
1

Non-Iterative Phase Retrieval from Magnitude
of Complex-Valued Compact-Support Images

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— The discrete phase retrieval problem is
to reconstruct an unknown image having finite spa-
tial extent from the magnitude of its discrete Fourier
transform. Most methods for this problem take thou-
sands of iterations to converge. We present a new
non-iterative algorithm for M×M complex-valued im-
ages requiring: (1) rooting 5.2M polynomials of degree
2M; and (2) solution of a linear system of equations of
size 5.2M2 whose solution elements are all either +1
or –1. A small example illustrate the new algorithm.

Keywords— Phase retrieval of complex images
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

The problem of reconstructing an image known
to have compact support from its Fourier transform
magnitudes arises in several disciplines in optics. The
image is reconstructed once the missing Fourier phase
is recovered; hence the term “phase retrieval.”
Since the image is assumed to have compact

support, its Fourier transform may be sampled in
wavenumber. Most images are approximately ban-
dlimited to the extent that they may also be sampled
spatially as well. This leads to the discrete version of
this problem, in which a discrete-space image known
to have finite spatial extent is to be reconstructed
from the magnitude of its 2-D discrete Fourier trans-
form (DFT). Note that this precludes methods based
on oversampling of continuous images.
The algorithm most commonly used for phase

retrieval is the hybrid input-output algorithm of
Fienup. However, this algorithm usually requires
thousands of iterations before it converges, and has
some difficulty with complex-valued images unless
the support is known exactly. Other methods require
tracking zero curves or sheets of algebraic functions.
We will make no attempt to survey the literature.

II. Problem Formulation

A. Problem Statement

We observe the autocorrelation of the image

y(i1, i2) = u(i1, i2) ∗ ∗u(−i1,−i2)∗ (1)

where ∗∗ denotes convolutions in both i1 and i2, and
the 1-D convolution ∗ of causal signals is defined as

h(n)∗u(n) =
n∑

i=0

h(n−i)u(i) =
n∑

i=0

h(i)u(n−i). (2)

We omit commas between pairs of subscripts.
We make the following assumptions:

• Support: Image u(i1, i2) = 0 unless 0≤ i1, i2 ≤M;
• Autocorrelation y(i1, i2)=0 unless 0≤ |i1|, |i2| ≤M;
• u(i1, i2) and y(i1, i2) need not be real-valued.

The goal is to reconstruct the image u(i1, i2) from
its autocorrelation y(i1, i2). Taking a 2-D discrete
Fourier transform (DFT) of (1) shows that this is
equivalent to computing the DFT U(k1, k2) from its
squared magnitude Y (k1, k2)=|U(k1, k2)|2; hence the
term “phase retrieval.” No stochastic assumptions
are made about u(i1, i2), precluding methods using
cumulants, ARMA or Poisson image models.

B. Problem Ambiguities

There are four ambiguities in 2-D phase retrieval:

1. Scale: If u(i1, i2) is a solution, then cu(i1, i2) is
also a solution for any constant c such that |c| = 1;
2. Translation: If u(i1, i2) is a solution, then the
shifted u(i1+d1, i2+d2) is also a solution for any in-
tegers (d1, d2). We eliminate this ambiguity by spec-
ifying the support of u(i1, i2) to be 0≤ i1, i2 ≤M;
3. Reversal: Either u(i1, i2) or its conjugate reversal
u(M − i1, M − i2)∗ can regarded as the “true” image;
4. Irreducibility: The 2-D z-transform U(x, y) of
u(i1, i2) is irreducible (i.e., cannot be factored). Here

U(x, y) =
M∑

i1=0

M∑
i2=0

u(i1, i2)x−i1y−i2 (3)

The 1-D phase retrieval problem has an additional
ambiguity. There are almost surely 2M solutions to
an (M+1)–point 1-D phase retrieval problem if M is
even. This can be seen by noting that the zeros of
the 1-D z-transform of the autocorrelation occur in
reciprocal pairs (if xo is a zero, then 1/x∗

o is also).
Either xo or 1/x∗

o can be assigned to the 1-D signal;
since there are M reciprocal pairs, this assignment
can be made in 2M ways. The choice disappears if
x0=1/x∗

0, that is, if |x0|=1 (see the next section).

