

• Uniform-angle configuration requires 203 iterations.

• Variable-angle configuration requires 134 iterations.

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results
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 Actual CT sinogram data* is rebinned

• From fan beam with 820 projections over 360° and 888 detectors 

• To parallel beam with 410 projections over 180° and 889 detectors.

• A reference FBP reconstructed image is shown to the right.

Actual CT Data

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results

Fan Beam Sinogram Parallel Beam Sinogram FBP Image

* Courtesy of Adam M. Alessio of the University of Washington by the way of Jeffrey A. Fessler of the University of Michigan.
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 Actual CT data slices intersect M=255 band-limited diagonals.

• The baseline uniform-angle configuration has 355 slices intersecting at 
65,137 data samples and variance measure of 57.8.

• The near-optimal variable-angle configuration has 527 slices intersecting 
at 65,095 data samples and variance measure of 27.4.  

 Image has size 255255 and 1-D solution has support 65,025.

Actual CT Reconstructed Images

2-D to 1-D Unwrapping
Sensitivity Measure
Frequency Selection
Results

* Reference FBP image reconstructed from 128 uniform slices with 509 bins each and a non-apodized ramp filter.

FBP Image* Variable-Angle PCG ImageUniform-Angle PCG Image
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Why Non-Iterative?

 Iterative reconstructions algorithms are computationally 
expensive.

• Projection Onto Convex Sets (POCS) requires many iterations to 
converge.

• Preconditioned Conjugate Gradient (CG) method converges quicker 
but each iteration is slow.

 Solving normal equation has worse conditioning.

• The condition number of AHA is square of condition number of A, 
which amplifies noise and can require drastic regularization.

• CG iterations increases roughly with condition number even with 
help of preconditioning.

Problem
Algorithm
Filter Construction
Results
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Modified Problem Statement

 Given some values of the N N 2-D Discrete Fourier 
Transform (DFT)

reconstruct its M M image

where N >>M .

 Why not use the inverse 2-D DFT this time?

• Not all 2-D DFT values are known on the 2-D rectangular grid.
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Algorithm

 DFT-based Deconvolution using a Data Masking Filter

1. Precompute a filter with zero magnitude 
response at unknown 2-D DFT sample locations.

2. Filter known 2-D DFT samples in the frequency 
domain and set to zero elsewhere.

3. Deconvolve original image from filtered image 
y using three 2-D DFT operations where g is 
the inverse filter. †
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Deconvolution

 Noisy system model in 2-D DFT domain is

 If no noise and H (k1,k2)≠0 then

 Tikhonov regularization numerically stabilizes solution

 Regularized inverse filter is then the Wiener filter

 Deconvolution using 2-D DFTs of size L different from N
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Filter Design

 Filter Specification

• h (i1,i2)   = 0  for  N -M+1 ≤ i1, i2 ≤ N –1

• H (k1,k2) = 0  for  (k1,k2) not in the set of ΩKNOWN

 Filter Size

• h (i1,i2) unknown of size P P = (N -M+1)  (N -M+1)

• h (i1,i2) known as 0 at N 2 – P 2 points

• H (k1,k2) arbitrarily known at N 2 – P 2 points

• H (k1,k2) known as 0 at P 2 points

• Filter is unique since P 2 unknowns = P 2 equations

 Filtered Image

• y (i1,i2) = h (i1,i2)**x (i1,i2) must be N N

• Problem is over-determined by (N 2 – P 2)/M 2 ≈ 2N /M

Problem
Algorithm
Filter Construction
Results

M

N

P

N
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Filter Construction

 Projection Onto Convex Sets (POCS)

• Alternatingly projects onto the spatial domain imposing finite 
support and on the DFT domain imposing the known DFT values.

• Not much storage needed.

• Slow convergence.

 Finite-Support Regularized Conjugate Gradient (FSR)

• Finite-support constraint is implemented as regularization in the 
cost function minimally biases the solution.

• Minimizing cost function using the conjugate gradient algorithm 
has faster convergence.

• Adapted as the Fourier dual of the band-limited interpolation 
approach [Strohmer „97].

• Although iteratively computed it is done offline and just once.

