
1

Blind Deconvolution and Toeplitzation Using
Iterative Null-Space and Rank-One Projections

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— Toeplitzation requires finding a singular
Toeplitz matrix near to a given one; blind deconvolu-
tion requires finding unknown image and point-spread
functions (PSF) whose convolution is known. Both
problems are commonly solved using iterative algo-
rithms that require solving a linear system of equa-
tions or computing a minimum singular vector at each
iteration (Fourier transforms can only be used for
blind deconvolution if the image has compact sup-
port). We present a new reformulation of these prob-
lems in which these are replaced by computing the
rank-one matrix nearest to a given matrix; this is eas-
ily done using the power method. Numerical examples
and Matlab codes illustrate the two new algorithms.

Keywords— Blind deconvolution, Toeplitzation
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Toeplitzation

The Toeplitzation problem is as follows: Given a
non-Hermitian Toeplitz matrix (constant along its di-
agonals), find a non-Hermitian Toeplitz matrix near
in Frobenius norm (sum of squares of elements) to
the given matrix, and is singular (rank-deficient).
This problem has applications in:

• Target direction finding in noise;
• Spectral line enhancement in noise;
• Blind deconvolution of symmetric PSFs.

The Toeplitz matrix would be singular in the absence
of noise, but noise makes it non-singular. Hence per-
turbing the elements to the nearest singular Toeplitz
matrix greatly reduces the effects of noise.
The usual procedure is to apply an iterative algo-

rithm that at each iteration alternately:

• Computes the nearest (in Frobenius norm) singular
matrix to the given matrix by computing the singular
vectors associated with the minimum singular value,
and subtracting the outer product of these three;
• Computes the nearest (in Frobenius norm) Toeplitz
matrix by averaging along its diagonals.

The first step can be computationally difficult. The
inverse power method is commonly used, but this:

• Requires solution of a linear system of equations;
• more ill-conditioned as the method converges
• slowly if there are several small singular values.

The algorithm presented in this paper requires, at
each iteration, a step analogous to averaging along di-
agonals (but completely different) and computation
of the singular vectors associated with the maximum
singular value. These latter can be computed using
the (direct) power method, which:

• Requires only matrix-vector multiplication;
• Has no conditioning issues, and converges quickly
• since there is only one large singular value.

B. Blind Deconvolution

The blind deconvolution problem is to solve

• yi,j=
∑L−1

m=0

∑L−1
n=0 hm,nxi−m,j−n

• xi,j=unknown M×M image;
• xi,j=unknown L×L PSF;
• yi,j=known N×N blurred image.

It has many applications in optics and astronomy.
The usual procedure is to apply an iterative algo-

rithm that at each iteration alternately:

• Deconvolves an estimated image xi,j from the given
data yi,j and the present estimate of PSF hi,j ;
• Support constraint: set appropriate xi,j=0;
• Deconvolves an estimated PSF hi,j from the given
data yi,j and the present estimate of image xi,j ;
• Support constraint: set appropriate hi,j=0.

If the image has known compact support (xi,j=0 ex-
cept in a known region) and all nonzero yi,j are
known, then Fourier transforms can be used for the
deconvolutions. But in many applications not all
nonzero yi,j are known (only the valid convolution)
in which case each deconvolution requires solution of
a linear system of equations (if N<L+M–1 above).
The algorithm presented in this paper replaces the

deconvolutions (which are generally ill-posed) with
computation of maximum singular vectors using the
power method, which usually converges quickly.

2

II. REFORMULATION

A. Toeplitzation

The basic idea is to recognize that the N×N
Toeplitz matrix with (i, j)th element xi,j=xi−j is
singular if and only if there exists some nonzero
{ai, i = 0 . . .N − 1} such that

∑N−1
i=0 aixn−i=0, i.e.,

x0 x1 · · · xN−1

x−1 x0
. . . xN−2

.
x1−N · · · · · · x0

aN−1

aN−2

...
a0

 =

0
0
...
0

 (1)

This can now be rewritten as an N×(2N–1)N heavily
underdetermined linear system of equations having
unknowns the Kronecker product of �a and �x:

�a× �x = [a0x1−N . . . a0xN−1, a1x1−N . . . aN−1xN−1]

For example, for N=3 we can rewrite the system

 x0 x1 x2

x−1 x0 x1

x−2 x−1 x0

 a2

a1

a0

 =

 0
0
0

 (2)

as the sparse 3×(2(3)–1)(3)=3×15 linear system
[

0
0
0

]
=

[
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

]
−→ax

−→ax = [a0x−2 . . . a0x2, a1x−2 . . . a1x2, a2x−2 . . . a2x2]

This suggests the following iterative algorithm:

• Initialize: {an}=a random N-vector;
• {xn}=the given (noisy) matrix entries.
• At each iteration:
• Project −→ax onto the nullspace of matrix T;
• Project −→ax onto the set of rank=1 matrices.

The first projection is given by

−→ax← (I − T T (TT T)−1T)−→ax (3)

where T is the N×(2N–1)N system matrix above.
Since TT T= I

N , it is easily seen that this projection
subtracts from each element of −→ax accessed in a row
of T the average of those elements. Then T−→ax=0.
The second projection is given by

u1σ1v
H
1 ← AX =

N∑
i=1

uiσiv
H
i (4)

where AXi,j=−→axi+N(j−1) is the rearrangement of −→ax
into successive columns of an N×N matrix AX.

The maximum singular vectors u1 and v1 can be
computed iteratively using the power method:

u1 ← (AX)(AX)Hu1

||(AX)(AX)Hu1|| ; v1 = (AX)Hu1 (5)

This converges quickly if σ1 >> σ2, as will be the
case after the first few iterations. Note each iteration
requires only two matrix-vector multiplications.

