
1

Discrete Tomography as 2-D Phase Retrieval
Solved Using Hybrid Input-Output Algorithm

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— The discrete tomography problem is to
reconstruct a binary image from a limited set of its
projections (sums of subsets of pixels). We formulate
it as a one-bit phase retrieval problem and solve it
using the (iterative) hybrid input-output algorithm of
Fienup. Numerical examples illustrate the algorithm.

Keywords— Binary image, discrete tomography
Phone: 734-763-9810. Fax: 734-763-1503.
Email: aey@eecs.umich.edu. EDICS: 2-REST.

I. INTRODUCTION

A. Problem Statement

The goal is to reconstruct a binary image xij from
a limited set of projections (sums of subsets of xij)

• yn =
∑

i,j Hn,i,jxij is underdetermined;
• xij=zero or one everywhere (binary image);
• Hn,i,j is a sparse binary matrix (sums of xij).

We also generalize to arbitrary underdetermined lin-
ear combinations of xij (arbitrary matrices Hn,i,j).

B. Review of Discrete Tomography

The discrete tomography problem is to reconstruct
a binary image from its row and column sums. This
is equivalent to reconstructing the image from its dis-
crete Fourier transform (DFT) values on the axes.

The solution to this problem is not unique. But all
solutions are related to each other by “switches” of
four pixels at the corners of rectangles, as follows:

[
1 0
0 1

]
⇔

[
0 1
1 0

]
(1)

It is easy to see that any such switch leaves the row
and column sums unchanged, for another solution.

This can be solved using a greedy algorithm:

• Let argmaxima of row and column sums be (I,J);
• Set xIJ = 1 and subtract one from the (I,J) sums;
• Continue until the binary image xij is finished.

However, if additional projection information is avail-
able, then this approach usually no longer works. We
will make no attempt to review all approaches here.

C. Review of Hybrid Input-Output Algorithm

The hybrid input-output algorithm (HIO) was de-
veloped by Fienup to solve the phase retrieval prob-
lem of reconstructing an image from knowledge of the
magnitude of its DFT and image information, e.g.,

• Support: xij=0 outside a known region;
• Non-negativity: xij ≥ 0 everywhere;
• Symmetry: xij has rotational symmetry.

All of these are convex sets and also subspaces.
The HIO algorithm is iterative and has the form:

x← x +Q(2P(x)− x)− P(x) where (2)
• Px implements the image constraint on x;
• Qx sets DFT magnitude of x to its known value;
• These projections can be exchanged.

II. REFORMULATION OF DISCRETE
TOMOGRAPHY AS PHASE RETRIEVAL

A. Discrete Projection-Slice Theorem

The projection-slice theorem of tomography states
that projections of an image are samples of its Fourier
transform along radial lines. The discrete projection-
slice theorem is derived from the 2-D DFT, which is:

Xk1,k2 =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2e
−j 2π

N (i1k1+i2k2) (3)

Setting k2 = 0 gives the 1-D DFT of row sums:

Xk1,0 =
N−1∑
i1=0

e−j 2π
N (i1k1)

N−1∑
i2=0

xi1,i2 (4)

Setting k1 = 0 gives the 1-D DFT of column sums:

X0,k2 =
N−1∑
i2=0

e−j 2π
N (i2k2)

N−1∑
i1=0

xi1,i2 (5)

For more projections, setting k1 = k2 = k gives

Xk,k =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2e
−j 2πk

N (i1+i2) (6)

2

which is the 1-D DFT of the 135o projection

pn =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2δ[n− (n1 + n2)mod(N)] (7)

Similarly, setting k1 = −k2 = k gives

Xk,−k =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2e
−j 2πk

N (i1−i2) (8)

which is the 1-D DFT of the 45o projection

pn =
N−1∑
i1=0

N−1∑
i2=0

xi1,i2δ[n− (n1 − n2)mod(N)] (9)

Thus knowledge of various projections of xij is equiv-
alent to knowledge of the 2-D DFT of xij along radial
lines of (k1, k2) at angles of 45o, 90o, 135o and 180o.

Note that the 45o and 135o projections are aliased;
to avoid this we must zero-pad the 2-D DFT. This
would make the iterative HIO algorithm much more
difficult to implement, since the forward and inverse
2-D DFTs could no longer be used exclusively here.

B. Binary Image as One-Bit Phase

The binary image xij = {0, 1} can be mapped to a
bilevel image xij = ±1 by simply converting the data:

• General: yi ← 2yi −
∑N

j=1 hij

• Row sums: yi ← 2yi −N ;
• Col. sums: yi ← 2yi −N ;
• 45o sums: yi ← 2yi − (N − |N − i|);
• 135o sums: yi ← 2yi − (N − |N − i|).

Double each projection and subtract off the number
of elements being summed in that projection.

Then the projection of xij onto ±1 is performed by

xij ← sign[xij] = 1ejarg[xij] (10)

which is the same as the projection Q in the HIO
algorithm of setting the magnitude of xij to its known
value (here, unity everywhere): |xij | = 1 everywhere.

C. Application of HIO to Discrete Tomography

The HIO algorithm can thus be applied to discrete
tomography by reformulation as phase retrieval:

1. Initialize with random xij ;
2. Xk1,k2 = DFT[xij] (see (3));
3. Set Xk,0, X0,k, Xk,k, Xk,−k to known values;
4. P(xij) = DFT−1[Xk1,k2];
5. x←x+sign[2P(xij)–x]–P(xij)
6. Continue until convergence (xij stops changing).

