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ABSTRACT

Conditioning of and Algorithms for Image Reconstruction from Irregular Frequency
Domain Samples

by

Benjamin Choong Lee

Chair: Andrew E. Yagle

The problem of reconstructing an image from irregular samples of its 2-D DTFT

arises in synthetic aperture radar (SAR), magnetic resonance imaging (MRI), com-

puted tomography (CT), limited angle tomography, and 2-D filter design. The prob-

lem of determining a configuration of a limited number of 2-D DTFT samples also

arises in magnetic resonance spectroscopic imaging (MRSI) and 3-D MRI.

This work first focuses on the selection of the measurement data. Since there

is no 2-D Lagrange interpolation formula, sufficient conditions for the uniqueness

and conditioning of the reconstruction problem are both not apparent. Kronecker

substitutions, such as the Good-Thomas FFT, the helical scan FFT, and the 45◦

rotated support, unwrap the 2-D problem into a 1-D problem, resulting in uniqueness

and insights into the problem conditioning. The variance of distances between the

adjacent unwrapped 1-D DTFT samples was developed as a sensitivity measure to

quickly and accurately estimate of the condition number of the system matrix. A well-

conditioned configuration of DTFT samples, restricted to radial lines in CT or spirals
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in MRI, is found by simulated annealing with the variance sensitivity measure as the

objective function. The preconditioned conjugate gradient method reconstructs the

1-D solution that is then rewrapped to a 2-D image. In unrestricted cases, 2-D DTFT

configurations like a regular hexagonal pattern can be unwrapped to uniformly-spaced

and perfectly conditioned 1-D configurations and quickly solved using an inverse 1-D

DFT.

The next focus is on developing fast reconstruction algorithms. A non-iterative

DFT-based method of reconstructing an image is presented, by first masking the

2-D DTFT samples with the frequency response of a filter that is zeroed at the

unknown 2-D DFT locations, and then quickly deconvolving the filtered image using

three 2-D DFTs. The masking filter needs to be precomputed only once per DTFT

configuration. A divide-and-conquer image reconstruction method is also presented

using subband decomposition and Gabor filters to solve smaller subband problems,

leading to a quick unaliased low-resolution image or later to be recombined into the full

solution. All methods are applied to actual CT data resulting in faster reconstructions

than POCS and FBP with equivalent errors.
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CHAPTER I

Introduction

1.1 Problem Overview

Image reconstruction is the process of forming an image from measurement data,

typically a transformation of the image information. The problem is to reconstruct a

discrete image from some number of values of its 2-D Discrete-Time Fourier Trans-

form (DTFT) measurements. Note that the measured set of DTFT values do not

necessarily represent all points on a 2-D grid, nor are they necessarily values on a

rectangular grid.

If 2-D DTFT values are in fact known on a rectangular grid, then the problem

can easily be solved using the 2-D Discrete Fourier Transform (DFT). However, this

requires knowledge of all 2-D DFT values on this grid. In many applications though,

only some of the values on this grid are known. For example, in synthetic aperture

radar (SAR) this is known on several different arcs of points in the Fourier domain as

shown in [1]. No matter how fine the rectangular grid, the 2-D DFT cannot be used

because not all of the points are known. In several different forms of medical imaging

(e.g., magnetic resonance imaging (MRI) and X-ray compute tomography (CT)) in

[2], the DTFT is known on a polar raster of points in the Fourier domain. Discretized

filtered back-projection can be used, but this is only an approximation. Also, slices

must be taken over 360 degrees; otherwise we have the limited-angle tomography
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(LAT) problem in [3], in which the 2-D DTFT is known only in a bow-tie region. In

spiral MRI, the values on a spiral trajectory are interpolated to a regular Cartesian

grid using gridding. In 2-D filter design, the problem is to determine a 2-D FIR filter

having a prescribed frequency response at some points in the 2-D frequency plane [4].

Again, this requires computing the image from some of its 2-D DTFT values.

In certain applications, such as MRI and SAR, the image to reconstruct is complex-

valued and hence the reconstruction method should be generalized to reconstruct

complex-valued objects and should not rely on constraints such as real-valued or

non-negativity, which significantly extends the range of applications.

Sufficient conditions on the 2-D DTFT values for the unique reconstruction of the

image are not immediately clear, since there is no 2-D Lagrange interpolation formula.

We would like to know how large the set of measured 2-D DTFT values must be to

reconstruct a unique image. In general, unique reconstruction of an M1 ×M2 image

requires more than M1M2 values of its 2-D DTFT.

We are also interested in determining how the selection of known DTFT loca-

tions affects the conditioning of the reconstruction problem. The conditioning of

the problem is the sensitivity of the reconstructed image to perturbations in the 2D

DTFT data, where perturbations may be due to measurement noise. Poor condition-

ing means that the unregularized solution is of little practical interest, since there

is always noise in the data, and this will greatly affect the solution. In this case,

regularization must be more drastic at the cost of biasing the solution. Additionally,

poor conditioning results in slow convergence rates of iterative reconstruction meth-

ods such as conjugate gradient; we would like to know this in advance in order to

choose other configurations of DTFT locations.

These concerns are even more emphasized in 3-D imaging where the criteria for

choosing the most time-efficient 3-D k-space trajectory is not clear, such as in 3-

D MRI where echo planar (EP) and stack of spiral (SOS) are common approaches
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extended from 2-D and in Magnetic Resonance Spectroscopic Imaging (MRSI) where

the third dimension measures the chemical shift to identify the concentration of water

or fat.

Lastly we are interested in applying an algorithm to reconstruct the image from its

2-D DTFT values at the chosen locations, that is fast and if iterative it should converge

quickly. As one of the disadvantages of iterative methods are long computation times,

a method where the iterative computations are performed off-line once and then

applied to any measurement data in one non-iterative step is desired. For large

reconstruction problems when the computation is slow or memory is limited, breaking

up those problems into smaller problems is also desirable.

Therefore the following issues are of particular interest:

1. What DTFT locations are sufficient to ensure that the image is uniquely deter-

mined? Some results have been obtained previously in [5],[6],[7],and [8];

2. How does the conditioning of the reconstruction problem depend on the DTFT

locations? Often there is some choice in choosing these locations.

3. How can the image be reconstructed from its DTFT values? Conjugate gradient

methods were applied directly in [9]; are there less memory intensive and faster

computational methods?

1.2 Previous Work

In [5] and [6], sufficient conditions for uniqueness were obtained for 2-D DTFT

locations {ω1,k, ω2,k} lying on lines of the form ω2 = αω1 + β. A much simpler

interpretation of those results involve the discrete Radon transform. Similar results

were presented in [7] and [8], which also involve unwrapping the 2-D problem into a

1-D problem.

However, in [6], [7], and [8], little attention was paid to the conditioning of the
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problem, which is one of the focuses of this dissertation. It is stated in [5] that exam-

ining the conditioning of the 2-D problem using the Lagrange interpolation formula

as done in 1-D cannot be done for the 2-D problem since there is no 2-D Lagrange

interpolation formula.

As for the reconstruction process, the straightforward method to reconstruct an

image given some of its 2-D DTFT samples is to solve the possibly over-determined

system of linear equations written as a matrix using lexicographic ordering of the

image shown in [9]. However, there are some difficulties with this approach. Not all

choices of the 2-D DTFT samples will lead to a non-singular system, as will be shown

in Section 2.4. Sufficient conditions for the selection of 2D DTFT values for unique

reconstruction of the image are not immediately clear.

An image can also be reconstructed directly using the inverse 2-D DFT of an inter-

polated regular grid of 2-D DFT samples. The non-uniform Fast Fourier Transform

(FFT) has been developed in [10] and in [11] which in the latter is optimal in the min-

max sense and can be used for this purpose. In [12], sampling density compensation

for nonuniform sampling in MRI prior to interpolation is computed iteratively with

only knowledge of the sampling locations and with out knowledge of the sampling

trajectories. Though, we would like to try to reconstruct an image from only known

DTFT samples without interpolation.

Another reconstruction approach is to use Projection Onto Convex Sets (POCS)

introduced in [13]. POCS alternately projects onto the spatial domain (imposing

finite M × M support) and onto the DTFT domain (imposing the known DTFT

values). While this algorithm is guaranteed to converge, there are several difficulties:

1. Convergence in general requires thousands of iterations, and algorithms cannot

be parallelized in iteration;

2. The DTFT must be computed at all of the given locations at each iteration;

even using a pruned DFT requires a large amount of computation;
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3. Roundoff error in the FFT over thousands of iterations may lead to problems

in poorly conditioned problems, since the inverse FFT is not an exact inverse

to the FFT in a finite-precision environment.

In [9] it is noted that, “since the computational cost of the POCS method is

several orders of magnitude higher than other methods, and it provides only poor

rate of convergence, it is not included in our comparison” (slightly edited). Hence

POCS is not considered further.

Yet another method that is extensively used in image reconstruction is the conju-

gate gradient (CG) method which solves symmetric positive-definite systems. Each

iteration requires a non-uniform forward 2-D DFT. Although the conjugate gradient

method is iterative like POCS, CG is guaranteed to converge to the solution in N

iterations for an N × N system matrix [14]. In most cases CG converges to within

an acceptable error tolerance in less than N iterations.

The CG method can be made to converge faster by preconditioning the system

which involves premultiplying both sides of the system equation with the inverse of

a preconditioner matrix. A good preconditioner is one that is similar to the system

matrix so as to best diagonalize the preconditioned system matrix.

1.3 Contributions of This Thesis

In [8] the Good-Thomas FFT is used to unwrap the 2-D problem into a 1-D

problem which allows the determination of sufficient conditions for uniqueness of

the solution. The Lagrange interpolation equation then reconstructs the 1-D signal.

My contributions build upon [8] by answering the questions on conditioning and

reconstruction methods posed in the above Section 1.1. The new contributions are

listed below and followed up in detail in following chapters.

1. In [15], I showed how the Lagrange interpolation formula coefficients are related
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to the condition number of the system matrix. With further evaluation of this

relationship, I derive a closed-form equation for an upper bound on the condition

number which empirically shows a 0.9 correlation with the condition number

itself. In the just-determined case, this upper bound, computed in O(N2) time,

can be used to select a set of DTFT values that leads to a well-conditioned

system. A full explanation is found in Chapter III.

2. Seeing how the upper bound on the condition number was a function of dis-

tances between frequency locations in the denominator, I use the insight that

clustering of DTFT locations result in poor conditioning to propose the “vari-

ance of distances between adjacent frequency locations” as a sensitivity mea-

sure. Because the variance sensitivity measure is not derived directly from the

Lagrange interpolation equation, the variance sensitivity measure, computed

in O(N) time, could be used to select well-conditioned DTFT values in the

over-determined case. This new sensitivity measure is useful considering that

the just-determined case is usually poorly conditioned. The variance sensitivity

measure has a 0.8 correlation with the condition number in one over-determined

case. A full explanation is found in Chapter III.

3. I used the variance sensitivity measure as the cost function in the simulated

annealing algorithm to determine a well-conditioned configuration of DTFT

values. The low-variance configuration results in reconstructed images with

fewer iterations required to reach the same residual tolerance in the conjugate

gradient reconstruction method due to improved conditioning of the system

matrix. A full explanation is found in Chapter III.

4. I correct and use the new 45◦ rotated-support reconstruction method of odd

image size which makes a Kronecker substitution in the 2-D z-transform instead

of the Good-Thomas FFT to unwrap the 2-D problem into a 1-D one. This is

an improvement over the Good-Thomas FFT unwrapping because the rotated-
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support method eliminates 2/3 the bands of zeros in the solution which reduces

the overall 1-D signal support. Thus the dimensions of the system matrix to

solve is smaller. A full explanation is found in Chapter III.

5. In the 1-D unwrapped method, I show that when there are no constraints on

the DTFT locations such as intersections with radial projection lines or spiral

trajectories, “perfect conditioning,” where the condition number of the system

matrix is 1 and hence measurement noise is not amplified in the solution, can be

achieved by uniformly distributing the 1-D DTFT samples. Though seemingly

trivial in 1-D, depending the arbitrary size of the measurement set, the wrapped

2-D frequency configuration produce regular but non-rectangular patterns. A

full explanation is found in Chapter III.

6. I introduce a new non-iterative DFT-based method that reconstructs an image

from deconvolving a precomputed filter from a filtered DFT of the data, done

quickly using FFTs. Though the filter is precomputed iteratively it only needs

to be done once per frequency configuration and can be applied repeatedly to

different data. A full explanation is found in Chapter IV.

7. In the non-iterative DFT-based method, I precompute the filter which applies

the finite-support constraint as done in the POCS method but converges faster

than POCS by formulating a new perspective of the finite-support constraint as

a regularization term and solving it using the preconditioned conjugate gradient

method. A full explanation is found in Chapter IV.

8. I introduce a new divide-and-conquer image reconstruction method using sub-

band decomposition. A large image reconstruction is divided into smaller prob-

lems by splitting the irregular frequency data into subbands by projecting the

data onto a modified Gabor logon (or 2-D Gaussian kernel). After solving the

smaller problem the solution is deconvolved from the Gabor logon and the 2-D

DFT of the solution is combined with the others. Initial results plagued with
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banding artifacts were improved with finite-support padding. A full explanation

is found in Chapter V.

9. In the divide-and-conquer subband decomposition method, I empirically present

the advantages of varying the amount of regularization or the over-determining

factor specifically for each subproblem with decreased error or reduced compu-

tation time, respectively. A full explanation is found in Chapter V.

10. Lastly, I apply the 1-D unwrapped conditioning, non-iterative, and divide-and-

conquer methods to actual CT sinogram data, provided by Adam M. Alessio

of the University of Washington. The fanbeam CT data with 888 detector bins

and 820 views is converted to parallel beam projections and transformed into

radial 2-D DTFT samples. Images were reconstructed from the actual CT data

at sizes as large as 889×889, with some zero-padded images reconstructed at

1690×1690 in just a few seconds. Full explanations are found in the Results

sections of Chapters III-V.

1.4 Organization of This Thesis

Chapter 2 describes the problem statement by providing the mathematical back-

ground, uniqueness requirements, and conditioning of a system of linear equations.

The problem is precisely formulated mathematically. Chapter 3 discusses the con-

ditioning approach in detail by reformulating the 2D problem into a 1D for which

conditioning is better understood. A sensitivity measure is developed to estimate

conditioning and used in simulated annealing to arrive at a near-optimal global solu-

tion with numerical results. Additionally, the requirements for perfect conditioning

is presented. Chapter 4 introduces a fast non-iterative approach based on prefiltering

the Fourier data then solving a deconvolution problem, where the advantage is that

most of the computations are performed in precomputing the filter. An accurate

method of precomputing the filter using the conjugate gradient method is also pre-
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sented. Chapter 5 explains how we can separate a large image reconstruction problem

into smaller subproblems with a divide-and-conquer approach by using subband de-

composition. In Chapters 3 through 5, each reconstruction method is applied on both

simulated and actual CT data. Lastly, Chapter 6 summarizes the results the various

reconstruction methods presented, evaluates their specific merits, and recommends

future areas of further research.
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CHAPTER II

Problem Statement

2.1 Background

The problem is to reconstruct an M1 ×M2 discrete image x(i1, i2) from some N

values of its 2-D Discrete-Time Fourier Transform

X(ejω1,k , ejω2,k) =

M1−1∑
i1=0

M2−1∑
i2=0

x(i1, i2)e−j(i1ω1,k+i2ω2,k). (2.1)

The values x(i1, i2) can be complex such as in MRI and SAR or real such as in CT.

Note that {X(ejω1,k , ejω2,k), k = 1, . . . , N} do not necessarily represent all points on

a 2-D grid, nor are they necessarily values on a rectangular grid.

Throughout this work, we formulate the problem with discrete measurements with

discrete unknown image samples or we assume a “bed of nails” representation of the

image as a lattice of 2-D impulses weighted by x(i1, i2). Other image models (e.g.

pixels in which the image is constant in a small square) quickly reduce to this problem,

since the lattice of impulses is convolved with a known point-spread function, which

corresponds to multiplication in the 2-D DTFT domain.

If X(ejω1 , ejω2) is known on a rectangular grid such as X(ej2πk1/M1 , ej2πk2/M2), then
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the problem obviously can be solved using the 2-D Discrete Fourier Transform.

X(ej2πk1/M1 , ej2πk2/M2) =

M1−1∑
i1=0

M2−1∑
i2=0

x(i1, i2)e
−j2π(

i1k1
M1

+
i2k2
M2

)
. (2.2)

However, this requires knowledge of all X(ejω1 , ejω2) values on this grid. In many

applications though, only some of the values on this grid are known. While inter-

polation can be used to resample the frequency values to a rectangular lattice, this

necessarily involves some approximation and some computation.

In reconstructing x(i1, i2), several issues are of interest. First, we would like to

know some sets of locations {ω1,k, ω2,k} which are sufficient to ensure that x(i1, i2) is

uniquely determined. More specifically, we ask how many DTFT values, and in what

patterns, are needed for a unique reconstruction. In the specific cases where x(i1, i2)

is assumed to be real, then DTFT values can be collected in complex conjugate pairs.

Second, we are interested in determining how the selection of the known DTFT

locations {ω1,k, ω2,k} affects the conditioning of the reconstruction problem. The

conditioning of the problem is the sensitivity of the reconstructed x(i1, i2) to per-

turbations in the data {X(ejω1,k , ejω2,k), k = 1, . . . , N}, where perturbations may be

due to measurement noise. There is a need for a computationally quick sensitivity

measure to evaluate the relative conditioning of the problems arising due to various

configurations of {ω1,k, ω2,k}.

Third, we need to determine which algorithm should be used to reconstruct

x(i1, i2) from its DTFT values at locations {ω1,k, ω2,k}. This algorithm should be

fast, and if it is iterative like the conjugate gradient method, it should have fast

convergence. Another desired attribute is the ability to initialize it with a quick-to-

compute estimate if iterative.

In each of these issues, we also explore new approaches that arise when we con-

strain the set of 2-D DTFT samples to gridded subset of N×N2−DDFT .
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2.2 Problem Formulation

Most of this section is review, but is necessary background for what follows. For

parts of the discussion of the 2-D case, when “M” is used we assume a square image

support, where M = M1 = M2.

2.2.1 2-D Problem

The 2-D reconstruction of an M×M image x(i1, i2) given {X(ejω1,k , ejω2,k), k =

1, . . . , N}may be solved written as a matrix using lexicographic ordering of x(i1, i2) in

(2.1) or specifically column-wise unwrapping. This possibly over-determined problem

can be formulated as the 2-D non-square Vandermonde system of equations,

Âx = b (2.3)

Â =



1 z1,1 · · · zM−1
1,1 z0

1,1z
1
2,1 · · · zi11,1z

i2
2,1 · · · zM−1

1,1 zM−1
2,1

1 z1,2 · · · zM−1
1,2 z0

1,2z
1
2,2 · · · zi11,2z

i2
2,2 · · · zM−1

1,2 zM−1
2,2

...
...

. . .
...

...
. . .

...
. . .

...

1 z1,N · · · zM−1
1,N z0

1,Nz
1
2,N · · · zi11,Nz

i2
2,N · · · zM−1

1,N zM−1
2,N



x = [x(0, 0) . . . x(M − 1, 0)x(0, 1) . . . x(M − 1,M − 1)]T

b = [X(z∗1,k, z
∗
2,k) . . . X(z∗1,N , z

∗
2,N)]T

where z1,k = e−jω1,k and z2,k = e−jω2,k . The least-squares solution is computed by

solving the 2-D normal equation,

(ÂHÂ)x = ÂHb (2.4)

12



where the system matrix ÂHÂ is Toeplitz-block-Toeplitz (TBT). Toeplitz blocks of

uniform sizes form a block-Toeplitz matrix. Note that the hat notation above Â is

used to avoid confusion with the 1-D non-square Vandermonde matrix A in (2.6)

below.

However, it is not initially apparent how large N must be to reconstruct a unique

x(i1, i2). In general, unique reconstruction of an M1 ×M2 image requires more than

M1M2 values of its 2-D DTFT. Though, sufficient conditions for uniqueness in the

2-D problem have been obtained in [5], [6], [7], and [8], which all involve unwrapping

the 2-D problem in to a 1-D problem, which will be discussed in further detail in

Section 3.2.

2.2.2 Just-Determined 1-D Problem

The 1-D problem involves reconstructing a length M signal {x(n), n = 0, . . . ,M−

1} from M DTFT values {X(ejωk), k = 1, . . . ,M}. This is often called the “non-

uniform DFT.”

A “just-determined” problem is one where M DTFT values are sufficient to re-

construct a unique signal of length M , can be formulated as the solution of the

Vandermonde system of equations

V x = b (2.5)

V =



1 z1 z2
1 · · · zM−1

1

1 z2 z2
2 · · · zM−1

2

...
...

...
. . .

...

1 zM z2
M · · · zM−1

M


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x = [x(0) . . . x(M − 1)]T , b = [X(z∗1) . . . X(z∗M)]T

where zk = e−jωk .

2.2.3 Over-Determined 1-D Problem

Unfortunately, the just-determined problem is usually so poorly conditioned that

it is necessary to consider the over-determined case, where the 1-D problem is to

reconstruct the length M signal {x(n), n = 0, . . . ,M − 1} from N DTFT values

{X(ejωk), k = 1, . . . , N}, where N > M .

This over-determined problem can be formulated as the 1-D non-square Vander-

monde system of equations

Ax = b (2.6)

A =



1 z1 z2
1 · · · zM−1

1

1 z2 z2
2 · · · zM−1

2

...
...

...
. . .

...

1 zN z2
N · · · zM−1

N



x = [x(0) . . . x(M − 1)]T , b = [X(z∗1) . . . X(z∗N)]T

where zk = e−jωk . If the observed values X(ejωk) are the true values X̄(ejωk) corrupted

by zero-mean additive white Gaussian noise with noise variance σ2 as in,

Ax = b = b̄+ n (2.7)

b̄ = [X̄(z∗1) . . . X̄(z∗N)]T , n = [n(0) . . . n(N)]T n ∼ N (0, σ2)
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then the maximum likelihood estimate of the x(n) is the solution to

(AHA)x = AHb (2.8)

which is also the best linear unbiased estimator (BLUE).

Since the (i, k)th element (AHA)i,k of the M×M matrix AHA is

(AHA)i,k =
M∑
`=1

AH`,iA`,k =
M∑
`=1

e−jω`(i−k) (2.9)

and AHA is a symmetric Toeplitz matrix. Thus the normal equation in (2.8) can be

solved quickly in O(M log2M) operations.

2.2.4 Regularization

When the over-determined system of linear equation, Ax = b, is ill-conditioned,

small perturbations in b will greatly perturb x. Regularization modifies the problem

to improve the conditioning. In the case of the normal equations, AHAx = AHb,

Tikhonov regularization replaces minimization of the residual error, ‖Ax− b‖2, with

minimization of

‖Ax− b‖2 + λ2‖x‖2. (2.10)

The coefficient λ balances the trade-off between minimizing the residual error and

limiting the size of x. A general regularization term is presented in Section 4.4 that

can limit 2nd-order differences for example. The new minimization replaces the old

system with

(AHA+ λ2I)x = AHb (2.11)

and now A need not be over-determined. However, in improving the conditioning and

reducing the variance of the solution, regularization also biases the solution, which is

an undesirable side-effect.
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2.3 Uniqueness

Sufficient conditions on {X(ejω1,k , ejω2,k), k = 1, . . . , N} for the unique reconstruc-

tion x(i1, i2) without regularization as in 2.6 are not immediately clear. We would like

to know how large N must be to reconstruct a unique x(i1, i2). In general, unique re-

construction of an M1×M2 image requires more than M1M2 values of its 2-D DTFT

and not all choices of {X(ejω1,k , ejω2,k), k = 1, . . . , N} will lead to a non-singular

system.

For example, consider the two images

1 3

3 1


2 2

2 2

 . (2.12)

Their respective zero-padded 5× 4-point 2-D DFTs are



8 4− i4 0 4 + i4

5.2− i3.8 1.0− i6.2 −1.4− i1.9 2.9 + i0.5

0.8− i2.4 −2.0− i4.0 −3.6− i1.2 −0.8 + i0.4

0.8 + i2.4 −0.8− i0.4 −3.6 + i1.2 −2.0 + i4.0

5.2 + i3.8 2.9− i0.5 −1.4 + i1.9 5.2 + i3.8




8 4− i4 0 4 + i4

5.2− i3.8 0.7− i4.5 0 4.5 + i0.7

0.8− i2.4 −0.8− i1.6 0 1.6− i0.8

0.8 + i2.4 1.6− i0.8 0 −0.8 + i1.6

5.2 + i3.8 4.5− i0.7 0 0.7 + i4.5


(2.13)

shown with rounded values, and they agree at 8 of the 20 frequency points along the

left-most column and the top-most row. Hence, although it might seem as though

only four frequency points should be necessary to reconstruct a 2× 2 image uniquely,
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in fact even eight points of the 5×4-point 2-D DFT are not enough to ensure unique

reconstruction. (All four points of the 2×2-point 2-D DFT would suffice.) Reconstruc-

tion using the matching 8 frequency points leads to an over-determined but singular

system.

2.4 Conditioning

We are also interested in determining how the selection of known DTFT locations

{ω1,k, ω2,k} affects the conditioning of the reconstruction problem.

The conditioning of the problem is the sensitivity of the reconstructed x(i1, i2) to

perturbations in the data {X(ejω1,k , ejω2,k), k = 1, . . . , N}, where perturbations may

be due to measurement noise.

Consider the following perturbed linear system seen in [14]:

Ax(ε) = b+ εf (2.14)

where x(0) = x ∈ RM , ε ∈ R, and f ∈ RM . When measuring sensitivity, we would

like to observe how much the solution vector x(ε) deviates from x when perturbing

the data vector b with εf . The relative error in x(ε) is upper-bounded by the relative

error of the data times the condition number. Hence the condition number κp(A)

defined in (3.41) quantifies the sensitivity as shown:

‖x(ε)− x‖p
‖x‖p

≤ κp(A)|ε|‖f‖p
‖b‖p

(2.15)

For example, observe the various configurations of the frequency locations on

a 11×13 grid in Fig. 2.1 chosen for reconstruction of a 51-pixel-support image1.

Each subfigure represents the 2-D discrete frequency domain, where the black and

1The M×M = 4×4 slanted image has a 1-D support of 51.
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Figure 2.1: Various 2-D frequency configurations.

white pixels denote selected (approximately just-determined where N ≈ 51) and

unselected frequency locations, respectively. The reader is asked to guess which 2-D

configurations form system matrices with the lowest condition numbers. Unless the

construction of the system matrix is explicitly determined, it is not apparent which

configurations pose poorly conditioned problems.

The condition numbers are computed from system matrices constructed as un-

wrapped 1-D problems explained in detail in Section 3.2. The answers are that the

configurations in Fig. 2.1a and 2.1b form system matrices with the lowest condition

numbers on the order of 102. Configurations in Fig. 2.1c and 2.1d form system ma-

trices with the highest condition numbers on the order of 1014, as shown in Fig. 3.1.

This is an important clue to the relative conditioning of the reconstruction problem

from these locations.

2.5 Reconstruction Algorithm

The 1-D problem can be solved either in closed-form for the just-determined case

but is commonly solved iteratively for the over-determined case.
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2.5.1 Lagrange Interpolation Formula

The just-determined problem can be solved in closed-form by using the Lagrange

interpolation formula

X(u) =
M∑
k=1

X(zk)
M∏
`=1
`6=k

u− z`
zk − z`

(2.16)

where zk = e−jωk , and X(z∗k) are the known DTFT values. Evaluating (2.16) at

{u = e−j2πk/M , k = 0, . . . ,M − 1} followed by an inverse DFT results in x(n).