Problem
Algorithm
Filter Construction
Results
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Filter Construction using Finite-Support Regularization

 Objective Function

• The objective function includes a data-fit term of only elements in 
set ΩC of missing 2-D DFT values and a regularization term 
including only elements in set ΠC of non-support spatial values

 where J is an irregular downsampling matrix, F is the 2-D DFT matrix, 
HΩc are unknown DFTs, and hΩc are non-support spatial values of 0.

• Minimizing the objective function with respect to filter solution h
leads to the regularized normal equation of the form 

 where JH is an upsampling matrix and IΩc=JΩc
HJΩc is an indicator matrix.

2
2

2

)( CCCC hhJHFhJh


 

CCCC HJFhIFIF HHH
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Filter Construction using Finite-Support Regularization

 Uniqueness

• Typically, M ×M samples of an N ×N 2-D DFT are not sufficient 
to uniquely determine a M ×M image. However it can be shown 
our added constraints where non-support spatial values are known 
combined with the sampled 2-D DFT values result in uniqueness.

 Preconditioning

• Preconditioning the system can improve the convergence rate

• One simple but effective preconditioner is to replace the masking 
diagonal matrix with a scaled identity matrix as such

 where  α = tr(IΩc) / tr(IΠc) = K /N 2 and K is the cardinality of ΩC

CC IIIFIFP H


 22)( 

CCCC HJFPhIFIFP HHH







  121 ˆ)( 
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Filter Construction using Finite-Support Regularization

 Optimization Algorithm

• As the regularization parameter λ→∞, the non-support region goes 

to 0 and we solve the transformed preconditioned normal equation

 where the P has been Cholesky decomposed.

• Conjugate Gradient (CG) is used to the solve the above, where 
each iteration only requires only two 2-D DFT operations per CG 
iteration in O(N 2log (N )).

• This final form gives the same answer as POCS, yet converges at 
the faster rate of the preconditioned CG method.

gIh

HJFIgIFIIFI CCCC

HHH

ˆˆ

ˆ)(

1

11




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Simulation Data Configuration

 Simulation data on nearest neighbor analytical spiral with 44 
revolutions and up to 512 angular samples per revolution on the DFT 
of size NxN=768x768, with conjugate symmetry.

 Image size MxM=128x128 is over-determined by 2.5.

 Filter size PxP=641x641 is over-determined by 1.3, no regularization, 
and no noise.*

Problem
Algorithm
Filter Construction
Results

Mask of 2-D DFT 
Samples

Log DFT of FSR Filter 
(Residual=2.8x10-3) 

Log DFT of POCS Filter 
(Residual=3.3x10-3) 

* Both POCS and FSR filters were generated with 250 iterations.
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Simulation Data Reconstructed Images

 Deconvolution image size LxL=844x844.

 Approximate operations of POCS * is 5.2x107 in 5 iterations, 
Deconvolution (POCS Filter) is 2.1x107, and 

Deconvolution (FSR Filter) is 2.1x107.

* POCS was stopped when RMSE was approximately that of the FSR-filtered deconvolution method and did not run to convergence.

Problem
Algorithm
Filter Construction
Results

True DFT 
and Image 
RMSE=0.0

Deconv. DFT 
and Image 
(FSR Filter) 
RMSE=13.2

Deconv. DFT 
and Image 
(POCS Filter) 
RMSE=27.4

POCS Recon. 
DFT and 
Image 
RMSE=12.9
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Simulation Data Reconstruction Performance

 RMSE versus approximate operations of reconstruction 
methods including deconvolution using over-determined 
POCS-filter and FSR-filter.

Problem
Algorithm
Filter Construction
Results
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Actual CT Medium Configuration

 Actual CT data with 369 slices fill the DFT size 
NxN=1024x1024, with zeros beyond circular band-limit.

 Image size MxM=256x256 is over-determined by 6.9.

 Filter size PxP=769x769 is over-determined by 1.0, 
regularization λ=1x10-2, and no noise. *

Mask of 2-D DFT 
Samples

Log DFT of 
Inverse Filter G

Log DFT of 
Regularized 

Inverse Filter
Log DFT of Filter 

H

Problem
Algorithm
Filter Construction
Results

* Filter took 6 minutes to precompute offline.
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Actual CT Medium Reconstructed Images

 Deconvolution image size LxL=1128x1128.