B. Blind Deconvolution

The reformulation for blind deconvolution follows
the same plan as above. The main differences are:

• The underdetermined matrix T is harder to form;
• T depends on which values of the image xi,j are
known to be zero (the support constraint geometry);
• But matrix T does not depend on the data yi,j .

Once T is obtained, the only difference from the
Toeplitzation algorithm is that the first projection
now includes the data −yi,j in the values of −→ax to be
averaged, so that now T−→ax=y instead of zero.
Since the PSF is much smaller than the image, the

matrix (AX)H is “tall” and “thin.” Hence it may be
faster to compute directly the maximum eigenvector
of the small matrix (AX)(AX)H , instead of using the
power method to compute it.

III. NUMERICAL RESULTS

A. Toeplitzation

The Matlab program listed below implements the
Toeplitzation algorithm described above. Note that:

• The maximum singular vectors are all computed
directly, rather than using the power method;
• The singular Toeplitz matrix is generated from the
sum of several sinusoids with random amplitudes, so
the matrix is symmetric and non-circulant;
• Random Gaussian noises are added to the matrix
elements, and to the initialization.

The base-10 logarithm of the minimum singular value
is plotted vs. iteration number for a typical run in
Figure #1. Note the following from Figure #1:

• The trend is the minimum singular value decreases
exponentially with iteration number;
• Occasional sharp dips and rises occur in this plot;
• The singular values show that σ32 << σ31, σ1.

The singular values for this run were as follows:
SINGULAR VALUE: σ1 σ31 σ32

INITIALIZATION: 32. 1.1 0.94
2000 ITERATIONS: 3.0 10−3 7× 10−12

3

Matlab code used to generate this example:

clear;N=32;%Must be an even number
C=ones(1,N);for J=1:N/2-1;
C=C+rand*cos(2*pi*J*[0:N-1]/(N+0.2));end
R=C;A=toeplitz(C,R);X=null(A);
X=X+0.2*randn(N,1);R=R+0.2*randn(1,N);C=R;
ANOISY=toeplitz(C,R);S=svd(ANOISY);
RC=[fliplr(C) R(2:end)];RCX=X*RC;Y=RCX(:);
for J=1:2000;for I=1:N;NI=N*(N-I);%J=iteration
II=[NI+1:N+1:NI+N*N];W(II)=sum(Y(II));
end;Y=Y-W’/N;YY=reshape(Y,N,2*N-1);
[U S V]=svd(YY);Y=U(:,1)*V(:,1)’;Y=Y(:);
AEST=toeplitz(flipud(V(1:N,1)),V([N:2*N-1],1));
S=svd(AEST);SS(J)=S(N);end;plot(log10(SS))

B. Blind Deconvolution

The Matlab program listed below implements the
blind deconvolution algorithm described above, but:

• The maximum singular vectors are computed from
eigenvectors of a small matrix, rather than using the
power method, since this is much faster (see above);
• Initializations are the actual image and PSF with
extremely large amounts of noise added to each one;
• A tiny image is used to make the runtime short.

Results of a typical run are shown in Figures #2-3:

• The unknown image is 20×20;
• The unknown PSF is 5×5;
• The complete 24×24 data is used;
• The program can be modified to incorporate non-
compact support, but this is problem-dependent;
• Both the unknown image and PSF are successfully
reconstructed, to an (unavoidable) scale factor.

Matlab code used to generate this example:

clear;load lena.mat;X=xx(128:140,128:140);%Eye image
H=[1 4 1 5 9;2 6 5 3 5;8 9 7 9 3;2 3 8 4 6;2 6 4 3 3];
Y=conv2(X,H);M=size(X,1);L=size(H,1);%Blur image
X1=X+100*randn(M,M);H1=H+3*randn(L,L);%Initial
XH=X1(:)*H1(:)’;Z=XH(:);%Initial X*H Kronecker
%Index mapping for square suppot constraint:
for J=0:M-1;for K1=1:L;for K2=0:L-1;K3=K1+K2*L;
I((J+K2)*(L+M-1)+[1:M]+(K1-1),K3)...
=J*M+[1:M]’+(K3-1)*M*M;end;end;end;
%Iterative part of algorithm (K=iteration #):
for K=1:2000;for J=1:(L+M-1)*(L+M-1);II=I(J,I(J,:)>0);
Z(II)=Z(II)+(Y(J)-sum(Z(II)))/length(II);end;
ZZ=reshape(Z,M*M,L*L);[V S]=eig(ZZ’*ZZ);
[S1 J]=max(abs(diag(S)));V1=V(:,J);U1=ZZ*V1;
XH1=U1*V1’;Z=XH1(:);end;
XHAT=reshape(U1,M,M);HHAT=reshape(V1,L,L);
subplot(441),imagesc(X),colormap(gray),title(’ORIGINAL’)
subplot(442),imagesc(Y),colormap(gray),title(’BLURRED’)
subplot(443),imagesc(X1),colormap(gray),title(’INITIAL’)
subplot(444),imagesc(XHAT),colormap(gray),title(’RECONS’)
subplot(445),imagesc(H),colormap(gray),title(’ORIGINAL’)
subplot(447),imagesc(H1),colormap(gray),title(’INITIAL’)
subplot(448),imagesc(HHAT),colormap(gray),title(’RECONS’)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−12

−10

−8

−6

−4

−2

0

ORIGINAL BLURRED

INITIAL RECONST

ORIGINAL

RECONSTINITIAL