We note that (2.16) is computationally inefficient; a better procedure is to write

X(u) in its Newton representation

X(u) = c0 + c1(u− z1) + c2(u− z1)(u− z2) + . . . (2.17)

Then setting u = z1, z2, . . . in succession allows c0, c1, . . . to be computed recursively.

While the direct implementation of (2.16) has complexity O(M3), this recursive imple-

mentation has a complexity of O(M2). A still better procedure is to use the Chinese

Remainder Theorem as a divide-and-conquer algorithm in [16]. This requires only

O(M log2M) operations.

A still better procedure is to use the Chinese Remainder Theorem. To do this,

we partition the interpolation problem X(z)|z=zk = X(zk), k = 1, ...,M , M even, into

two problems

X1(z)|z=zk = X1(zk), k = 1, ...,
M

2
(2.18)

X2(z)|z=zk = X2(zk), k =
M

2
+ 1, ...,M, (2.19)
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solve each subproblem separately, and then combine them using

X(z) = X1(z)Y1(z)
M∏

k=M
2

+1

(z − zk) (2.20)

+ X2(z)Y2(z)

M
2∏

k=1

(z − zk) mod

(
M∏
k=1

(z − zk)

)
(2.21)

where Yi(z) solve

Y1(z)
M∏

k=M
2

+1

(z − zk) ≡ 1 mod

 M
2∏

k=1

(z − zk)

 (2.22)

Y2(z)

M
2∏

k=1

(z − zk) ≡ 1 mod

 M∏
k=M

2
+1

(z − zk)

 (2.23)

For more details see [16].

Even though the Lagrange interpolation formula (2.16) cannot solve the over-

determined case, it provides considerable insight into the conditioning (sensitivity of

the solution to the perturbations of the data) of the problem. The sensitivity as a

function of the frequencies ωk is dominated by the denominator
∏M

`=1,`6=k(zk − z`). In

Sections 3.4.3 and 3.4.5, we observe that the greater the departure of the ωk from

a uniform distribution on the interval [0, 2π), the greater the sensitivity. Both close

spacings and wide gaps between successive ωk values will tent to increase sensitivity.

2.5.2 Conjugate Gradient

The conjugate gradient method iteratively solves the system Ax = b, where A is a

symmetric positive definite matrix of size M ×M , by minimizing the quadratic form

f(x) =
1

2
xTAx− bTx− c (2.24)
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which is shaped like a paraboloid bowl when x is two-dimensional [17]. The minimum

is located at the solution x, where the gradient of (2.24) is zero. We begin solving for

x by selecting an initial guess vector x(0). Then for each iteration i, we create a search

direction, d(i), to which we follow to bring us to our next iteration of x(i+1). Search

directions are constructed from the Gram-Schmidt conjugation of the residuals. A

residual,

r(i) = b− Ax(i) = −f ′(x(i)), (2.25)

quantifies how far we are from the correct value of b but more importantly is the

direction of the steepest descent. Each new residual is orthogonal, {rT(i)r(j) = 0, i 6=

j}, to all previous search directions and residuals. Furthermore, each new search

direction is A-conjugate (or A-orthogonal), {dT(i)Ad(j) = 0, i 6= j}, to all previous

search directions and residuals. The CG method is as follows:

d(0) = r(0) = b− Ax(0) (2.26)

α(i) =
rT(i)r(i)

dT(i)Ad(i)

(2.27)

x(i+1) = x(i) + α(i)d(i) (2.28)

r(i+1) = r(i) − α(i)Ad(i) (2.29)

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)

(2.30)

d(i+1) = r(i+1) − β(i+1)d(i) (2.31)

Since the search directions are A-orthogonal, the union of each new search direction

to the previous search directions produces a Krylov subspace, created by repeatedly

multiplying a matrix to a vector. The solution x is reached in M iterations [14] when

all M search directions span the entire M -dimensional vector space. However, when

M is large it may not be feasible to run M iterations. In practice, the iterations are

terminated when the residual norm reaches zero within an error tolerance or when
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a maximum number of iterations have been performed. The number of iterations is

affected by convergence rate, which depends on the condition number of A.

The complexity of the conjugate gradient method is dominated by the matrix-

vector multiplication, Ax, computed in O(M2). In [14] it is shown that if A is Toeplitz,

then the complexity is reduced to O(M logM) by extending A into a circulant matrix

C that has first column vector

c = [a0 a1 ... aM−1 â a−(M−1) ... a−1]T (2.32)

where {ai−j} are the entries of A and â can be any value. The modified matrix-vector

multiplication is

Cx̂ = ŷ (2.33)

C =

A B

B A

 , x̂ =

x
0

 , ŷ =

 y

Bx


whereB is aM×M Toeplitz matrix with first column vector bc = [â, a−(M−1), . . . , a−1]T

and first row vector br = [â, aM−1, . . . , a1]. By using the fact that a circulant matrix

Acirc of size M ×M is diagonalized by a M -point DFT matrix FM as shown

Acirc = F−1
M diag(FM · acirc)FM (2.34)

where acirc is the first column vector of Acirc, then (2.33) becomes

ŷ = F−1
2Mdiag(F2M · c)F2M x̂ (2.35)

y = [ŷ0, . . . , ŷM−1]T (2.36)

and the computations involved are two FFTs, one vector multiplication, and one
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inverse FFT. The matrix-vector multiplication in (2.35) can only be used as a forward

projection since x̂ is given and cannot be used to non-iteratively solve the system

Ax = b since the lower portion of the data vector ŷ consisting of Bx includes solution

vector x.

The N×N system matrix AHA in the normal equation in (2.8) is a real symmetric

Toeplitz matrix and also a symmetric positive definite matrix. Therefore, we can use

the conjugate gradient method to compute our solution in at most N iterations. A

disadvantage of solving AHA is that its condition number is the square the condition

number of A and so convergence is slower when solved using iterative methods.

For completeness, if the CG method is used to solve the 2-D problem in (2.3)

then the matrix-vector multiplication with the Toeplitz-block-Toeplitz system matrix

AHA can be performed in a similar manner but this time using the 2-D FFT.

2.5.3 Preconditioning

The CG method can be made to converge faster by preconditioning the system.

In the precondition conjugate gradient (PCG) method, we solve the modified system,

P−1Ax = P−1b (2.37)

where P is the preconditioner. The condition number of P−1A determines the effec-

tiveness of the preconditioner. A good preconditioner is one that is as similar to A as

possible so as to best diagonalize P−1A and one that has a low computational cost

inverting itself in the operation, P−1b.

For Toeplitz systems, we use a circulant preconditioner, where a Toeplitz matrix

is converted into a circulant matrix of the same size. Specifically, in [18], T. Chan’s

preconditioner minimizes

‖P − A‖F (2.38)
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over all circulant matrices P . This optimal preconditioner is constructed by replacing

the kth diagonal with weighted averages of the kth and (k −M)th diagonals. Let A

be an M ×M Toeplitz matrix and P is T. Chan’s circulant preconditioner. The first

column elements of P , {pi}, is formed from the elements of A, {ai−j}, as follows,

pi =

 ai, i = 0

M−i
M
ai + i

M
a−(M−i), 1 ≤ i ≤M − 1

(2.39)

For example, if A is a 4× 4 Toeplitz matrix then P is its preconditioner as shown:

A =



a0 a−1 a−2 a−3

a1 a0 a−1 a−2

a2 a1 a0 a−1

a3 a2 a1 a0


P =



a0 p3 p2 p1

p1 a0 p3 p2

p2 p1 a0 p3

p3 p2 p1 a0


(2.40)

where

p1 =
3

4
a1 +

1

4
a−3, p2 = 2

4
a2 + 2

4
a−2, p3 =

1

4
a3 +

3

4
a−1. (2.41)

Notice that if A is Hermitian then P is also Hermitian: p1 = p∗3. Any circulant

preconditioner can be inverted by diagonalizing it by DFT matrices as shown in

(2.34) in O(M logM) operations.

Again for completeness in the 2-D problem, preconditioner of a TBT matrix is

constructed by converting each Toeplitz block into circulant blocks again using T.

Chan’s method and then the block-Toeplitz structure is also converted into block-

circulant. The circulant-block-circulant (CBC) preconditioner is easily diagonalized

and inverted efficiently by the 2-D FFT as stated in [19].
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CHAPTER III

Conditioning Approach and Results

3.1 Introduction

Since there is no 2-D Lagrange interpolation, sufficient conditions for the unique-

ness and conditioning of the reconstruction problem are both not apparent. Using

any of the unwrapping procedures presented below, the 2-D problem is transformed

into a 1-D problem, from which uniqueness and, more importantly, insights into

the problem conditioning result. We propose several sensitivity measures, which aid

in determining a configuration of frequency values that produces a well-conditioned

problem. The sensitivity measures are analyzed on their accuracy of estimating the

conditioning and on their computational speed. The image is then reconstructed by

solving the well-conditioned problem using either the Lagrange interpolation formula

or the conjugate gradient method with less sensitivity to noise and faster convergence

in the latter case. 1

3.2 Unwrapping from 2-D to 1-D

Here we introduce the methods in which we unwrap the 2-D problem to solve the

reconstruction problem in 1-D. Then we evaluate the conditioning of the problem in

1This chapter is based on our published work in [15].

25



1-D with the use of the Lagrange interpolation formula.

In [5] and [6] the 2-D DTFT is assumed to be given along contours of the form

ω2 = αω1 + β. A contour of this form is really a straight line in unwrapped ω1 × ω2

space, which is periodic with period 2π in both directions. Hence topology is toroidal;

a line wraps around from one side of the square [0, 2π)× [0, 2π) to the other side and

keeps going.

The results are easily interpreted as a single slice of the Radon transform,

g(ω, θ) =

∞∫
−∞

∞∫
−∞

xc(s, t)δ(ω − s cos θ − t sin θ)dsdt (3.1)

in continuous space of the impulse bed image xc(s, t) where the impulse values cor-

respond to the values of the discrete image as such: xc(δsi1, δt, i2) = x(i1, i2). Then

recall from [1] that X(ω, 0) is the 1-D DFT of the projections of x(i1, i2) taken in the

vertical direction. Now rotate this slice of the 2-D DTFT from the ω1-axis to some

angle θ to this axis. This slice of the 2-D DTFT is the 1-D DTFT of the projections

of xc(s, t) taken at an angle θ + π/2 to the ω1-axis. And unless θ is such that any

two impulses belong on a line that has an angle θ + π/2, each impulse will not sum

and will remain separate in these projections. Hence knowledge of any slice of the

2-D DTFT at angle θ will, except for those special values of θ, determine x(i1, i2)

as values of a 1-D signal. Thus the 2-D problem has been transformed into a 1-D

problem.

Note that if tan(θ) =
1

M
or M the projections will simply be x(i1, i2) unwrapped

by rows or columns (lexicographic ordering). Hence any M2 values of the 2-D DTFT

along this slice will uniquely determine x(i1, i2). Other angles of θ will produce

projections, a 1-D signal, that are rows or columns of x(i1, i2) separated by bands of

zeros, so that more values of the 2-D DTFT along the slice are needed. Even if the

projections consist of sums of values of various x(i1, i2), recovery of x(i1, i2) from its
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2-D DTFT on several slices may still be possible, [3] and [20].

For the following unwrapping procedures, we provide an interpretation as a dis-

crete Radon transform as describted in [20] as well as a Kronecker substitution in a

2-D z-transform.

3.2.1 Good-Thomas FFT

The Good-Thomas FFT transforms the 2-D problem into a 1-D problem as done

in [8]. The Good-Thomas FFT, described in [21], maps an N1N2-point 1-D DFT to

an N1 × N2-point 2-D DFT, and vice-versa, using a residue number system (RNS)

mapping. This requires that N1 and N2 be relatively prime. The computational

savings comes from the recursive manner in which the Good-Thomas FFT is reapplied

along each row and column of the newly mapped 2-D image.

The RNS mapping x(i)→ x(i1, i2) is defined by the Good-Thomas shuffling equa-

tions

i1 = i (mod N1) (3.2)

i2 = i (mod N2). (3.3)

and X(k1, k2)→ X(k) is defined by

k = N2k1 +N1k2 (mod N1N2) (3.4)

The reverse RNS mapping x(i1, i2)→ x(i) is defined using the Chinese remainder

theorem, which states that there exist integers L1 and L2 such that

i = i1L2N2 + i2L1N1 (mod N1N2) (3.5)
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where L1 and L2 satisfy

L1N1 + L2N2 = 1. (3.6)

Then X(k)→ X(k1, k2) is defined by

k1 = L2k (mod N1) (3.7)

k2 = L1k (mod N2) (3.8)

(3.9)

Here are two separate examples of the Good-Thomas frequency-domain mapping

between 2-D and 1-D for when N1 = 3 and N2 = 4. The 1D solution values

x(i) =

{
1 2 3 4 5 6 7 8 9 10 11 12

}
. (3.10)

are mapped to the 2-D solution values

x(i1, i2) =


1 10 7 4

5 2 11 8

9 6 3 12

 . (3.11)

The 2-D DFT values

Y (k1, k2) =


1 4 7 10

5 8 11 2

9 12 3 6

 (3.12)

are mapped to the 1-D DFT values

Y (k) =

{
1 2 3 4 5 6 7 8 9 10 11 12

}
. (3.13)
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Notice the wrapping in (3.11) and unwrapping in (3.12) occur in diagonal and anti-

diagonal directions, respectively, specific for this example where N2 = N1 + 1.

The Good-Thomas FFT can also be viewed as a discrete Radon transform at

angle θ where tan(θ) = N1

N2
or N2

N1
. We can use the Good-Thomas FFT to unwrap the

2-D DFT of x(i1, i2) into the 1-D DFT of a signal x(i). This immediately leads to

the uniqueness results of [8]: Knowledge of the (N − 1) × N -point 2-D DFT of an

M×M image at any 2MN different frequency points is sufficient to specify the image

uniquely. If the image support is slanted, where each successive column of the image

is shifted down one position, then only MN different frequency points are required.

In this paper, we will set N2 = N1 + 1, which make N1 and N2 relatively

prime. We select N1 such that the locations (ω1,k, ω2,k) of all the known 2-D DTFT

values {X(eω1,k , eω2,k), 1 ≤ k ≤ N} fit a rectangular grid of frequency locations

{(2πk1/N1, 2πk2/N2), 1 ≤ k1 ≤ N1, 1 ≤ k2 ≤ N2}. In [8] it is stated that choosing

sufficiently large N1 and N2 will allow the choice of any (ω1,k, ω2,k) to an arbitrarily-

small nearest-neighbor approximation, where in practice (ω1,k, ω2,k) is often defined

on a rectangular lattice anyway, and that we only need some of the values on this

lattice. Now the 2-D DTFT samples can be mapped to 1-D DTFT samples using

(3.4). At this point the sensitivity of the 1-D problem can be measured for various

frequency configurations as done in Section 3.4. Once a configuration with acceptable

sensitivity is found, the 1-D signal is reconstructed as done in Section 3.3 and then

mapped to a 2-D image using (3.2) and (3.3).

Another perspective on the unwrapping is to define the 2-D z-transform

X(z1, z2) =
M−1∑
i1=0

M−1∑
i1=0

x(i1, i2)zi11 z
i2
2 (3.14)

and make the following Kronecker substitution. Letting z1 = wN2 , z2 = w−N1 and

evaluating on the unit circle at w = ej2πk/(N1N2) leads to the Good-Thomas FFT.
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3.2.2 45◦ Rotated-Support Kronecker Substitution

In Section 3.4 a variance-based sensitivity metric is presented to measure the

conditioning of the problem. Then the image reconstruction is performed by an

explicit reconstruction algorithm based on the Good-Thomas FFT explained in [8].

However the solution requires solving a large system matrix with a size twice the

number of the image values due to zero-padding and the wrapping nature of the

Good-Thomas FFT method. Therefore we present a newer problem formulation with

a 45◦ rotated image-support. This new rotated formulation can also be considered as

a DTFT generalization of the Good-Thomas FFT with rotated support as well.

3.2.2.1 Problem Statement

The goal again is to reconstruct an M × M discrete image x(i1, i2) from M2

values of its 2-D DTFT as was shown in (2.1). We make the following assumptions

throughout:

1. x(i1, i2) 6= 0 only for:

i1 + i2 ≡ 0 (mod 2) (3.15)

|i1 + i2| ≤M − 1 (3.16)

|i1 − i2| ≤M − 1 (3.17)

where M is odd. The image support is seen to be an M ×M square rotated

45◦ (in MRI or CT we can choose basis functions on any locations);

2. X(ejω1 , ejω2) is known for any M2 points that satisfy

ejω1(M+1) = ejω2(M−1) (3.18)

30



and consequently lie on the diagonal lines

ω2 =
M + 1

M − 1
ω1 +

2π

M − 1
k (3.19)

where k = 0, 1,−1, 2,−2 . . . .

3.2.2.2 Small Example

For clarity this procedure is illustrated on a specific example. Consider the prob-

lem of reconstructing the 3× 3 rotated-by-45◦ image



0 0 a−4 0 0

0 a−1 0 a−3 0

a2 0 a0 0 a−2

0 a3 0 a1 0

0 0 a4 0 0


(3.20)

from 9 DTFT values X(ejω1 , ejω2) on the diagonal lines

ω2 = 2ω1 + πk (3.21)

where k = −1, 0 taken from (3.19).

Treat the center of the image (3.20) as the origin for coordinates, and take its 2-D

z-transform. This gives

X(z1, z2) = a−4 · z2
2 + a−3 · z1z2 + a−2 · z2

1

+a−1 · z−1
1 z2 + a0 + a1 · z1z

−1
2

+a2 · z−2
1 + a3 · z−1

1 z−1
2 + a4 · z−2

2 . (3.22)
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Now substitute z1 = z and z2 = z2:

X(z, z2) = a−4z
4 + a−3z

3 + a−2z
2

+a−1z
1 + a0z

0 + a1z
−1

+a2z
−2 + a3z

−3 + a4z
−4. (3.23)

X(z, z2) is clearly z−4 times a polynomial of degree 8, which has 9 coefficients. Hence

it can be reconstructed uniquely from its values at any 9 distinct points (values of z).

The values of z are related to values of z1 and z2 by

z =
z2

z1

=
ejω2

ejω1
= ej(ω2−ω1) = ejω (3.24)

where z1 = ejω1 and z2 = ejω2 .

We will derive an explicit formula for reconstructing uniquely the image from these

DTFT values.

3.2.2.3 General Case

The general case of an M × M rotated-by-45◦ image should be evident. The

following changes from the above example need to be made (M must be odd):

1. The substitution into the z-transform X(z1, z2) of the image that unwraps the

2-D problem into a 1-D one is now

z1 = z(M−1)/2; z2 = z(M+1)/2 (3.25)

which leads to

X(z
M−1

2 , z
M+1

2 ) =
∑
i1

∑
i2

x(i1, i2)z−(M−1
2

i1+M+1
2

i2). (3.26)
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The 1-D z-transform equivalent is

X(z) =

M2−1
2∑

i=−M2−1
2

x(i)z−i (3.27)

where the 1-D time index

i =
M − 1

2
i1 +

M + 1

2
i2 (3.28)

in terms of i2 and i2 relate the 1-D signal x(i) with x(i1, i2);

2. The data are now M2 DTFT values X(ejω1 , ejω2) that satisfy

ejω1(M+1) = ejω2(M−1) (3.29)

a consequence of (3.25). These DTFT values lie on parallel diagonal lines

ω2 =
M + 1

M − 1
ω1 +

2π

M − 1
k (3.30)

where k = 0, 1,−1, 2,−2 . . . ;

3. The 2-D DTFT values now map to 1-D as

z =
z2

z1

=
ejω2

ejω1
= ej(ω2−ω1) = ejω (3.31)

where z1 = ejω1 and z2 = ejω2 .

3.2.2.4 Even Image Size with Correction Factor

An image size where M is even may be used as was originally proposed with the

factor ejπ` to correct for non-unique 2-D to 1-D mapping of DTFT samples
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X(ejω̂1 , ejω̂2) = X(ejω1 , ejω2)ejπ`. (3.32)

where if ω1×ω2 ∈ [−π, π)×[−π, π) then ` denotes how many times ω1 has wrapped

around. The integer ` also denotes which diagonal line segment (ω1, ω2) lies on

` =
1

2π
(ω2(M − 1)− ω1(M + 1)). (3.33)

The following sections assume the problem statement with the odd image size.

3.2.2.5 Interpretation

The substitution (3.25) can be regarded as the transformation

y

x
= z = z1; yx = zM = z2. (3.34)

The substitution z2 = zM for unwrapping a 2-D signal to a 1-D signal is the Kronecker

substitution. It unwraps the 2-D signal column-by-column.

On the unit circle

x = ejωx ; y = ejωy ; z1 = ejωz1 ; z2 = ejωz2 (3.35)

the transformation (3.34) becomes the 45◦ rotation

ωz2
ωz1

 =

 1 1

−1 1


ωx
ωy

 . (3.36)

Since the image is rotated 45◦, it makes sense to rotate the frequency axes by 45◦ as

well.
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Even if we knew X(ejω1 , ejω2) for all of these values of k1 and k2, we would still

not uniquely determine the 3× 3 example image in (3.20), since (M + 1)× (M − 1) =

M2 − 1 = 8 values are insufficient to reconstruct uniquely a signal of length M2 = 9.

But if we know some of these values for some constant c0, and some of these values

for another constant c1, and so on, so that the total number of distinct known values

is 9, then we can uniquely reconstruct I(z2/2, z4/2). In general we can choose any M2

distinct X(ejω1 , ejω2) values that lie on the lattice to reconstruct I(z
M−1

2 , z
M+1

2 ).

It is also possible to interpret the transformation (3.34) using the discrete Radon

transform. Using the projection-slice theorem, the projections along lines orthogonal

to a line with slope M+1
M−1

are the inverse DFT of a slice in the 2-D DTFT plane at

that slope. It is straightforward to confirm that these projections form the unwrapped

1-D signal (e.g., unwrapping the 2-D image (3.20) to the 1-D signal (3.23)). The slice

in the 2-D DTFT plane at slope M+1
M−1

can be confirmed to define the diagonal lines

(3.30).

3.2.3 Helical Scan FFT

As mentioned in Section 3.2.2.5 the rotated image support also rotates the fre-

quency domain which allows for points on a rectangular lattice to fit on the near

45◦ diagonal lines. However the unrotated image support where the lines of available

DTFT samples are slightly diagonal with a slope of M requires a different Kronecker

substitution of

z1 = z1; z2 = zM (3.37)

into the 2-D z-transform in (3.14) which leads to the 1-D time index of

i = i1 +Mi2 (3.38)
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and the M2 DTFT values satisfy

ejω1M = ejω2 (3.39)

on the unit circle as a consequence of (3.37).

These DTFT values lie on parallel lines

ω2 = Mω1 + 2πk (3.40)

where k = 0, 1,−1, 2,−2 . . . . This modification is essentially the unrotated version

of the prior method but is related to the “helical scan” FFT in [22]. This can be

viewed as taking the projection of a impulse bed image at angle arctan(1/M) which

is now a 1-D signal at sampling period 1/M over a field-of-view (FOV) of M , with M2

impulses. Using the projection-slice theorem, the 1-D FT of the projection is another

impulse train with frequency delta of 1/M , but normalized sampling frequency is M .

In 2-D though, this wraps around. This is also the tan θ = 1/M or M case of the

discrete Radon transform as it is noted in [6].

3.3 1-D Reconstruction

This “just-determined” problem, where M values, DFT samples in the Good-

Thomas FFT unwrapped case or DTFT values in the rotated support and helical

scan FFT cases, are sufficient to reconstruct a unique signal of length M , can be

formulated as a solution of a Vandermonde system of equations V x = b in (2.5).

We can then uniquely reconstruct I(z
M−1

2 , z
M+1

2 ) in closed-form using the Lagrange

interpolation formula in (2.16)

When the system V x = b is ill-conditioned, regularization, as formulated in (2.11),

can modify the problem to improve the conditioning. However, in reducing the vari-
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ance of the solution regularization also biases the solution, which is an undesirable

side-effect.

As the just-determined problem in general is poorly conditioned, it is necessary to

consider the over-determined case. This over-determined problem can be formulated

as the non-square Vandermonde system of equations Ax = b in (2.6) and solve in

normal equation form in (2.8). The system matrix AHA, a symmetric and positive

definite matrix, can use the conjugate gradient method to compute the solution.

3.4 Sensitivity Measure

We desire a sensitivity measure that accurately estimates the conditioning of a

system constructed from some frequency values {X(ejωk), 1 ≤ k ≤ N}. While the

accuracy criterion is paramount, we desire a low-complexity measure because it may

be calculated multiple times, once for each frequency configuration to be evaluated.

This allows the relative improvement in adding frequency values to be evaluated

quickly, to see if it is worth the cost of, say, adding a sensor to produce that extra

value. We illustrate this in Section 3.6.1.2 and 3.6.1.3.

3.4.1 Condition Number

One choice for measuring the sensitivity of the Vandermonde system (2.5) is the

condition number

κp(A) = ‖A‖p · ‖A−1‖p (3.41)

where p = 1, 2, . . . and A is square and invertible.

When A is Hermitian and the `2-norm is used where p = 2 in (3.41), the condition

number is equal to the ratio of the maximum to the minimum eigenvalue magnitudes

of A. These eigenvalues can be computed using the power and inverse power methods.

Unfortunately, these often take thousands of iterations to converge (see [14]).
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We would like to develop a simple procedure for evaluating the relative condition-

ing of various configurations of given 2-D DTFT samples without having to compute

the computationally expensive condition number of the system matrix.

3.4.2 Extended Circulant Matrix Condition Number

For over-determined problems, we can try to relate the condition number of either

a Toeplitz or Toeplitz-block-Toeplitz (TBT) system matrix to the condition number

of a circulant matrix that has been modified from the original matrix. The motivation

for this method is that computing the condition number of a circulant matrix is very

quick (see below).

We illustrate the procedure with a specific example. Let A be a Hermitian TBT

matrix as shown:

A =



a0 a1 a3 a4

a∗1 a0 a2 a3

a∗3 a∗2 a0 a1

a∗4 a∗3 a∗1 a0


(3.42)

We insert rows and columns between the Toeplitz blocks in A to create a Toeplitz

matrix B:

B =



a0 a1 a2 a3 a4

a∗1 a0 a1 a2 a3

a∗2 a∗1 a0 a1 a2

a∗3 a∗2 a∗1 a0 a1

a∗4 a∗3 a∗2 a∗1 a0


(3.43)

Finally, the columns of B are extended maintaining conjugate symmetry to create
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a circulant matrix C:

C =



a0 · · · a3 a4 a∗4 · · · a∗1
...

. . .
...

...
...

. . .
...

a∗3 · · · a0 a1 a2 · · · a∗4

a∗4 · · · a∗1 a0 a1 · · · a4

a4 · · · a∗2 a∗1 a0 · · · a3

...
. . .

...
...

...
. . .