2

III. NEW ALGORITHM

A. Partition into 1-D Problems

Let Y (x, y) and U(x, y) be the 2-D z-transforms of
y(i1, i2) and u(i1, i2), respectively. Then (1) becomes

Y (x, y) = U(x, y)U(1/x∗, 1/y∗)∗. (4)

Setting x = ej2πk1/N and y = ej2πk2/N gives

Yk1,k2 = Uk1,k2U
∗
k1,k2

= |Uk1,k2 |2 (5)

where the 2-D DFTs for any N ≥ 2M are

Yk1,k2 = Y (ej2πk1/N , ej2πk2/N) (6)

Uk1,k2 = U(ej2πk1/N , ej2πk2/N) (7)

since x = 1/x∗ and y = 1/y∗ here.
Setting just y = ej2πk2/N in (4) gives

Yk2(x) = Uk2(x)Uk2 (1/x∗)∗ (8)

which is a 1-D phase retrieval problem. Note:

• Let {xo} be the M zeros of Uk2(x);
• Then the 2M zeros of Yk2(x) are {xo, 1/x∗

o};
• The 1-D phase retrieval problem here is somehow
to assign {xo} to Uk2(x) and {1/x∗

o} to Uk2(1/x∗)∗;
• This can be done in 2M ways unless xo = 1/x∗

o:

Uk2(x) = ejφk2

M∏
i=1

(x − xi) (9)

Uk2(1/x∗)∗ = e−jφk2

M∏
i=1

(1/x − x∗
i) (10)

Uk2(1/x∗)∗ = e−jφk2

M∏
i=1

(x − 1/x∗
i)

[
x∗

i

−x

]
(11)

This can be done for each k2 = 0 . . .N . Repeating
the above with just x = ej2πk1/N in (4) gives the 1-D
phase retrieval problems, for each k1 = 0 . . .N ,

Yk1(y) = Uk1(y)Uk1(1/y∗)∗. (12)

where Uk1(y) has zeros {yi}, so that

Uk1(y) = ejφk1

M∏
i=1

(y − yi). (13)

B. Linking 1-D Problems

These problems are not independent, since

Uk2(x) = Uk1(y) if x = ej2πk1/N , y = ej2πk2/N (14)

The magnitudes are automatically equal. The phases
are equal if this congruence is true mod(2π):

φk2 +
M∑
i=1

arg[ej2πk1 − xi] ≡ φk1 +
M∑
i=1

arg[ej2πk2 − yi]

(15)
This is N2 equations in 2MN independent choices:

• M choices: xi vs. 1/x∗
i , for each of N k2;

• M choices: yi vs. 1/y∗
i , for each of N k1;

• 2N additional unknowns {φk1 , φk2}.

At first glance it seems that if N > 2M we can solve
this as a linear system of equations with unknowns
±1. However, the mod(2π) issue is a problem. So:

• (1) Equate phase differences instead of phases:
• This eliminates the unknowns {φk1 , φk2} and
• Keeps the coefficients in (15) small; and also:
• (2) Eliminate equations in (15) for which the sum
of the absolute values of the coefficients exceeds 2π.

This requires choosing N > 2M . We have found
experimentally that choosing N=5.2M seems to give
a sufficient number of equations in (15) to solve (15).

C. Problem Ambiguities

The ambiguities of 2-D phase retrieval noted above
appear explicitly in this algorithm, as follows:

• The reversal ambiguity appears in the null vector
of (15): Consisting of ±1 for each choice of xi vs.
1/x∗

i , this can clearly be multiplied by –1, changing
all the signs and replacing the image with its reversal;
• The scale ambiguity appears in the phase factors
{ejφk}, which are computed using a rank-one factor-
ization only to aan overall phase ambiguity;
• The translational ambiguity is eliminated as above
by specifying the support constraint 0 ≤ i1, i2 ≤ M .