D. Application of HIO to General Matrix H

The HIO algorithm can also be applied to (1) with
a more general matrix H . Given data yn as defined
in (1), we now redefine the projection P(x) to be

P(x) = x + HT (HHT)−1(y −Hx) (11)

which is the projection of x onto the affine hyperplane
y = Hx. If the matrix H does not have full row rank,
HT (HHT)−1 must be replaced by the appropriate
pseudo-inverse, as in the second example below.

The problem with this is that computation of the 2-
D DFT is relatively fast, requiring N2 log2 N compu-
tations. However, the matrix-vector multiplications
each require MN2 computations, where M is the
number of observations, summed over all of the pro-
jections. And of course the pseudo-inverse must be
computed and stored, or a linear system of equations
solved at each recursion. Hence the HIO algorithm
seems much more suitable for discrete tomography.

III. NUMERICAL EXAMPLES

A. From Radial Fourier Samples

The 2-D DFT values {Xk,0, X0,k, Xk,k, Xk,−k} are
equivalent to the aliased projections at 45o, 90o, 135o

and 180o (see above). However, his is not enough
data to ensure a unique solution; the two images




0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0







0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0




have the same (unaliased) projections (note the four
switches). Hence the problem is solved when a binary
image whose projections agree with the data is found.

clear;N=10;N1=2*N-1;
X=round(rand(N,N));C=sum(X,1);R=sum(X,2);
for I=1-N:N-1;NE(N+I)=sum(diag(X,-I));
NW(N+I)=sum(diag(flipud(X),I));end
C1=2*C-N;NE1=2*NE-[1:N-1 N:-1:1];
R1=2*R-N;NW1=2*NW-[1:N-1 N:-1:1];
FR1=fft(R1);FNE1=fft(NE1(N:N1)+[0 NE1(1:N-1)]);
FC1=fft(C1);FNW1=fft(NW1(1:N)+[NW1(N+1:N1) 0]);
Z=randn(N,N);%Hybrid Input-Output Recursion:
for J=1:100;FZ=fft2(Z);FZ(:,1)=FR1;FZ(1,:)=FC1;
for I=1:N;FZ(I,I)=FNW1(I);end %Diagonal project
for I=2:N;FZ(I,N+2-I)=FNE1(I);end %Antidiagonal
PZ=real(ifft2(FZ));W=sign(2*PZ-Z);Z=Z+W-PZ;
FW=fft2(W);%Monitor L1 error in Fourier domain:
E1=sum(abs(FW(:,1)-FR1));E2=sum(abs(FW(1,:)-FC1));
E3=sum(abs(diag(FW)-FNW1.’));
E4=sum(abs(diag(fliplr(FW),-1)-FNE1(2:N).’));
E(J)=E1+E2+E3+E4;if(E(J)<0.001);break;end;end
W=(W+1)/2;W=reshape(W,N,N);
subplot(221),imagesc(X),axis off,colormap(gray)
subplot(222),imagesc(W),axis off,colormap(gray)
subplot(212),plot(E)

3

Fig. 1. Depiction of Radial Fourier Data

B. From Unaliased Projections

Here we formulate the problem as an underdeter-
mined linear algebra problem y = Hx, where

• H is a binary matrix that sums subsets of xij ;
• HHT is diagonal, with some zeros on it, hence:
• H is always row-rank-deficient by seven, since:
• The projections all have X0,0 in common, and:
• X0,0 is real-valued, for a deficiency of 2(4)–1=7;
• Hence the pseudo-inverse must be used in P ;
• H can be replaced with an arbitrary matrix below.

clear;N=10;N1=2*N-1;N2=N*N;
X=round(rand(N,N));C=sum(X,1);R=sum(X,2);
for I=1-N:N-1;NE(N+I)=sum(diag(X,I));
NW(N+I)=sum(diag(flipud(X),I));end
%Convert from [0,1] to [-1,1]:
C1=2*C-N;NE1=2*NE-[1:N-1 N:-1:1];
R1=2*R-N;NW1=2*NW-[1:N-1 N:-1:1];
Y=[NW1 NE1 R1’ C1]’;Z=randn(N2,1);
%Create projection matrix H:
%Note H is rank-deficient by 7.
for I=0:N-1;H(I+1:I+N,I*N+1:I*N+N)=eye(N);
H(N1+I+1:N1+I+N,I*N+1:I*N+N)=fliplr(eye(N));end
H=[H;[kron(ones(1,N),eye(N));kron(eye(N),ones(1,N))]];
PH=pinv(H);Z0=PH*Y;A=eye(N2)-PH*H;
%Hybrid Input-Output Recursion:
for J=1:100;PZ=A*Z+Z0;
W=sign(2*PZ-Z);Z=Z+W-PZ;
E(J)=sum(abs(Y-H*W));
if(E(J)<0.001);break;end;end
%Convert from [-1.1] to [0,1]:
W=(W+1)/2;W=reshape(W,N,N);
subplot(221),imagesc(X),axis off,colormap(gray)
subplot(222),imagesc(W),axis off,colormap(gray)
subplot(212),plot(E)

Typical runs of both programs are shown:

• The error tends to vary up and down for awhile,
and then suddenly plunge down to zero (solution);
• The number of iterations required for convergence
increases rapidly with problem size, but is finite;
• Original and reconstructed images are shown;
• The reconstructed image satisfies all projections;
• The reconstructed image is related to the original
image by multiple switches of the kind shown above.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Fig. 2. Typical Run: Radial Fourier Data

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Fig. 3. Typical Run: Matrix Projection Data

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

Fig. 4. Typical Run: Matrix Projection Data