...

a1 · · · a4 a∗4 a∗3 · · · a0



(3.44)

where c = [a0, a1, a2, a3, a4, a
∗
4, a
∗
3, a
∗
2, a
∗
1]H is the first column of C. In [14] it is

shown that eigen-decomposition of a circulant matrix produces to an N-point DFT

matrix, FN , as its matrix of eigenvectors and the DFT of c as its eigenvalues, as such:

C = F−1
N diag(FNc)FN (3.45)

We can compute the condition number of C as the ratio of the maximum and

minimum magnitudes of its eigenvalues, which can be quickly computed by taking

the FFT of c, which has a complexity of O(N logN).

Now, we must establish a relationship between the condition numbers of the TBT

and circulant matrices using the Cauchy interlace theorem as explained in [14] and

[23], which states that if a row-column pair is deleted from a square Hermitian matrix,

then the eigenvalues of the resulting matrix alternate with those of the original one.

Continuing with the previous example, let A and C have the eigenvalues α1 ≤ . . . ≤

αM and γ1 ≤ . . . ≤ γN , respectively, where M < N . The following more precisely

restates the Cauchy interlace theorem:

γk ≤ αk ≤ γk+N−M , k = 1, . . . ,M (3.46)
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Shown below is a graphical representation of the pyramid structure of the inter-

lacing eigenvalues. The {βk} are the eigenvalues of the (M+1)×(M+1) supermatrix

of A and {β̂k} are the eigenvalues of the (N − 1)× (N − 1) submatrix of C.

α1 α2 · · · αM−1 αM

β1 β2 β3 · · · βM βM+1

...
...

β̂1 β̂2 β̂3 β̂4 · · · β̂N−2 β̂N−1

γ1 γ2 γ3 γ4 γ5 · · · γN−1 γN

(3.47)

Letting k = 1 and k = M in (3.46), we specify bounds on the largest and smallest

eigenvalues of A in terms of {γk},

γ1 ≤ α1 ≤ γ1+N−M (3.48)

γM ≤ αM ≤ γN . (3.49)

Since A and C are both Hermitian, their condition numbers are κ2(A) =
maxk |αk|
mink |αk|

and κ2(C) =
maxk |γk|
mink |γk|

, respectively. Matrix A is formed from a cross-product V HV

where V has full column rank. Therefore, A is positive definite, so all of the eigen-

values of A are positive. This results in κ2(A) =
αM
α1

.

If all of the eigenvalues of C are also positive (equivalently γ1 > 0) then κ2(C) =

γN
γ1

. Rearranging the inequalities

γ1 ≤ α1, αM ≤ γN (3.50)

from (3.49), we can state that if C is positive definite then the condition number of
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C is an upper bound on the condition number of A,

κ2(A) =
αM
α1

≤ γN
γ1

= κ2(C). (3.51)

However, if the lowest eigenvalue of C is negative then min
k
|γk| is not necessarily γ1

and the condition number of C no longer serves as an upper bound on the condition

number of A.

We illustrate this point with a specific counter-example. Let

A4×4 =



5 4 1 −1

4 5 3 1

1 3 5 4

−1 1 4 5


C9×9(v), v =

[
5 4 3 1 −1 −1 1 3 4

]
(3.52)

with respective eigenvalues,

α1 = 0.39, α2 = 0.61, α3 = 7.61, α4 = 11.39,

γ1 = −1.78, γ2 = −1.78, γ3 = 0.73, γ4 = 0.73,

γ5 = 1.00, γ6 = 1.00, γ7 = 13.05, γ8 = 13.05, γ9 = 19.00.

(3.53)

Notice that γ3 = 0.73 is the smallest absolute value of C, not γ1 = −1.78 and so

κ2(C) =
|γ9|
|γ3|

, instead of
|γ9|
|γ1|

. In fact κ2(A) = 28.86 ≥ κ2(C) = 25.98. This counter-

example is evidence that κ2(C) is not an upper-bound for κ2(A).

Alternatively, we attempt to establish a lower bound on κ2(A) by using the in-

equalities

α1 ≤ γ1+N−M , γM ≤ αM . (3.54)

Since α1 is positive, γ1+N−M is also positive. Rearranging the inequalities in (3.54)

41



results in

κ2(A) =
αM
α1

≥ γN
γ1+N−M

= κ2(C). (3.55)

The restriction on N is that 1 +N −M ≤M or,

M ≤ N ≤ 2M − 1, (3.56)

because κ2(A) must be greater than or equal to 1, and because γM may cross over

γ1+N−M and become negative. However, a condition that restricts the dimensions

of the extended circulant matrix to be less than twice the dimension of the original

Toeplitz, mosaic-Toeplitz, or TBT matrix makes this lower bound unreliable. One

example in which this occurs is for the matrices in (3.52) where A has dimensions

4× 4 and C has dimensions 9× 9.

Other scenarios to consider is that C could be singular in situations where the

minimum eigenvalue of C, γ1 is 0. This situation arises when the diagonalization of

C produces 0 values, particularly any value value of FNc in (3.45), leading to a 0

determinant.

With this in mind, we also can enforce that we only have positive eigenvalues as

presented in this modified circulant matrix

Ĉ , F−1
N diag(max(FNc, ε))FN (3.57)

which is still circulant and also “extended” from A, where ε is a small non-zero number

which should be less than α1.

Although the eigenvalues of the extended circulant matrix can quickly be com-

puted, the proposed bound measures do not properly bound the condition number

of the system matrix and is an inaccurate sensitivity measure. Otherwise further
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investigation is required of the proposed modification in (3.57). Therefore, we do not

investigate this measure any further.

3.4.3 Energy of Lagrange Fundamental Polynomials

The problem of reconstructing X(z) from M samples {X(k), k = 1, . . . ,M} is

formulated as the solution of the Vandermonde system of equations in (2.5), which

can be solved using the Lagrange interpolation formula (2.16). As defined in [24],

Lagrange’s fundamental interpolating polynomials are

πk(u) =
M∏
`=1
`6=k

u− z`
zk − z`

. (3.58)

The Lebesgue constant discussed in [25] uses (3.58) to compute a bound on the

interpolation error as,

ΛM(U) = max
−1≤u≤1

M∑
k=1

∣∣∣∣∣∣∣
M∏
`=1
`6=k

u− z`
zk − z`

∣∣∣∣∣∣∣ (3.59)

with omission of the frequency value X(zk). The Lebesgue constant has a lower

bound, which is a function of M . However, a tight lower bound has yet to be found

and determining the optimal set U for which the Lebesgue constant is smallest is an

unsolved problem. Therefore, we do not further investigate this measure either.

However, the Lagrange interpolation formula (2.16) can be shown as a closed-form

computation of the inverse of the Vandermonde system matrix V , which can lead us

to an exact expression of the condition number. In the inverse DFT equation

x(n) =
1

M

M−1∑
m=0

X(um)unm (3.60)

where um = e
j2πm
M . Substituting the uniformly distributed 1-D DTFT values X(um)
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with the Lagrange interpolation equation in (2.16) results in

x(n) =
1

M

M−1∑
m=0

 M∑
k=1

X(zk)
M∏
`=1
`6=k

um − z`
zk − z`

unm

=
M∑
k=1

 1

M

M−1∑
m=0

 M∏
`=1
` 6=k

um − z`
zk − z`

unm

X(zk)

=
M∑
k=1

V −1
n+1,kX(zk) (3.61)

where 0 ≤ n ≤M − 1, and zk = ejωk . Then the elements of the inverse Vandermonde

matrix,

V −1
n+1,k =

1

M

M−1∑
m=0

 M∏
`=1
`6=k

um − z`
zk − z`

unm, (3.62)

are the inverse DFT values of the Lagrange fundamental interpolating polynomials

evaluated at uniformly spaced samples on the unit circle.

The advantage of (3.62) is that the sensitivity of reconstruction of any specific

signal value x(n) to variations in any specific data point X(zk) can be computed

directly and explicitly. This amounts to computing any specific entry of V −1 in

(3.62). Thus the reliability of reconstruction of specific x(n) can be computed. In

particular, this raises the possibility of selecting frequency points so that a specific

x(n) is relatively insensitive to noise (reliable reconstruction of a specific region of

interest).

An overall measure of the sensitivity of the inverse problem is the sum of squared

magnitudes of all elements of V −1. By Parseval’s theorem, the energy of {V −1
n,k } and

the energy of its DFT are related by:

M∑
n=1

|V −1
n,k |

2 =
1

M

M∑
m=1

∣∣∣∣∣∣∣
M∏
`=1
`6=k

um − z`
zk − z`

∣∣∣∣∣∣∣
2

(3.63)
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The energy (or sum of squared magnitudes) of the Lagrange fundamental poly-

nomial samples are related to the condition number in the following manner. The

squared Frobenius norm of V is

‖V ‖2
F =

M∑
k=1

M∑
n=1

|Vn,k|2 = M2, (3.64)

whereas

‖V −1‖2
F =

M∑
k=1

M∑
n=1

|V −1
n,k |

2 =
1

M

M∑
k=1

M∑
m=1

∣∣∣∣∣∣∣
M∏
`=1
` 6=k

um − z`
zk − z`

∣∣∣∣∣∣∣
2

. (3.65)

Then the squared condition number of V associated with the Frobenius norm is

κF (V )2 = ‖V ‖2
F‖V −1‖2

F = M
M∑
m=1

M∑
k=1

∣∣∣∣∣∣∣
M∏
`=1
`6=k

um − z`
zk − z`

∣∣∣∣∣∣∣
2

(3.66)

where um = e
j2πm
M and zk = ejωk . Hence the squared condition number of the Vander-

monde matrix V , using the Frobenius norm, is equal to the energy of the Lagrange

fundamental polynomial samples (to a factor of M).

Further evaluation of (3.66) leads to the following:

κF (V )2 = M
M∑
m=1

M∑
k=1

M∏
`=1
`6=k

|e j2πmM − ejω`|2

|ejωk − ejω` |2

= M

M∑
m=1

M∑
k=1

M∏
`=1
` 6=k

1− cos(2πm
M
− ω`)

1− cos(ωk − ω`)
(3.67)

Considering that

1− cos(θ)

2
∈ [0, 1], ∀ θ ∈ <, (3.68)
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we show that (3.67) is bounded:

κF (V )2 ≥ M2

M∑
m=1

M∏
`=1
`6=k

1− cos(2πm
M
− ω`)

2
(3.69)

κF (V )2 ≤ M2

M∑
k=1

M∏
`=1
` 6=k

2

1− cos(ωk − ω`)
. (3.70)

If any of the quantities |ωk − ω`| in (3.70) decrease towards zero, the upper-bound

on κF (V )2 approaches infinity. We will use this insight in developing an appropriate

sensitivity measure.

Note that the condition number associated with the `2-norm is

κ2(V ) = ‖V ‖2‖V −1‖2 =
σmax(V )

σmin(V )
(3.71)

where σmax(V ) is the maximum singular value of V , i.e., the square root of the

maximum eigenvalue of V HV . Although κ2(V ) 6= κF (V ), they are related, since

‖V ‖2 ≤ ‖V ‖F ≤
√
M‖V ‖2 (3.72)

as shown in [14]. Hence the energy of the Lagrange fundamental polynomial samples

is “closely” related to the `2-norm condition number of the Vandermonde system

matrix to a factor of
√

(M). Equation (3.66) holds true only for the just-determined

case because the use of the Lagrange interpolation formula (2.16) in its derivation.
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3.4.4 Approximations to Energy of Lagrange Fundamental Polynomials

To reduce the complexity of the upper-bound computation to O(M), one approx-

imation computes only the adjacent frequency differences as such:

AdjNeighbUpperBoundApprox = M2

M∑
k=1

M∏
`=k+1

2

1− cos(ωk − ω`)

= M2

M∑
k=1

2

1− cos(ωk − ωk+1)
. (3.73)

where ω1 < ω2 < . . . < ωM+1 = ω1 +2π. The other multiplicative terms that measure

non-adjacent frequency differences do contribute to the condition number as empirical

tests show in Section 3.4.6.

With this in mind a different approach is computing the products with just 2L

terms instead of M−1 as in
∏k+L

`=k−L
`6=k

2
1−cos(ωk−ω`)

where these terms measure distances

from ωk to its 2L closest neighbors. The multiplicative terms left out tend to be larger

since they are much further from ωk. This k is found to be one that produces the

largest estimate of
∏M

`=1
` 6=k

2
1−cos(ωk−ω`)

which only took O(LM). Then we can compute

the kth term fully in O(M). The product
∏M

`=1
`6=k

2
1−cos(ωk−ω`)

becomes large when there

is a clustering of frequency values around ωk and the kth product term is much greater

than any other term so the other terms are negligible when performing the final sum.

Hence the other products are not computed. If L, the “search width” is set to M

then we have the exact upper-bound expression computed in O(M2). If L is set

to some constant then we have O(N) time but may not scale well as M increases

since the number of clustering frequencies may also increase. If L is arbitrarily set

between 1 and M such as log2(M) then a balance can be struck between accuracy

and complexity.
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kmax = argmax
k

k+L∏
`=k−L
`6=k

2

1− cos(ωk − ω`)

MaxSearchUpperBoundApprox = M2

M∏
`=1
`6=k

2

1− cos(ωkmax − ω`)
(3.74)

3.4.5 Variance of Distances between Frequency Locations

We can take another approach to reduce the complexity of the upper-bound com-

putation to O(M). Examination of
∏M

`=1,` 6=k(1 − cos(ωk − ω`)), the denominator of

the Frobenius condition number (3.67) and of its upper-bound (3.70), shows that the

configuration of the frequency locations {ωk, 0 ≤ k ≤ M − 1} significantly affects

the sensitivity of the problem. Two DTFT samples with locations ωw and ω` that

are very close will cause the upper-bound on the condition number to become very

large. To reduce this upper-bound, the minimum distance between any two frequency

locations {ωk, 0 ≤ k ≤M − 1} must be maximized which leads to an equally spaced

distribution of {ωk, 0 ≤ k ≤ M − 1}. This insight, that increased sensitivity is a

result of a departure from a uniform distribution of frequency locations, relates the

variance of distances between adjacent frequency locations to the condition number.

The variance of distances between adjacent frequency locations or the “variance

sensitivity measure” in the 1-D unwrapped problem,

VarianceMeasure =
1

M

M∑
k=1

(|ωk+1 − ωk| − µ)2 (3.75)

µ =
1

M

M∑
k=1

|ωk+1 − ωk|,

ω1 < ω2 < . . . < ωM+1, ωM+1 = ω1 + 2π,

is a good candidate for a measure of sensitivity. Note that the use of the scale
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Figure 3.1: Various unwrapped 1-D frequency configurations.

factor
1

M
instead of

1

M − 1
is intentional because we are computing the variance of a

complete set of frequency location differences instead of samples of a random variable.

The advantage of this measure is that its algorithm has a complexity of O(M) and is

applicable in both the just-determined and over-determined cases.

In the previous example of various 2-D frequency configurations in Fig. 2.1, clus-

tering or wide gaps in between frequency locations are indicators of a poorly con-

ditioned problem. This characteristic can be better seen once they are unwrapped

into 1-D using the Good-Thomas FFT as shown in Fig. 3.1. The frequency locations

in Fig. 3.1a and 3.1b are close to uniformly distributed with low variance measure

values. In contrast, the frequency locations in Fig. 3.1c and 3.1d include large gaps

and clustering with high variance measure values. The configurations with low and

high variance measure values also have low and high condition numbers, respectively.

A variation on the variance measure involves incorporating back some of the nor-
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malized non-adjacent distances leads to the following sensitivity measure,

MultiNeighbVarianceMeasure =
1

M

L∑
`=1

1

d(`,M)

M∑
k=1

(|ωk+` − ωk| − µ)2 (3.76)

d(`,M) =
sin(π`

M
)

sin( π
M

)

where d is the Cartesian distance between M uniformly distributed frequency loca-

tions on the complex unit circle, or the side length of an M -sided regular polygon,

that normalizes the distance between skipped neighbors and ` is the integer index

distance between frequency locations. The time complexity computing this measure

is greater at O(ML).

3.4.6 Performance of the Sensitivity Measure

The relationship between the condition number (3.67) and the proposed sensitivity

measures are empirically verified by using their correlation coefficient.

We compute the condition number (using the `2-norm) and the sensitivity measure

for 1000 system matrices like A in (2.6) over varying how much the problem is over-

determined as shown in Fig. 3.4. Matrix A solves for a solution vector of length

64 (or 4 × 4 in wrapped in 2D) and is constructed from exactly 64 up to an over-

determined 3 × 64 randomly chosen set of 1-D DTFT samples, unwrapped from a

20 × 21(N1/M = 5) 2-D grid using the Good-Thomas FFT. The condition number

serves as the benchmark for a sensitivity measure.

The upper and lower bounds for the Frobenius condition number given in (3.70)-

(3.70) correlate at 0.90 with the condition number as shown in Fig. 3.2. However

they both require O(M2) computations compared to the O(M) computations of the

variance measure. Though O(M2) is still better than the O(M3) required in com-

50



puting the largest and smallest magnitude eigen values (or singular values) using the

power iteration (or singular value decomposition).

(a) Upper-bound (b) Lower-bound

Figure 3.2: Scatter plots between condition number and bounds.

The “AdjNeighbUpperBoundApprox” measure of O(M) had a correlation coeffi-

cient of only 0.33. When L was arbitrarily set to log2(M) then the “MaxSearchUpper-

BoundApprox” measure O(M logM) performed better with a correlation coefficient

of 0.83 as shown in Fig.3.3.

The relationship between the condition number and the variance sensitivity mea-

sure (3.75) in particular is based on the insight that both measures increase when

the distances between DTFT samples decrease. The variance sensitivity measure has

Figure 3.3: Scatter plot between condition number and “max search” upper-bound
approximation.

51



Figure 3.4: Correlation coefficient between condition number and variance sensitivity
measure versus over-determining factor.

a 0.45 correlation with the condition number in the just-determined case shown in

the scatter plot in Fig. 3.5. However in the 3-times overdetermined case the corre-

lation rises to 0.80. Fig. 3.4 shows that the correlation plateaus at about 2 times

over-determining.

Since the just-determined case is usually so poorly-conditioned as mentioned be-

fore, we focus on the over-determined case. Because the overdetermined problem is

an entirely different system of equations, the measures derived from the Lagrange

interpolation formula do not work well. The variance measure performs far better

in correlating with the condition number in the over-determined case and has a low

time complexity. Therefore the variance measure is our sensitivity estimate of choice

for the remainder this work.

The extension of the variance measure, “MultiNeighbVarianceMeasure,” has em-

pirically shown some increases in the correlation coefficient commensurate with the

additional cost.

We just showed empirically the variance measure strongly correlates with the

condition number. However when the condition number is impractical to compute

for large system matrices we can show the relationship between the condition number

and the performance of the conjugate gradient method which then relates to the
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(a) Just-determined (b) Over-determined

Figure 3.5: Scatter plots between condition number and variance sensitivity measure.

variance measure.

From [26] we know the residual error reduction per PCG iteration is approximately

(
√
κ − 1)/(

√
κ + 1), where κ = κ2(A) is the condition number. The total residual

error

ε ≤ 2e
−2i√
κ (3.77)

over i iterations has an upper bound that is a function of the condition number. The

relative residual of configurations with lower variance measures decrease faster than

the relative residual of the configurations with higher variance measures. A smaller

relative residual ε = |Ax(i)−b|/|b| then tends to lead to a smaller MSE of the solution

x.

Conversely it can be shown that if the PCG relative residual tolerance ε is fixed,

then a frequency configuration with a lower variance measure will require fewer itera-

tions for convergence of the PCG method than a configuration with a higher variance

measure. Solving (3.77) for the number of iterations i we get

i ≤ 1

2

√
κ ln

(
2

ε

)
. (3.78)

Therefore a frequency configuration with a lower variance measure requires fewer
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iterations, typically a consequence of better conditioning.

3.5 Frequency Selection

The sufficient number of DTFT values needed for image reconstruction is not

always immediately clear as shown in [8]. In the case of the 45◦ rotated problem

we can use M2 DTFT values (or greater for the over-determined case) while using

a sensitivity measure to select the DTFT locations that produce a well-conditioned

system. The DTFT locations are chosen anywhere on the diagonal lines in (3.30)

The variance sensitivity measure presented in [15] can be used to relatively find

a frequency configuration that produce the best-conditioned system. This relatively

best-conditioned system may not need regularization. Therefore, in some situations

we can improve the conditioning of the system without the unwanted biasing of

regularization.

The variance sensitivity measure quantifies the departure from a uniform distri-

bution of DTFT locations, which in turn is related to the condition number. The

variance of distances between adjacent DTFT locations in the 1-D unwrapped prob-

lem in (3.75) correlates well with the condition number and has a complexity of O(N)

as stated in [15].

For large problems an exhaustive search of frequency configurations that lead to

well-conditioned systems is impractical. We use the method of simulated annealing

explained in Section 3.6.2 with the variance measure as its cost function to find a

near optimal set of DTFT locations, the estimate of the global minimum embedded

in many local minima.

In the computed tomography (CT) case, the DTFT locations are selected at the

intersections of the diagonal lines (3.30) and the radial projection lines. The angles

and radial sampling are varied in the simulated annealing process to produce an

near-optimal frequency configuration with the lowest variance measure.
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3.5.1 Simulated Annealing

The variance sensitivity measure can be used to relatively find frequency config-

urations that produce well-conditioned systems. For large problems an exhaustive

search is impractical. We use the method of simulated annealing with the variance

measure as its cost function to find a set of frequency locations with a variance mea-

sure close to the global minimum. In [27], a cost function is evaluated from an initial

discrete set of parameters. Then a candidate parameter set is created by changing a

few of the parameters and the cost function is recomputed. If the cost decreases then

the candidate set is accepted as the new optimal set. If the cost increases then the

candidate set is still accepted based on the Boltzmann probability distribution,

P (∆E) = exp(−∆E/kBT ), (3.79)

where ∆E is the change in cost, kB is the Boltzmann constant, and T is the temper-

ature. For our purposes we treat kBT = T̂ as one variable. Several candidate sets are

proposed at the current temperature until thermal equilibrium is reached. At that

point then the temperature is lowered again until an acceptable cost is reached.

3.5.2 Fixed Configurations with Additional Samples

In the case where the frequency configuration is fixed and the DTFT samples

have already been acquired, we would like to improve the conditioning of the prob-

lem by adding a few additional DTFT samples. We must determine the locations of

these extra DTFT samples that reduce the variance measure, thus reducing the con-

dition number of the system matrix. When placing each additional DTFT sample we

can quickly recompute the variance measure to determine which additional location

reduces the variance measure. Typically the best locations to reduce the variance

sensitivity measure will be inside large gaps.
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3.5.3 Perfect Conditioning

So far we have assumed the locations of the frequency samples are constrained to

both (a) the geometry of the physical system such as radial lines in CT or a spiral

trajectory in certain cases of MRI, and (b) the unwrapping rules such as a regular

rectangular grid of the Good-Thomas FFT or the diagonal lines of the Kronecker

substitution methods. The geometry of the sampling is then adjusted so that it

intersects with the wrapped grid or lines. In this section, we explore the cases where

each location in a set of arbitrary 2D DTFT samples can be chosen independently

from each other. Arbitrary frequency selection over the 2-D freq domain is well suited

for MRSI and 3D MRI.

An overview of the problem is to reconstruct an M×M image from frequency

data with locations on a restricted diagonal lines uniformly distributed in 1-D. A

1-D unwrapping procedure determines the diagonal lines. The frequency locations

are determined so that the 1-D case is perfectly conditioned, meaning the condition

number equals exactly 1. Then the frequency values are mapped to 1-D and solved

very quickly since the system matrix is now orthogonal and the matrix-vector multi-

plication is computed at FFT speed. Next the 1-D solution, which may have bands of

zeros removed, is rewrapped into 2-D. If perfectly conditioned then there is no noise

amplification.

The idea here is that we enforce a 1-D frequency location set that is uniformly

spaced so that the condition number is always 1. In such cases, the variance sensitivity

measure will be zero. This requires that we use enough frequency samples to ensure

uniqueness. Otherwise we may reduce the solution support by removing any bands

of zeros from the 1-D solution support. Empirical evidence shows that matrix is still

well conditioned with bands of zeros removed. If we can ensure a condition number

of 1 then there is no need for a sensitivity measure. However, additional frequencies

cannot be added to the existing set. Instead a new uniformly spaced set must be
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used.

In [28], Gao and Reeves state that the minimum sampling density is the area of

the region of support. In our method after unwrapping in 1D that is the area of

the rectangular support. Typically this is a helically wrapped grid in the frequency

domain, has a conditioning of 1, and is computed fast, but this is the same for a 2-D

FFT. The benefit of our method is that you can add a few more frequency samples

and the 2-D frequency sampling grid updates. Though since this method does not

amplify noise due to a condition number of 1, over-determining can not improve

already perfect conditioning. Reduction in error is from frequency samples used.

The unwrapping procedure used is the helical scan FFT described in [22] and

earlier in Section 3.2.3.

A few observations and consequences of the perfectly conditioned image recon-

struction using regular non-rectangular 2-D DTFT samples are:

• The 2-D rectangular grid is not the only system with condition number of 1.

• Given an M×M image support, this method allows any overdetermined number

of frequencies, but on M diagonal lines at angle arctan(1/M).

• The image can be padded to N×N which results in flatter diagonal lines at

angle arctan(1/N) and closer N diagonal lines at 1/N apart.

• Voronoi cells created from the frequency locations are uniform, with zero vari-

ance in their area.

• When applying the variance sensitivity measure on 1-D diagonal wrapped line

with no restrictions, the uniform distribution minimizes the variance measure.

• MRSI or 3D MRI are ideal applications where there’re no restrictions in k-space

but each sample is expensive, time-wise, to acquire.

• The three advantages are:

1. No noise amplification
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2. Fast 1-D FFT computation

3. Arbitrary number of samples

This last point is makes the perfectly conditioned method useful since normally,

a 2-D DFT grid on N×N is used on a M×M image. To get an to an overdetermined

system you need to increase DFT size from N×N to (N + 1)×(N + 1) which requires

2N + 1 extra samples (for example if N = 32 then 2N + 1 = 65). Then we can solve

for inverse (N+1)×(N+1) inverse 2-D FFT, instead of the general method of solving

normal equations using the conjugate gradient method for example.

However, in our method we can increase the number of total points by an arbitrary

number of extra points on a N×N grid and use the inverse 1-D FFT. If we know it is

padded then we solve for just (N + 1)×M − (N + 1−M) samples. Though the result

of uniformly distributed samples in 1-D is trivial, it becomes less so when wrapped

to 2-D in a regular yet non-rectangular pattern.

A 16×16 example is shown in Figure 3.6, where the image is not padded and data

is overdetermined by a factor of 1.037 with no noise. The theoretical system matrix

is then of size 265×256 with a condition number of 1. The Voronoi cell patterns in

Fig. 3.6(c) are hexagons with an over-determining factor of 1+18/512=1.037, in Fig.

3.6(d) are rhombuses with a factor of 1, in Fig. 3.6(e) are squares with a factor of

1+1/256, in Fig. 3.6(f) are snake-skin shape with a factor of 1+4/256.

The hexagonal sampling pattern in Fig. 3.6(c) is of particular interest for the

reasons that it is more efficient in sampling circularly band-limited signals [29] over

rectangular patterns. In fast MRI applications such as MRI angiography and cardi-

ology, a single-short hexagonal trajectory is easier on gradient field generators than a

square spiral Fourier transform imaging while not requiring gridding methodologies

as in the case for ordinary spiral imaging. In terms of computing the inverse Fourier

transform of hexagonal Fourier samples, in [30] it’s stated that many other hexag-

onal FFT algorithms are either computationally expensive, require twiddle factors,
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must be interpolated to a rectangular grid in the end, or require insertion of zeros

to fit to a 2D grid at the cost of aliasing. The method of helical scan FFT 2-D to

1-D unwrapping of a perfectly conditioned uniform sampling pattern followed by the

standard inverse 1-D FFT lacks many of these difficulties.