IV. NUMERICAL EXAMPLE #1

A. Specifications and Numerical Results

We present a tiny numerical example to illustrate
the algorithm. The complex image is 15×15, with
real and imaginary parts left and right eyes. Hence:

• M=15 and N=(2.6)(15)=39 (the minimum is 29);

3

• Each 1-D problem has 1
2 (2(15)–2)=14 reciprocal

pairs of roots, one of which must be chosen for each;
• The total number of choices is 2(39)(14)=1092;
• The number of linear equations is 392=1521;
• 1104 of 1521 had the sum of absolute values of its
coefficients less than 2π, so they can be used in (15).

The major computational requirements were:

• Rooting 78 polynomials of degree 28 each;
• Computing the 1092 phases depicted in (15);
• Computing null vector, consisting entirely of ±1,
of a 1104×1092 sparse matrix (see below).

This matrix had singular values

σ1 = 4.2;σ1091 = 8× 10−5;σ1092 = 2× 10−14 (16)

so the null vector of the system (15) was well defined.
The structure of the sparse matrix (15) is shown.

B. Matlab Program
clear;load lena.mat;
X=xx(126:140,126:140);Z=xx(126:140,159:173);
X=X+j*Z;M=size(X,1);N=ceil(2.6*M);MN=(M-1)*N;
Y=conv2(X,fliplr(flipud(conj(X))));%Same as this:

%Y=fftshift(ifft2((abs(fft2(X,2*M-1,2*M-1))).̂2))
E=exp(-j*2*pi*[0:N-1]/N)))+pi*[0:N-1]/N)’;
FY1=fft(Y,N);FY2=fft(Y.’,N);for I=1:N;
RY1(:,I)=sort(roots(FY1(I,:)));
RY2(:,I)=sort(roots(FY2(I,:)));
end;for I=1:N;for J=1:M-1;
FR1=unwrap(angle((ones(1,N)-RY1(J,I)*E;
A((I-1)*N+1:I*N,(J-1)*N+I)=FR1(1:N);
FR2=unwrap(angle((ones(1,N)-RY2(J,I)*E;
A(I:N:N*N,(J-1)*N+I+MN)=-FR2(1:N);end;end
for I=0:N-1;B([1:N-1]+(N-1)*I,:)=A([2:N]+N*I,:)...
-A([1:N-1]+N*I,:);end;
for I=0:N-2;C([1:N-1]+(N-1)*I,:)=B([1:N-1]+(N-1)*(I+1),:)...
-B([1:N-1]+(N-1)*I,:);end;
C=C’;D=C(:,sum(abs(C))<6.28);D=D’;
[U S V]=svd(D);X1=V(:,2*MN)/V(1,2*MN);
%Replace with: X1=D(:,1:2*MN-1)\D(:,2*MN);
P1=A(:,1:MN)*X1(1:MN);
Q1=reshape(P1,N,N)-pi*(M-1)*[0:N-1]’*ones(1,N)/N;
P2=A(:,MN+1:2*MN)*X1(MN+1:2*MN);
Q2=-reshape(P2,N,N)-pi*(M-1)*ones(N,1)*[0:N-1]/N;
Q3=exp(j*Q1)./exp(j*Q2);[U1 S1 V1]=svd(Q3);
P=reshape(P1,N,N)-pi*(M-1)*[0:N-1]’*ones(1,N)/N...
+ones(N,1)*(angle(V1(:,1)))’;
EST=ifft2(abs(fft2(X,N,N)).*exp(j*P’));
EST=EST(1:M,1:M)/EST(1,1)*X(1,1);
subplot(221),imagesc(real(X)),colormap(gray),axis off
subplot(222),imagesc(real(EST)),colormap(gray),axis off
subplot(223),imagesc(imag(X)),colormap(gray),axis off
subplot(224),imagesc(imag(EST)),colormap(gray),axis off

V. NUMERICAL EXAMPLE #2

For entirely real-valued images, the following sim-
plifications occur in the above algorithm:

• The roots of Uk2(x) are complex conjugates of the
roots of UN−k2(x), and similarly for Uk1(y). Hence
only half as many polynomials need to be rooted;
• The choices of roots for Uk2(x) and UN−k2(x) are
also identical, so the number of unknowns ±1 of the
linear system (15) is roughly halved;
• By conjugate symmetry of U(k1, k2) and Y (k1, k2),
the number of equations is roughly halved.