 Runtimes of POCS * is 1.4s in 3 iterations, Deconvolution
is 1.2s, and Regularized Deconvolution is 1.2s.

POCS DFT and 
Zoomed Image

Reg. Deconv. 
DFT and 
Zoomed Image

Deconv. DFT 
and Zoomed 
Image

* POCS was stopped when computation time was approximately that of the deconvolution method and did not run to convergence.

Problem
Algorithm
Filter Construction
Results
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Actual CT Noisy Reconstructed Images

 385 slices; N=1536; M=512; P=1025; L=1690; λ=1x10-2; SNR=1.6dB *

 Filter over-determined by 1.5 **; Image over-determined by 2.9.

 Runtimes of FBP is 176s, POCS is 3.0s for 3 iterations, and Regularized 
Deconvolution is 2.3s.

FBP DFT and 
Image

Reg. Deconv. 
DFT and Image

POCS DFT and 
Image

Problem
Algorithm
Filter Construction
Results

* Noise is zero-mean additive white Gaussian.  ** Filter took 13 minutes to precompute offline.
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Actual CT Large Reconstructed Images

 667 slices; N=1332; M=888; P=445; L=1465; λ=1x10-3; no noise.

 Filter over-determined by 3.7; Image over-determined by 1.3.

 Runtimes of FBP is 233s, POCS is 3.6s for 3 iterations, and Regularized 
Deconvolution is 4.7s.

FBP DFT and 
Image

Reg. Deconv. 
DFT and Image

POCS DFT and 
Image

Problem
Algorithm
Filter Construction
Results
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Overview

 Problem

 Conditioning Approach

 Non-Iterative Approach

 Divide-and-Conquer Approach

 Conclusion

Problem
Divide Step
Conquer Step
Results
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Why Divide and Conquer?

 A large problem is replaced with similar smaller problems.

• 1 image sized N=2562 solved in O(N2) takes 1 x 2564=4.3x109 ops.

• 64 subproblems each sized N=322 takes     64 x  324=6.7x107 ops.

 Each subproblem can be regularized independently, 
depending on its conditioning.

• Poorly conditioned or underdetermined subproblems (not enough 
frequency samples in that subband) can be discarded altogether, 
regularizing the overall problem.

 An unaliased low-resolution image can be reconstructed 
using the lowest-frequency subband.

• This may be sufficient for recognition in some applications.

 Problem statement is same as earlier where the image is 
reconstructed from some values of its 2-D DTFT.

Problem
Divide Step
Conquer Step
Results
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Divide Step: Gabor Logons

 Problem Formulation (Divide)

1. Divide 2D frequency plane into
subbands.

2. Construct an over-complete set of 
modified 2D discrete-time Gabor logons
truncated to ensure finite-support in time 

3. Project image onto modified Gabor logons

4. Demodulate problem to baseband

5. Downsample by k1 and k2 in each dimension.
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Conquer Step: Subband Subproblems

 Reconstruction (Conquer)

6. Solve each self-contained subproblem separately and in parallel.

7. Deconvolve each subsolution from downsampled Gabor logon 

by point-wise division in the 2-D DFT domain.

8. Combine all (2K)2 2-D DFT subbands and 

inverse 2-D DFT to compute the original image.

 Regularization

• Uniform regularization may be applied.

• Any badly conditioned subproblem can be regularized separately 
or even discarded if under-determined.

Problem
Divide Step
Conquer Step
Results
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Simulation Data Uniform Regularization

 Simulation CT data with 128 slices each with 128 bins, 
divided in to 2Kx2K=8x8 (K=3) subbands, each of size 
32x32 due to αoverlap=2.  M=128. SNR is 25.7 dB.

 Uniform regularization is λ=1x101.

 FBP RMSE=17.4 at 1.6s.  D&C RMSE=2.92 at 1.6s / sub.

Problem
Divide Step
Conquer Step
Results

Original Image and DFT D&C Image and DFTFBP Image and DFT
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 Simulation CT data same as before.  SNR is now 5.74 dB.