The small example shows a perfect reconstruction with 9.8×10−13 RMSE in 1D

in Figure 3.7. The wrapped 2-D image not shown is of a cropped simulated cross-

sectional head.

(a) Helical scan FFT wrapping (b) Perfectly conditioned fre-
quency locations

(c) Hexagonal Voronoi diagram
of frequency locations

(d) Rhombus Voronoi diagram
of frequency locations

(e) Square Voronoi diagram of
frequency locations

(f) “Snake-skin” Voronoi dia-
gram of frequency locations

Figure 3.6: Perfectly conditioned 1-D frequency location wrapped to 2-D.
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(a) Unwrapped 1-D DTFT values (b) Unwrapped 1-D reconstructed solution

Figure 3.7: Perfectly conditioned 1-D data and solution.

3.6 Results

3.6.1 Good-Thomas FFT: Simulation Results

The image to reconstruct has slanted support shown in Fig. 3.8a with M1×M2 =

64 × 64 = 4096 real image values. We use a slanted image support because it leads

to a shorter 1-D support length than one for a rectangular image support due to the

diagonal unwrapping of the Good-Thomas FFT shown in the example in Fig. 3.9a.

The data values are computed using the 2-D DTFT equation and are selected from a

computed tomography (CT) pattern consisting of 256 radial slices with 256 points per

slice shown in Fig. 3.8b. After choosing a large N1 = 6M , these polar gridded 2-D

DTFT locations are fitted to an N1 × N2 = 384 × 385 = 147840 rectangular grid of

2-D DFT locations using linear interpolation as we have done. This requires that the

reconstructed 2-D image is zeropadded to 384×385. The example in Fig. 3.9a shows

how this is done. No noise was explicitly added to the data since using interpolation

to fit samples at {ω1,k, ω2,k} already contributes to the noise. The settings for the

limited angle tomography (LAT) pattern are the same except for where the slices are

restricted to [−π
3
, π

3
] as shown in Fig. 3.8c.

In [8], a slanted image has an unwrapped 1-D support length of at most M1N2

as seen in the example in Fig. 3.9c. The 2-D zeropadded image is unwrapped to

produce a 1-D signal with a support length of M1N2 = 24640, which is the same

number of DTFT values required for a unique reconstruction of 1-D signal stored in
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Figure 3.8: Original slanted-support image and computed tomography and limited
angle tomography frequency configurations.

Figure 3.9: 2-D image slanted support and unwrapped 1-D support examples.

solution vector x. We chose a just-determined M1N2 = 24640 number of 2-D DTFT

samples selected from either the CT or LAT pattern. These 2-D DTFT samples

make up the data vector b. Because we know the image is real, the 2-D DTFT

samples are selected in complex conjugate pairs. Though the method also applies to

complex-valued images.

The system matrix A in (2.6) is constructed from 24640 selected unwrapped 1-D

frequency locations out of 78674 available samples for the CT case and out of 67614

available samples for the LAT case. Simulated annealing with the variance sensitivity

measure as the objective function is used to relatively find frequency configurations

that produce well-conditioned systems. The annealing schedule we use is as follows:
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T̂initial = 1× 10−10, T̂final = 1× 10−20, T̂decay = 0.9, Ntrials = 100 candidate trials per

temperature, and Nswap = 1 number of frequency samples swapped per trial.

With the use of the variance sensitivity measure, we are able to construct the best-

conditioned system out of the many possible systems. This relatively best conditioned

system may not need regularization compared to the other choices. Therefore, in some

situations we have improved the conditioning of a system without the unwanted

biasing side effect of regularization. For cases where all of the possible frequency

configurations produce ill-conditioned systems, regularization must be used yet the

variance measure is still useful in identifying the least ill-conditioned system. However

for these simulations regularization is not used.

The image is reconstructed iteratively by solving the normal equation (2.8) using

the preconditioned conjugate gradient method (2.31) with a circulant preconditioner

(2.39).

3.6.1.1 Variable Frequency Configurations

For the case where we have the freedom to choose the 24640 2-D DTFT samples

from the CT pattern and LAT pattern, we first select a random set of frequency

samples and designate them as the “High Variance” configurations. Then we use the

variance measure in simulated annealing to arrive at the “Low Variance” configura-

tions. The “High Variance” configurations are solved with a maximum of 35 PCG

iterations with a relative residual of 2.63 × 10−3 for the CT case and 3.66 × 10−3

for the LAT case. The “Low Variance” systems are then solved to reach the same

relative residual value in hopefully fewer PCG iterations for each case.

The “High Variance” and “Low Variance” frequency configurations for both the

CT and LAT cases are shown in Fig. 3.10. Notice the “Low Variance” configurations

clump less near the origin and the samples are more uniformly distributed. The mean

squared errors (MSE) of each reconstructed image in Fig. 3.11 are on the same order
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Figure 3.10: Variable CT and LAT frequency configurations.

Figure 3.11: Reconstructed images from Good-Thomas unwrapped variable configu-
rations.

of magnitude which is expected since they were solved for the same relative residual.

However the number of iterations for the “Low Variance” systems are clearly less as

seen in Table 3.1. Fig. 3.12 shows the relative residuals of both configurations for each

iteration for each case. The relative residual of the “Low Variance” configurations

decrease faster than the relative residual of the “High Variance” configurations.

3.6.1.2 Fixed Configurations with Restricted Additional Samples

The reconstruction uses the “High Variance” frequency configuration in Section

3.6.1.1 as the fixed configuration but with 100 additional DTFT samples in complex

conjugate pairs. The total number of DTFT samples used then becomes 24740.
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Figure 3.12: Relative residuals of variable configuration reconstructions per PCG it-
eration.

Table 3.1: Good-Thomas Reconstruction Data

Frequency Variance Mean Squared PCG

Configuration Measure Error Iterations

CT High Variance 3.36× 10−7 35.1 35

CT Low Variance 2.80× 10−7 36.5 28

LAT High Variance 8.33× 10−7 36.6 35

LAT Low Variance 7.84× 10−7 35.6 27

Add CT Random 3.35× 10−7 35.1 35

Add CT Gap 3.15× 10−7 32.5 34

Add Any Random 3.24× 10−7 35.1 35

Add Any Gap 2.57× 10−7 33.0 33
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Figure 3.13: Fixed frequency configurations with additional samples.

Figure 3.14: Reconstructed images from Good-Thomas unwrapped fixed configura-
tions.

In the first scenario, each location of the additional DTFT sample pairs is selected

from the CT pattern at random, marked as circles in Fig. 3.13a. This “Add CT

Random” configuration has a variance measure of 3.35×10−7 radians, which is about

the same as the variance measure of the “CT High Variance” configuration since large

gaps still exist in the configuration. The MSE of the reconstructed image in Fig. 3.14a

is not improved despite that we are reconstructing with more data values. The image

is then reconstructed using PCG with 35 maximum iterations with a relative residual

of 2.63× 10−3.

In the second scenario, each location of the additional DTFT sample pairs is

selected from the CT pattern at locations within the largest gaps in the anti-diagonally
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Figure 3.15: Relative residuals of fixed configuration reconstructions per PCG itera-
tion.

unwrapped 1-D CT pattern. This is consistent with the insight developed in Section

3.4.5 that the absence of large gaps leads to smaller a variance measure value. This

“Add CT Gap” configuration in Fig. 3.13b has a variance measure of 3.15 × 10−7

radians, which is lower than the “Add CT Random” configuration. Solving for the

same relative residual tolerance, the PCG iterations and MSE of the reconstructed

image in Fig. 3.14b are lower than that of the “Add CT Random” image.

Fig. 3.15a shows the PCG relative residuals per iteration of the two configurations

with additional DTFT samples selected from the CT pattern. The relative residual

of the “Add CT Gap” configuration decreases slightly faster than that of the “Add

CT Random” configuration.

3.6.1.3 Fixed Configurations with Any Additional Samples

If we are able to select the additional DTFT samples from any location on the

N1 × N2 rectangular grid and not be restricted by the CT pattern, we can form a

configuration with a much lower variance measure by filling in the larger gaps. In the

first scenario, each location of the additional 100 DTFT samples in pair is selected

from any location at random. This “Add Any Random” configuration in Fig. 3.13c

has a variance measure of 3.24 × 10−7 radians and the reconstructed image in Fig.

3.14c has a MSE similar to that of the “CT High Variance” and “Add CT Random”

configurations.
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In the second scenario, each location of the additional DTFT sample pairs is

selected from any location within the largest gaps in the unwrapped 1-D ”CT High

Variance” configuration. This “Add Any Gap” configuration in Fig. 3.13d has a

variance measure of 2.57×10−7 radians, which is lower than the “Add Any Random”

configuration even though the “Add Any Random” configuration appears to uniformly

fill in 2-D gaps more than the “Add Any Gap” configuration does. The reason is not

so obvious in 2-D but clearer in 1-D. Since the unwrapping of these frequency locations

using the Good-Thomas FFT occurs anti-diagonally, the centers of the largest 1-D

gaps line up along the diagonal of the 2-D frequency grid. Therefore uniformly filling

in gaps in 2-D does not necessarily correspond to filling in most of the 1-D gaps. The

MSE of the reconstructed image in Fig. 3.13d are lower than that of the “Added Any

Random” configuration.

Fig. 3.15b shows the PCG relative residuals per iteration of the two configurations

with any additional DTFT samples on the frequency grid. The relative residual of the

“Add Any Gap” configuration decreases faster than that of the “Add Any Random”

configuration.

3.6.2 Rotated Image Support: Simulation Results

The M ×M = 127 × 127 image to reconstruct is shown in Fig. 3.16a and has a

45◦ rotated support as well as being rotated itself in Fig. 3.16b. This image is also

zeropadded to N ×N = (2M − 1)× (2M − 1) = 253× 253 to increase the number of

diagonal lines in the frequency domain thus increasing the density of DTFT samples

from which to choose. When the image is unwrapped diagonally into 1-D much of

the head and tail of the signal are zeros, and therefore the signal support length is

reduced to N ×M = (2M − 1) ×M = 32131. Only the supported signal is shown

rewrapped into 2-D in Fig. 3.16c.

In the frequency domain, N−1 = 252 equally-spaced diagonal lines fill a [−π, π)×
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Figure 3.16: Original image with unrotated, rotated padded 2D, and rotated wrapped
1D support.

[−π, π) area. These lattice lines intersect with radial projection lines used in CT. Be-

cause the DTFT samples are restricted to the diagonal lines, if either of the angles or

the radii of the CT projection lines are independently chosen then the other param-

eters are automatically determined. For example in Fig. 3.17a, the uniform angles

determine the radii at the intersections with the lattice lines, whereas in Fig. 3.17b,

the uniform radii determine the angles at the intersections. Simulated annealing is

used to adjust either the angles or the radii to find an optimal set of parameters

with respect to minimizing the variance sensitivity measure. Once found, the optimal

angles or radii can be fixed in CT systems. For example, 3rd generation CT scanners

with rotate/rotate geometry can set their detectors to the optimal radial positions

and then take projection data at variable angles.

There are four frequency configurations used in reconstructing the image: “CT

Angle Uniform”, “CT Angle Optimal”, “CT Radius Uniform”, “CT Radius Optimal”.

They differ in which parameter varies, “Angle” or “Radius”, and how that parameter

is arranged, “Uniform” or “Optimal”. The “Optimal” modifier denotes the frequency

configuration with the lowest variance measure value found from simulated anneal-

ing. The number of angles or projections and number of radii or radial samples is
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Figure 3.17: Lattice and radial projection intersections for rotated image support.

initially set to N = 253 each and adjusts its number and sometimes crops the highest

frequencies to maintain the fixed number of DTFT samples. An over-determining

number of 2× supportlength+ 1 = 2NM + 1 = 64263 DTFT samples are chosen in

complex conjugate pairs to reconstruct only real images in this case and includes the

single DC sample making the number odd. In the “Angle” configurations the angle

which lines up with the middle lattice line is also always included and sampled at

π/N over the full length.

After the DTFT locations are selected the DTFT values are computed using the

2-D DTFT equation (2.1). No noise is added to the DTFT values. The system of

linear equations is set up with 64263 data values to solve for 33153 solution values.

It is solved iteratively by PCG.

3.6.2.1 Variable Angle Configurations

The “CT Angle Uniform” configuration has DTFT samples taken from intersec-

tions between projection lines with angles uniformly spaced and the lattice shown

in Fig. 3.18a. The “CT Angle Optimal” configuration shown in Fig. 3.18b uses

simulated annealing on the former configuration and an initial configuration. The

annealing schedule we use is as follows: T̂initial = 10, T̂final = 1× 10−5, T̂decay = 0.8,
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Table 3.2: Rotated Support Reconstruction Data

Frequency Variance Root Mean PCG

Configuration Measure Squared Error Iterations

CT Angle Uniform 61.7 2.23 185

CT Angle Optimal 30.3 0.87 122

CT Radial Uniform 52.4 16.23 678

CT Radial Optimal 40.4 9.71 297

Figure 3.18: Computed tomography frequency configurations for rotated support.

Ntrials = 100 candidate trials per temperature, and Nswap = 10 number of frequency

samples swapped initially per trial. The Nswap decrements by 1 until it reaches 1

when no steps were taken in the current temperature. The PCG relative residual

tolerance is set to 1× 10−6.

The “CT Angle Optimal” configuration has a variance measure of 30.3 which is

about half that of “CT Angle Uniform” at 61.7 shown in Table 3.2. Likewise root

mean squared error (RMSE) of the reconstructed images in Fig. 3.19a-b is lower for

that of “CT Angle Optimal” with 0.87 compared to 2.23. More importantly “CT

Angle Optimal” took 122 instead of 185 PCG iterations to reconstruct the image.

The PCG relative residuals are shown in Fig. 3.20a.
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Figure 3.19: Unrotated reconstructed images from CT configurations.

Figure 3.20: Relative residuals of CT configurations for rotated support per PCG
iteration.
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3.6.2.2 Variable Radius Configurations

The “CT Radius Uniform” configuration has DTFT samples taken from inter-

sections between projection lines with radii uniformly spaced and the lattice shown

in Fig. 3.18c. The “CT Radius Optimal” configuration shown in Fig. 3.18d uses

simulated annealing on the former configuration and an initial configuration. The

annealing schedule we use is as follows: T̂initial = 1, T̂final = 1 × 10−6, T̂decay = 0.8,

Ntrials = 100 candidate trials per temperature, and Nswap = 5 number of frequency

samples swapped initially per trial. The Nswap decrements by 1 until it reaches 1

when no steps were taken in the current temperature. The PCG relative residual

tolerance is set to 1× 10−5.

The “CT Radius Optimal” configuration has a variance measure of 40.4 which is

just less than that of “CT Radius Uniform” at 52.4 shown in Table 3.2. The RMSE

of the reconstructed images in Fig. 3.19c-d is lower for that of “CT Radius Optimal”

with 9.71 instead of 16.23. Again more importantly “CT Radius Optimal” took 297

instead of 678 PCG iterations to reconstruct the image. The PCG relative residuals

are shown in Fig. 3.20b.

3.6.3 Rotated Image Support: Actual CT Results

3.6.3.1 Data

Results implementing the 45◦ rotated support method using M as odd and on

actual CT data, provided by Adam M. Alessio of the University of Washington, are

presented. The Discrete-Time Fourier Transform (DTFT) locations are the intersec-

tions of radial projection lines and frequency supported diagonal lines. The DTFT

values are computed from the 1-D DTFT of each projection rebinned into parallel

beams from fanbeam data originally consisting of 820 views per 360◦ rotation and

888 detectors, shown in Fig. 3.21(a). The location from the distance from the source
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to the detector is 949.075mm and the source to iso-center is 541mm. The detector

spacing is 1.0239mm and the location of the iso-center is 444.75 in detector units

which has a quarter-pixel shift to effectively double the radial resolution when com-

bining views that are 180◦ apart. The rebinned parallel beam projections, shown in

Fig. 3.21(b), have an equivalent 889 detectors spaced 0.9622 pixels with pixel size

0.5837mm, consisting of 410 views per 180◦ rotation, and is interpolated from the

fanbeam projections using linear interpolation. A reference filtered back-projection

(FBP) reconstructed image of size 889×889, same as the number of detector bins, of

a physical phantom using the whole parallel beam sinogram is shown in Fig. 3.21(c).

(a) Fanbeam sinogram (b) Rebinned parallel beam sino-
gram

(c) FBP reconstructed im-
age from full sinogram

Figure 3.21: Sinograms and reference reconstructed image.

3.6.3.2 Small Reconstruction

A small image x(i1, i2) of size M ×M = 31 × 31 with no zeropadding of the

image support is reconstructed. The size of the solution vector (of the reconstructed

image) is M ×M = 961 and the overdetermining factor is set to 1 initially. The

45◦ rotated image method which unwraps the 2-D DTFT to a 1-D DTFT using

Kronecker substitution is solved using the preconditioned conjugate gradient (PCG)

method with a stopping tolerance of 1× 10−6 and a maximum of 50 iterations.

The data vector of the uniform-angle PCG reconstruction consists of 973 DTFT

values, shown in Fig. 3.22(b), from the intersection of band-limited diagonally-
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wrapped 1-D DTFT constraint lines and uniform-angle 1-D DTFT of 44 CT pro-

jection slices, shown in Fig. 3.22(a). The variance measure of the unwrapped 1-D

DTFT locations is 27.7.

The data vector of the variable-angle PCG reconstruction consists of 969 DTFT

values, shown in Fig. 3.22(d), from the intersection of band-limited diagonally-

wrapped 1-D DTFT constraint lines and simulated annealing optimized variable-angle

1-D DTFT of 68 CT projection slices, shown in Fig. 3.22(c). The variance measure

of the unwrapped 1-D DTFT locations is lower at 11.2.

The PCG reconstructions are compared to two FBP reconstructions: one with

projections filtered with a non-windowed ramp filter, and another with projections

filtered with a Hann-windowed ramp filter. In both cases the data vector consists

of 961 unique 2-D DTFT values from 16 uniformly spaced projections with 61 bins

each.

(a) Uniform-angle pro-
jections

(b) Uniform-angle inter-
secting DTFT locations

(c) Variable-angle pro-
jections

(d) Variable-angle inter-
secting DTFT locations

Figure 3.22: Frequency configurations for small (M=31) rotated-support reconstruc-
tion.

Fig. 3.23 show the 31× 31 reconstructed images using a non-windowed FBP,

windowed FBP, uniform-angle PCG, and variable-angle PCG. Fig. 3.24 shows the

log magnitude of the 2-D DFTs of the reconstructed images with the locations of

the unrotated 2-D DTFT locations overlayed. It is evident that the near-optimal

variable-angle PCG reconstruction has a more uniform distribution of 2-D DTFT

samples than the other methods.
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(a) Non-windowed FBP
image

(b) Hann-windowed
FBP image

(c) Uniform-angle PCG
image

(d) Variable-angle PCG
image

Figure 3.23: Unrotated reconstructed images for small (M=31) rotated-support re-
construction.

(a) DFT of non-
windowed FBP image

(b) DFT of Hann-
windowed FBP image

(c) DFT of uniform-
angle PCG image

(d) DFT of variable-
angle PCG image

Figure 3.24: Log magnitudes of 2-D DFT of reconstructed images with unrotated
DTFT locations for small (M=31) rotated-support reconstruction.
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Fig. 3.25(a) shows the variance measure as the cost of the simulated annealing

procedure which led to the near-optimal variable projections angles. Fig. 3.25(b)

shows the PCG relative residuals of both the uniform-angle and variable-angle meth-

ods, which are similar.

(a) Variance measure vs. simulated annealing
step

(b) PCG relative residuals vs. iteration

Figure 3.25: Simulated annealing optimization and PCG relative residual comparison
for small (M=31) rotated-support reconstructions.

3.6.3.3 Large Reconstruction

Now a larger image x(i1, i2) of size M×M = 255×255 with no zeropadding of the

image support is reconstructed. The size of the solution vector (of the reconstructed

image) is M×M = 65, 025 and the overdetermining factor is set to 1 initially. The

PCG method used with a stopping tolerance of 1 × 10−6 and a maximum of 1000

iterations.

The data vector of the uniform-angle PCG reconstruction consists of 65,137 DTFT

values, shown in Fig. 3.26(b), from the intersection of band-limited diagonally-

wrapped 1-D DTFT constraint lines and uniform-angle 1-D DTFT of 355 CT pro-

jection slices, shown in Fig. 3.26(a). The variance measure of the unwrapped 1-D

DTFT locations is 57.8.

The data vector of the variable-angle PCG reconstruction consists of 65,095 DTFT

values, shown in Fig. 3.26(d), from the intersection of band-limited diagonally-

wrapped 1-D DTFT constraint lines and simulated annealing optimized variable-angle
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1-D DTFT of 527 CT projection slices, shown in Fig. 3.26(c). The variance measure

of the unwrapped 1-D DTFT locations is lower at 27.4.

The PCG reconstructions are compared to two FBP reconstructions: one with

projections filtered with a non-windowed ramp filter, and another with projections

filtered with a Hann-windowed ramp filter. In both cases the data vector consists of

65,025 unique 2-D DTFT values from 128 uniformly spaced projections with 509 bins

each.

(a) Uniform-angle pro-
jections

(b) Uniform-angle inter-
secting DTFT locations

(c) Variable-angle pro-
jections

(d) Variable-angle inter-
secting DTFT locations

Figure 3.26: Frequency configurations for large (M=255) rotated-support reconstruc-
tion.

Fig. 3.28 show the 255×255 reconstructed images using a non-windowed FBP,

windowed FBP, uniform-angle PCG, and variable-angle PCG. It is clear from the re-

constructed images that the variable-angle reconstruction in Fig. 3.28(d) has sharper

edge definition in the vertical direction than the uniform-angle reconstruction in Fig.

3.28(c). The PCG methods do exhibit some vertical waves most likely from sensitiv-

ity to noise in the data, which could be further remedied either with overdetermining

with more frequency samples or with some mild regularization. The variable-angle

PCG reconstruction exhibits no streaking artifacts of the non-windowed FBP recon-

struction in Fig. 3.28(a) and has better edge-definition than the windowed FBP

reconstruction in Fig. 3.28(b). Fig. 3.27 shows the log magnitude of the 2-D DFTs

of the reconstructed images.

Fig. 3.29(a) shows the variance measure as the cost of the simulated annealing
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(a) DFT of non-
windowed FBP image

(b) DFT of Hann-
windowed FBP image

(c) DFT of uniform-
angle PCG image

(d) DFT of variable-
angle PCG image

Figure 3.27: Log magnitudes of 2-D DFT of reconstructed images with unrotated
DTFT locations for (M=255) rotated-support large reconstruction.

(a) Non-windowed FBP image (b) Hann-windowed FBP image

(c) Uniform-angle PCG image (d) Variable-angle PCG image

Figure 3.28: Reconstructed images for large (M=255) rotated-support reconstruction.
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procedure which led to the near-optimal variable projections angles. Fig. 3.29(b)

shows the PCG relative residuals of the uniform-angle and variable-angle methods.

The variable-angle relative residual decreases slower per iteration even though the

variable-angle reconstruction does show better vertical edge definition.

(a) Variance measure vs. simulated annealing
step

(b) PCG relative residuals vs. iteration

Figure 3.29: Simulated annealing optimization and PCG relative residual comparison
for large (M=255) rotated-support reconstructions.

3.6.4 Perfect Conditioning: Simulation Results

The perfectly conditioned reconstruction method uses the helical scan FFT to

unwrap the 2-D problem into a 1-D problem. The simulation results with two noise

levels show how noise is not amplified.

The simulation uses a Shepp-Logan phantom of size M×M = 128×128 no image

padding but a overdetermining factor of 1.1 where the data vector size is then 18,022

and the solution vector size is 16,384. In Figure 3.30, the first case of low noise, the

2-D DTFT values are corrupted by additive white Gaussian noise with a standard

deviation of 1×102 or an SNR of 30 dB. The reconstruction error is 0.5301 (RMSE). In

the second case of high noise at 10 times the low noise case, the only difference is the

data is corrupted with noise of 1×103 SD or an SNR of 10 dB. The reconstruction error

is 5.301 (RMSE), which is exactly 10 times that of the low case case. This empirically

upholds that the noise in the data is not amplified at all due to the implicit condition

number of 1 of the system.
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(a) Original image (b) Noisy reconstruction
(RMSE=0.5301)

(c) Noisier reconstruction
(RMSE=5.301)

(d) 2-D DFT of original image
(log10)

(e) 2-D DFT of noisy image
(σN = 1× 102) (log10)

(f) 2-D DFT of noisier image
(σN = 1× 103) (log10)

Figure 3.30: Perfectly conditioned noisy simulation reconstructions and their 2-D
DFTs.

80



3.6.5 Perfect Conditioning: Actual CT Results

The perfectly conditioned method is performed on the same actual CT data to

reconstruct an image of size M×M = 889×889 with an image padding factor of 1.9

to avoid image aliasing and a overdetermining factor of 1.7 where the data vector

size is then 2,551,225 and the solution vector size is 790,321. The noise added to the

frequency samples 1-D Fourier transformed in the radial direction from the sinogram

data has a standard deviation of 1× 104 or an SNR of 0.17 dB.

Since there is no true known image, for comparison purposes we reconstruct an

reference image using filtered backprojection algorithm in Matlab called “iradon()”

using linear interpolation from fanbeam to parallel beam and with a ramp or Ram-Lak

filter. The sinogram data contains 364,490 data points with no noise added though.

The actual CT data results compares the perfectly conditioned method with the FBP

method, with regards to image quality and computation time.

In Figure 3.31, the perfectly conditioned reconstructed image can be seen with

little artifacts. It differs from the FBP reconstruction by 13.76 RMSE in Figure

3.31(c). However whereas the FBP algorithm “iradon()” took 50 seconds to compute,

the 1-D FFT of the perfectly conditioned method took only 1.5 seconds.

Figure 3.31(f) also shows the 2-D DFT of the difference between the images.

Discrepancy in FBP and perfectly conditioned reconstruction is that the perfectly

conditioned reconstruction method samples the low frequency region uniformly as

well as the whole frequency plane but the FBP densely samples the low frequency

region due to its polar coordinate sampling pattern. Relatively to FPB, the perfectly

conditioned reconstruction method under-samples data in that region, relative to the

FBP sampling. This is the explanation for the poorer reconstruction of the perfectly

conditioned method.
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(a) FBP image (b) Perfectly conditioned image (c) Difference image
(RMSE=13.7)

(d) 2-D DFT of FBP image
(log10)

(e) 2-D DFT of perf. cond. im-
age (log10)

(f) 2-D DFT of difference image
(log10)

Figure 3.31: Perfectly conditioned noisy simulation reconstructions and their 2-D
DFTs.
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CHAPTER IV

Non-Iterative Approach and Results

4.1 Introduction

The problem of reconstructing an image from irregular frequency samples is usu-

ally solved using an iterative algorithm, such as Projection Onto Convex Sets, or

Conjugate Gradient applied to a linear system of equations with the image pixels as

unknowns. However, these require many iterations and each iteration still requires

three 2-D DFTs to implement convolution. Solving the normal equation, the condi-

tion number of AHA in (2.8) is the square of the condition number of A and the noise

amplification will be enormous unless drastic regularization is used, even though the

filtering effect of AH on the data vector b in AHb may have reduce noise. Also the

number of CG iterations increases roughly with the condition number even with the

help of preconditioning.