A. Specifications and Numerical Results

This time the real-valued image is 25×25. So:

• M=25 and N=2.6(25)=65 (the minimum is 49);
• Each 1-D problem has 1

2 (2(25)–2)=24 choices;
• The total number of choices is 2(24)(65+1)/2=1584;
• 1585(!) rows had the sum of absolute values of its
coefficients less than 2π, so they can be used in (15).

The major computational requirements were:

• Rooting 130 polynomials of degree 48 each;
• Computing the 1584 phases depicted in (15);
• Computing null vector, consisting entirely of ±1,
of a 1585×1584 sparse matrix (see below).

The structure of the sparse matrix (15) is shown.

B. Matlab Program
clear;load lena.mat;%Need M and N both odd.
X=xx(121:145,121:145);M=size(X,1);
N=ceil(2.6*M);N2=(N+1)/2;MN=(M-1)*N2;
Y=conv2(X,fliplr(flipud(X)));
E=exp(-j*2*pi*[0:N-1]/N)))+pi*[0:N-1]/N)’;
FY1=fft(Y,N);FY2=fft(Y.’,N);for I=1:N2;
RY1(:,I)=sort(roots(FY1(I,:)));
RY2(:,I)=sort(roots(FY2(I,:)));
end;for I=1:N2;for J=1:M-1;
FR1=unwrap(angle((ones(1,N)-RY1(J,I)*E;
A((I-1)*N+1:I*N,(J-1)*N2+I)=FR1(1:N);
FR2=unwrap(angle((ones(1,N)-RY2(J,I)*E;

A(I:N:N*N2,(J-1)*N2+I+MN)=-FR2(1:N2);if(I˜=1);
FR3=unwrap(angle((ones(1,N)-conj(RY2(J,I))*E;
A(N2-I+N2+1:N:N*N2,(J-1)*N2+I+MN)=-FR3(1:N2);
end;end;end;for I=0:N2-1;
B([1:N-1]+(N-1)*I,:)=A([2:N]+N*I,:)-A([1:N-1]+N*I,:);end;
for I=0:N2-2;C([1:N-1]+(N-1)*I,:)=...
B([1:N-1]+(N-1)*(I+1),:)-B([1:N-1]+(N-1)*I,:);end;
C=C’;D=C(:,sum(abs(C))<6.28);D=D’;
X1=D(:,1:2*MN-1)\D(:,2*MN);X1=[X1;-1];
P1=A(:,1:MN)*X1(1:MN);
Q1=reshape(P1,N,N2)-pi*(M-1)*[0:N-1]’*ones(1,N2)/N;
P2=A(:,MN+1:2*MN)*X1(MN+1:2*MN);
Q2=-reshape(P2,N,N2)-pi*(M-1)*ones(N,1)*[0:N2-1]/N;
Q3=exp(j*Q1)./exp(j*Q2);[U1 S1 V1]=svd(Q3);%rank=1.
P=reshape(P1,N,N2)-pi*(M-1)*[0:N-1]’*...
ones(1,N2)/N+ones(N,1)*(angle(V1(:,1)))’;
P=[P(:,1:N2)-[fliplr(P(1,2:N2));flipud(P(2:N,N2:-1:2))]];
EST=ifft2(abs(fft2(X,N,N)).*exp(j*P’));
EST=EST(1:M,1:M)/EST(1,1)*X(1,1);
subplot(221),imagesc(real(X)),colormap(gray),axis off
subplot(222),imagesc(real(EST)),colormap(gray),axis off

4

AUTOCORRE

Fig. 1. Autocorrelation data for Example #1.

ORIG RECON

Fig. 2. Original and reconstructed images for Example #1.

Fig. 3. Matrix sparsity structure for Example #1.

AUTOCORRELATION

Fig. 4. Autocorrrelation data for Example #2.

ORIGINAL

RECONSTRUCTED

Fig. 5. Original and reconstructed images for Example #2.

Fig. 6. Matrix sparsity structure for Example #2.