 Variable regularization from λ=1x101 at lowest to λ=5x101

at highest frequency subbands increasing log-linearly.

 FBP RMSE=22.3 at 1.8s. Var.D&C RMSE=13.1 at 1.5s/sub.

 D&C RMSE=13.5 (λ=1x101). D&C RMSE=16.3 (λ=5x101).

Simulation Data Variable Regularization

Problem
Divide Step
Conquer Step
Results

Original Image and DFT Var.D&C Image and DFTFBP Image and DFT
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 Actual CT data with 205 slices each with 445 bins, divided 
in to 2Kx2K=32x32 (K=5) subbands, each size 32x32 with 
αoverlap=2.  M=512.  SNR is 50.2 dB.  Uniform λ=1x100.

 Runtimes of FBP is 10s, D&C is 0.7s / subproblem solved 
by PCG and 718s total.

Actual CT Reconstructed Images

Problem
Divide Step
Conquer Step
Results

D&C Image and DFTFBP Image and DFT
Lowest-Subband 
Image and DFT
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Overview

 Problem

 Conditioning Approach

 Non-Iterative Approach

 Divide-and-Conquer Approach

 Conclusion

Contributions
Results Evaluation
Future Research
The End
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Summary of Contributions

 Conditioning

• Introduced a more efficient 45° rotated-support 2-D to 1-D 
unwrapping procedure which allows easier analysis of conditioning.

• Developed a quick O(M) and accurate (r=0.80 with κ(A) )  
sensitivity measure of the variance of distances between 1-D DTFT 
locations, based on a closed-form formula for the upper-bound on 
the Frobenius condition number of a square Vandermonde matrix.

Contributions
Results Evaluation
Future Research
The End
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▲

Summary of Contributions

 Algorithms

• Developed a fast non-iterative algorithm that deconvolves a 
precomputed data masking filter from a filtered DFT of the data 
using just three 2-D DFTs.

• Reinterpreted band-limited image interpolation as a finite-support 
regularization method for computing the data masking filter much 
faster than POCS.

• Developed a procedure to sub-divide a reconstruction problem 
using Gabor logons and subband decomposition and applied 
varying regularization to each sub-problem.

 Numerical Results

• Applied each of the conditioning, non-iterative, and divide-and-
conquer methods to actual CT sinogram data with excellent 
reconstructions.

Contributions
Results Evaluation
Future Research
The End
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Evaluation of Results

 Conditioning

• The variance measure is the only estimate of sensitivity reliable for 
the over-determined case and reduces the amount of 
regularization.

• The Kronecker substitution based wrapping methods allow DTFT 
samples to be chosen more freely on parallel lines which was more 
restrictive in the Good-Thomas unwrapping.  The helical scan FFT 
does not need a rotated support.

• Frequency selection is achieved using simulated annealing with the 
variance measure when physical system geometry restrictions 
exist. 

• In applications like magnetic resonance spectroscopic imaging 
(MRSI) or 3-D MRI where data at each x-y sample is expensive, k-
space trajectories maybe designed with a fixed number of samples 
with the best if not perfect conditioning without extra sampling.

Contributions
Results Evaluation
Future Research
The End
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▲

Evaluation of Results

 Algorithms

• The non-iterative approaches are recommended when frequency 
samples are already determined and fixed for multiple uses as we 
precompute the frequency mask filter once.  The speed advantage 
comes from only requiring three 2-D FFTs.

• The divide-and-conquer approach is also recommended for when 
sample locations are determined or when the image problem is 
large.  

• This subdivision allows customization of each subproblem in terms 
of regularization and the type of algorithm used to solve (closed-
form, iteratively or non-iteratively) based on its conditioning.
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Future Research
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Suggestions for Future Research

 The conditioning approaches may benefit from a stronger 
theoretical link between the fast sensitivity measures and 
the condition number which explain the strong empirical 
evidence relating the two quantities, especially in the 
overdetermined case.

 The non-iterative method computes a very quick solution, 
which in cases when resources are available, can be 
further refined with iterative methods.

 As for the advantage of the divide-and-conquer method, a 
non-aliased low-resolution image is quickly computed 
which can then be updated with higher resolution 
subbands.
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Thank You!
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