We present a non-iterative reconstruction algorithm where computation speed

gains are achieved from precomputing a filter which incorporates compact support

assumptions on the solution image and requires the data to be fit on a DFT grid. The

resulting solution can be used as an initialization for the conjugate gradient method

in the previous iterative image reconstruction method.
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4.1.1 Problem Statement

The goal is to reconstruct a possibly complex-valued (M × M) discrete image

x(i1, i2) from some of the values of its (N ×N) 2-D DFT, where N >> M ,

X(k1, k2) =
N−1∑
i1=0

N−1∑
i2=0

x(i1, i2)e−j
2π
N2 (i1k1+i2k2). (4.1)

We formulate the problem for square image support and DFT size; modification to

the rectangular cases is trivial. We assume that the given DFT values are in complex

conjugate pairs and that the frequency locations are already known.

4.1.2 New Approach

The approach used in this paper summarizes as follows (more details are provided

in the next section):

• Precompute, for a given configuration of DFT samples, a filter which has zero

magnitude response at all unknown DFT sample locations;

• Compute the (sparse) (N × N) inverse 2-D DFT of the data whose frequency

content is known (and filtered) and set to zero elsewhere;

• Deconvolve the solution from this filtered image and the filter. This requires

two (M ×M) 2-D DFTs;

• The total computation is at most N2 log2N + 2M2 log2M , or less if a sparse

2-D DFT is used.

4.2 Filter Design

4.2.1 Filter Specification

Let Ω be the set of ordered pairs {(k1, k2)} for which we know the (N ×N) 2-D

DFT X(k1, k2) of the original image x(i1, i2). Then define the 2-D filter with 2-D

84



impulse response h(i1, i2) and frequency response H(k1, k2) as

h(i1, i2) = 0 for N −M + 1 ≤ i1, i2 ≤ N − 1

H(k1, k2) = 0 for (k1, k2) /∈ Ω

H(k1, k2) =
N−1∑
i1=0

N−1∑
i2=0

h(i1, i2)e−j
2π
N2 (i1k1+i2k2) (4.2)

Note that the nonzero values of h(i1, i2) and H(k1, k2) are known and determined (to

an overall scale factor) by the above conditions.

The filter is precomputed for each configuration of known DFT values of interest.

This is not a problem, since the frequency locations at which DFT values will be

obtained are usually known in advance. So filters for all configurations of interest can

be precomputed and stored. Storage is more efficient in the frequency domain, since

fewer values of H(k1, k2) than h(i1, i2) are nonzero.

4.2.2 Filter Size

The size of the filter is determined as follows:

• h(i1, i2) is (N −M + 1)× (N −M + 1);

• h(i1, i2) = 0 at N2 − (N −M + 1)2 points;

• H(k1, k2) = 0 at (N −M + 1)2 points;

• H(k1, k2) is arbitrary at N2 − (N −M + 1)2 points.

These numbers are specified as follows:

• h(i1, i2) ∗ x(i1, i2) must be N ×N ;

• #unknowns=#equations in the linear system;

• H(k1, k2) known at N2 − (N −M + 1)2 points.
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Note that if N >> M , then

N2 − (N −M + 1)2 ≈ 2NM = 2(
N

M
)M2 (4.3)

so that the original problem must be overdetermined by a factor of 2N/M . This is not

unreasonable; the existence of a unique solution to the original problem may require

more frequencies than the number of image pixels [8],[6],[7]. Overdetermination is

required since the 2-D deconvolution into which the original problem is transformed

is itself overdetermined.

The filter could be computed by solving a large linear system of equations, but

POCS for this off-line computation requires less storage. POCS was used to determine

the filters for the examples below. No non-uniqueness issues have been encountered in

computing filters, but it is possible that the filters themselves must also be overdeter-

mined. Since this means fewer frequencies would be required for the original problem,

this could only help.

Alternatively, the filter could also be computed based on the “finite-support reg-

ularization” method explained in Section 4.3 which converges faster than POCS and

was used to create the filter for the later examples.

4.2.3 Filter Convolution

Now consider the filtered signal

y(i1, i2) =
N−1∑
j1=0

N−1∑
j2=0

h(j1, j2)x(i1 − j1, i2 − j2) (4.4)

Then the (N ×N) 2-D DFT Y (k1, k2) of y(i1, i2) is

Y (k1, k2) =


H(k1, k2)X(k1, k2) for(k1, k2) ∈ Ω;

0 for(k1, k2) /∈ Ω

(4.5)
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Then we may compute x(i1, i2) by deconvolution of the known h(i1, i2) from the

known y(i1, i2) computed from the known Y (k1, k2) using an (N × N) inverse 2-D

DFT. Note that Y (k1, k2) is sparse since most of the (N × N) 2-D DFT values are

zero.

Deconvolution can be accomplished by computing the inverse 2-D DFT of the

quotient of the 2-D DFTs of y(i1, i2) and h(i1, i2). However, the 2-D DFT values of

h(i1, i2) used for deconvolution must all be nonzero. If N is an integer multiple of

M , then an (M ×M) 2-D DFT must NOT be used here. Instead, a DFT of slightly

different order is used, so different unit circle locations are sampled. Since M << N ,

this is not a problem computationally.

4.3 Filter Construction

In order to create the filter, we apply a finite-support regularization that places

a norm penalty on the non-support spatial pixels and then solves the problem using

the preconditioned conjugate gradient method with three 2-D DFTs per iteration yet

still leading to a faster convergence to the solution than as done with POCS. This

duality of this method is presented in [9] yet we present a different perspective.

4.3.1 Background

This method combines the use of a priori knowledge of finite support used in

POCS to create the regularization term with quickly solving the least-squares TBT

structured system in (2.3) using conjugate gradients. It is evident each of the previous

approaches requires some form of regularization. Typical choices for the regulariza-

tion term are the solution norm penalizing identity operator, roughness-penalizing

difference operator, and edge-preserving non-quadratic penalty operator. Yet all of

these choices make assumptions about the solution which may not be accurate.

What we do know for certain is that the object is finite support and hence the

87



image values outside of this square (or finite region) are known for certain (typically

that of air). Essentially POCS, while making no assumptions about the image values

in the finite support, makes this exact assumption on the values outside the finite

support. However POCS is too strict in enforcing this a priori information. Values

outside of the finite support are set to zero in the spatial domain while alternating

setting measured frequency locations with noisy data values.

If we were to relax the restriction by allowing a tolerable prescribed variance of

error in the image values outside of the finite support this would allow a better data-fit

and hopefully lead to faster convergence. This is accomplished by a scaling factor on

the regularization term which would trade-off term between the data-fit (or residual)

and prior-fit (or regularization) terms of the objective function. Another way to look

at this is we are weakening the assumption that the image values outside the finite

support is deterministic and known to those values are random but with known means

and covariances. The data-fit and prior-fit terms are then computed with weighted

norms using their respective covariance matrices. This objective function consisting

of both terms is minimized into in a modified normal equation form, from which the

conjugate gradient method solves for the solution.

Concerns raised in the previous Section 4.1 about the poor conditioning of a

system of linear equations approach and the added cost of preconditioning are mit-

igated. As we will see in the following sections, the preconditioners applied in our

new method lower the condition number of the system matrix to a constant value as

a function of the regularization parameter, the circulant or diagonal preconditioners

are easily invertible, and the number of operations for matrix-vector multiplication

with the preconditioner is at worst the same as two 2-D FFTs or at best of linear

order. The regularization of finite spatial support is an easily verifiable assumption

which only requires knowledge of the spatial values outside of the object of interest.

As the 2-D DFT grid to which the frequency locations are sampled on increases the
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number of the unknown spatial values and the number of measured frequency sam-

ples remains unchanged with only the computational cost of the 2-D FFT per PCG

iteration increasing at O(N2logN). Over-determining the problem does not increase

the computational cost at all since the 2-D DFT operations are already operating on

a full grid.

4.3.2 Objective Function

The problem can be formulated as a 2-D Vandermonde system of linear equations

Fx = b (4.6)

where Fr,c = 1
N
e−j

2π
N2 (i1,ck1,r+i2,ck2,r), xc = x(i1,c, i2,c), and br = X(k1,r, k2,r) are en-

tries for the 2-D DFT matrix, solution vector, and data vector respectively, with

lexicographically ordered spatial indices (i1,c, i2,c) and frequency indices (k1,r, k2,r) for

r = 1, ..., N2 and c = 1, ..., N2.

If we do not know all N2 values of b but only some K < N2 values and since

there are N2 unknown pixel values in x, (4.6) is under-determined. Though, knowing

that the image has (M ×M) finite support, we have information about the N2−M2

spatial values outside of the finite support that can be utilized by regularization.

Let Π be the set of (N2−M2) ordered pairs {(i1, i2)} that are outside the (M×M)

square finite support of the original image x(i1, i2) and let Ω be the set of K ordered

pairs {(k1, k2)} for which the (N × N) 2-D DFT values X(k1, k2) are known. Then

the objective function includes a residual term of only the known 2-D DFT values

and a Tikhonov regularization term including only the non-support spatial values as

follows

Φ(x) = ‖JΩFx− bΩ‖2 + λ2 ‖JΠx− x0,Π‖2 (4.7)
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where JΩ is a (K×N2) binary matrix that selects only entries in resulting vector Fx

for which the frequency locations are in Ω, bΩ is a vector of known frequency values

in Ω, λ is the regularization parameter, JΠ is a ((N2 − M2) × N2) binary matrix

that selects only entries in x that are in Π somewhat like an irregular downsampling

matrix, and x0,Π is a vector of known values of the padding non-support region.

Letting x0,Π = ~0, the minimization of (4.7) by taking the derivative of Φ(x) with

respect to x then setting it to zero and solving for x is

x̂ = arg min
x

Φ(x) =
(
FHIΩF + λ2IΠ

)−1
FHJHΩ bΩ (4.8)

where IΩ = JHΩ JΩ is a (N2 × N2) diagonal binary matrix when multiplied with a

vector, zeros out entries with frequency locations not in Ω, IΠ = JHΠ JΠ similarly is

a (N2 × N2) diagonal binary matrix that zeros out entries of a vector with spatial

locations not in Π, and JHΩ is a (N2 × K) irregular upsampling matrix that fills in

entries with frequency locations not in Ω with zeros. In a modified normal equation

form, (4.8) is

(
FHIΩF + λ2IΠ

)
x = FHJHΩ bΩ (4.9)

where FHJHΩ bΩ can be viewed as an incomplete inverse 2-D DFT estimate for x,

because the 2-D DFT matrix F we defined in (4.1) is orthonormal, its Hermitian

transpose is equal to its inverse

FH = F−1. (4.10)

It turns out that the set of locations of the unknown pixel values, Π, does not neces-

sarily need to be square nor connected in 2-D, as long as the remaining locations in

the field of view N ×N have known pixel values.
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4.3.3 Uniqueness

We know that the number of 2-D DFT samples K ≥ M2 is necessary but is

K = M2 sufficient? It is shown in [8] that M2 samples of a (N×N) 2-D DFT are not

enough to uniquely determine a M ×M image. However in our case, we have added

constraints where the non-support spatial values are known at N2 −M2 locations

in Π in addition to the K = M2 2-D DFT samples resulting in N2 knowns to N2

unknowns in the padded solution x. We show that the use of K = M2 2-D DFT

samples in bΩ is sufficient for a unique solution to (4.9).

To show uniqueness of the solution to (4.9) is to show that the system matrix

A = FHIΩF + λ2IΠ (4.11)

where |Ω| = K = M2 and |Π| = N2 −M2, has rank(A) = N2 or is non-singular.

Letting

C = FHIΩF (4.12)

D = λ2IΠ (4.13)

we can state that rank(C) = rank(IΩ) = M2 because FHIΩF = F−1IΩF is similarity

transformation and rank(D) = rank(IΠ) = N2 −M2. In [31], it is shown that the

rank of the sum of two matrices

rank(C +D) = rank(C) + rank(D) (4.14)

is additive of their individual ranks, if and only if R(C) ∩R(D) = {0} and R(CH) ∩

R(DH) = {0}, where R(C) denotes the row space of matrix C. Because C and D are

Hermitian symmetric is it only necessary to show the former, that the row spaces of
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C and D are disjoint. The rows of C

ur(c) =
1

N

∑
(k1,k2)∈Ω

e−j
2π
N2 (k1(i1,c−i1,r)+k2(i2,c−i2,r)) (4.15)

are sums of 2-D complex exponentials, whereas the rows of D

vr(c) =


λ2δ(c− r), (i1,r, i2,r) ∈ Π

~0, otherwise

(4.16)

are vectors of either scaled Kronecker delta values or zeros. Let w ∈ (R(C) ∩ R(D))

then it follows that w ∈ R(C) and w ∈ R(D) or similarly w is a linear combination

of {ur}r and also a linear combination of {vr}r

w(c) =
N2∑
m=1

αmum(c) =
N2∑
n=1

βnvn(c) (4.17)

for some complex scalars {αm}m=1,...,N2 and {βn}n=1,...,N2 . Substituting (4.15) and

(4.16) into (4.17), grouping scalars, and eliminating zero vectors from the summation,

we arrive at

w(c) =
M2∑
p=1

(k1,p,k2,p)∈Ω

α̂pz
−(k1,pi1,c+k2,pi2,c)

=
N2−M2∑
q=1

(i1,q ,i2,q)∈Π

β̂qλ
2δ(c− q) (4.18)

where α̂p = 1
N

∑N2

m=1 αmz
k1,pi1,m+k2,pi2,m , and z = ej

2π
N2 is the primitive N2th root of

unity. For the case where M2 = 0 or M2 = N2, trivially w = ~0 which is in {0}. When

M2 = 1, w is a single complex exponential or sequence with up to N2 − 1 non-zero

values but at least 1 zero entry. Since no single complex exponential can represent
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a finite sequence with a zero value, {α̂p} and {β̂q} must all be zero. Similarly, for

M2 > 1, w as a linear combination of N2 −M2 distinct Kronecker deltas with M2

zeros requires a linear combination of M2 + 1 distinct complex exponentials to be

create a finite sequence with M2 zeros, yet only M2 distinct complex exponentials are

available. In other words a linear combination of M2 distinct complex exponentials

only has M2 − 1 primitive N2th roots of unity. Once again the choices for {α̂p}

and {β̂q} are trivially zeros. Therefore, w = ~0 in all cases, and R(C) and R(D) are

disjoint. Hence rank(A) = rank(C +D) = M2 + (N2−M2) = N2, A is non-singular,

and (4.9) has a unique solution.

4.3.4 Frequency Selection

In most cases the configuration of the K 2-D DFT samples will be restricted, for

example along radial lines for CT and a spiral for MRI. When measurements of these

samples are taken along analytical trajectories, the 2-D DTFT samples can be fit to a

rectangular grid with less interpolation errors by simply increasing the 2-D DFT size

N without an increase of K. Regardless of the size of the 2-D DFT we employ, the

K = M2 will still yield a unique solution, because the padded region with locations

in Π just increases in size N2 −M2. The trade-off is that the computational cost of

computing the two 2-D DFTs increases as well. However, if the 2-D FFT is employed

the cost increases in O(N2 log(N)).

In Section 4.3.3, it was shown that setting the number of measured 2-D DFT

samples to K = M2 is sufficient for a unique solution of (4.9), yet in the presence

of measurement noise it may be desirable to over-determine the problem by taking

more data samples as such M2 < K ≤ N2.
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4.3.5 Optimization Algorithm

Since the system matrix in (4.9) is Hermitian symmetric and positive definite we

employ the conjugate gradient (CG) method. After substituting (4.10) into (4.9), the

data vector F−1JHΩ bΩ is precomputed with one inverse 2-D FFT using (4.10). The

matrix-vector multiplication of (FHIΩF + λ2IΠ)v is split into two steps. The first

term F−1IΩF requires a 2-D FFT, an element-wise masking operation, followed by an

inverse 2-D FFT. The second term λ2IΠ is a simple scaled masking operation. Lastly a

vector addition is performed. The approximate cost is 20N2 log2(N) per CG iteration

(given a 2-D FFT consists of about 10N2 log2(N) operations). Because of some of the

zero diagonal entries in IΩ, sparse 2-D FFT routines with lower computational costs

may be employed. The number of iterations can be predetermined or determined

based on the value of the objective function in (4.7) at the current iteration. Lastly

the reconstructed N × N solution x is lexicographically wrapped into 2-D then the

padded region is cropped leaving the M ×M reconstructed image.

4.3.6 Preconditioning

Preconditioning the system matrix in (4.9)

P−1Ax = P−1b

P−1(FHIΩF + λ2IΠ)x = P−1FHJHΩ bΩ (4.19)

where P is the preconditioning matrix, before using the conjugate gradient method

can improve the convergence rate, by reducing the condition number of the precon-

ditioned system matrix P−1A. The trade-off is that preconditioning step is required

per iteration, adding to the computational cost. Therefore a good preconditioner re-

sembles the system matrix but is fast to perform a matrix-vector multiplication with

its inverse P−1 and a vector.
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One preconditioner for (4.9) is one where IΩ is replaced by a scaled identity matrix

as such

P = FHαIF + λ2IΠ

= αI + λ2IΠ (4.20)

where

α = tr(IΩ)/ tr(I) = K/N2. (4.21)

The preconditioner P is also easily invertible because P is diagonal matrix with non-

zero diagonal entries. The inverse of P in (4.20) is simply

P−1 = WP (4.22)

where

WP,i,j =


1/(α + λ2IΠ,i,i), i = j

0, otherwise

(4.23)

We can see in (4.20) as λ becomes larger P better approximates the heavily regularized

system matrix in (4.19). The additional computational cost of preconditioning with

P is O(N2), lower order than that of a 2-D FFT, and is not counted. The PCG

method with preconditioner P is a 10N2log2(N) operation per iteration, the same as

that of the regular conjugate gradient method.

4.3.7 Asymptotically Infinite Regularization

Because we desire a regularized solution, we analyze the effect of taking the limit

of λ as it approaches infinity, which is equivalently assuming values of x with locations
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in the non-support region Π have 0 variances from the Bayesian perspective and are

known with certainty. We examine the preconditioned normal equation in (4.19) with

preconditioner P as such

WP (FHIΩF + λ2IΠ)x = WPF
HJHΩ bΩ. (4.24)

and we notice that if λ approaches infinity in the limit then the system matrix equiv-

alent to A in (4.24) will also approach infinity when performing the Ax matrix-vector

multiplication in the standard PCG method. The transformed PCG method on the

other hand uses a symmetric preconditioned system matrix by Cholesky decomposing

the preconditioner as such

P = EEH (4.25)

where the diagonal P easily decomposes with E = EH = diag((
√
α + λ2IΠ,i,i)i).

Notation diag((vi)i) denotes a diagonal matrix with vi diagonal entries of vector v.

The transformed preconditioned normal equation as λ approaches infinity in the limit

is

(
1

α
IΠcF

HIΩFIΠc + IΠ

)
y =

1√
α
IΠcF

HJHΩ bΩ (4.26)

x =
1√
α
IΠcy (4.27)

where IΠc = I − IΠ and Πc is the complement set of Π or the set of image support

locations. The transformed preconditioned conjugate gradient method with Cholesky

decomposed preconditioner P is still 10N2log2(N) operations per iteration, the same

as that of the regular conjugate gradient method. So we get the benefit of precondi-

tioning at a small cost of a few more O(N2) diagonal-matrix-vector multiplications.
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4.3.8 Equivalence to POCS

The preconditioned finite support PCG method with an infinite λ in the limit is

related to the POCS method. Both methods employ the same constraints of finite

spatial support, however their optimization methods differ, leading to different con-

vergence rates. We will show that solving (4.26) as a stationary iterative method, or

a fixed-point iteration method, instead of a Krylov subspace method, like PCG, is

equivalent to the POCS method re-expressed also as a stationary iterative method.

The finite support PCG method can be viewed an improvement of the POCS method,

one with a statistical model and a faster converging optimization method, while using

the same finite support constraint of POCS as its regularization.

4.4 Noisy System Model

The presence of measurement noise in the 2-D DTFT samples needs to be con-

sidered. The data is assumed to be corrupted with additive white Gaussian com-

plex noise η(k1, k2), where η(k1, k2) = α(k1, k2)ejβ(k1,k2), α(k1, k2) ∼ N (0, ση), and

β(k1, k2) ∼ U(0, 2π). The effective system model is then

H(k1, k2)X(k1, k2) = Ỹ (k1, k2) = Y (k1, k2) + η(k1, k2). (4.28)

4.4.1 Regularization

Rewritten in matrix form, the noisy system model in (4.28) is

HLXL = ỸL = YL + ηL. (4.29)

To alleviate the problems from potentially large magnitudes of the 2-D DFT of the

inverse filter amplifying noise, we implement Tikhonov regularization that minimizes
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the residual and regularization term in matrix form

X̂L = arg min
XL

‖HLXL − ỸL‖2 + λ2‖CLXL‖2 (4.30)

where the noise vector ηL and solution vector XLare both length L2 column vectors

of the lexicographically unwrapped noise η(k1, k2) and L×L 2-D DFT of the solution

x(i1, i2), respectively.

Filter matrix HL has size L2×L2 with the lexicographically unwrapped L×L 2-D

DFT of the filter h(i1, i2) along the diagonal. We set the Tikhonov matrix CL in Fig.

4.1(a) as an L2×L2 matrix with the lexicographically unwrapped L×L 2-D DFT of

c(i1, i2) =
1

16


1 2 1

2 −12 2

1 2 1

 (4.31)

along the diagonal. Function c(i1, i2) is essentially a 2nd order difference operator and

as such is a high-pass filter that penalizes high frequency components in the solution

and assumes a smooth solution.

Data vector ỸL is a length-L2 column vector of the lexicographically unwrapped

L×L 2-D DFT of the filtered data ỹ(i1, i2) in (4.53) and can be computed from ỸN ,

the length-N2 column vector of the unwrapped N×N 2-D DFT version of Ỹ (k1, k2)

in (4.52), as

ỸL = FLIpadF
−1
N ỸN (4.32)

where Ipad is a L2×N2 matrix with standard basis column vectors er which pads in

2-D an unwrapped image of size N×N to L×L. Matrix

FN = {e−j2π(i1k1+i2k2)/N}r(k1,k2),c(i1,i2) (4.33)
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is the 2-D DFT matrix of size N2×N2 where r(k1, k2) and c(i1, i2) are lexicographically

ordering row and column functions based on the frequency and spatial indices (k1, k2)

and (i1, i2).

The explicit solution to (4.30) is found by taking the derivative of both terms with

respect to XL, setting it to a zero vector, and solving for XL as

X̂L = (H∗LHL + λ2C∗LCL)−1H∗LỸL (4.34)

which contains the matrix equivalent of the functional regularized inverse filter

Greg(k1, k2) =
H∗(k1, k2)

|H(k1, k2)|2 + λ2|C(k1, k2)|2
. (4.35)

The unwrapped spatial solution is computed as

x̂M = IcropF
−1
L X̂L (4.36)

where Icrop is a M2×L2 matrix with standard basis row vectors ec which crops in 2-D

an unwrapped image of padded size L×L to support size M×M .

We can show the direct relationship of the solution x̂M to the DFT of the noisy

filtered image ỸN in (4.37) or to DFT of the true image at K sampled locations X true
K

in (4.39), by successively substituting equations (4.52), (4.29), (4.32), (4.34), and

(4.36).

x̂M = IcropF
−1
L · (H

∗
LHL + λ2C∗LCL)−1H∗L · FLIpadF−1

N · ỸN (4.37)

= IcropF
−1
L · (H

∗
LHL + λ2C∗LCL)−1H∗L · FLIpadF−1

N (4.38)

·HN · Isample(X true
K + ηinterpK + ηmeasK )

Isample is a N2×K matrix of standard basis column vectors er that places the K
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interpolated and measured 2-D DFT samples into a lexicographically unwrapped

spiral frequency configuration. Column vectors ηinterpK and ηmeasK are the nearest-

neighbor interpolation error and measurement noise vectors, respectively. Basically,

the sequence of operations of (4.39) on the measured and interpolated 2-D DFT data

are (from right to left multiplication): filtering, Fourier interpolation in the frequency

domain, regularized deconvolution, and finally transformation into the spatial domain.

The solution vector in (4.34) can be computed very quickly because HL and CL

are diagonals and the inverse operation of the diagonal matrix H∗LHL+λ2C∗LCL recip-

rocates the diagonal entries and the remaining matrix multiplications are also with

diagonal matrices. Therefore the computational complexity for X̂L is O(L2) and can

be cheaply computed repeatedly as done when iteratively selecting the regularization

parameter in the next subsection. The resized DFT of the filtered image ỸL in (4.32)

is computed only once per image and in O(L2 logL+N2 logN). The spatial solution

x̂M in (4.36) is also solved only once and in O(L2 logL).

(a) 2-D DFT of 2nd order difference Tikhonov
regularization matrix: C

(b) Residual and error norms versus regulariza-
tion parameter

Figure 4.1: Tikhonov matrix and errors vs. regularization parameter using noisy
data.

4.4.2 Regularization Parameter Selection

Regularization reduces noise amplification yet a problem that still remains is deter-

mining how much regularization is optimal. The regularization parameter λ effectively
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sets the ratio between r(λ) = ‖HLX̂L− ỸL‖2 which is the squared residual norm and

s(λ) = ‖CLX̂L‖2 which is the squared solution penalty norm as seen in Fig. 4.1(b).

If λ is too small then the noise in the solution is not suppressed enough. Yet if λ is

too large then considering CL is a high-pass penalty the solution is over-smoothed.

Of the various regularization parameter selection methods implemented such as

the L-curve method or the generalized cross validation (GCV) method, the un-

biased predictive risk estimator (UPRE) resulted in the best success at selecting

regularization parameter λ that closely matched the solution error norm function

MSE(λ) = ‖e(λ)‖2 = ‖x̂L(i1, i2;λ)−xL(i1, i2)‖2, where xL(i1, i2) is the unknown true

image.

The unbiased predictive risk estimator in the general form as presented in [32] is

UPRE(λ) = ‖HLXL − ỸL‖2 + 2σ2
ηtr(HL(H∗LHL + λ2C∗LCL)−1H∗L) (4.39)

assuming that the noise ηL vector consists of white noise samples. Using the fact that

HL and CL are diagonal matrices, (4.39) simplifies to

UPRE(λ) = ‖HLX̂L − ỸL‖2 + 2σ2
η

L2∑
i=1

h2
i

h2
i + λ2c2

i

(4.40)

where hi and ci are the ith diagonal entries of HL and CL respectively.

The noise variance σ2
η is estimated using the fact that the DFT samples are mea-

sured at complex conjugate pair locations. Assuming the true image is real then the

true filtered DFT samples exist in complex conjugate pairs as in

YL(k1, k2) = Y ∗L (`1, `2) (4.41)

where (`1, `2) = (L−1−k1, L−1−k2) is the complex conjugate location of (k1, k2).

