Engin. 100: Music Signal Processing
Project #3: Specifications and Hints

• Specifications for Music Synthesizer
• Specifications for Music Transcriber
• Suggested Approaches for Transcriber

Project #3 Deliverables: Synthesizer

• Music synthesizer: Can synthesize one octave.
• Instruments: Electric guitar, trumpet, clarinet, Design your own using additive synthesis.

• Pull-down menu to select the instrument first.
• Durations: whole, half, quarter (length) notes.

• Can mix instruments together (play DJ here): Lay down tracks separately using different instruments, then add them together in Matlab.

Music Synthesizer: Generation

• Download proj3.wav from web site. Contents:
• Snippets: Length=32768, sample=44100 Hz.
• Electric guitar, clarinet, trumpet, tone; 12 notes.
• NOTE: I generated notes using Circle of Fifths and multirate filtering, so frequencies slightly off.

• Additive Synthesis: Create your own instrument, label it with your team name. Be creative here!
• Marching band: Reverb (add copies) of trumpet.

Music Synthesizer: Specifications

• Pull-down menu to select instrument. Use:
• H=uicontrol('Style','Popup','Position',[500 250 100 50],
'String','guitar|clarinet|trumpet|tone');pause;I=get(H,'Value');
• I=1→guitar;I=2→clarinet;I=3→trumpet, etc.
• Final 100 samples of each note should be 0, to assist transcriber in detecting changes of notes.
• To reverb or echo a length=N sampled signal X:
 Y=X(1:N-2*D)+X(1+D:N-D)+X(1+2*D:N); for a delay D=1000; use many more than 3 echoes.
• Table on next slide; figure on slide after next.

Music Synthesizer: Specifications

<table>
<thead>
<tr>
<th>NOTE</th>
<th>1 sec.</th>
<th>Whole Note</th>
<th>Half Note</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH (end in 0s)</td>
<td>44100</td>
<td>32668+100 final zeros</td>
<td>16284+100 final zeros</td>
<td>8092+100 final zeros</td>
</tr>
</tbody>
</table>

Example of music transcriber output. Note interval information.
Engin. 100: Music Signal Processing

Project #3: Specifications and Hints

- Specifications for Music Synthesizer
- Specifications for Music Transcriber
- Suggested Approaches for Transcriber

Project #3 Deliverables: Transcriber

- Accepts .mat or .wav file from your synthesizer.
- Generates musical staff notation as in Project #1.
- BUT: Also depicts note duration by separation.
- BUT: Must work on music, not just tones!
- Otherwise, same as Project #1 transcriber specs.
- Does not have to include a bass scale for guitar.
- ALSO: Error rate vs. SNR plot, as in Project #2.

Music Transcriber: Specifications

- Output: Musical scale & notes using stem (Project #1)
- Duration: Shown in output by separation between notes:

<table>
<thead>
<tr>
<th>Note Type</th>
<th>Whole</th>
<th>Half Note</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation</td>
<td>3 spaces</td>
<td>1 space</td>
<td>0 space</td>
</tr>
</tbody>
</table>

- Use reshape, columns ending in 0s give note lengths.
- T=indices of those columns; stem(T,12log2(F/440))
- where F=vector of estimated note frequencies which are then mapped to musical staff notation, as in Project #1.
- Don’t need to be able to handle the (bass) guitar tones.
- Do need an error rate vs. SNR plot, as in Project #2.

Engin. 100: Music Signal Processing

Project #3: Specifications and Hints

- Specifications for Music Synthesizer
- Specifications for Music Transcriber
- Suggested Approaches for Transcriber

Transcriber: Possible Approaches

- Spectrogram: Look for peaks. Hard to program.
- Fundamental frequency identification from a limited choice of already-known frequencies.
- Autocorrelation of segment with itself: y[n]=\sum|x[i]|x[i-n] has sharp peak at n=period.
- Harmonic Product Spectrum: Downsample and multiply spectra-this emphasizes 1st harmonic.
- All of these have been tried previously.

“The Victors” Played on Trumpet

images(10+log(abs(fft(reshape(Y',8192,length(Y)/8192))))), colormap(gray). Plotting 10+log(values) reduces dynamic range. Zoom in on upper (or lower) portion to see harmonics clearly.
What is Autocorrelation of $x[n]$?

$$y[n] = \sum x[i]x[i-n] = \sum x[i]^2$$ is large when $n = \text{a period.}$

Compute:

$$Y = \text{real} (\text{ifft} (\text{abs} (\text{fft} (X, 2*\text{length}(X)).^2)));$$

Example: Trumpet Autocorrelation

$$Y = \text{real} (\text{ifft} (\text{abs} (\text{fft} (X, 2*\text{length}(X)).^2)));$$
plot(Y(1:300)).

Second peak at index = 57 → Frequency = $44100/(57-1) = 788$ Hz.

Example: Trumpet Spectrum

Fundamental at $(587-1)44100/32768 \approx 788$ Hz. Use Project #1.

BUT: 2nd harmonic > 1st harmonic! Misread as fundamental!

Harmonic Product Spectrum

$$F = \text{abs} (\text{fft}(X));\text{plot}(F(1:5000).*F(1:2:10000).*F(1:3:15000))$$ above.

Multiply spectrum by downsampled versions of itself (not signal).

Emphasizes harmonics over other stuff-easier to find peaks in noise.

Transcriber: Helpful (?) Ideas

- Noise filtering: If only interested in 1 octave, filter out all signal not in that octave (Lab #3). Helps for some approaches, but not for others.

- Frequencies I generated using Circle of Fifths don’t match post-“Well Tempered Clavichord.” Use pure tone selection → calibrate transcriber.

- Sub-harmonics (at fractions of fundamental)?
Issues Arising in Project #3

• The octave problem: Distinguish G (392 Hz) from G (784 Hz). Trumpet has this problem.

• Pattern recognition to identify instrument type from pattern of harmonics? Not required, but...

• Need to sell/defend your choice of method in both your team’s final oral and written reports.

Conclusion

• I’m not telling you how to do this project! Not a solved problem—different approaches.

• Apply what you have learned in the course.

• Research on music synthesis/transcription.

• As always, the tech comm presentation of results is as important as results themselves. Very realistic for real-world engineering.