If we take the difference between the noisy filtered DFT samples ỸL(k1, k2) in (4.29)
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and its complex conjugate version and substitute with (4.41), the complex conjugates

cancel one another as in

ỸL(k1, k2)− Ỹ ∗L (`1, `2) = YL(k1, k2)− Y ∗L (`1, `2) + ηL(k1, k2)− η∗L(`1, `2)

= YL(k1, k2)− YL(k1, k2) + ηL(k1, k2)− η∗L(`1, `2)

= ηL(k1, k2)− η∗L(`1, `2). (4.42)

Then taking the variance of both sides in (4.42) and solving for the noise variance

leads to

σ2
η =

1

2
Var[ỸL(k1, k2)− Ỹ ∗L (`1, `2)] (4.43)

estimated by the sample variance

s2
η =

1

2(K/2− 1)

K/2∑
i=1

(ỸL(k1,i, k2,i)− Ỹ ∗L (`1,i, `2,i)−m)2 (4.44)

m =
1

K/2

K/2∑
i=1

ỸL(k1,i, k2,i)− Ỹ ∗L (`1,i, `2,i) (4.45)

where K again is the number of known frequency samples.

As shown in Fig. 4.1(b), the regularization parameter λ that minimizes the UPRE

is found using bracketing and bisection search. The first iteration computes the

UPRE at 3 locations, the bounds of λ ∈ [10−5, 105] and its midpoint, which if chosen

properly, it brackets the minimum of the UPRE curve. Successive iterations of the

regularization parameter selection computes 2 more UPRE values that further bisect

the current two intervals, keep the 3 of the 5 sample points that refine the minimum

bracket, and repeat the procedure until convergence. The cost of computing UPRE(λ)

is fast because both terms in (4.40) and X̂L each have computational complexities

of O(L2). Therefore each iteration requires 2 UPRE values, each requiring 3 O(L2)
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operations, resulting in 6 O(L2) operations per iteration as shown in Table 4.2. The

additional per-image O(L2 logL) 2-D FFT operation in the regularization method

comes from computation of the Tikhonov penalty matrix CL. The estimation of

noise variance σ2
η needs to be done only once under our noise model assumptions in

O(K).

4.5 Results

We begin with a tiny pedagogical example that illustrates the each step of this

method with actual numerical values. Then various reconstruction methods are com-

pared with our “fast non-iterative” method using a just-determined filter and an

over-determined filter, both created with the POCS method. The practical consid-

erations of non-gridded frequency data and noisy data are presented. Regularization

described in the above section is applied in the noisy case. Then using the same

precomputed filter, other images are quickly reconstructed from simulated data as

well.

Then we compare the improvements of using a filter constructed from the finite-

support regularization method over the POCS method again for the cases of a just-

determined filter, and over-determined filter, and noisy data. Runtime comparisons

of the single deconvolution step of just three 2D FFTs in the “fast non-iterative”

method with the other reconstruction methods are presented.

Finally, images of size 256 × 256 are reconstructed from actual CT data using

various methods including the filtered back-projection method are presented. Images

of size 512× 512 are reconstructed with low noise and high noise with regularization.

Lastly, the images are reconstructed at the largest size of 888× 888.
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4.5.1 Small Example

4.5.1.1 Problem Specification

Consider the problem of reconstructing a 3×3 “image” from its frequencies marked

with an x below: 

x ∗ ∗ ∗ x ∗ ∗ ∗ x

∗ x ∗ ∗ x ∗ ∗ x ∗

∗ ∗ x ∗ x ∗ x ∗ ∗

∗ ∗ ∗ x x x ∗ ∗ ∗

x x x x x x x x x

∗ ∗ ∗ x x x ∗ ∗ ∗

∗ ∗ x ∗ x ∗ x ∗ ∗

∗ x ∗ ∗ x ∗ ∗ x ∗

x ∗ ∗ ∗ x ∗ ∗ ∗ x



(4.46)

In this frequency sampling pattern:

• x denotes locations of known frequencies;

• ∗ denotes locations of unknown frequencies;

• The origin of the frequency plane is the center;

• The leftmost and rightmost columns are identical;

• The top and bottom rows are also identical;

• This polar raster is a type used in tomography;

• N = 8;M = 3;N2 − (N −M + 1)2 = 28;

• 28 values of (8× 8) 2-D DFT are known;

• 36 values of (8× 8) 2-D DFT are unknown.

This can be regarded as a tiny example of a tomography problem, in which an image

is reconstructed from its projections at four angles.
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4.5.1.2 Filter

The 6× 6 filter h(i1, i2) is specified as follows:

h(i1, i2) = 0 for 6 ≤ i1, i2 ≤ 7

H(k1, k2) = 0 for (k1, k2) /∈ Ω

H(k1, k2) =
7∑

i1=0

7∑
i2=0

h(i1, i2)e−j
2π
64

(i1k1+i2k2) (4.47)

Ω is the set of 28 locations marked with x above. These 36 linear equations in 36

unknowns can be solved either directly, by using POCS, or by using the CG method

with finite-support regularization. The result (rounded off) is

h(i1, i2) =



1.1 .79 .56 .56 .79 1.1

.79 1.3 .84 .84 1.3 .79

.56 .84 1.4 1.4 .84 .56

.56 .84 1.4 1.4 .84 .56

.79 1.3 .84 .84 1.3 .79

1.1 .79 .56 .56 .79 1.1


(4.48)

Note that the filter could be specified using either:

• 36 nonzero values of h(i1, i2);

• 28 nonzero values of H(k1, k2).

For this tiny example there is no reason to prefer H(k1, k2) specification. But for

realistic examples the savings in storage can be substantial.
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4.5.1.3 Solution

In particular, suppose we are given the (rounded) (8×8) 2-D DFT values Y (k1, 0 ≤

k2 ≤ 4) = 

45 36e−j0.9 −6− 15j 7.5ej1.4 15

38e−j1.12 32e−j2.0 ∗ ∗ ∗

−18− 15j ∗ −5 + 8j ∗ ∗

14ej1.9 ∗ ∗ 2.5ej2.8 ∗

15 ∗ ∗ ∗ 5

14e−j1.9 ∗ ∗ 1.5e−j0.9 ∗

−18 + 15j ∗ 5 + 4j ∗ ∗

38ej1.12 30ej0.2 ∗ ∗ ∗



(4.49)

• Y (0, 0) is now in the upper left corner;

• The polar raster pattern is thus altered;

• Y (k1, 5 ≤ k2 ≤ 7) = Y ∗(8− k1, 8− k2);

• With conjugates, 28 of 64 values are known;

• The 36 unknowns are designated with ∗.

Now compute the (8× 8) inverse 2-D DFT of



45 36e−j0.9 −6− 15j 7.5ej1.4 15

38e−j1.12 32e−j2.0 0 0 0

−18− 15j 0 −5 + 8j 0 0

14ej1.9 0 0 2.5ej2.8 0

15 0 0 0 5

14e−j1.9 0 0 1.5e−j0.9 0

−18 + 15j 0 5 + 4j 0 0

38ej1.12 30ej0.2 0 0 0



(4.50)
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where again conjugate values have been omitted to save space. The inverse 2-D DFT

itself is omitted here. Then deconvolving the filter h(i1, i2) above from this inverse

2-D DFT results in the image

x(i1, i2) =


1 2 3

4 5 6

7 8 9

 (4.51)

Note that even for this tiny example, the computation of an (8× 8) inverse 2-D DFT

and a small deconvolution is significantly smaller than that of solving a linear system

of equations with nine unknowns.

4.5.2 POCS Filter Simulation Results

4.5.2.1 Settings

Results implementing the method developed in this chapter are presented. The

“head” image x(i1, i2) has size M×M = 128× 128. The Discrete Fourier Transform

samples are measured along a square-inscribed spiral pattern with 60 revolutions and

up to 16384 angular samples per revolution forced onto a N×N = 768 × 768 grid

(where the ratio N/M is 6.00). The frequency values are sampled at discrete grid

locations, loosely following an analytical spiral, as shown in Fig. 4.2(a), and thus are

exact DFT values. The conjugate symmetric set of samples Xdata(k1, k2) shown in

Fig. 4.2(b) is used in the reconstruction, assuming the solution is real. No noise is

added to the DFT samples initially.

The filter h(i1, i2) is P×P = (N −M + 1)×(N −M + 1) = 641× 641 constructed

using projection onto convex sets (POCS) shown as its 2-D DFT in Fig. 4.2(c). The

number of unknown values of h(i1, i2) is P 2 = (N − M + 1)2 = 410, 881 and the

number of zero 2-D DFT values of h(i1, i2) is set to also be 410,881. The number

of spiral revolutions is adjusted and the DFT samples with the highest frequency
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locations are trimmed so that h(i1, i2) can be solved as a just-determined system.

The incomplete 2-D DFT samples of the original image, Xincomp(k1, k2) in Fig.

4.2(b), are multiplied with the 2-D DFT of the filter, H(k1, k2) in Fig. 4.2(c), to

produce the 2-D DFT of the filtered image, Y (k1, k2) in Fig. 4.2(d), as

Y (k1, k2) = H(k1, k2) ·Xincomp(k1, k2). (4.52)

This is equivalent to the original image x(i1, i2) in Fig. 4.4(a) being convolved with

filter h(i1, i2) to produce a filtered image

y(i1, i2) = h(i1, i2) ∗ ∗x(i1, i2). (4.53)

Now the goal is to recover x(i1, i2) by deconvolving h(i1, i2) from y(i1, i2), the inverse

2-D DFT of Y (k1, k2).

(a) Spiral frequency
sampling with conju-
gate symmetry

(b) Spiral pattern
masked 2-D DFT

(c) Log DFT of filter: H (d) Log DFT of filtered
image: Y = X ·H

Figure 4.2: Spiral frequency mask, POCS-generated filter, and filtered image.

The growth of the filter size P ×P and the number of padded zeros in the

filter N2 − P 2 are shown in Fig. 4.3(a) and normalized by N2 in Fig. 4.3(b).

If the just-determined system for the filter requires the number of zeroed or un-

known frequency samples equals the number of filter spatial coefficients or support

size P 2, then equivalently the number of measured or known frequency samples

K = N2 − P 2 = 2N(M − 1) − (M − 1)2 = 178, 943 equals the number of zeros

108



in the filter. The resulting known frequency density

K

N2
= 2(M − 1) · 1

N
− (M − 1)2

N2
(4.54)

decreases dominantly with 1/N in Fig. 4.3(c). The overdetermining factor

K

M2
=

2(M − 1)

M2
·N − (M − 1)2

M2
(4.55)

increases linearly with N in Fig. 4.3(d). Thus increasing the DFT size N allows

a spiral configuration to have larger radial spacing and also lower nearest neighbor

interpolation errors when approximating Discrete-Time Fourier Transform (DTFT)

data to a DFT grid. In turn a larger number of frequency data samples are required

thus increasing the data size to solution size ratio. In our experiment, setting N =

768, denoted by the vertical black dotted line in Fig. 4.3, leads to a frequency density

of 30% DFT grid coverage and an overdetermining factor of 10.9.

(a) Image, DFT, and filter sizes (b) Sizes scaled by 1/N2

(c) Frequency density (d) Overdetermining factor

Figure 4.3: Solution, data, and filter sizes and ratios as functions of DFT size N (black
dotted line denotes N = 768) for “fast non-iterative” method.
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4.5.2.2 Inverse 2-D DFT of Incomplete Frequency Samples

For a baseline comparison, we can approximate the solution x(i1, i2) by applying

the inverse 2-D DFT to use only the known 2-D DFT samples while setting the

unknown 2-D DFT samples to zero, which we will call the “incomplete-DFT” solution.

Fig. 4.4(a)-4.4(b) compare the incomplete-DFT solution with a root mean square

error (RMSE) of 56.1 with the original image. The RMSE is computed over the

image support of size M×M only even though the reconstructed solution is of size

N×N . Fig. 4.4(c)-4.4(d) compare the original 2-D DFT with only the known 2-D

DFT samples.

(a) Original image: x (b) Incomplete-DFT so-
lution

(c) Original 2-D DFT (d) Incomplete-DFT 2-
D DFT

Figure 4.4: Original and incomplete-DFT solution 2-D DFTs in log scale and images
with RMSE = 56.1.

4.5.2.3 Inverse 2-D DFT of Interpolated Frequency Samples

Linearly interpolating the missing 2-D DFT samples of the convex set of mea-

sured 2-D DFT samples leads to a more accurate “interpolated-DFT” solution. The

“interpolated-DFT” performs a Delaunay triangulation which can be performed in

O(N2 logN), a triangle search procedure for each grid point, interpolation using

barycentric coordinates, and finally an inverse 2-D FFT. Fig. 4.5(a)-4.5(b) compare

the interpolated-DFT solution with a root mean square error of 18.5 with the original

image. Fig. 4.5(c)-4.5(d) compare the original 2-D DFT with the interpolated 2-D

DFT samples. The reconstructed image in Fig. 4.5(b) shows fading in intensity in
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the upper right of the image, more apparent in later reconstructions. The cause of

this artifact is that linear interpolation poorly estimates missing DFT samples at very

low frequencies around the DC location, due to the high-spiking and non-piecewise

nature and the non-symmetric Delaunay triangulation of the DC and its nearest DFT

samples.

(a) Original image: x (b) Interpolated-DFT
solution

(c) Original 2-D DFT (d) Interpolated-DFT
2-D DFT

Figure 4.5: Original and interpolated-DFT solution 2-D DFTs in log scale and images
with RMSE = 18.5.

4.5.2.4 Projection Onto Convex Sets

Projection onto convex sets (POCS) alternates applying constraints on the data

in the spatial and frequency domains until the iterative solution converges. In the

spatial domain the solution is assumed to be real and to have a finite support of

M ×M . In the frequency domain the values of measured 2-D DFT samples are

maintained. The POCS method requires two 2-D FFTs per iteration. The number of

POCS iterations is set so that the RMSE of the POCS reconstructed at least image

matches the RMSE of the “fast non-iterative” reconstructed image, introduced in the

next subsection. Fig. 4.6(a)-4.6(b) compare the POCS solution with a root mean

square error of 2.16 with the original image. Fig. 4.6(c)-4.6(d) compare the original

2-D DFT with the 2-D DFT of the POCS solution.
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(a) Original image: x (b) POCS solution im-
age

(c) Original 2-D DFT (d) POCS solution 2-D
DFT

Figure 4.6: Original and POCS solution image 2-D DFTs in log scale and images
with RMSE = 2.16.

4.5.2.5 2-D DFT Based Inverse Filtering or “Fast Non-Iterative”

Now we solve the deconvolution problem in (4.52) by taking the inverse 2-D DFT

of the quotient of the 2-D DFTs of y(i1, i2) and h(i1, i2), which is

x̂(i1, i2) = F−1
L

(
FL(y(i1, i2))

FL(h(i1, i2))

)
= F−1

L (G(k1, k2) · Y (k1, k2)), (4.56)

where FL(·) is the 2-D L×L DFT operator and

G(k1, k2) =
1

H(k1, k2)
(4.57)

is the inverse filter. We also name this the “fast non-iterative” method. In this case

the size of the 2-D DFT is L×L = 844×844, slightly larger thanN×N = 768×768. The

“fast non-iterative” method requires N2 multiplications in (4.52) to get YN×N(k1, k2),

an inverse N×N 2-D FFT to get yN×N(i1, i2), an L×L 2-D FFT to get YL×L(k1, k2), and

finally L2 multiplications with the inverse filter in (4.57) followed by an inverse L×L

2-D FFT to get x̂(i1, i2) in (4.56). Fig. 4.6(a)-4.6(b) compare the fast non-iterative

solution with a root mean square error of 2.46 with the original image. Fig. 4.6(c)-

4.6(d) compare the original 2-D DFT with the 2-D DFT of the fast non-iterative

solution.
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(a) Original image (b) Inverse filtered im-
age

(c) Original 2-D DFT (d) Inverse filtered 2-D
DFT

Figure 4.7: Original and fast non-iterative inverse filtered solution 2-D DFTs in log
scale and images with RMSE = 2.46.

4.5.2.6 Comparison of Reconstruction Methods

The RMSE of the fast non-iterative solution, as shown in Fig. 4.7(b), of 2.46 is

lower than the RMSEs of the incomplete-DFT solution of 56.1, the interpolated-DFT

solution of 18.5, and is intentionally close to the RMSE of the POCS solution of 2.16,

summarized in Table 4.1. Observing the whole N×N reconstructed solution of the

“incomplete-DFT” solution in Fig. 4.8(a), much of the energy in the image is spread

across the N×N grid, which can be explained by the fact that the zeros in the Fourier

domain between the spiral samples is equivalent to upsampling a denser DFT and

thus getting distorted duplicates of the images offset radially outwards. The other

padded reconstructed images in Fig. 4.8(b)-4.8(d) show relatively low energy in the

non-image support regions.

The approximate computational costs of each reconstruction method are listed in

Table 4.1 along with their RMSE versus cost plot in in Fig. 4.9. The “incomplete-

DFT” method just performs an inverse 2-D FFT and thus is the same as the first

iteration of the POCS method with the same computational cost. The “interpolated-

DFT” and “fast non-iterative” methods each have lower RMSEs, the greater the

number of required operations. The POCS method is iterated until its RMSE falls

below that of the “fast non-iterative” method. In this case, POCS iterated 9 times,

requiring 4.6 times more operations than the “fast non-iterative” method. If POCS
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Table 4.1: Fast Non-Iterative Reconstruction Error

Reconstruction Support Number of Approximate Approximate

Method RMSE Iterations (n) Complexity Operations

Incomplete-DFT 56.1 1 N2 log2N 5.7× 106

Interpolated-DFT 18.5 1 2N2 log2N 1.1× 107

POCS 2.16 9 (2n− 1)N2 log2N 9.6× 107

Inverse Filtered 2.46 1 2L2 log2 L+ L2 2.1× 107

+N2 log2N +N2

were iterated only 2 times with approximately 2.8× 107, slightly more than the “fast

non-iterative” method’s 2.1 × 107 approximate operations, the RMSE of the POCS

reconstructed image of 17.7 is still over 7 times worse than that of the “fast non-

iterative” reconstruction.

(a) Padded incomplete-
DFT image

(b) Padded
interpolated-DFT
image

(c) Padded POCS im-
age

(d) Padded inverse fil-
tered image

Figure 4.8: Size padded reconstructed image comparison against inverse filtered
method.

Figure 4.9: RMSE vs. approximate operations of reconstruction methods comparison
against inverse filtered method.
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4.5.2.7 Over-Determined Filter

If we want to change the filter requirement so that the number of zeroed or un-

known frequency samples can be greater than the number of filter spatial coefficients

or support size P 2 = 410, 881, we achieve this by decreasing the number of frequency

sampling spiral revolutions from 60 to 32 as shown in Fig. 4.10(a)-4.10(b). The

number of zeroed or unknown frequency samples increases from 410,881 to 493,887,

over-determining the filter by a ratio of 1.2. The number of known frequency samples

K then decreases from 178,943 to 95,937. As a consequence, the known frequency

density K/N2 then decreases from 0.30 to 0.16 and the reconstructed image over-

determining factor K/M2 from 10.9 to 5.9. So therefore, if collecting data samples

fewer than N2 − P 2 = 178, 943 is desired, then the filter h(i1, i2) in the “fast non-

iterative” method becomes over-determined for which there is no exact solution, and

the filter will be computed as an approximation using POCS.

Fig. 4.10(c) and Fig. 4.10(d) show the DFT of the over-determined filter and the

DFT of the associated filtered image, respectively. Notice in Fig. 4.10(c) how the

DFT of the over-determined filter has large amplitudes in between the spiral arms

along the vertical and horizontal axes, which may cause artifacts in the deconvolved

images.

(a) Spiral frequency
sampling with conju-
gate symmetry

(b) Spiral pattern
masked 2-D DFT

(c) Log DFT of over-
determined filter: H

(d) Log DFT of over-
determined-filtered im-
age: Y = X ·H

Figure 4.10: Filter-over-determining spiral frequency mask, POCS-generated filter,
and filtered image.

The reconstruction results, of using fewer DFT samples and for the “fast non-
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iterative” method using an over-determined filter, are shown in Fig. 4.11 and Fig.

4.12. To conserve space in this paper, the figures of the “incomplete-DFT” case

are not shown but their RMSEs and approximate costs are still presented in plot

form. With fewer data samples to reconstruct the same sized image, all methods

perform worse. The “interpolated-DFT” method has pronounced intensity fading in

the corner. Even though the reconstructed images of POCS and “fast non-iterative”

methods achieve similar RMSE’s of 22.2 and 24.0 respectively, the latter has worse

visual artifacts in Fig. 4.11(d). The 2-D DFT of the “fast non-iterative” image

shows large streaks along the frequency axes, which is most likely a result of using an

inexact over-determined filter H(k1, k2) that does not attenuate the unknown DFT

locations all the way to zero, as desired. The error versus operations in Fig. 4.13

shows that POCS iterated only 6 times, requiring 3 times more operations than the

“fast non-iterative” method.

(a) Original image (b) Interpolated-DFT
image, RMSE=47.3

(c) POCS solution im-
age, RMSE=22.2

(d) Over-determined
inverse filtered image,
RMSE=24

Figure 4.11: Reconstructed images using fewer DFT samples and an over-
determined filter in log scale and images compared against inverse
filtered method.
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(a) Original 2-D DFT (b) Interpolated DFT (c) POCS solution 2-D
DFT

(d) Over-determined in-
verse filtered 2-D DFT

Figure 4.12: 2-D DFTs of reconstructed images using fewer DFT samples and an
over-determined filter in log scale and images compared against in-
verse filtered method.

Figure 4.13: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method using fewer DFT samples and an over-
determined filter.

4.5.2.8 Non-Gridded Frequency Data

Practically, frequency data sampled on a DFT grid may not be possible. In such

cases we can approximate the required DFT samples by using nearest neighbor inter-

polation from the acquired DTFT samples as shown in Fig. 4.14(a). This introduces

some error in the DFT samples in Fig. 4.14(b) which can be perceived as additive

noise. The effective signal-to-noise ratio (SNR) defined as SNR(dB) = 20 log10(
σsignal
σnoise

)

is 13.7 dB.

The POCS image with an RMSE of 10.1 requires 2.4 times as many operations

as the “fast non-iterative” image with an RMSE of 11.8. Some artifacts are seen in

the “fast non-iterative” image which can also be seen equivalently in its 2-D DFT in

the vertical and horizontal high frequency locations. This suggests as the noise level

increases, the inverse filtering will lead to an increasingly blown up solution.
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(a) Spiral frequency
sampling with conju-
gate symmetry

(b) Spiral pattern
masked 2-D DFT

(c) Log DFT of filter: H (d) Log DFT of image:
Y = X ·H

Figure 4.14: Nearest-neighbor interpolated spiral frequency mask, POCS-generated
filter, and filtered image.

(a) Original image (b) Interpolated-DFT
image, RMSE=24.4

(c) POCS solution im-
age, RMSE=10.1

(d) Inverse fil-
tered image using
nearest-neighbor data,
RMSE=11.8

Figure 4.15: Reconstructed images using nearest-neighbor interpolated data in log
scale and images compared against inverse filtered method.

(a) Original 2-D DFT (b) Interpolated DFT (c) POCS solution 2-D
DFT

(d) Inverse filtered 2-D
DFT using nearest-
neighbor interpolated
data

Figure 4.16: 2-D DFTs of reconstructed images using nearest-neighbor interpo-
lated data in log scale and images compared against inverse filtered
method.
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Figure 4.17: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method using nearest-neighbor interpolated data.

4.5.2.9 Noisy Reconstruction

Another practical consideration is the presence of measurement noise in the 2-D

DTFT samples. The data is corrupted with additive white Gaussian noise so that the

SNR is 0.51 dB. Again the DFT samples used in the data vector are nearest-neighbor

interpolated from the measured DTFT samples as done in the previous section. A

just-determined filter H is used in the “fast non-iterative” method.

The POCS solution (with RMSE=20.9) in Fig. 4.18(b) performs better than

that of the “fast non-iterative” solution in Fig. 4.18(c) in the presence of noise in

terms of RMSE at the same number of computations or in terms of the number of

computations at the same RMSE as shown in Fig. 4.20. The “fast non-iterative”

reconstructed image is very noisy (with RMSE=49.3) and is more apparent in its 2-D

DFT in Fig. 4.19(c), where the noise in high frequency locations have been amplified.

The “incomplete-DFT” and “interpolated-DFT” figures were again removed to space

space but their RMSEs and costs are shown in Fig. 4.20.
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(a) Original image (b) POCS solution im-
age, RMSE=20.9

(c) Inverse filtered im-
age, RMSE=49.3

(d) Regularized in-
verse filtered image,
RMSE=17.8

Figure 4.18: Reconstructed images using noisy data in log scale and images compared
against inverse filtered method.

(a) Original 2-D DFT (b) POCS solution 2-D
DFT

(c) Inverse filtered 2-D
DFT

(d) Regularized inverse
filtered 2-D DFT

Figure 4.19: 2-D DFTs of reconstructed images using noisy data in log scale and
images compared against inverse filtered method.
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4.5.2.10 Regularized Noisy Reconstruction

The UPRE estimated the optimal regularization parameter as λUPRE = 2.1 with

an RMSE of 17.8 shown in Fig. 4.1(b) and in Table 4.2. The true optimal regular-

ization parameter is λtrue = 2.4 with the lowest possible RMSE of 17.8, the same as

the RMSE found using the UPRE.

The UPRE-estimated “regularized” solution achieved a much lower RMSE of 17.8

versus the “fast non-iterative” solution with an RMSE of 49.3 but using more oper-

ations shown in Fig. 4.20. The “regularized” solution also out-performed the POCS

method in terms RMSE (of 20.9) at the same number of operations and lowest achiev-

able RMSE up to 6.2×107 operations. Further iterations of the POCS solution would

increasingly model noise and the RMSE would increase. However, even though the

POCS reconstructed image has a larger RMSE than that of the “regularized” image,

the POCS image retains more crisp edges in Fig. 4.18(b). The “regularized” image

is less noisy and smoother with loss of sharp edges in Fig. 4.18(d). The reasons are

more apparent in their 2-D DFTs in Fig. 4.19(b) and Fig. 4.19(d). Clearly the “reg-

ularized” method has much greater attenuated the high frequencies more than the

POCS method. This is not surprising since the a priori information of each method

differ. The POCS method assumes that the spatial domain image has a M×M finite

support and zero everywhere else, which is a correct assumption. The “regularized”

method assumes that the spatial domain image is smooth, which is not entirely cor-

rect, and with no information on the size of the support. On the other hand the

POCS method assumes the 2-D DFT samples are true values without noise, whereas

the “regularized” method does assume dominance of noise in the higher frequency

locations.

At lower levels of noise, simulations have shown that with enough iterations the

POCS method achieves a lower RMSE than that of the “regularized” method most

likely due to the differing a priori information used. The “regularized” method can be
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Table 4.2: Fast Non-Iterative Reconstruction Error using Noisy Data
Reconstruction Support Number of Approximate Approximate Regularization

Method RMSE Iterations (n) Complexity Operations Parameter (λ)

Incomplete-DFT 57.9 1 N2 log2 N 5.7× 106 n/a

Interpolated-DFT 30.1 1 2N2 log2 N 1.1× 107 n/a

POCS 20.9 6 (2n− 1)N2 log2 N 6.2× 107 n/a

Fast Non-Iterative 49.3 1 2L2 log2 L + L2 2.1× 107 0.0

+N2 log2 N +N2

Regularized 17.8 6 3L2 log2 L + (6n + 3)L2 5.5× 107 2.1 = 100.31

+N2 log2 N +N2

Best Regularized 17.8 n/a n/a n/a 2.4 = 100.38

implemented using a different Tikhonov matrix CL for example finite spatial support.

However CL would no longer be a diagonal matrix because a finite spatial support

masking in the spatial domain requires a convolution in the Fourier domain and CL

would become a full matrix or a block-banded matrix at best. The computational

advantage of the “regularized” method would be lost in non-trivially inverting non-

diagonal matrices in (4.34).

Figure 4.20: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method using noisy data.

4.5.2.11 Quick Reconstruction of Other Images

Other images can be reconstructed quickly using the same precomputed filter

h(i1, i2) and H(k1, k2) if the 2-D DTFT samples are also collected on the same fre-

quency configuration. Again a just-determined filter is used and the 2-D DTFT

samples are nearest neighbor interpolated to a 2-D DFT grid but no explicit noise is

added.
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MRI Head

Data samples are simulated from an MRI reconstructed image of the head (“MRI

head”) as shown in Fig. 4.22(a). The effective signal-to-noise ratio is 13.6 dB. The

POCS image with an RMSE of 12.5 requires 2.4 times as many operations as the

“fast non-iterative” image with an RMSE of 14.3. Subtle artifacts are seen in the

“fast non-iterative” image which can also be seen equivalently in its 2-D DFT in the

vertical and horizontal high frequency locations.

(a) Original image (b) Interpolated-DFT
image, RMSE=27.9

(c) POCS solution im-
age, RMSE=12.5

(d) Inverse filtered im-
age, RMSE=14.3

Figure 4.21: “MRI head” reconstructed images in log scale compared against inverse
filtered method.

(a) Original 2-D DFT (b) Interpolated DFT (c) POCS solution 2-D
DFT

(d) Inverse filtered 2-D
DFT

Figure 4.22: 2-D DFTs of “MRI head” reconstructed images in log scale compared
against inverse filtered method.
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Figure 4.23: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method for “MRI head”.

CT Thorax

Data samples are simulated from a CT reconstructed image of the thorax (“CT

thorax”) as shown in Fig. 4.25(a). The effective signal-to-noise ratio is 13.4 dB. The

POCS image with an RMSE of 9.72 requires 2.4 times as many operations as the

“fast non-iterative” image with an RMSE of 11.6. Horizontal streaking artifacts are

seen in the “fast non-iterative” image which can also be seen equivalently in its 2-D

DFT in the vertical high frequency locations.

(a) Original image (b) Interpolated-DFT
image, RMSE=25.2

(c) POCS solution im-
age, RMSE=9.72

(d) Inverse filtered im-
age, RMSE=11.6

Figure 4.24: “CT thorax” reconstructed images in log scale compared against inverse
filtered method.
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(a) Original 2-D DFT (b) Interpolated DFT (c) POCS solution 2-D
DFT

(d) Inverse filtered 2-D
DFT

Figure 4.25: 2-D DFTs of “CT thorax” reconstructed images in log scale compared
against inverse filtered method.

Figure 4.26: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method for “CT thorax”.

Shepp-Logan Phantom

Data samples are collected from a Shepp-Logan phantom image of a simulated

head (“Phantom”) as shown in Fig. 4.28(a). The effective signal-to-noise ratio is 12.2

dB. The POCS image with an RMSE of 7.58 requires 2.4 times as many operations

as the “fast non-iterative” image with an RMSE of 9.66. Wrinkling artifacts are seen

in the “fast non-iterative” image which can also be seen equivalently in its 2-D DFT

in the vertical and horizontal high frequency locations.
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(a) Original image (b) Interpolated-DFT
image, RMSE=20.6

(c) POCS solution im-
age, RMSE=7.58

(d) Inverse filtered im-
age, RMSE=9.66

Figure 4.27: “Phantom” reconstructed images in log scale compared against inverse
filtered method.

(a) Original 2-D DFT (b) Interpolated DFT (c) POCS solution 2-D
DFT

(d) Inverse filtered 2-D
DFT

Figure 4.28: 2-D DFTs of “Phantom” reconstructed images in log scale compared
against inverse filtered method.

Figure 4.29: RMSE vs. approximate operations of reconstruction methods compared
against inverse filtered method for “Phantom”.
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4.5.3 Finite-Support Regularization Filter Simulation Results

4.5.3.1 Settings

Results using a filter generated using finite-support regularization are presented.

The “CT head” image x(i1, i2) has size M×M = 128 × 128. The DFT samples are

measured along a square-inscribed spiral pattern fitted onto a N×N = 768 × 768

grid (where the ratio N/M is 6.00). The frequency values are sampled at discrete

grid locations, loosely following an analytical spiral, and thus are exact DFT values.

The conjugate symmetric set of samples Xdata(k1, k2) is used in the reconstruction,

assuming the solution is real. No noise is added to the DFT samples initially.

The filter h(i1, i2) is P×P = (N −M + 1)×(N −M + 1) = 641× 641 constructed

in one case using projection onto convex sets (POCS) and in another case using a

finite-support regularized (FSR) preconditioned conjugate gradient (PCG) method.

In summary, the goal is to deconvolve the solution x from the filtered image

y = h ∗ ∗x, where the 2-D DFT of the filtered image is the product of 2-D DFT of

the filter and the known 2-D DFT data samples as such Y = H ·Xdata.

4.5.3.2 Just-Determined Filter Comparison

The number of unknown values of h(i1, i2) is P 2 = (N−M+1)2 = 410, 881 and the

number of zero 2-D DFT values H(k1, k2) is set to also be 410,881. The spiral pattern

has 60 revolutions and up to 16384 angular samples per revolution (essentially a

contiguous path). The DFT samples with the highest frequency locations are trimmed

so that h(i1, i2) can be solved as a just-determined system. Note that this makes the

overall reconstruction problem highly overdetermined by a factor of 10.9 with 178,943

known 2-D DFT samples Xdata in Fig. 4.30(e) to solve for only 16,384 image pixels

in x.

Both the POCS filter in Fig. 4.30(b) and finite-support regularized filter in Fig.

127



4.30(f) are each generated with 250 iterations with two N×N 2-D DFT’s per iteration.

The root mean squared error (RMSE) of the 2-D DFT locations of the filter that

should be zero for the POCS filter is 4.77×10−2 and for the FSR filter is 3.01×10−3,

about a 16-fold decrease. This improvement can be seen in the lower and more

uniform values of the region outside of the spiral in the 2-D DFT of the FSR filter

in Fig. 4.30(f) as compared to Fig. 4.30(b). This is more evident in the 2-D DFT

of the filtered images, Y , in Fig. 4.30(c) and Fig. 4.30(g) and in the inverse filters,

G = 1/H, in Fig. 4.30(d) and Fig. 4.30(h).

(a) Log DFT of true im-
age

(b) Log DFT of POCS
filter

(c) Log DFT of POCS
filtered true image

(d) Log DFT of Inverse
POCS Filter

(e) Known Log DFT of
true image

(f) Log DFT of FSR fil-
ter

(g) Log DFT of FSR fil-
tered true image

(h) Log DFT of inverse
FSR filter

Figure 4.30: Frequency data and just-determined POCS versus FSR filter compar-
ison.

As seen from Fig. 4.31-4.32, the POCS and both fast non-iterative using inverse

filter methods produce reconstructed images with low error at around 2, compared

with the RMSEs of the incomplete-DFT and cubic interpolation methods in Fig. 4.33

and in Table 4.3. However the fast non-iterative methods require about 5 times less

operations than the POCS reconstruction method.
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(a) True image (b) POCS solution im-
age, RMSE=2.16

(c) Inverse POCS-
filtered image,
RMSE=2.46

(d) Inverse FSR-filtered
image, RMSE=1.87

Figure 4.31: Reconstructed images using just-determined POCS versus FSR filters.

(a) True image DFT (b) POCS solution DFT (c) Inverse POCS-
filtered DFT

(d) Inverse FSR-filtered
DFT

Figure 4.32: Log DFT of reconstructed images using just-determined POCS versus
FSR filters.

Figure 4.33: RMSE vs. approximate operations of reconstruction methods using
just-determined POCS versus FSR-generated filters.
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Table 4.3: Fast Non-Iterative Reconstruction Error for Just-Determined Filters

Reconstruction Method RMSE Iterations Operations

Incomplete DFT 56.1 1 5.7×106

Cubic Interpolation 18.5 1 1.1×107

POCS RMSE-Matched 2.16 8 9.6×107

Fast Non-Iterative (POCS) 2.46 1 2.1×107

Fast Non-Iterative (FSR) 1.87 1 2.1×107

4.5.3.3 Over-Determined Filter Comparison

To reduce the overdetermined factor of the known 2-D DFT samples Xdata over the

number of solution pixels in x, the number of zero 2-D DFT values H(k1, k2) is set to

be 549,277 instead of 410,881. The number of unknown values of h(i1, i2) still remains

at P 2 = (N −M + 1)2 = 410, 881. The filter h is then overdetermined by a factor

of 1.34 which will lead to approximate solutions. The number of known 2-D DFT

samples is now 40,547 compared to 16,384 image pixels, making the reconstruction

problem overdetermined by a reduced factor of 2.47 instead of 10.9. The less dense

spiral pattern now has 44 revolutions and up to 512 angular samples per revolution

shown in in Fig. 4.34(e).

Both the POCS filter in Fig. 4.34(b) and FSR filter in Fig. 4.34(f) again are

each generated with 250 iterations with two N×N 2-D DFT’s per iteration. The

RMSE of the 2-D DFT locations of the filter that should be zero for the POCS filter

is 3.31×10−3 and for the FSR filter is 2.76×10−3. The RMSEs are close however

from observing the 2-D DFTs of the filters in Fig. 4.34(b) and Fig. 4.34(f), the FSR

filter has larger values that coincide with the spiral mask and the non-spiral values

are more uniform than those of the POCS filter. This is again more evident in the

2-D DFT of the filtered images, Y , in Fig. 4.34(c) and Fig. 4.34(g) and in the inverse

filters, G = 1/H, in Fig. 4.34(d) and Fig. 4.34(h).

As seen from Fig. 4.35-4.36, the inverse POCS-filtered image has the worst RMSE
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(a) Log DFT of true im-
age

(b) Log DFT of POCS
filter

(c) Log DFT of POCS
filtered true image

(d) Log DFT of inverse
POCS filter

(e) Known log DFT of
true image

(f) Log DFT of FSR fil-
ter

(g) Log DFT of FSR fil-
tered true image

(h) Log DFT of inverse
FSR filter

Figure 4.34: Frequency data and over-determined POCS versus FSR filters.

Table 4.4: Fast Non-Iterative Reconstruction Error for Over-Determined Filters

Reconstruction Method RMSE Iterations Operations

Incomplete DFT 65.4 1 5.7×106

Cubic Interpolation 27.1 1 1.1×107

POCS RMSE-Matched 12.9 5 6.2×107

Fast Non-Iterative (POCS) 27.4 1 2.1×107

Fast Non-Iterative (FSR) 13.2 1 2.1×107

at 27.4 of the three images. The POCS solution method with an RMSE of 12.9 has lost

some intensity and the inverse FSR-filtered image with an RMSE of 13.2 has some

rippling artifacts. Both fast non-iterative could benefit from some regularization.

However the aforementioned methods performed better than the incomplete-DFT

and cubic interpolation methods shown in Fig. 4.37 and in Table 4.4. The fast non-

iterative methods require about 3 times less operations than the POCS reconstruction

method.
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(a) True image (b) POCS solution im-
age, RMSE=12.9

(c) Inverse POCS-
filtered image,
RMSE=27.4

(d) Inverse FSR-filtered
image, RMSE=13.2

Figure 4.35: Reconstructed images using over-determined POCS versus FSR fil-
ters.

(a) True image DFT (b) POCS solution DFT (c) Inverse POCS-
filtered DFT

(d) Inverse FSR-filtered
DFT

Figure 4.36: Log DFT of reconstructed images using over-determined POCS versus
FSR filters.

Figure 4.37: RMSE vs. approximate operations of reconstruction methods using
over-determined POCS versus FSR filters.

132



4.5.3.4 Noisy Data

The settings from the overdetermined filter case from Section 4.5.3.3 is maintained

except for the addition of σ = 20N = 1.5×104 white Gaussian noise to the known

2-D DFT values resulting in a SNR of 6.28 dB.

A full comparison of all reconstruction methods is seen from Fig. 4.38-4.39. With

the addition of noise to the measurement data, it can be seen that even the inverse

FSR-filtered method in Fig. 4.38(e) regularization is needed. A second derivative

regularization term that penalizes differences is employed. Automatically choosing

the regularization parameter λ = 7.5×101 leads to an over-regularized solution using

the inverse FSR-filter in Fig. 4.38(f). The ideal best regularized inverse FSR-filter

solution with λ = 3.2×10−2 is in Fig. 4.38(g) with the lowest RMSE as shown in Fig.

4.40.

(a) True image (b) Incomplete-DFT
image, RMSE=65.6

(c) Interpolated image,
RMSE=37.2

(d) POCS solution im-
age, RMSE=25.5

(e) Inverse FSR-filtered
image, RMSE=44.4

(f) Regularized inverse
FSR-filtered image (λ =
7.5×101), RMSE=43

(g) Best regularized in-
verse FSR-filtered im-
age (λ = 3.2 × 10−2),
RMSE=19.6

Figure 4.38: Noisy reconstructed images using an over-determined FSR filter.
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(a) True image DFT (b) Incomplete DFT (c) Interpolated DFT (d) POCS solution DFT

(e) Inverse FSR-filtered
DFT

(f) Regularized inverse
FSR-filtered DFT (λ =
7.5×101)

(g) Best regularized in-
verse FSR-filtered DFT
(λ = 3.2×10−2)

Figure 4.39: Log DFT of noisy reconstructed images using an over-determined FSR
filter.

Figure 4.40: RMSE vs. regularization parameter λ of noisy reconstruction methods
using an over-determined FSR filter.
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Figure 4.41: RMSE vs. approximate operations of noisy reconstruction methods us-
ing an over-determined FSR filter.

Table 4.5: Noisy Fast Non-Iterative Reconstruction Error for an Over-Determined
FSR Filter

Reconstruction Method RMSE Iterations Operations

Incomplete DFT 65.6 1 5.7×106

Cubic Interpolation 37.2 1 1.1×107

POCS RMSE-Matched 25.5 9 1.1×108

Fast Non-Iterative (FSR) 44.4 1 2.1×107

Reg. Fast Non-Iterative (FSR) (λ = 7.5×101) 43.0 5 5.5×107

Best Reg. Fast Non-Iterative (FSR) (λ = 3.2×10−2) 19.6 1 2.9×107
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4.5.4 Run Time Comparison

Run-time of the method developed in section is compared to that of a POCS

iteration. The “CT head” image x(i1, i2) has size M×M = 128× 128. The Discrete

Fourier Transform samples are measured along a square-inscribed spiral pattern fitted

onto a N×N = 768×768 grid (where the ratio N/M is 6.00). The filter h(i1, i2) is

P×P = (N −M + 1)×(N −M + 1) = 641× 641 constructed using a finite-support

regularized preconditioned conjugate gradient method. In summary, the goal is to

deconvolve the solution x from the filtered image y = h ∗ ∗x, where the 2-D DFT of

the filtered image is the product of 2-D DFT of the filter and the known 2-D DFT

data samples as such Y = H · Xdata all of size L×L which is larger than N . The

reconstruction was run on a 3.40 GHz Pentium 4 processor with 3GB of RAM.

Fig. 4.42 shows the error of the reconstruction versus both the approximate

operations and the more accurate computation time in seconds. From Table 4.6, we

can see that the 1st iteration of POCS is composed of basically 3 N×N 2-D FFTs and

takes 411ms. On the other hand, the “fast non-iterative” method requires 1 N×N

2-D FFT, 1 L×L element-wise division, and 2 L×L 2-D FFTs, and takes 688ms for

when L = 844 and 484ms for when L = 900.

Solving the deconvolution problem of size L×L = 844×844 where L = 1.1 · N

is just a scaled value of N takes the fast non-iterative method 688ms equivalent to

a little more than 2 iterations of the POCS method. Detailed help documentation

on Matlab’s “fftn()” function states: “The execution time for FFT depends on the

length of the transform. It is fastest for powers of two. It is almost as fast for lengths

that have only small prime factors. It is typically several times slower for lengths that

are prime or which have large prime factors.” The prime factors of 844 are [2, 2, 211]

and hence the large 211-length FFT operation is slow. In comparison N = 768 has

small prime factors of [2, 2, 2, 2, 2, 2, 2, 2, 3].

Therefore if we select L different from N but still factoring into small prime factors
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we can speed up the L×L 2-D FFT. One arbitrary choice is L = d
√
Ne2 = 900 which

has small prime factors [2, 2, 3, 3, 5, 5]. Now we can see in Fig. 4.42(d) that the “fast

non-iterative” method is within 1 and 2 iterations of POCS, with a careful selection

of size of the L×L 2-D FFT.

A side note is that the Delaunay triangulation based interpolation actually took

much longer than approximated at about 30s.

(a) Error vs approx. ops. (L = 1.1 ·N = 844) (b) Error vs run time (seconds) (L = 1.1 ·N =
844)

(c) Error vs approx. ops. (L = d
√
Ne2 = 900) (d) Error vs run time (seconds) (L = d

√
Ne2 =

900)

Figure 4.42: Error vs approximate operations and run times.

137



Table 4.6: Fast Non-Iterative Simulation Run Time Comparison
Reconstruction Operation Support Number of Approximate Runtime

Method RMSE Iterations (n) Operations (seconds)

Incomplete DFT 9.41 1 5.7×106 0.125

Cubic Interpolation 3.36 1 1.1×107 29.7

POCS (RMSE-Matched) 1.99 7 9.6×107 2.04

POCS (1 Iteration) 5.82 1 9.6×107 0.411

x = ifft2(Xdata) 0.12

x = real(x · hmask) 0.01

X = fft2(x) 0.11

X(indData) = Xdata(indData) 0.03

xrec = ifft2(X) 0.12

Fast Non-Iterative (L=844) 2.09 1 2.1×107 0.688

Fast Non-Iterative (L=900) 2.03 1 2.1×107 0.484

Y = H ·Xdata 0.02

y = ifft2(Y ) 0.11

YL = fft2(y) 0.10

GL = 1/HL 0.09

XL = YL ·GL 0.02

xrec = ifft2(XL) 0.13

4.5.5 Actual CT Results (M=256)

4.5.5.1 Settings

Results using actual CT data, provided by Adam M. Alessio of the University of

Washington and described in Section 3.6.3.1, are presented. A filtered back-projection

reconstructed image of size 889×889 of a physical phantom using the whole parallel

beam converted sinogram is used for reference.

The size of the image x(i1, i2) to reconstruct is M×M = 256×256 = 65, 536. The

1-D DTFT samples of the rebinned parallel projections must fill a N×N = 1024×1024

2-D DFT grid (where the ratio N/M is 4.00). Then the support of the filter h(i1, i2)

is P×P = (N −M + 1)×(N −M + 1) = 769×769 = 591, 361. Therefore the number

of zeros in the N×N = 1024×1024 2-D DFT of the filter H(k1, k2) should also be

P 2 to be just-determined. Then the size of the measured data or known 2-D DFT

samples of Xdata(k1, k2) must be N2 − P 2 = 10242 − 7692 = 457, 215, the number of

samples that are not zeroed out by the filter.

Then 369 angularly uniformly spaced 1-D DTFTs of the projection slices, extended

to the corners, sufficiently nearest neighbor fills 453,709 locations of the DFT grid

shown in Fig. 4.43(a). This makes the filter slightly over-determined by a factor of
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1.01. The filter h(i1, i2), shown in Fig. 4.43(b), is constructed using the finite-support

regularized preconditioned conjugate gradient method.

Because the DTFT of the projections are circularly band-limited in their mea-

surements, the unfilled locations are set to zero. The conjugate symmetric set of

samples Xdata(k1, k2) is used in the reconstruction, assuming the solution is real. The

N ×N grid is 43% filled with known values. The problem is overdetermined by

453, 709/M2 = 6.92.

In summary, the goal is to deconvolve the solution x from the filtered image

y = h∗∗x, where the 2-D DFT of the filtered image is the product of 2-D DFT of the

filter and the known 2-D DFT data samples as such Y = H ·Xdata. Deconvolution is

performed by multiplication of Y by the inverse filter G = 1/H, shown in Fig. 4.43(c),

or the regularized inverse filter Greg = H∗/(|H|2 + λ2), shown in Fig. 4.43(d), where

λ = 1× 10−2.

(a) Mask of available 2-
D DFT samples

(b) Log DFT of filter, H (c) Log DFT of inverse
filter, G

(d) Log DFT of regular-
ized inverse filter, Greg

Figure 4.43: Actual CT data frequency mask and filters for M=256 and N=1024.

4.5.5.2 Fast Non-Iterative Reconstruction

The filtered image y(i1, i2) is transformed into the frequency domain with an

L×L = 1128×1128 2-D FFT where L = 1.1 · N , deconvolved with the inverse fil-

ter G(k1, k2) or the regularized inverse filter Greg(k1, k2), and finally an inverse 2-D

FFT transforms it back to a L×L zeropadded solution where the M ×M recon-

structed image xrec(i1, i2) is extracted. The fast non-iterative methods are compared
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with an incomplete-DFT inverse 2-D DFT method, a linear interpolation method,

non-windowed filtered back-projection method, and the projection onto convex sets

method (for 3 iterations) as shown in Fig. 4.44. The runtime comparisons shown in

Table 4.7 were measured on a workstation with a 3.40GHz Pentium4 CPU with 3GB

of RAM.

(a) Incomplete-DFT image (b) Interpolated-DFT image (c) FBP image

(d) POCS image (e) Inverse filtered image (f) Regularized inverse filtered
image

Figure 4.44: Actual CT reconstructed images in tight support for M=256 and
N=1024.

Fig. 4.45 shows the in finer detail the reconstruction artifacts of each method.

The incomplete-DFT reconstruction in Fig. 4.45(a) is blurry due to lacking higher

frequency information in its DFT as seen in Fig. 4.46(a), yet it runs the fastest

at 0.234 seconds shown in Table 4.7. The interpolated-DFT reconstruction in Fig.

4.45(b) has sharp edges yet some mild ringing is present around the edges most likely

due to the sharp circular windowing in its DFT shown in Fig. 4.46(b), and it is slow

taking 51 seconds. The non-windowed FBP reconstruction in Fig. 4.45(c) also has
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Table 4.7: Fast Non-Iterative Actual Data Runtime Comparison with M=256 and
N=1024.

Reconstruction Number of Approximate Runtime

Method Iterations (n) Operations (sec)

Incomplete DFT 1 1.1×107 0.234

Cubic Interpolation 1 2.1×107 51.0

FBP 1 4.4×109 72.5

POCS 3 5.2×107 1.36

Fast Non-Iterative 1 3.9×107 1.16

Reg. Fast Non-Iterative 1 9.3×107 1.19

sharp edges and no ringing as the whole DFT is reconstructed shown in Fig. 4.46(c),

yet it is the slowest taking 72.5 seconds.

The 3-iteration POCS reconstruction in Fig. 4.45(d) is blurry most likely to the

early termination yet even though its DFT can be seen to be circularly band-limited

like the interpolated DFT, no ringing exists due to a smoother windowing effect of

the early termination. The 3 iterations of POCS is fast taking 1.36 seconds yet a

sharper reconstruction would require many more iterations. The fast non-iterative

reconstruction in Fig. 4.45(e) has sharp edges but speckled noise is visible due to

amplification of noise in the higher frequencies as seen in Fig. 4.46(e). The regularized

fast non-iterative reconstruction in Fig. 4.45(f) has sharp edges and suppressed noise

as seen in higher frequencies in Fig. 4.46(f), yet the regularization parameter must

be carefully selected as was done in this case. Both fast non-iterative methods were

fast taking 1.16 and 1.19 seconds respectively.

In conclusion, the regularized fast non-iterative method that used a filter (that

took 6min to precompute offline) before and after deconvolution achieved the same

quality of the FBP but with much less computation time. The advantage is once the

frequency configuration is fixed then the filter can be reused for any new data.
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(a) Incomplete-DFT image (b) Interpolated-DFT image (c) FBP image

(d) POCS image (e) Inverse filtered image (f) Regularized inverse filtered
image

Figure 4.45: Zoomed and colormapped actual CT data reconstructed images for
M=256 and N=1024.
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(a) Incomplete DFT (b) Interpolated DFT (c) DFT of FBP

(d) DFT of POCS (e) DFT of inverse filtered (f) DFT of regularized inverse
filtered

Figure 4.46: 2-D DFTs of actual CT data reconstructed images in log scale for M=256
and N=1024.
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4.5.6 Large Actual CT Results (M=512)

4.5.6.1 Settings

The larger size of the image x(i1, i2) to reconstruct isM×M = 512×512 = 262, 144.

The 1-D Discrete-Time Fourier Transform samples of the rebinned parallel projections

must fill a N×N = 1536×1536 2-D DFT grid (where the ratio N/M is 3.00). Then

the support of the filter h(i1, i2) is P×P = (N−M+1)×(N−M+1) = 1025×1025 =

1, 050, 625. Therefore the number of zeros in the N×N = 1536×1536 2-D Discrete

Fourier Transform of the filter H(k1, k2) should also be P 2 to be just-determined.

Then the size of the measured data or known 2-D DFT samples of Xdata(k1, k2) must

be N2 − P 2 = 15362 − 10252 = 749, 527, the number of samples that are not zeroed

out by the filter.

Then 385 angularly uniformly spaced 1-D DTFTs of the projection slices, extended

to the corners, sufficiently nearest neighbor fills 749,527 locations of the DFT grid

shown in Fig. 4.47(a). This makes the filter over-determined by a factor of 1.53.

The filter h(i1, i2), shown in Fig. 4.47(b), is constructed using the finite-support

regularized preconditioned conjugate gradient method.

Again because the DTFT of the projections are circularly band-limited in their

measurements, the unfilled locations are set to zero. The conjugate symmetric set

of samples Xdata(k1, k2) is used in the reconstruction, assuming the solution is real.

The N×N grid is 32% filled with known values. The problem is overdetermined by

749, 527/M2 = 2.86.

In summary, the goal again is to deconvolve the solution x from the filtered image

y = h∗∗x, where the 2-D DFT of the filtered image is the product of 2-D DFT of the

filter and the known 2-D DFT data samples as such Y = H ·Xdata. Deconvolution is

performed by multiplication of Y by the inverse filter G = 1/H, shown in Fig. 4.47(c),

or the regularized inverse filter Greg = H∗/(|H|2 + λ2), shown in Fig. 4.47(d), where
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λ = 1× 10−3.

(a) Mask of available 2-
D DFT samples

(b) Log DFT of filter, H (c) Log DFT of inverse
filter, G

(d) Log DFT of regular-
ized inverse filter, Greg

Figure 4.47: Actual CT data frequency mask and filters with M=512 and N=1536.

4.5.6.2 Fast Non-Iterative Reconstruction

The filtered image y(i1, i2) is transformed into the frequency domain with an

L×L = 1690×1690 2-D FFT where L = 1.1 ·N , deconvolved with the inverse filter

G(k1, k2) or the regularized inverse filter Greg(k1, k2), and finally an inverse 2-D FFT

transforms it back to a L×L zeropadded solution where the M×M reconstructed

image xrec(i1, i2) is extracted. The fast non-iterative methods are compared with

an incomplete-DFT inverse 2-D DFT method, a linear interpolation method, non-

windowed filtered back-projection (FBP) method, and the projection onto convex sets

(POCS) method (for 3 iterations) as shown in Fig. 4.48. The runtime comparisons

shown in Table 4.8 were measured on a workstation with a 3.40GHz Pentium4 CPU

with 3GB of RAM.

In conclusion, the regularized fast non-iterative method that used a filter (that

took 13min to precompute offline) before and after deconvolution achieved satisfac-

tory quality within that of the FBP but with much less computation time. The

advantage is once the frequency configuration is fixed then the filter can be reused for

any new data. The POCS method performed well because the first iteration is the

same as the incomplete-DFT for which the overdetermined system produced a good

reconstruction.
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(a) Incomplete-DFT image (b) FBP image

(c) POCS image (d) Regularized inverse filtered image

Figure 4.48: Actual CT data reconstructed images in tight support with M=512 and
N=1536.

(a) Incomplete DFT (b) DFT of FBP (c) DFT of POCS (d) DFT of regularized
inverse filtered

Figure 4.49: 2-D DFTs of actual CT data reconstructed images in log scale with
M=512 and N=1536.

146



Table 4.8: Fast Non-Iterative Actual Data Runtime Comparison with M=512 and
N=1536.

Reconstruction Number of Approximate Runtime

Method Iterations (n) Operations (sec)

Incomplete DFT 1 2.5×107 0.547

FBP 1 9.1×1010 176

POCS 3 1.3×108 2.98

Reg. Fast Non-Iterative 1 2.2×108 2.25

4.5.6.3 Low-Noise Fast Non-Iterative Reconstruction

Real additive white Gaussian noise with a standard deviation of 1×103·N = 1.5×106

is added to the projection data leading to an SNR of 13.9 (dB). The regularization

parameter for the fast non-iterative method is increased to 5×10−3. Figures 4.50-4.51

show the reconstructions using low-noise data.
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(a) Incomplete-DFT image (b) FBP image

(c) POCS image (d) Regularized inverse filtered image

Figure 4.50: Low-noise actual CT data reconstructed images in tight support with
M=512 and N=1536.

(a) Incomplete DFT (b) DFT of FBP (c) DFT of POCS (d) DFT of regularized
inverse filtered

Figure 4.51: 2-D DFTs of low-noise actual CT data reconstructed images in log scale
with M=512 and N=1536.
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4.5.6.4 High-Noise Fast Non-Iterative Reconstruction

Real additive white Gaussian noise with a standard deviation of 5×103·N = 7.7×106

is added to the projection data leading to an SNR of 1.58 (dB). The regularization

parameter for the fast non-iterative method is increased to 1×10−2. Figures 4.52-4.53

show the reconstructions using high-noise data.

(a) Incomplete-DFT image (b) FBP image

(c) POCS image (d) Regularized inverse filtered image

Figure 4.52: High-noise actual CT data reconstructed images in tight support with
M=512 and N=1536.
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(a) Incomplete DFT (b) DFT of FBP (c) DFT of POCS (d) DFT of regularized
inverse filtered

Figure 4.53: 2-D DFTs of high-noise actual CT data reconstructed images in log scale
with M=512 and N=1536,

4.5.7 Larger Actual CT Results (M=888)

4.5.7.1 Settings

The size of the image to reconstruct is increased to M ×M = 888 × 888 =

788, 544 to match the resolution of the projection data. The 1-D Discrete-Time

Fourier Transform samples of the rebinned parallel projections must fill a N×N =

1332× 1332 2-D Discrete Fourier Transform grid (where the ratio N/M is 1.50).

Then the support of the filter h(i1, i2) is P ×P = (N −M + 1)×(N −M + 1) =

445×445 = 198, 025, smaller than the previous. Therefore the number of zeros in the

N×N = 1536×1536 2-D Discrete Fourier Transform of the filter H(k1, k2) should also

be P 2 to be just-determined. Then the size of the measured data or known 2-D DFT

samples of Xdata(k1, k2) must be N2 − P 2 = 13322 − 4452 = 1, 034, 271, the number

of samples that are not zeroed out by the filter.

Then 667 angularly uniformly spaced 1-D DTFTs of the projection slices, extended

to the corners, sufficiently nearest neighbor fills 739,953 locations of the DFT grid

shown in Fig. 4.54(a). This makes the filter over-determined by a factor of 3.74.

The filter h(i1, i2), shown in Fig. 4.54(b), is constructed using the finite-support

regularized preconditioned conjugate gradient method.

Because the DTFT of the projections are circularly band-limited in their mea-

surements, the unfilled locations are set to zero. The conjugate symmetric set of
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samples Xdata(k1, k2) is used in the reconstruction, assuming the solution is real. The

N ×N grid is 58% filled with known values. The problem is overdetermined by

1, 034, 271/M2 = 1.31. The regularization parameter is set as λ = 1× 10−3.

(a) Mask of available 2-
D DFT samples

(b) Log DFT of filter, H (c) Log DFT of inverse
Filter, G

(d) Log DFT of regular-
ized inverse filter, Greg

Figure 4.54: Actual CT data frequency mask and filters with M=888 and N=1332.

4.5.7.2 Fast Non-Iterative Reconstruction

Figures 4.55-4.56 show the larger reconstructions yet with relatively smaller 2-D

DFT grid as specified by the smaller grid size N.

Table 4.9: Fast Non-Iterative Actual Data Runtime Comparison with M=888 and
N=1332.

Reconstruction Number of Approximate Runtime

Method Iterations (n) Operations (sec)

Incomplete DFT 1 1.8×107 0.781

FBP 1 9.6×109 233

POCS 3 9.2×107 3.56

Reg. Fast Non-Iterative 1 1.6×108 4.73

151



(a) Incomplete-DFT image (b) FBP image

(c) POCS image (d) Regularized inverse filtered image

Figure 4.55: Actual CT data reconstructed images in tight support with M=888 and
N=1332.

(a) Incomplete DFT (b) DFT of FBP (c) DFT of POCS (d) DFT of regularized
inverse filtered

Figure 4.56: 2-D DFTs of actual CT data reconstructed images in log scale with
M=888 and N=1332.
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CHAPTER V

Divide-and-Conquer Approach and Results

This section presents a divide-and-conquer method that divides the frequency

domain into subbands thus splitting a large image reconstruction problem into smaller

ones.

We present a non-iterative algorithm for the reconstruction of an (M ×M) image

from a sufficient number of 2-D DTFT samples. The algorithm uses Gabor logons or

equivalently Gabor filters, localized in space and frequency, to partition the problem

into a set of smaller problems (divide-and-conquer), each of which is solved and

then combined into the final reconstruction. The algorithm also can be used to

obtain a low-resolution but unaliased reconstruction, and to regularize the problem

by discarding sub-problems that are themselves ill-conditioned.

5.1 Introduction

5.1.1 Problem Statement

Once again the goal is to reconstruct an (M ×M) discrete image x(i1, i2) from

some of the values of its 2-D Discrete-Time Fourier Transform in (2.1). We make no

assumption about whether the image is complex-valued or real-valued. We formulate

the problem for square image support; modification to non-square support is trivial.

We assume that the frequency locations are already known.

153



5.1.2 New Approach

The approach used in this paper summarizes as follows (more details are provided

in the next section):

1. Project the image onto an over-complete set of Gabor logons, with some overlap

between subbands;

2. Each projection yields a self-contained finite-support image reconstruction sub-

problem from irregular 2-D DTFT samples, which are now in a subband of the

original problem;

3. Each of these subproblems is solved separately, using any procedure. Any badly

conditioned problem can be regularized or even discarded;

4. The 2-D DFT of the solution to each subproblem is computed, and the 2-D

DFT of the Gabor logon is divided out where the latter is not close to zero;

5. The computed 2-D DFTs for each subband are combined to give the 2-D DFT

of the original image, which is then computed with an inverse 2-D DFT.

Advantages of the new approach are as follows:

• A large problem is replaced with many smaller and similar problems (divide-

and-conquer);

• Each subproblem can be regularized independently, depending on its condition-

ing. Poorly conditioned or underdetermined subproblems (not enough frequency

samples in that subband) can be discarded altogether, regularizing the overall

problem;

• An unaliased low-resolution image can be reconstructed using the lowest-frequency

subband. This may be sufficient for recognition in some applications.
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5.2 Divide Step: Gabor Logons

A Gabor logon is essentially a modulated Gaussian

φ(t, to, ω0) = 1√
2πσe

−(t−to)2/(2σ2)ejωot (5.1)

Its exponential-squared drop-off in both time t and frequency ω means that the Gabor

logon has virtually compact support in both time and frequency centered in time

at t = to and frequency at ω = ωo. A Gaussian is used since it is most heavily

concentrated in time and frequency; a parameter σ2 trades off concentration in time

and frequency.

Gabor logons are common choices for window function in the Short-Time Fourier

Transform (STFT). However we are not performing a time-frequency decomposition

of the image reconstruction from irregular Fourier samples problem, since no explicit

time-frequency representation interpretation is necessary.

Here we make the following changes to the Gabor logon basis function:

• We use discrete-time n instead of continuous-time;

• We use DTFT instead of Fourier transform to define its spectrum;

• We truncate in time n so that it has finite support;

• Despite these changes the spectrum has essentially compact support.

Empirically we have observed that the basis function

φ(n, k) =


0.9n

2/k for|n| ≤ 6
√
k

0 for|n| > 6
√
k

(5.2)

works well as a (1/2)k-band filter (e.g., k = 0→ half-band filter). Note that since its

drop-off is exponential-squared in time, the duration of basis function φ(n, k) does

not increase by a factor of k, but by
√
k. This means that the procedure of this paper
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is more efficient for large k. Also note that φ(n, k) has duration 12
√
k + 1.

5.3 Conquer Step: Subband Subproblems

The 2-D DTFT of the projection having compact (N×N) support (here ** denotes

2-D convolution)

y(i1, i2) = x(i1, i2) ∗ ∗φ(i1, k)φ(i2, k) (5.3)

is essentially zero except for frequencies

|ω1|, |ω2| < φ(1/2)k (5.4)

Downsampling y(i1, i2) by k leads to the following subband subproblem:

• Reconstruct N ×N subimage y(ki1, ki2), where

• N = (M + 12
√
k)/2k from

• Frequency samples X(ω1, ω2)Φ(ω1)Φ(ω2);

• all in the original subband |ω1|, |ω2| < π(1/2)k;

• now expanded to the full band |ω1|, |ω2| < π.

For example, let the original image be (128 × 128). Using k = 3, we decompose the

original problem into (2k)2 = (23)2 = 64 subproblems, each requiring reconstruction

of an (N ×N) subimage where

N = (128 + 12
√

8)/23 = 20.2→ N = 21 (5.5)

from its 2-D DTFT frequency samples

X(8ω1i, 8ω2i), |ω1|, |ω2| < π/8 (5.6)
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in a subband of the original problem. This requires the solution of 64 linear systems

with 212 = 441 unknowns, instead of one with 1282 = 16384 unknowns.

5.4 Complete Procedure

1. Define (2k)2 subproblems as above, using modulation either to shift the sub-

problem to the origin, or to shift the basis function to the frequency subband;

2. Solve each subproblem separately;

3. Do this in parallel for each of the (2k)2 subproblems;

4. Compute an (N ×N) 2-D DFT of the solution;

5. Divide this point-by-point by the 2-D DFT of the downsampled φ(n, k)

6. Combine these (2k)2 2-D DFTs (one for each of (2k)2 subbands) into the 2-D

DFT of the overall image;

7. Use overlapping subbands so frequencies at which φ(n, k) is small can be dis-

carded.

5.5 Results

5.5.1 Simulation Results

5.5.1.1 Settings

The “Shepp-Logan” head phantom image of size M ×M = 128 × 128 is used

first. The DTFT samples are measured on a CT pattern at 128 angles and 128 radial

samples per angle as shown in Fig. 5.1(a). The problem is divided into 8×8 = 2K×2K

subbands where K = 3 as shown in Fig. 5.1(b). Therefore each subproblem to solve

has size 16×16 however we employ overlapping of subbands by a factor of αoverlap = 2,

which increases the size of each subproblem to 32×32. The all-white Gaussian noise

added to the DTFT samples has standard deviation of σN = 5×102 resulting a SNR
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of 25.7 dB.

The modified Gabor logon is a modulated 2-D Gaussian kernel

φ(n1, n2; k1, k2, σ) =
1

2πσ2
e
−(n2

1+n2
2)

2σ2 e
j2π(k1n1+k2n2)

2K , k1, k2 = 0, ..., 2K − 1 (5.7)

as shown in Fig. 5.1(c) where we have chosen σ = 1
αoverlap

2K . The modified Gabor

logon is used to convolve the image and isolate a subband shown in Fig. 5.1(d)

(a) CT Configuration
of available 2-D DTFT
samples

(b) Known 2-D DTFT
samples with subband
boundaries

(c) Modified Gabor lo-
gon or 2-D Gaussian
kernel

(d) 2-D DTFT samples
projected onto an over-
lapped subband

Figure 5.1: Subdivision strategy.

Given the possibly over-determined system matrix A and data vector b in normal

equation form, each subbanded problem is solved in the least squares sense using

the QR decomposition to attain the solution vector x using Tikhonov regularization

with regularization parameter λ. The comparison method of filtered back-projection

(FBP) reconstruction uses cubic interpolation and the ramp filter (Ram-Lak) with

no other lowpass filtering.

5.5.1.2 Simulation Data Reconstruction with Uniform Regularization

We solve the reconstruction problem with a regularization parameter of λ =

1 × 101 = 10 applied uniformly to all subproblems. The subband decomposition

reconstructed image, in Fig. 5.2(c), has an RMSE of 2.92, as shown in Fig. 5.2(d),

and took a total of 100 seconds, at 1.56 seconds per subproblem. The benchmark
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FBP reconstruction, in Fig. 5.2(b), has an RMSE of 17.4 with an artifact of a brighter

center and took 1.61 seconds. Their respective 2-D DFTs in log scale are shown in

Fig. 5.3.

(a) Original image (b) FBP image

(c) Subband decomposition image (d) Error of the subband decomp. image

Figure 5.2: Reconstructed images using uniform regularization of subproblems.

5.5.1.3 Noisy Simulation Data Reconstruction with Variable Regulariza-

tion

We solve the reconstruction problem with a regularization parameter applied vari-

ably to the subproblems starting at the DC subproblem with λ = 1 × 101 = 10 and
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(a) DFT of original im-
age

(b) DFT of FBP image (c) DFT of subband de-
composition image

(d) DFT of error of the
subband decomp. image

Figure 5.3: Log 2-D DFT of reconstructed images using uniform regularization of
subproblems.

log-linearly increasing to λ = 5×101 = 50 at the subproblem of the highest frequency.

To emphasize the effectiveness of variable regularization the amplitude of the additive

noise is increased to σN = 5×102 and a resulting SNR of 5.74 dB.

The subband decomposition reconstructed image using variable regularization and

noisy data, in Fig. 5.4(c), has an RMSE of 13.08, as shown in Fig. 5.4(d), and

took a total of 99 seconds, at 1.54 seconds per subproblem. The benchmark FBP

reconstruction, in Fig. 5.4(b), has an RMSE of 22.3 and took 1.75 seconds. Their

respective 2-D DFTs in log scale are shown in Fig. 5.5.

(a) Original image (b) FBP image (c) Subband decomposi-
tion image

(d) Error of the sub-
band decomp. image

Figure 5.4: Reconstructed images using variable regularization of subproblems.

Table 5.1 shows numerically the lower RMSE achieved using variable regulariza-

tion over uniform regularization.
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(a) DFT of original im-
age

(b) DFT of FBP image (c) DFT of subband de-
composition image

(d) DFT of error of the
subband decomp. image

Figure 5.5: Log 2-D DFT of reconstructed images using variable regularization of
subproblems.

Table 5.1: Divide-and-Conquer Reconstruction Errors using Variable versus Uniform
Regularization

Type λlow λhigh RMSE

Uniform 5×101 5×101 16.31

Uniform 1×101 1×101 13.50

Uniform 2.5×101 2.5×101 13.22

Variable 1×101 5×101 13.08

5.5.1.4 Simulation Data Reconstruction with Enforced Just-Determined

Subproblems

We solve the reconstruction problem with the previously used uniform regular-

ization parameter and noise amplitude once again. However we illustrate how the

computation of each subproblem can be sped up by reducing the data in each sub-

problem to be at most just-determined. In most cases, such as in CT, the subproblems

near the origin (or DC) are highly over-determined. The following results show in-

creased error with reduced computation time, yet the ratio of number of data samples

to solution size can be adjusted to the desired amount.

The subband decomposition reconstructed image using a cap on the data, in Fig.

5.6(c), has an RMSE of 9.92 (versus 2.92), as shown in Fig. 5.6(d), and took a

total of 80 seconds (versus 100 seconds), at 1.25 seconds per subproblem (versus 1.54
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seconds). The benchmark FBP reconstruction, in Fig. 5.6(b), has not changed with

an RMSE of 17.4 and taking 1.61 seconds. Their respective 2-D DFTs in log scale

are shown in Fig. 5.7.

(a) Original image (b) FBP image (c) Subband decomposi-
tion image

(d) Error of the sub-
band decomp. image

Figure 5.6: Reconstructed images using limited data in each subproblem.

(a) DFT of original im-
age

(b) DFT of FBP image (c) DFT of subband de-
composition image

(d) DFT of error of the
subband decomp. image

Figure 5.7: Log 2-D DFT of reconstructed images using limited data in each subprob-
lem.

5.5.2 Actual CT Results

Results using actual CT data, provided by Adam M. Alessio of the University

of Washington and described in Section 3.6.3.1, are presented. The actual CT data

used has been downsampled by a factor of 2 so there are 205 angles and 445 bins.

The reconstruction image size is M×M = 512 × 512. The problem is divided into

32 × 32 = 2K×2K subbands where K = 5. Therefore each subproblem to solve has

size 16×16 however we employ overlapping of subbands by a factor of αoverlap = 2,

which increases the size of each subproblem to 32×32. The all-white Gaussian noise
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added to the DTFT samples has standard deviation of σN = 5×102 resulting a SNR

of 50.2 dB.

We solve the reconstruction problem with a regularization parameter of λ = 1 ×

100 = 1 applied uniformly to all subproblems. Each subband problem is solved using

the preconditioned conjugate gradient method with a convergence tolerance of 1×10−4

and a maximum iteration of 10.

The subband decomposition reconstructed image is shown in Fig. 5.8(b) and took

a total of 718 seconds (approximately 12 minutes), at 0.70 seconds per subproblem.

The benchmark FBP reconstruction, in Fig. 5.8(a), took 10.0 seconds. Their differ-

ence image is shown in Fig. 5.8(c) while their respective 2-D DFTs in log scale are

shown in Fig. 5.9.
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(a) FBP image (b) Subband decomposition image

(c) Difference of the subband decomp. image

Figure 5.8: Divide-and-conquer reconstructed images using using actual CT data.

(a) DFT of FBP image (b) DFT of subband de-
composition image

(c) DFT of difference
of the subband decomp.
image

Figure 5.9: Log 2-D DFT of divide-and-conquer reconstructed images using actual
CT data.
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CHAPTER VI

Conclusions

6.1 Summary of Results

1. In conditioning approach in Chapter 3, using the Lagrange interpolation for-

mula (2.16) for the just-determined case, I have shown a closed-form expression

for the condition number (3.67) and for the upper bound of the condition num-

ber (3.70). The latter may be used in O(M2) time to measure the conditioning

of a just-determined problem with high accuracy verified empirically by the cor-

relation coefficient of 0.9. I have based the relationship between the condition

number (3.67) and the variance sensitivity measure (3.75) by the insight that

both measures increase when the distances between DTFT samples decrease.

This relationship is also empirically verified by their correlation coefficient. For

the over-determined case, the variance sensitivity measure performs well, veri-

fied empirically by the correlation coefficient of 0.8.

2. Also in the conditioning approach, I showed that if the Fourier samples are not

constrained to intersections with radial lines, then perfect conditioning can be

achieved which non-rectangular but regular frequency configurations are made

clearer once unwrapped from 2D to 1D.

3. The non-iterative DFT-based image reconstruction is a new idea that presents
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a non-iterative reconstruction algorithm that deconvolves a precomputed filter,

zeroed out at the unknown 2-D DFT locations, from a filtered 2-D DFT set

of data. This method is made fast by implementing the DFTs with the FFT

algorithm. The construction of the filter requires it to satisfy some restrictions

which can be approximated using POCS and hence the image will be an approx-

imation. An improvement upon the filter creation is to use the finite-support

regularization method to create better filters which converge faster in generating

this filter than POCS.

4. The divide-and-conquer image reconstruction is also a new idea that reduces a

large image reconstruction problem into smaller ones. The decomposition and

the recombination of the subproblems worked nearly seamlessly. Improving the

overall conditioning by applying the regularization of each subproblem sepa-

rately proved to be successful in cases of large amounts of noise. Also limiting

the data size per subproblem allowed a trade-off between computation speed

and accuracy.

5. All three solution methods were performed on actual CT data to verify that our

methods will find solutions to a real world application.

6.2 Evaluation of Results

6.2.1 Conditioning Approach

1. In the conditioning approach, in most cases the just-determined problem is

poorly conditioned and hence we need to solve the over-determined problem.

For the over-determined case, the Lagrange interpolation formula no longer

applies as the closed form solution to the normal equation. Therefore only the

upper-bound on the condition number is no longer valid. Therefore the variance

sensitivity measure is left to estimate the conditioning.
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2. Also I presented 3 methods for unwrapping the 2-D problem into 1-D. The

Good-Thomas FFT approach had its limitations in that the Fourier samples

must lie on a rectangular grid. The rotated-support Kronecker substitution

relaxed the restriction of the Fourier sample locations to diagonal lines yet the

spatial support was a diamond shape. The most convenient variant of this is

the helical scan FFT which has a rectangular support and the Fourier samples

must lie on just slightly diagonal lines.

3. When the situation allows for the selection of frequency sample locations we

may use our variance measure to reduce the sensitivity. Simulated annealing

is the global optimization algorithm which uses the variance measure to find

the frequency configuration. When there are no constraints on the frequency

locations such as non-tomographic applications, then perfect conditioning ap-

proaches maybe used to eliminate noise amplification in the problem.

6.2.2 Non-Iterative Approach

1. The non-iterative approach is recommended for when the frequency sample

locations are already determined and fixed for multiple uses as we precompute

this methods filter once. The speed advantage comes in this precomputation

and the use of only 2-D FFTs. Though as inverse filtering and regularization is

used in computing the quick solution, the solution in many cases can be biased.

2. The relative importance of the non-iterative approach is that this method can

be applied to arbitrary frequency sampling configurations and not just to the

CT configurations as shown in the results section. The specification of the data

masking filter does not prescribe the locations of the data samples but only

on the total numbers, which can be relaxed at the cost of the accuracy of the

zero-masking ability of the filter.
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3. The shape of the frequency response of the data masking filter in the non-

iterative method can be interpreted in the following manner. The frequency

response of the filter, H, zeros out DTFT values that are unknown and hence

nearby values tend to be small whereas the non-zero filter frequency response

values and their neighboring values are larger. When the data sampling configu-

ration is dense near the center at DC and sparse at the high frequency locations

such as in tomography, the data masking filter will be nonzero near DC and

closer to zero further out. While the inverse data masking filter is then not

exactly a cone filter as in the case of filtered backprojection, the inverse filter

is a highpass filter. As in FBP, regularization of the inverse filter has similar

effects as apodization.

4. The effects of filtering the incomplete DTFT data samples followed by decon-

volution can be reinterpreted as an interpolation procedure yet with a large

kernel as a function of the data masking filter, its accompanying filter speci-

fications, and possible regularization. The reinterpretation can be seen more

clearly from further evaluating the formulation (4.39) and masking use of the

convolution-multiplication duality of the Fourier transform as such:

x̂M = IcropF
−1
L ·GL · FLIpadF−1

N · H̃NX̃N (6.1)

= IcropF
−1
L FL · gL · h̃L · IpadF−1

N X̃N (6.2)

= Icrop · (g ∗ h̃)L · x̃L (6.3)

where h̃L and gL are circulant matrices that perform 2-D convolutions with the

impulse responses of the forward and inverse data masking filters. The H̃N

and its padded impulse response h̃L are noted that the zero value constraints

are applied in the frequency domain and hence differ from the spatially P×P
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finite support hL. Then (g ∗ h̃)L represents the “interpolation” kernel of the two

filters spatially-convolved, which in the noisy model will include regularization,

and x̃L is the padded incomplete-DFT reconstruction to be interpolated in the

spatial domain.

5. In [12], similarities exist with our procedure with the iterative precomputation

of the sampling density compensation weighting function is performed only us-

ing the sampling coordinate locations in k-space for MRI. However, even though

the weighting function is multiplied to the data in the DFT domain, the com-

plete procedure requires a convolution and a deconvolution in the DFT domain.

Our method in contrast can be reinterpreted as having just one convolution to

interpolate from one Cartesian grid to a larger one using 2-D DFTs with a

pre-multiplication of the data masking filter and a post-multiplication of the

regularized inverse of that filter.

6.2.3 Divide-And-Conquer Approach

1. The divide-and-conquer approach also is recommended for when the frequency

sample locations are already determined and or when the image to reconstruct

or dataset is quite large. This method allows the customization of solving each

subproblem with regards to the amount of regularization and the overdetermin-

ing factor.

2. The divide-and-conquer method takes much longer than FBP unless each sub-

band is solved in parallel, in this case is faster. If only a crude lowpass image

is needed quickly, then only the lowest subband may be used.

3. The divide-and-conquer method is applicable to the general reconstruction prob-

lem from irregular samples and not just to tomographic projections as seen in

the FBP results. Even for the tomographic projection data, each subband has
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a different irregular sampling configuration to illustrate this point.

6.3 Suggestions for Future Research

1. The conditioning approach may benefit from a stronger theoretical link between

the fast sensitivity measures and the condition number which explain the strong

empirical evidence relating the two quantities.

2. Even though we estimate the condition number, there is a need to study the

distribution of the actual condition number around the one estimated from the

variance sensitivity measure. This can be accomplished by using Monte Carlo

methods, where we simulate many examples and form a histogram. This in

turn would be more useful than an upper bound even if one could be derived

especially in the over-determined cases.

3. The estimated image of the non-iterative approach can be used as an initializa-

tion to the iterative methods such as the conjugate gradient algorithm and the

POCS method, which both require a non-uniform FFT to implement. Yet the

proposed initialization would reduce the overall time to convergence.

4. The divide-and-conquer image reconstruction can also be used as an initializa-

tion to the conjugate gradient method in the iterative algorithms.

5. As for the advantages of this divide-and-conquer method, the timings for each

subproblem show that it is quite fast solved individually and can divide any

large problem into smaller ones then can easily be solved either the iterative

or the non-iterative approaches mentioned. Also a non-aliased low-resolution

image is quickly computed which can then be updated with higher resolution

subbands.
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6. In the numerical results using computed tomography data, our methods directly

apply in the parallel-beam projection selection in improving conditioning. For

fan-beam data, interpolation is required to re-bin to parallel-beam projections.

For the cases in variable angle projection selection, where a single parallel-beam

projection is interpolation from multiple fan-beam projections, further consid-

erations must be made to determine which fan-beam projections are required

for a set of 2-D DTFT samples. The solution may require making hardware

modifications such sampling data intermittently. Extending into 3 dimensions,

cone-beam CT is another area to be explored.

7. As the numerical results focused on computed tomography, the reconstruction

methods presented can also be applied to applications with complex-valued

objects specifically in the areas of MRI and SAR.
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